1
|
Islam MZ, Zimmerman S, Lindahl A, Weidanz J, Ordovas-Montanes J, Kostic A, Luber J, Robben M. Single-cell RNA-seq reveals disease-specific CD8+ T cell clonal expansion and a high frequency of transcriptionally distinct double-negative T cells in diabetic NOD mice. PLoS One 2025; 20:e0317987. [PMID: 40106422 PMCID: PMC11922263 DOI: 10.1371/journal.pone.0317987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 01/08/2025] [Indexed: 03/22/2025] Open
Abstract
T cells primarily drive the autoimmune destruction of pancreatic beta cells in Type 1 diabetes (T1D). However, the profound yet uncharacterized diversity of the T cell populations in vivo has hindered obtaining a clear picture of the T cell changes that occur longitudinally during T1D onset. This study aimed to identify T cell clonal expansion and distinct transcriptomic signatures associated with T1D progression in Non-Obese Diabetic (NOD) mice. Here we profiled the transcriptome and T cell receptor (TCR) repertoire of T cells at single-cell resolution from longitudinally collected peripheral blood and pancreatic islets of NOD mice using single-cell RNA sequencing technology. We detected disease dependent development of infiltrating CD8 + T cells with altered cytotoxic and inflammatory effector states. In addition, we discovered a high frequency of transcriptionally distinct double negative (DN) T cells that fluctuate throughout T1D pathogenesis. This study identifies potential disease relevant TCR sequences and potential disease biomarkers that can be further characterized through future research.
Collapse
Affiliation(s)
- Md Zohorul Islam
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
- Section of Experimental Animal Models, Department of Veterinary and Animal Sciences, University of Copenhagen, Copenhagen, Denmark
- CSIRO Health & Biosecurity, Australian Centre for Disease Preparedness, Geelong, Victoria, Australia
| | - Sam Zimmerman
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Alexis Lindahl
- Department of Animal Science, University of Illinois, Urbana-Champaign, Illinois, United States of America
| | - Jon Weidanz
- Department of Kinesiology, The University of Texas at Arlington, Texas, United States of America
- Department of Bioengineering, The University of Texas at Arlington, Texas, United States of America
| | - Jose Ordovas-Montanes
- Division of Gastroenterology, Boston Children’s Hospital, Boston, Massachusetts, United States of America
- Harvard Stem Cell Institute, Harvard University, Boston, Massachusetts, United States of America
| | - Aleksandar Kostic
- Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, Massachusetts, United States of America
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jacob Luber
- Department of Computer Science and Engineering, The University of Texas at Arlington, United States of America
| | - Michael Robben
- Department of Animal Science, University of Illinois, Urbana-Champaign, Illinois, United States of America
- Department of Computer Science and Engineering, The University of Texas at Arlington, United States of America
| |
Collapse
|
2
|
Okamura T, Kitagawa N, Kitagawa N, Sakai K, Sumi M, Kobayashi G, Imai D, Matsui T, Hamaguchi M, Fukui M. Single-cell analysis reveals islet autoantigen's immune activation in type 1 diabetes patients. J Clin Biochem Nutr 2025; 76:64-84. [PMID: 39896168 PMCID: PMC11782777 DOI: 10.3164/jcbn.24-86] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 06/24/2024] [Indexed: 02/04/2025] Open
Abstract
In this study, we used single-cell sequencing, which can comprehensively detect the type and number of transcripts per cell, to efficiently stimulate peripheral blood mononuclear cells of type 1 diabetic patients with overlapping peptides of GAD, IA-2, and insulin antigens, and performed gene expression analysis by single-cell variable-diversity-joining sequencing and T-cell receptor repertoire analysis. Twenty male patients with type 1 diabetes mellitus participating in the KAMOGAWA-DM cohort were included. Four of them were randomly selected for BD Rhapsody system after reacting peripheral blood mononuclear cells with overlapping peptides of GAD, IA-2, and insulin antigen. Peripheral blood mononuclear cells were clustered into CD8+ T cells, CD4+ T cells, granulocytes, natural killer cells, dendritic cells, monocytes, and B cells based on Seurat analysis. In the insulin group, gene expression of inflammatory cytokines was elevated in cytotoxic CD8+ T cells and Th1 and Th17 cells, and gene expression related to exhaustion was elevated in regulatory T cells. In T cell receptors of various T cells, the T cell receptor β chain was monoclonally increased in the TRBV28/TRBJ2-7 pairs. This study provides insights into the pathogenesis of type 1 diabetes and provides potential targets for the treatment of type 1 diabetes.
Collapse
Affiliation(s)
- Takuro Okamura
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Noriyuki Kitagawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
- Department of Diabetology, Kameoka Municipal Hospital, 1-1 Shinonoda, Shino-cho, Kameoka 621-8585, Japan
| | - Nobuko Kitagawa
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Kimiko Sakai
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Madoka Sumi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Genki Kobayashi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Dan Imai
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Takaaki Matsui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Masahide Hamaguchi
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| | - Michiaki Fukui
- Department of Endocrinology and Metabolism, Kyoto Prefectural University of Medicine, Graduate School of Medical Science, Kawaramachi-Hirokoji, Kajii-cho, Kamigyo-ku, Kyoto 602-8566, Japan
| |
Collapse
|
3
|
Caron L, Vdovenko D, Lombard-Vadnais F, Lesage S. NOD alleles at Idd1 and Idd2 loci drive exocrine pancreatic inflammation. Immunogenetics 2024; 76:323-333. [PMID: 39207501 DOI: 10.1007/s00251-024-01352-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes and have enabled the identification of several loci associated with diabetes susceptibility, termed insulin-dependent diabetes (Idd). The generation of congenic mice has allowed the characterization of the impact of several loci on disease susceptibility. For instance, NOD.B6-Idd1 and B6.NOD-Idd1 congenic mice were instrumental in demonstrating that susceptibility alleles at the MHC locus (known as Idd1) are necessary but not sufficient for autoimmune diabetes progression. We previously showed that diabetes resistance alleles at the Idd2 locus provide significant protection from autoimmune diabetes onset, second to Idd1. In search of the minimal genetic factors required for T1D onset, we generated B6.Idd1.Idd2 double-congenic mice. Although the combination of Idd1 and Idd2 is not sufficient to induce diabetes onset, we observed immune infiltration in the exocrine pancreas of B6.Idd2 mice, as well as an increase in neutrophils and pancreatic tissue fibrosis. In addition, we observed phenotypic differences in T-cell subsets from B6.Idd1.Idd2 mice relative to single-congenic mice, suggesting epistatic interaction between Idd1 and Idd2 in modulating T-cell function. Altogether, these data show that Idd1 and Idd2 susceptibility alleles are not sufficient for autoimmune diabetes but contribute to inflammation and immune infiltration in the pancreas.
Collapse
Affiliation(s)
- Laurence Caron
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Daria Vdovenko
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Félix Lombard-Vadnais
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada
| | - Sylvie Lesage
- Département de microbiologie, infectiologie et immunologie, Université de Montréal, Montréal, QC, Canada.
- Immunologie-Oncologie, Centre de Recherche de l'Hôpital Maisonneuve-Rosemont, Montréal, Canada.
| |
Collapse
|
4
|
Yau C, Danska JS. Cracking the type 1 diabetes code: Genes, microbes, immunity, and the early life environment. Immunol Rev 2024; 325:23-45. [PMID: 39166298 DOI: 10.1111/imr.13362] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Type 1 diabetes (T1D) results from a complex interplay of genetic predisposition, immunological dysregulation, and environmental triggers, that culminate in the destruction of insulin-secreting pancreatic β cells. This review provides a comprehensive examination of the multiple factors underpinning T1D pathogenesis, to elucidate key mechanisms and potential therapeutic targets. Beginning with an exploration of genetic risk factors, we dissect the roles of human leukocyte antigen (HLA) haplotypes and non-HLA gene variants associated with T1D susceptibility. Mechanistic insights gleaned from the NOD mouse model provide valuable parallels to the human disease, particularly immunological intricacies underlying β cell-directed autoimmunity. Immunological drivers of T1D pathogenesis are examined, highlighting the pivotal contributions of both effector and regulatory T cells and the multiple functions of B cells and autoantibodies in β-cell destruction. Furthermore, the impact of environmental risk factors, notably modulation of host immune development by the intestinal microbiome, is examined. Lastly, the review probes human longitudinal studies, unveiling the dynamic interplay between mucosal immunity, systemic antimicrobial antibody responses, and the trajectories of T1D development. Insights garnered from these interconnected factors pave the way for targeted interventions and the identification of biomarkers to enhance T1D management and prevention strategies.
Collapse
Affiliation(s)
- Christopher Yau
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Jayne S Danska
- Genetics and Genome Biology, The Hospital for Sick Children Research Institute, Toronto, Ontario, Canada
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Department of Medicine Biophysics, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
5
|
Czarnecka Z, Dadheech N, Razavy H, Pawlick R, Shapiro AMJ. The Current Status of Allogenic Islet Cell Transplantation. Cells 2023; 12:2423. [PMID: 37887267 PMCID: PMC10605704 DOI: 10.3390/cells12202423] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/05/2023] [Accepted: 10/06/2023] [Indexed: 10/28/2023] Open
Abstract
Type 1 Diabetes (T1D) is an autoimmune destruction of pancreatic beta cells. The development of the Edmonton Protocol for islet transplantation in 2000 revolutionized T1D treatment and offered a glimpse at a cure for the disease. In 2022, the 20-year follow-up findings of islet cell transplantation demonstrated the long-term safety of islet cell transplantation despite chronic immunosuppression. The Edmonton Protocol, however, remains limited by two obstacles: scarce organ donor availability and risks associated with chronic immunosuppression. To overcome these challenges, the search has begun for an alternative cell source. In 2006, pluripotency genomic factors, coined "Yamanaka Factors," were discovered, which reprogram mature somatic cells back to their embryonic, pluripotent form (iPSC). iPSCs can then be differentiated into specialized cell types, including islet cells. This discovery has opened a gateway to a personalized medicine approach to treating diabetes, circumventing the issues of donor supply and immunosuppression. In this review, we present a brief history of allogenic islet cell transplantation from the early days of pancreatic remnant transplantation to present work on encapsulating stem cell-derived cells. We review data on long-term outcomes and the ongoing challenges of allogenic islet cell and stem cell-derived islet cell transplant.
Collapse
Affiliation(s)
- Zofia Czarnecka
- Department of Surgery, University of Alberta, Edmonton, AB T6G 2RW3, Canada; (N.D.); (H.R.); (R.P.); (A.M.J.S.)
| | | | | | | | | |
Collapse
|
6
|
Collier JL, Pauken KE, Lee CA, Patterson DG, Markson SC, Conway TS, Fung ME, France JA, Mucciarone KN, Lian CG, Murphy GF, Sharpe AH. Single-cell profiling reveals unique features of diabetogenic T cells in anti-PD-1-induced type 1 diabetes mice. J Exp Med 2023; 220:e20221920. [PMID: 37432393 PMCID: PMC10336233 DOI: 10.1084/jem.20221920] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 04/28/2023] [Accepted: 06/23/2023] [Indexed: 07/12/2023] Open
Abstract
Immune-related adverse events (irAEs) are a notable complication of PD-1 cancer immunotherapy. A better understanding of how these iatrogenic diseases compare with naturally arising autoimmune diseases is needed for treatment and monitoring of irAEs. We identified differences in anti-PD-1-induced type 1 diabetes (T1D) and spontaneous T1D in non-obese diabetic (NOD) mice by performing single-cell RNA-seq and TCR-seq on T cells from the pancreas, pancreas-draining lymph node (pLN), and blood of mice with PD-1-induced T1D or spontaneous T1D. In the pancreas, anti-PD-1 resulted in expansion of terminally exhausted/effector-like CD8+ T cells, an increase in T-bethi CD4+FoxP3- T cells, and a decrease in memory CD4+FoxP3- and CD8+ T cells in contrast to spontaneous T1D. Notably, anti-PD-1 caused increased TCR sharing between the pancreas and the periphery. Moreover, T cells in the blood of anti-PD-1-treated mice expressed markers that differed from spontaneous T1D, suggesting that the blood may provide a window to monitor irAEs rather than relying exclusively on the autoimmune target organ.
Collapse
Affiliation(s)
- Jenna L. Collier
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Kristen E. Pauken
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Dillon G. Patterson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Samuel C. Markson
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Thomas S. Conway
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Megan E. Fung
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | - Joshua A. France
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
| | | | - Christine G. Lian
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - George F. Murphy
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
| | - Arlene H. Sharpe
- Department of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Evergrande Center for Immunological Diseases, Harvard Medical School and Brigham and Women’s Hospital, Boston, MA, USA
- Department of Pathology, Brigham and Women’s Hospital, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| |
Collapse
|
7
|
Martinov T, Fife BT. Type 1 diabetes pathogenesis and the role of inhibitory receptors in islet tolerance. Ann N Y Acad Sci 2020; 1461:73-103. [PMID: 31025378 PMCID: PMC6994200 DOI: 10.1111/nyas.14106] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Accepted: 04/03/2019] [Indexed: 12/15/2022]
Abstract
Type 1 diabetes (T1D) affects over a million Americans, and disease incidence is on the rise. Despite decades of research, there is still no cure for this disease. Exciting beta cell replacement strategies are being developed, but in order for such approaches to work, targeted immunotherapies must be designed. To selectively halt the autoimmune response, researchers must first understand how this response is regulated and which tolerance checkpoints fail during T1D development. Herein, we discuss the current understanding of T1D pathogenesis in humans, genetic and environmental risk factors, presumed roles of CD4+ and CD8+ T cells as well as B cells, and implicated autoantigens. We also highlight studies in non-obese diabetic mice that have demonstrated the requirement for CD4+ and CD8+ T cells and B cells in driving T1D pathology. We present an overview of central and peripheral tolerance mechanisms and comment on existing controversies in the field regarding central tolerance. Finally, we discuss T cell- and B cell-intrinsic tolerance mechanisms, with an emphasis on the roles of inhibitory receptors in maintaining islet tolerance in humans and in diabetes-prone mice, and strategies employed to date to harness inhibitory receptor signaling to prevent or reverse T1D.
Collapse
Affiliation(s)
- Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, Minnesota
| |
Collapse
|
8
|
Previte DM, Piganelli JD. Reactive Oxygen Species and Their Implications on CD4 + T Cells in Type 1 Diabetes. Antioxid Redox Signal 2018; 29:1399-1414. [PMID: 28990401 DOI: 10.1089/ars.2017.7357] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Previous work has indicated that type 1 diabetes (T1D) pathology is highly driven by reactive oxygen species (ROS). One way in which ROS shape the autoimmune response demonstrated in T1D is by promoting CD4+ T cell activation and differentiation. As CD4+ T cells are a significant contributor to pancreatic β cell destruction in T1D, understanding how ROS impact their development, activation, and differentiation is critical. Recent Advances: CD4+ T cells themselves generate ROS via nicotinamide adenine dinucleotide phosphate (NADPH) oxidase expression and electron transport chain activity. Moreover, T cells can also be exposed to exogenous ROS generated by other immune cells (e.g., macrophages and dendritic cells) and β cells. Genetically modified animals and ROS inhibitors have demonstrated that ROS blockade during activation results in CD4+ T cell hyporesponsiveness and reduced diabetes incidence. Critical Issues and Future Directions: Although the majority of studies with regard to T1D and CD4+ T cells have been done to examine the influence of redox on CD4+ T cell activation, this is not the only circumstance in which a T cell can be impacted by redox. ROS and redox have also been shown to play roles in CD4+ T cell-related tolerogenic mechanisms, including thymic selection and regulatory T cell-mediated suppression. However, the effect of these mechanisms with respect to T1D pathogenesis remains elusive. Therefore, pursuing these avenues may provide valuable insight into the global role of ROS and redox in autoreactive CD4+ T cell formation and function.
Collapse
Affiliation(s)
- Dana M Previte
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| | - Jon D Piganelli
- Department of Surgery, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center , Pittsburgh, Pennsylvania
| |
Collapse
|
9
|
Iglesias M, Arun A, Chicco M, Lam B, Talbot CC, Ivanova V, Lee WPA, Brandacher G, Raimondi G. Type-I Interferons Inhibit Interleukin-10 Signaling and Favor Type 1 Diabetes Development in Nonobese Diabetic Mice. Front Immunol 2018; 9:1565. [PMID: 30061883 PMCID: PMC6054963 DOI: 10.3389/fimmu.2018.01565] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/25/2018] [Indexed: 01/19/2023] Open
Abstract
Destruction of insulin-producing β-cells by autoreactive T lymphocytes leads to the development of type 1 diabetes. Type-I interferons (TI-IFN) and interleukin-10 (IL-10) have been connected with the pathophysiology of this disease; however, their interplay in the modulation of diabetogenic T cells remains unknown. We have discovered that TI-IFN cause a selective inhibition of IL-10 signaling in effector and regulatory T cells, altering their responses. This correlates with diabetes development in nonobese diabetic mice, where the inhibition is also spatially localized to T cells of pancreatic and mesenteric lymph nodes. IL-10 signaling inhibition is reversible and can be restored via blockade of TI-IFN/IFN-R interaction, paralleling with the resulting delay in diabetes onset and reduced severity. Overall, we propose a novel molecular link between TI-IFN and IL-10 signaling that helps better understand the complex dynamics of autoimmune diabetes development and reveals new strategies of intervention.
Collapse
Affiliation(s)
- Marcos Iglesias
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Anirudh Arun
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Maria Chicco
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Brandon Lam
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - C Conover Talbot
- Institute for Basic Biomedical Sciences, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Vera Ivanova
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - W P A Lee
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Gerald Brandacher
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Giorgio Raimondi
- Vascularized and Composite Allotransplantation Laboratory, Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD, United States
| |
Collapse
|
10
|
Osum KC, Burrack AL, Martinov T, Sahli NL, Mitchell JS, Tucker CG, Pauken KE, Papas K, Appakalai B, Spanier JA, Fife BT. Interferon-gamma drives programmed death-ligand 1 expression on islet β cells to limit T cell function during autoimmune diabetes. Sci Rep 2018; 8:8295. [PMID: 29844327 PMCID: PMC5974126 DOI: 10.1038/s41598-018-26471-9] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/09/2018] [Indexed: 02/06/2023] Open
Abstract
Type 1 diabetes is caused by autoreactive T cell-mediated β cell destruction. Even though co-inhibitory receptor programmed death-1 (PD-1) restrains autoimmunity, the expression and regulation of its cognate ligands on β cell remains unknown. Here, we interrogated β cell-intrinsic programmed death ligand-1 (PD-L1) expression in mouse and human islets. We measured a significant increase in the level of PD-L1 surface expression and the frequency of PD-L1+ β cells as non-obese diabetic (NOD) mice aged and developed diabetes. Increased β cell PD-L1 expression was dependent on T cell infiltration, as β cells from Rag1-deficient mice lacked PD-L1. Using Rag1-deficient NOD mouse islets, we determined that IFN-γ promotes β cell PD-L1 expression. We performed analogous experiments using human samples, and found a significant increase in β cell PD-L1 expression in type 1 diabetic samples compared to type 2 diabetic, autoantibody positive, and non-diabetic samples. Among type 1 diabetic samples, β cell PD-L1 expression correlated with insulitis. In vitro experiments with human islets from non-diabetic individuals showed that IFN-γ promoted β cell PD-L1 expression. These results suggest that insulin-producing β cells respond to pancreatic inflammation and IFN-γ production by upregulating PD-L1 expression to limit self-reactive T cells.
Collapse
Affiliation(s)
- Kevin C Osum
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Adam L Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Nathanael L Sahli
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Jason S Mitchell
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Christopher G Tucker
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Kristen E Pauken
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Klearchos Papas
- Department of Surgery, University of Arizona, Tucson, AZ, USA
| | | | - Justin A Spanier
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA
| | - Brian T Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, 55455, USA.
| |
Collapse
|
11
|
CARD9 S12N facilitates the production of IL-5 by alveolar macrophages for the induction of type 2 immune responses. Nat Immunol 2018; 19:547-560. [PMID: 29777223 DOI: 10.1038/s41590-018-0112-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 04/10/2018] [Indexed: 01/01/2023]
Abstract
The adaptor CARD9 functions downstream of C-type lectin receptors (CLRs) for the sensing of microbial infection, which leads to responses by the TH1 and TH17 subsets of helper T cells. The single-nucleotide polymorphism rs4077515 at CARD9 in the human genome, which results in the substitution S12N (CARD9S12N), is associated with several autoimmune diseases. However, the function of CARD9S12N has remained unknown. Here we generated CARD9S12N knock-in mice and found that CARD9S12N facilitated the induction of type 2 immune responses after engagement of CLRs. Mechanistically, CARD9S12N mediated CLR-induced activation of the non-canonical transcription factor NF-κB subunit RelB, which initiated production of the cytokine IL-5 in alveolar macrophages for the recruitment of eosinophils to drive TH2 cell-mediated allergic responses. We identified the homozygous CARD9 mutation encoding S12N in patients with allergic bronchopulmonary aspergillosis and revealed activation of RelB and production of IL-5 in peripheral blood mononuclear cells from these patients. Our study provides genetic and functional evidence demonstrating that CARD9S12N can turn alveolar macrophages into IL-5-producing cells and facilitates TH2 cell-mediated pathologic responses.
Collapse
|
12
|
Lepper MF, Ohmayer U, von Toerne C, Maison N, Ziegler AG, Hauck SM. Proteomic Landscape of Patient-Derived CD4+ T Cells in Recent-Onset Type 1 Diabetes. J Proteome Res 2017; 17:618-634. [PMID: 29182335 DOI: 10.1021/acs.jproteome.7b00712] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The pathophysiology underlying the autoimmune disease type 1 diabetes (T1D) is poorly understood. Obtaining an accurate proteomic profile of the T helper cell population is essential for understanding the pathogenesis of T1D. Here, we performed in-depth proteomic profiling of peripheral CD4+ T cells in a pediatric cohort to identify cellular signatures associated with the onset of T1D. Using only 250 000 CD4+ T cells per patient, isolated from biobanked PBMC samples, we identified nearly 6000 proteins using deep-proteome profiling with LC-MS/MS data-independent acquisition. Our analysis revealed an inflammatory signature in patients with T1D; this signature is characterized by circulating mediators of neutrophils, platelets, and the complement system. This signature likely reflects the inflammatory extracellular milieu, which suggests that activation of the innate immune system plays an important role in disease onset. Our results emphasize the potential value of using high-resolution LC-MS/MS to investigate limited quantities of biobanked samples to identify disease-relevant proteomic patterns. Proteomic profiles of 114 individuals have been deposited in a comprehensive portable repository serving as a unique resource for CD4+ T cell expression in the context of both health and T1D disease.
Collapse
Affiliation(s)
- Marlen F Lepper
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | | | | | | | | | - Stefanie M Hauck
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
13
|
Banday VS, Thyagarajan R, Lejon K. Contribution of both B-cell intrinsic alterations as well as non-hematopoietic-derived factors in the enhanced immune response of the NOD mouse. Autoimmunity 2017; 50:363-369. [PMID: 28686488 DOI: 10.1080/08916934.2017.1344977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The underlying cellular and molecular mechanism for the development of Type 1 diabetes is still to be fully revealed. We have previously demonstrated that the NOD mouse, a model for Type 1 diabetes, display a prolonged and enhanced immune response to both self and non-self-antigens. The molecular explanation for this defect however, has not been determined. In this study we immunized NOD and C57BL/6 (B6) with the conventional antigen i.e. hen egg lysozyme (HEL) and analyzed B cell activation, germinal center reaction and antibody clearance. Corroborating our previous observations NOD mice responded robustly to a single immunization of HEL. Immunofluorescence analysis of the spleen revealed an increased number of germinal centers in unimmunized NOD compared to B6. However, post immunization germinal center numbers were similar in NOD and B6. NOD mice showed lower response to BCR stimulation with anti-IgM, in particular at lower concentrations of anti-IgM. Antibody clearance in vivo did not differ between the strains. To determine the cell type that is responsible for the prolonged and enhance immune response, we reconstituted NOD-RAGs with cells from primed donors in different combinations. NOD B cells were required to reproduce the phenotype; however the non-lymphoid compartment of NOD origin also played a role. Based on our results we propose that preexisting GCs in the NOD promote the robust response and alteration in the BCR signaling could promote survival of stimulated cells. Overall, this mechanism could in turn also contribute to the activation and maintenance of autoreactive B cells in the NOD mouse.
Collapse
Affiliation(s)
- Viqar Showkat Banday
- a Department of Clinical Microbiology, Division of Immunology , Umeå University , Umeå , Sweden
| | - Radha Thyagarajan
- a Department of Clinical Microbiology, Division of Immunology , Umeå University , Umeå , Sweden
| | - Kristina Lejon
- a Department of Clinical Microbiology, Division of Immunology , Umeå University , Umeå , Sweden
| |
Collapse
|
14
|
Burrack AL, Martinov T, Fife BT. T Cell-Mediated Beta Cell Destruction: Autoimmunity and Alloimmunity in the Context of Type 1 Diabetes. Front Endocrinol (Lausanne) 2017; 8:343. [PMID: 29259578 PMCID: PMC5723426 DOI: 10.3389/fendo.2017.00343] [Citation(s) in RCA: 207] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 11/21/2017] [Indexed: 12/20/2022] Open
Abstract
Type 1 diabetes (T1D) results from destruction of pancreatic beta cells by T cells of the immune system. Despite improvements in insulin analogs and continuous blood glucose level monitoring, there is no cure for T1D, and some individuals develop life-threatening complications. Pancreas and islet transplantation have been attractive therapeutic approaches; however, transplants containing insulin-producing cells are vulnerable to both recurrent autoimmunity and conventional allograft rejection. Current immune suppression treatments subdue the immune system, but not without complications. Ideally a successful approach would target only the destructive immune cells and leave the remaining immune system intact to fight foreign pathogens. This review discusses the autoimmune diabetes disease process, diabetic complications that warrant a transplant, and alloimmunity. First, we describe the current understanding of autoimmune destruction of beta cells including the roles of CD4 and CD8 T cells and several possibilities for antigen-specific tolerance induction. Second, we outline diabetic complications necessitating beta cell replacement. Third, we discuss transplant recognition, potential sources for beta cell replacement, and tolerance-promoting therapies under development. We hypothesize that a better understanding of autoreactive T cell targets during disease pathogenesis and alloimmunity following transplant destruction could enhance attempts to re-establish tolerance to beta cells.
Collapse
Affiliation(s)
- Adam L. Burrack
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Tijana Martinov
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota Medical School, Minneapolis, MN, United States
- *Correspondence: Brian T. Fife,
| |
Collapse
|
15
|
Abstract
In vivo depletion of T lymphocytes is a means of studying the role of specific T cell populations during defined phases of in vivo immune responses. In this unit, a protocol is provided for injecting monoclonal antibodies (mAbs) into wild-type adult mice. Depletion of the appropriate subset of cells is verified by flow cytometry analysis of lymph node and spleen cell suspensions in pilot experiments. Once conditions have been established, depleted mice can be used to study the impact of T cell subsets on a variety of in vivo immune responses. The depleted condition may be maintained by repeated injections of the monoclonal antibody, or reversed by normal thymopoiesis following discontinuation of antibody administration.
Collapse
Affiliation(s)
- Karen Laky
- National Institutes of Health, National Institute of Allergy and Infectious Diseases, Bethesda, Maryland
| | | |
Collapse
|
16
|
Abstract
Type 1 diabetes (T1D) results from a chronic and selective destruction of insulin-secreting β-cells within the islets of Langerhans of the pancreas by autoreactive CD4(+) and CD8(+) T lymphocytes. The use of animal models of T1D was instrumental for deciphering the steps of the autoimmune process leading to T1D. The non-obese diabetic (NOD) mouse and the bio-breeding (BB) rat spontaneously develop the disease similar to the human pathology in terms of the immune responses triggering autoimmune diabetes and of the genetic and environmental factors influencing disease susceptibility. The generation of genetically modified models allowed refining our understanding of the etiology and the pathogenesis of the disease. In the present review, we provide an overview of the experimental models generated and used to gain knowledge on the molecular and cellular mechanisms underlying the breakdown of self-tolerance in T1D and the progression of the autoimmune response. Immunotherapeutic interventions designed in these animal models and translated into the clinical arena in T1D patients will also be discussed.
Collapse
|
17
|
Padgett LE, Anderson B, Liu C, Ganini D, Mason RP, Piganelli JD, Mathews CE, Tse HM. Loss of NOX-Derived Superoxide Exacerbates Diabetogenic CD4 T-Cell Effector Responses in Type 1 Diabetes. Diabetes 2015; 64:4171-83. [PMID: 26269022 PMCID: PMC4657579 DOI: 10.2337/db15-0546] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 08/04/2015] [Indexed: 12/13/2022]
Abstract
Reactive oxygen species (ROS) play prominent roles in numerous biological systems. While classically expressed by neutrophils and macrophages, CD4 T cells also express NADPH oxidase (NOX), the superoxide-generating multisubunit enzyme. Our laboratory recently demonstrated that superoxide-deficient nonobese diabetic (NOD.Ncf1(m1J)) mice exhibited a delay in type 1 diabetes (T1D) partially due to blunted IFN-γ synthesis by CD4 T cells. For further investigation of the roles of superoxide on CD4 T-cell diabetogenicity, the NOD.BDC-2.5.Ncf1(m1J) (BDC-2.5.Ncf1(m1J)) mouse strain was generated, possessing autoreactive CD4 T cells deficient in NOX-derived superoxide. Unlike NOD.Ncf1(m1J), stimulated BDC-2.5.Ncf1(m1J) CD4 T cells and splenocytes displayed elevated synthesis of Th1 cytokines and chemokines. Superoxide-deficient BDC-2.5 mice developed spontaneous T1D, and CD4 T cells were more diabetogenic upon adoptive transfer into NOD.Rag recipients due to a skewing toward impaired Treg suppression. Exogenous superoxide blunted exacerbated Th1 cytokines and proinflammatory chemokines to approximately wild-type levels, concomitant with reduced IL-12Rβ2 signaling and P-STAT4 (Y693) activation. These results highlight the importance of NOX-derived superoxide in curbing autoreactivity due, in part, to control of Treg function and as a redox-dependent checkpoint of effector T-cell responses. Ultimately, our studies reveal the complexities of free radicals in CD4 T-cell responses.
Collapse
Affiliation(s)
- Lindsey E Padgett
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Brian Anderson
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| | - Chao Liu
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Douglas Ganini
- Free Radical Metabolites, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Ronald P Mason
- Free Radical Metabolites, Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC
| | - Jon D Piganelli
- Department of Surgery, Immunology, and Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Clayton E Mathews
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - Hubert M Tse
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham School of Medicine, Birmingham, AL
| |
Collapse
|
18
|
Comprehensive Survey of miRNA-mRNA Interactions Reveals That Ccr7 and Cd247 (CD3 zeta) are Posttranscriptionally Controlled in Pancreas Infiltrating T Lymphocytes of Non-Obese Diabetic (NOD) Mice. PLoS One 2015; 10:e0142688. [PMID: 26606254 PMCID: PMC4659659 DOI: 10.1371/journal.pone.0142688] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Accepted: 10/26/2015] [Indexed: 01/14/2023] Open
Abstract
In autoimmune type 1 diabetes mellitus (T1D), auto-reactive clones of CD4+ and CD8+ T lymphocytes in the periphery evolve into pancreas-infiltrating T lymphocytes (PILs), which destroy insulin-producing beta-cells through inflammatory insulitis. Previously, we demonstrated that, during the development of T1D in non-obese diabetic (NOD) mice, a set of immune/inflammatory reactivity genes were differentially expressed in T lymphocytes. However, the posttranscriptional control involving miRNA interactions that occur during the evolution of thymocytes into PILs remains unknown. In this study, we postulated that miRNAs are differentially expressed during this period and that these miRNAs can interact with mRNAs involved in auto-reactivity during the progression of insulitis. To test this hypothesis, we used NOD mice to perform, for the first time, a comprehensive survey of miRNA and mRNA expression as thymocytes mature into peripheral CD3+ T lymphocytes and, subsequently, into PILs. Reconstruction of miRNA-mRNA interaction networks for target prediction revealed the participation of a large set of miRNAs that regulate mRNA targets related to apoptosis, cell adhesion, cellular regulation, cellular component organization, cellular processes, development and the immune system, among others. The interactions between miR-202-3p and the Ccr7 chemokine receptor mRNA or Cd247 (Cd3 zeta chain) mRNA found in PILs are highlighted because these interactions can contribute to a better understanding of how the lack of immune homeostasis and the emergence of autoimmunity (e.g., T1D) can be associated with the decreased activity of Ccr7 or Cd247, as previously observed in NOD mice. We demonstrate that these mRNAs are controlled at the posttranscriptional level in PILs.
Collapse
|
19
|
Perforin facilitates beta cell killing and regulates autoreactive CD8+ T-cell responses to antigen in mouse models of type 1 diabetes. Immunol Cell Biol 2015; 94:334-41. [PMID: 26446877 DOI: 10.1038/icb.2015.89] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/15/2015] [Accepted: 10/01/2015] [Indexed: 02/05/2023]
Abstract
In type 1 diabetes, cytotoxic CD8(+) T lymphocytes (CTLs) directly interact with pancreatic beta cells through major histocompatibility complex class I. An immune synapse facilitates delivery of cytotoxic granules, comprised mainly of granzymes and perforin. Perforin deficiency protects the majority of non-obese diabetic (NOD) mice from autoimmune diabetes. Intriguingly perforin deficiency does not prevent diabetes in CD8(+) T-cell receptor transgenic NOD8.3 mice. We therefore investigated the importance of perforin-dependent killing via CTL-beta cell contact in autoimmune diabetes. Perforin-deficient CTL from NOD mice or from NOD8.3 mice were significantly less efficient at adoptive transfer of autoimmune diabetes into NODRag1(-/-) mice, confirming that perforin is essential to facilitate beta cell destruction. However, increasing the number of transferred in vitro-activated perforin-deficient 8.3 T cells reversed the phenotype and resulted in diabetes. Perforin-deficient NOD8.3 T cells were present in increased proportion in islets, and proliferated more in response to antigen in vivo indicating that perforin may regulate the activation of CTLs, possibly by controlling cytokine production. This was confirmed when we examined the requirement for direct interaction between beta cells and CD8(+) T cells in NOD8.3 mice, in which beta cells specifically lack major histocompatibility complex (MHC) class I through conditional deletion of β2-microglobulin. Although diabetes was significantly reduced, 40% of these mice developed diabetes, indicating that NOD8.3 T cells can kill beta cells in the absence of direct interaction. Our data indicate that although perforin delivery is the main mechanism that CTL use to destroy beta cells, they can employ alternative mechanisms to induce diabetes in a perforin-independent manner.
Collapse
|
20
|
Barrie ES, Lodder M, Weinreb PH, Buss J, Rajab A, Adin C, Mi QS, Hadley GA. Role of ITGAE in the development of autoimmune diabetes in non-obese diabetic mice. J Endocrinol 2015; 224:235-43. [PMID: 25525188 DOI: 10.1530/joe-14-0396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
There is compelling evidence that autoreactive CD8(+)T cells play a central role in precipitating the development of autoimmune diabetes in non-obese diabetic (NOD) mice, but the underlying mechanisms remain unclear. Given that ITGAE (CD103) recognizes an islet-restricted ligand (E-cadherin), we postulated that its expression is required for initiation of disease. We herein use a mouse model of autoimmune diabetes (NOD/ShiLt mice) to test this hypothesis. We demonstrate that ITGAE is expressed by a discrete subset of CD8(+)T cells that infiltrate pancreatic islets before the development of diabetes. Moreover, we demonstrate that development of diabetes in Itgae-deficient NOD mice is significantly delayed at early but not late time points, indicating that ITGAE is preferentially involved in early diabetes development. To rule out a potential contribution by closely linked loci to this delay, we treated WT NOD mice beginning at 2 weeks of age through 5 weeks of age with a depleting anti-ITGAE mAb and found a decreased incidence of diabetes following anti-ITGAE mAb treatment compared with mice that received isotype control mAbs or non-depleting mAbs to ITGAE. Moreover, a histological examination of the pancreas of treated mice revealed that NOD mice treated with a depleting mAb were resistant to immune destruction. These results indicate that ITGAE(+) cells play a key role in the development of autoimmune diabetes and are consistent with the hypothesis that ITGAE(+)CD8(+)T effectors initiate the disease process.
Collapse
Affiliation(s)
- Elizabeth S Barrie
- The Ohio State University Wexner Medical CenterRoom 216 Tzagournis Medical Research Facility, 420 W 12th Avenue, Columbus, Ohio 43201, USABiogen IdecCambridge, Massachusetts 02142, USACollege of Veterinary MedicineColumbus, Ohio 43201 USAHenry Ford HospitalDetroit, Michigan 48202, USA
| | - Mels Lodder
- The Ohio State University Wexner Medical CenterRoom 216 Tzagournis Medical Research Facility, 420 W 12th Avenue, Columbus, Ohio 43201, USABiogen IdecCambridge, Massachusetts 02142, USACollege of Veterinary MedicineColumbus, Ohio 43201 USAHenry Ford HospitalDetroit, Michigan 48202, USA
| | - Paul H Weinreb
- The Ohio State University Wexner Medical CenterRoom 216 Tzagournis Medical Research Facility, 420 W 12th Avenue, Columbus, Ohio 43201, USABiogen IdecCambridge, Massachusetts 02142, USACollege of Veterinary MedicineColumbus, Ohio 43201 USAHenry Ford HospitalDetroit, Michigan 48202, USA
| | - Jill Buss
- The Ohio State University Wexner Medical CenterRoom 216 Tzagournis Medical Research Facility, 420 W 12th Avenue, Columbus, Ohio 43201, USABiogen IdecCambridge, Massachusetts 02142, USACollege of Veterinary MedicineColumbus, Ohio 43201 USAHenry Ford HospitalDetroit, Michigan 48202, USA
| | - Amer Rajab
- The Ohio State University Wexner Medical CenterRoom 216 Tzagournis Medical Research Facility, 420 W 12th Avenue, Columbus, Ohio 43201, USABiogen IdecCambridge, Massachusetts 02142, USACollege of Veterinary MedicineColumbus, Ohio 43201 USAHenry Ford HospitalDetroit, Michigan 48202, USA
| | - Christopher Adin
- The Ohio State University Wexner Medical CenterRoom 216 Tzagournis Medical Research Facility, 420 W 12th Avenue, Columbus, Ohio 43201, USABiogen IdecCambridge, Massachusetts 02142, USACollege of Veterinary MedicineColumbus, Ohio 43201 USAHenry Ford HospitalDetroit, Michigan 48202, USA
| | - Qing-Sheng Mi
- The Ohio State University Wexner Medical CenterRoom 216 Tzagournis Medical Research Facility, 420 W 12th Avenue, Columbus, Ohio 43201, USABiogen IdecCambridge, Massachusetts 02142, USACollege of Veterinary MedicineColumbus, Ohio 43201 USAHenry Ford HospitalDetroit, Michigan 48202, USA
| | - Gregg A Hadley
- The Ohio State University Wexner Medical CenterRoom 216 Tzagournis Medical Research Facility, 420 W 12th Avenue, Columbus, Ohio 43201, USABiogen IdecCambridge, Massachusetts 02142, USACollege of Veterinary MedicineColumbus, Ohio 43201 USAHenry Ford HospitalDetroit, Michigan 48202, USA
| |
Collapse
|
21
|
The rise, fall, and resurgence of immunotherapy in type 1 diabetes. Pharmacol Res 2014; 98:31-8. [PMID: 25107501 DOI: 10.1016/j.phrs.2014.07.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 06/30/2014] [Accepted: 07/01/2014] [Indexed: 12/11/2022]
Abstract
Despite considerable effort to halt or delay destruction of β-cells in autoimmune type 1 diabetes (T1D), success remains elusive. Over the last decade, we have seen a proliferation of knowledge on the pathogenesis of T1D that emerged from studies performed in non-obese diabetic (NOD) mice. However, while results of these preclinical studies appeared to hold great promise and boosted patients' hopes, none of these approaches, once tested in clinical settings, induced remission of autoimmune diabetes in individuals with T1D. The primary obstacles to translation reside in the differences between the human and murine autoimmune responses and in the contribution of many environmental factors associated with the onset of disease. Moreover, inaccurate dosing as well as inappropriate timing and uncertain length of drug exposure have played a central role in the negative outcomes of such therapeutic interventions. In this review, we summarize the most important approaches tested thus far in T1D, beginning with the most successful preclinical studies in NOD mice and ending with the latest disappointing clinical trials in humans. Finally, we highlight recent stem cell-based trials, for which expectations in the scientific community and among individuals with T1D are high.
Collapse
|
22
|
Pauken KE, Jenkins MK, Azuma M, Fife BT. PD-1, but not PD-L1, expressed by islet-reactive CD4+ T cells suppresses infiltration of the pancreas during type 1 diabetes. Diabetes 2013; 62:2859-69. [PMID: 23545706 PMCID: PMC3717847 DOI: 10.2337/db12-1475] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The inhibitory receptor programmed death-1 (PD-1) constrains type 1 diabetes (T1D) in the nonobese diabetic (NOD) mouse. However, how PD-1 influences diabetogenic CD4(+) T cells during natural diabetes is not fully understood. To address this question, we developed a novel model to investigate antigen-specific CD4(+) T cells under physiological conditions in vivo. We transferred a low number of naïve CD4(+) T cells from the BDC2.5 mouse into prediabetic NOD mice to mimic a physiological precursor frequency and allowed the cells to become primed by endogenous autoantigen. Transferred BDC2.5 T cells became activated, differentiated into T-bet(+) IFN-γ-producing cells, and infiltrated the pancreas. In this model, loss of PD-1, but not programmed death ligand-1 (PD-L1), on the antigen-specific CD4(+) T cell resulted in increased cell numbers in the spleen, pancreas-draining lymph node, and pancreas. PD-1 deficiency also increased expression of the chemokine receptor CXCR3. Lastly, histological data showed that a loss of PD-1 caused BDC2.5 cells to penetrate deep into the islet core, resulting in conversion from peri-insulitis to destructive insulitis. These data support a model by which PD-1 regulates islet-reactive CD4(+) T cells in a cell intrinsic manner by suppressing proliferation, inhibiting infiltration of the pancreas, and limiting diabetes.
Collapse
Affiliation(s)
- Kristen E. Pauken
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Marc K. Jenkins
- Department of Microbiology, Center for Immunology, University of Minnesota, Minneapolis, Minnesota
| | - Miyuki Azuma
- Department of Molecular Immunology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Brian T. Fife
- Department of Medicine, Center for Immunology, University of Minnesota, Minneapolis, Minnesota
- Corresponding author: Brian T. Fife,
| |
Collapse
|
23
|
The role of the complement system in metabolic organs and metabolic diseases. Semin Immunol 2013; 25:47-53. [PMID: 23684628 DOI: 10.1016/j.smim.2013.04.003] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2013] [Accepted: 04/13/2013] [Indexed: 12/20/2022]
Abstract
Emerging evidence points to a close crosstalk between metabolic organs and innate immunity in the course of metabolic disorders. In particular, cellular and humoral factors of innate immunity are thought to contribute to metabolic dysregulation of the adipose tissue or the liver, as well as to dysfunction of the pancreas; all these conditions are linked to the development of insulin resistance and diabetes mellitus. A central component of innate immunity is the complement system. Interestingly, the classical view of complement as a major system of host defense that copes with infections is changing to that of a multi-functional player in tissue homeostasis, degeneration, and regeneration. In the present review, we will discuss the link between complement and metabolic organs, focusing on the pancreas, adipose tissue, and liver and the diverse effects of complement system on metabolic disorders.
Collapse
|
24
|
Th1-Th17 cells contribute to the development of uropathogenic Escherichia coli-induced chronic pelvic pain. PLoS One 2013; 8:e60987. [PMID: 23577183 PMCID: PMC3618515 DOI: 10.1371/journal.pone.0060987] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2012] [Accepted: 03/05/2013] [Indexed: 12/14/2022] Open
Abstract
The etiology of chronic prostatitis/chronic pelvic pain syndrome in men is unknown but may involve microbes and autoimmune mechanisms. We developed an infection model of chronic pelvic pain in NOD/ShiLtJ (NOD) mice with a clinical Escherichia coli isolate (CP-1) from a patient with chronic pelvic pain. We investigated pain mechanisms in NOD mice and compared it to C57BL/6 (B6) mice, a strain resistant to CP-1-induced pain. Adoptive transfer of CD4+ T cells, but not serum, from CP-1-infected NOD mice was sufficient to induce chronic pelvic pain. CD4+ T cells in CP-1-infected NOD mice expressed IFN-γ and IL-17A but not IL-4, consistent with a Th1/Th17 immune signature. Adoptive transfer of ex-vivo expanded IFN-γ or IL-17A-expressing cells was sufficient to induce pelvic pain in naïve NOD recipients. Pelvic pain was not abolished in NOD-IFN-γ-KO mice but was associated with an enhanced IL-17A immune response to CP1 infection. These findings demonstrate a novel role for Th1 and Th17-mediated adaptive immune mechanisms in chronic pelvic pain.
Collapse
|
25
|
Padgett LE, Broniowska KA, Hansen PA, Corbett JA, Tse HM. The role of reactive oxygen species and proinflammatory cytokines in type 1 diabetes pathogenesis. Ann N Y Acad Sci 2013; 1281:16-35. [PMID: 23323860 PMCID: PMC3715103 DOI: 10.1111/j.1749-6632.2012.06826.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Type 1 diabetes (T1D) is a T cell–mediated autoimmune disease characterized by the destruction of insulin-secreting pancreatic β cells. In humans with T1D and in nonobese diabetic (NOD) mice (a murine model for human T1D), autoreactive T cells cause β-cell destruction, as transfer or deletion of these cells induces or prevents disease, respectively. CD4+ and CD8+ T cells use distinct effector mechanisms and act at different stages throughout T1D to fuel pancreatic β-cell destruction and disease pathogenesis. While these adaptive immune cells employ distinct mechanisms for β-cell destruction, one central means for enhancing their autoreactivity is by the secretion of proinflammatory cytokines, such as IFN-γ, TNF-α, and IL-1. In addition to their production by diabetogenic T cells, proinflammatory cytokines are induced by reactive oxygen species (ROS) via redox-dependent signaling pathways. Highly reactive molecules, proinflammatory cytokines are produced upon lymphocyte infiltration into pancreatic islets and induce disease pathogenicity by directly killing β cells, which characteristically possess low levels of antioxidant defense enzymes. In addition to β-cell destruction, proinflammatory cytokines are necessary for efficient adaptive immune maturation, and in the context of T1D they exacerbate autoimmunity by intensifying adaptive immune responses. The first half of this review discusses the mechanisms by which autoreactive T cells induce T1D pathogenesis and the importance of ROS for efficient adaptive immune activation, which, in the context of T1D, exacerbates autoimmunity. The second half provides a comprehensive and detailed analysis of (1) the mechanisms by which cytokines such as IL-1 and IFN-γ influence islet insulin secretion and apoptosis and (2) the key free radicals and transcription factors that control these processes.
Collapse
Affiliation(s)
- Lindsey E Padgett
- Department of Microbiology, Comprehensive Diabetes Center, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | | | | |
Collapse
|
26
|
Diz R, Garland A, Vincent BG, Johnson MC, Spidale N, Wang B, Tisch R. Autoreactive effector/memory CD4+ and CD8+ T cells infiltrating grafted and endogenous islets in diabetic NOD mice exhibit similar T cell receptor usage. PLoS One 2012; 7:e52054. [PMID: 23251685 PMCID: PMC3522632 DOI: 10.1371/journal.pone.0052054] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2012] [Accepted: 11/12/2012] [Indexed: 12/21/2022] Open
Abstract
Islet transplantation provides a “cure” for type 1 diabetes but is limited in part by recurrent autoimmunity mediated by β cell-specific CD4+ and CD8+ T cells. Insight into the T cell receptor (TCR) repertoire of effector T cells driving recurrent autoimmunity would aid the development of immunotherapies to prevent islet graft rejection. Accordingly, we used a multi-parameter flow cytometry strategy to assess the TCR variable β (Vβ) chain repertoires of T cell subsets involved in autoimmune-mediated rejection of islet grafts in diabetic NOD mouse recipients. Naïve CD4+ and CD8+ T cells exhibited a diverse TCR repertoire, which was similar in all tissues examined in NOD recipients including the pancreas and islet grafts. On the other hand, the effector/memory CD8+ T cell repertoire in the islet graft was dominated by one to four TCR Vβ chains, and specific TCR Vβ chain usage varied from recipient to recipient. Similarly, islet graft- infiltrating effector/memory CD4+ T cells expressed a limited number of prevalent TCR Vβ chains, although generally TCR repertoire diversity was increased compared to effector/memory CD8+ T cells. Strikingly, the majority of NOD recipients showed an increase in TCR Vβ12-bearing effector/memory CD4+ T cells in the islet graft, most of which were proliferating, indicating clonal expansion. Importantly, TCR Vβ usage by effector/memory CD4+ and CD8+ T cells infiltrating the islet graft exhibited greater similarity to the repertoire found in the pancreas as opposed to the draining renal lymph node, pancreatic lymph node, or spleen. Together these results demonstrate that effector/memory CD4+ and CD8+ T cells mediating autoimmune rejection of islet grafts are characterized by restricted TCR Vβ chain usage, and are similar to T cells that drive destruction of the endogenous islets.
Collapse
Affiliation(s)
- Ramiro Diz
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Alaina Garland
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Benjamin G. Vincent
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Mark C. Johnson
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Nicholas Spidale
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Bo Wang
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Roland Tisch
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail:
| |
Collapse
|
27
|
|
28
|
Chhabra P, Schlegel K, Okusa MD, Lobo PI, Brayman KL. Naturally occurring immunoglobulin M (nIgM) autoantibodies prevent autoimmune diabetes and mitigate inflammation after transplantation. Ann Surg 2012; 256:634-641. [PMID: 22964733 PMCID: PMC3875377 DOI: 10.1097/sla.0b013e31826b4ba9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
OBJECTIVE To investigate whether polyclonal serum naturally occurring immunoglobulin M (nIgM) therapy prevents the onset and progression of autoimmune diabetes and promotes islet allograft survival. BACKGROUND nIgM deficiency is associated with an increased tendency toward autoimmune disease development. Elevated levels of nIgM anti-leukocyte autoantibodies are associated with fewer graft rejections. METHODS Four- to five-week-old female nonobese diabetic (NOD) littermates received intraperitoneal nIgM or phosphate-buffered saline/bovine serum albumin/immunoglobulin G (100 μg followed by 50-75 μg biweekly) until 18 weeks of age. C57BL/6 recipients of 300 BALB/c or 50 C57BL/6 islet grafts received saline or nIgM. RESULTS Eighty percent control mice (n = 30) receiving saline became diabetic by 18 to 20 weeks of age. In contrast, none of 33 of nIgM-treated mice became diabetic (P < 0.0001). Discontinuing therapy resulted in hyperglycemia in only 9 of 33 mice at 22 weeks postdiscontinuation, indicating development of β-cell unresponsiveness. nIgM therapy initiated at 11 weeks of age resulted in hyperglycemia in only 20% of treated animals (n = 20) compared with 80% of controls (P < 0.0001). Treatment of mildly diabetic mice with nIgM (75 μg 3× per week) restored normoglycemia (n = 5), whereas severely diabetic mice required minimal dose islet transplant with nIgM to restore normoglycemia (n = 4). The mean survival time of BALB/c islet allografts transplanted in streptozotocin-induced diabetic C57BL/6 mice was 41.2 ± 3.3 days for nIgM-treated recipients (n = 4, fifth recipient remains normoglycemic) versus 10.2 ± 2.6 days for controls (n = 5) (P < 0.001). Also, after syngeneic transplantation, time taken to return to normoglycemia was 15.4 ± 3.6 days for nIgM-treated recipients (n = 5) and more than 35 days for controls (n = 4). CONCLUSIONS nIgM therapy demonstrates potential in preventing the onset and progression of autoimmune diabetes and in promoting islet graft survival.
Collapse
Affiliation(s)
- Preeti Chhabra
- Department of Surgery, Division of Transplantation, University of Virginia School of Medicine, Charlottesville, VA
| | - Kailo Schlegel
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, VA
| | - Mark D. Okusa
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, VA
| | - Peter I. Lobo
- Department of Medicine, Division of Nephrology, University of Virginia School of Medicine, Charlottesville, VA
| | - Kenneth L. Brayman
- Department of Surgery, Division of Transplantation, University of Virginia School of Medicine, Charlottesville, VA
| |
Collapse
|
29
|
Ziolkowski AF, Popp SK, Freeman C, Parish CR, Simeonovic CJ. Heparan sulfate and heparanase play key roles in mouse β cell survival and autoimmune diabetes. J Clin Invest 2012; 122:132-41. [PMID: 22182841 PMCID: PMC3248281 DOI: 10.1172/jci46177] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 11/02/2011] [Indexed: 12/13/2022] Open
Abstract
The autoimmune type 1 diabetes (T1D) that arises spontaneously in NOD mice is considered to be a model of T1D in humans. It is characterized by the invasion of pancreatic islets by mononuclear cells (MNCs), which ultimately leads to destruction of insulin-producing β cells. Although T cell dependent, the molecular mechanisms triggering β cell death have not been fully elucidated. Here, we report that a glycosaminoglycan, heparan sulfate (HS), is expressed at extraordinarily high levels within mouse islets and is essential for β cell survival. In vitro, β cells rapidly lost their HS and died. β Cell death was prevented by HS replacement, a treatment that also rendered the β cells resistant to damage from ROS. In vivo, autoimmune destruction of islets in NOD mice was associated with production of catalytically active heparanase, an HS-degrading enzyme, by islet-infiltrating MNCs and loss of islet HS. Furthermore, in vivo treatment with the heparanase inhibitor PI-88 preserved intraislet HS and protected NOD mice from T1D. Our results identified HS as a critical molecular requirement for islet β cell survival and HS degradation as a mechanism for β cell destruction. Our findings suggest that preservation of islet HS could be a therapeutic strategy for preventing T1D.
Collapse
Affiliation(s)
- Andrew F Ziolkowski
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, Australia
| | | | | | | | | |
Collapse
|
30
|
Wang X, Hao J, Metzger DL, Mui A, Ao Z, Akhoundsadegh N, Langermann S, Liu L, Chen L, Ou D, Verchere CB, Warnock GL. Early treatment of NOD mice with B7-H4 reduces the incidence of autoimmune diabetes. Diabetes 2011; 60:3246-55. [PMID: 21984581 PMCID: PMC3219946 DOI: 10.2337/db11-0375] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Accepted: 08/31/2011] [Indexed: 02/06/2023]
Abstract
OBJECTIVE Autoimmune diabetes is a T cell-mediated disease in which insulin-producing β-cells are destroyed. Autoreactive T cells play a central role in mediating β-cell destruction. B7-H4 is a negative cosignaling molecule that downregulates T-cell responses. In this study, we aim to determine the role of B7-H4 on regulation of β-cell-specific autoimmune responses. RESEARCH DESIGN AND METHODS Prediabetic (aged 3 weeks) female NOD mice (group 1, n = 21) were treated with intraperitoneal injections of B7-H4.Ig at 7.5 mg/kg, with the same amount of mouse IgG (group 2, n = 24), or with no protein injections (group 3, n = 24), every 3 days for 12 weeks. RESULTS B7-H4.Ig reduced the incidence of autoimmune diabetes, compared with the control groups (diabetic mice 28.6% of group 1, 66.7% of group 2 [P = 0.0081], and 70.8% of group 3 [group 1 vs. 3, P = 0.0035]). Histological analysis revealed that B7-H4 treatment did not block islet infiltration but rather suppressed further infiltrates after 9 weeks of treatment (group 1 vs. 2, P = 0.0003). B7-H4 treatment also reduced T-cell proliferation in response to GAD65 stimulation ex vivo. The reduction of diabetes is not due to inhibition of activated T cells in the periphery but rather to a transient increase of Foxp3(+) CD4(+) T-cell population at one week posttreatment (12.88 ± 1.29 vs. 11.58 ± 1.46%; n = 8; P = 0.03). CONCLUSIONS Our data demonstrate the protective role of B7-H4 in the development of autoimmune diabetes, suggesting a potential means of preventing type 1 diabetes by targeting the B7-H4 pathway.
Collapse
Affiliation(s)
- Xiaojie Wang
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jianqiang Hao
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniel L. Metzger
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Alice Mui
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Ziliang Ao
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - Noushin Akhoundsadegh
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | | | - Linda Liu
- Amplimmune, Inc., Rockville, Maryland
| | - Lieping Chen
- Department of Immunobiology, Yale University School of Medicine, New Haven, Connecticut
| | - Dawei Ou
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| | - C. Bruce Verchere
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Garth L. Warnock
- Department of Surgery, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
31
|
Development of type 1 diabetes mellitus in nonobese diabetic mice follows changes in thymocyte and peripheral T lymphocyte transcriptional activity. Clin Dev Immunol 2011; 2011:158735. [PMID: 21765850 PMCID: PMC3135058 DOI: 10.1155/2011/158735] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 03/21/2011] [Accepted: 03/22/2011] [Indexed: 12/15/2022]
Abstract
As early as one month of age, nonobese diabetic (NOD) mice feature pancreatic infiltration of autoreactive T lymphocytes, which destruct insulin-producing beta cells, producing autoimmune diabetes mellitus (T1D) within eight months. Thus, we hypothesized that during the development of T1D, the transcriptional modulation of immune reactivity genes may occur as thymocytes mature into peripheral T lymphocytes. The transcriptome of thymocytes and peripheral CD3+ T lymphocytes from prediabetic or diabetic mice analyzed through microarray hybridizations identified 2,771 differentially expressed genes. Hierarchical clustering grouped mice according to age/T1D onset and genes according to their transcription profiling. The transcriptional activity of thymocytes developing into peripheral T lymphocytes revealed sequential participation of genes involved with CD4+/CD8+ T-cell differentiation (Themis), tolerance induction by Tregs (Foxp3), and apoptosis (Fasl) soon after T-cell activation (IL4), while the emergence of T1D coincided with the expression of cytotoxicity (Crtam) and inflammatory response genes (Tlr) by peripheral T lymphocytes.
Collapse
|
32
|
Lin M, Yin N, Murphy B, Medof ME, Segerer S, Heeger PS, Schröppel B. Immune cell-derived c3 is required for autoimmune diabetes induced by multiple low doses of streptozotocin. Diabetes 2010; 59:2247-52. [PMID: 20584999 PMCID: PMC2927947 DOI: 10.2337/db10-0044] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
OBJECTIVE The complement system contributes to autoimmune injury, but its involvement in promoting the development of autoimmune diabetes is unknown. In this study, our goal was to ascertain the role of complement C3 in autoimmune diabetes. RESEARCH DESIGN AND METHODS Susceptibility to diabetes development after multiple low-dose streptozotocin treatment in wild-type (WT) and C3-deficient mice was analyzed. Bone marrow chimeras, luminex, and quantitative reverse transcription PCR assays were performed to evaluate the phenotypic and immunologic impact of C3 in the development of this diabetes model. RESULTS Coincident with the induced elevations in blood glucose levels, we documented alternative pathway complement component gene expression within the islets of the diabetic WT mice. When we repeated the experiments with C3-deficient mice, we observed complete resistance to disease, as assessed by the absence of histologic insulitis and the absence of T-cell reactivity to islet antigens. Studies of WT chimeras bearing C3-deficient bone marrow cells showed that bone marrow cell-derived C3, and not serum C3, is involved in the induction of diabetes in this model. CONCLUSIONS The data reveal a key role for immune cell-derived C3 in the pathogenesis of murine multiple low-dose streptozotocin-induced diabetes and support the concept that immune cell mediated diabetes is in part complement-dependent.
Collapse
Affiliation(s)
- Marvin Lin
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York
| | - Na Yin
- Department of Gene and Cell Medicine, Mount Sinai School of Medicine, New York, New York
| | - Barbara Murphy
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York
- Transplantation Institute, Mount Sinai School of Medicine, New York, New York
| | - M. Edward Medof
- Institute of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Stephan Segerer
- Division of Nephrology, University Hospital Zurich, Zurich, Switzerland
| | - Peter S. Heeger
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York
- Transplantation Institute, Mount Sinai School of Medicine, New York, New York
| | - Bernd Schröppel
- Division of Nephrology, Mount Sinai School of Medicine, New York, New York
- Transplantation Institute, Mount Sinai School of Medicine, New York, New York
- Corresponding author: Bernd Schröppel,
| |
Collapse
|
33
|
Shoda L, Kreuwel H, Gadkar K, Zheng Y, Whiting C, Atkinson M, Bluestone J, Mathis D, Young D, Ramanujan S. The Type 1 Diabetes PhysioLab Platform: a validated physiologically based mathematical model of pathogenesis in the non-obese diabetic mouse. Clin Exp Immunol 2010; 161:250-67. [PMID: 20491795 DOI: 10.1111/j.1365-2249.2010.04166.x] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Type 1 diabetes is an autoimmune disease whose clinical onset signifies a lifelong requirement for insulin therapy and increased risk of medical complications. To increase the efficiency and confidence with which drug candidates advance to human type 1 diabetes clinical trials, we have generated and validated a mathematical model of type 1 diabetes pathophysiology in a well-characterized animal model of spontaneous type 1 diabetes, the non-obese diabetic (NOD) mouse. The model is based on an extensive survey of the public literature and input from an independent scientific advisory board. It reproduces key disease features including activation and expansion of autoreactive lymphocytes in the pancreatic lymph nodes (PLNs), islet infiltration and beta cell loss leading to hyperglycaemia. The model uses ordinary differential and algebraic equations to represent the pancreas and PLN as well as dynamic interactions of multiple cell types (e.g. dendritic cells, macrophages, CD4+ T lymphocytes, CD8+ T lymphocytes, regulatory T cells, beta cells). The simulated features of untreated pathogenesis and disease outcomes for multiple interventions compare favourably with published experimental data. Thus, a mathematical model reproducing type 1 diabetes pathophysiology in the NOD mouse, validated based on accurate reproduction of results from multiple published interventions, is available for in silico hypothesis testing. Predictive biosimulation research evaluating therapeutic strategies and underlying biological mechanisms is intended to deprioritize hypotheses that impact disease outcome weakly and focus experimental research on hypotheses likely to provide insight into the disease and its treatment.
Collapse
Affiliation(s)
- L Shoda
- Entelos Inc., Foster City, CA 94404, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Chang SH, Jung EJ, Lim DG, Oyungerel B, Lim KI, Her E, Choi WS, Jun MH, Choi KD, Han DJ, Kim SC. Anti-inflammatory action of Cudrania tricuspidata on spleen cell and T lymphocyte proliferation. J Pharm Pharmacol 2010; 60:1221-6. [DOI: 10.1211/jpp.60.9.0015] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
This study examined whether an extract of Cudrania tricuspidata shows anti-proliferative effects in anti-CD3/CD28-mediated spleen and CD4+CD25− T cells and decreases the production of the pro-inflammatory cytokines interleukin-2 (IL-2) and interferon-γ (IFN-γ) in anti-CD3/CD28-mediated CD4+CD25− T cells. The proliferation of anti-CD3/CD28-mediated spleen cells and CD4+CD25− T cells was effectively suppressed by C. tricuspidata. This extract, however, did not show cytotoxicity in spleen cells under conditions where the antigen was not stimulated using CCK-8 analysis. C. tricuspidata also decreased the production of the pro-inflammatory cytokines IL-2 and IFN-γ by selective inhibition of this extract on proliferating cells in anti-CD3/CD28-mediated CD4+CD25− T cells. These results suggest that C. tricuspidata may be useful in the treatment of autoimmune diseases and organ transplantation through the inhibitory action of T cells in inflammation.
Collapse
Affiliation(s)
- Sung Ho Chang
- Department of Surgery and Asan Institute for Life Sciences, Ulsan University College of Medicine & Asan Medical Center, Poognap-dong, Songpa-gu, Seoul 138–736, Korea
- Gyeong-gi Regional Research Center, Hankyong National University, Ansung-city, Gyeonggi-do 456–749, Korea
| | - Eun Jung Jung
- Department of Surgery and Asan Institute for Life Sciences, Ulsan University College of Medicine & Asan Medical Center, Poognap-dong, Songpa-gu, Seoul 138–736, Korea
| | - Dong Gyun Lim
- Department of Surgery and Asan Institute for Life Sciences, Ulsan University College of Medicine & Asan Medical Center, Poognap-dong, Songpa-gu, Seoul 138–736, Korea
| | - Baatartsogt Oyungerel
- Gyeong-gi Regional Research Center, Hankyong National University, Ansung-city, Gyeonggi-do 456–749, Korea
| | - Kwan Il Lim
- Taepyung Oriental Medicine Clinic, Shindang-dong, Jung-Ku, Seoul 236–423, Korea
| | - Erk Her
- Department of Immunology, College of Medicine, Konkuk University, Danwol dong, Chungju 380–701, Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Danwol dong, Chungju 380–701, Korea
| | - Myung Ha Jun
- Department of Immunology, College of Medicine, Konkuk University, Danwol dong, Chungju 380–701, Korea
| | - Kang Duk Choi
- Gyeong-gi Regional Research Center, Hankyong National University, Ansung-city, Gyeonggi-do 456–749, Korea
| | - Duck Jong Han
- Department of Surgery and Asan Institute for Life Sciences, Ulsan University College of Medicine & Asan Medical Center, Poognap-dong, Songpa-gu, Seoul 138–736, Korea
| | - Song Cheol Kim
- Department of Surgery and Asan Institute for Life Sciences, Ulsan University College of Medicine & Asan Medical Center, Poognap-dong, Songpa-gu, Seoul 138–736, Korea
| |
Collapse
|
35
|
HoChang S, Jung EJ, Park YH, Lim DG, Ko NY, Choi WS, Her E, Kim SH, Choi KD, Bae JH, Kim SH, Kang CD, Han DJ, Kim SC. Anti-inflammatory effects of Artemisia princeps in antigen-stimulated T cells and regulatory T cells. J Pharm Pharmacol 2010. [DOI: 10.1211/jpp.61.08.0008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Abstract
Objectives
The aim was to investigate the anti-inflammatory effects of Artemisia princeps extract on the activity of anti-CD3/CD28-stimulated CD4+CD25- T cells and antigen-expanded regulatory T cells.
Methods
CD4+CD25- T cells were activated with coated anti-CD3 and anti-CD28 and cultured in the presence or absence of various concentrations of A. princeps extract. The cultures were pulsed on Day 6 with [3H]thymidine and, after harvesting the cells, [3H] thymidine incorporation was measured. For analysis of interleukin-2 and interferon-γ secreted from CD4+CD25- T cells, culture supernatants were collected on Days 2 and 6. For the analysis of interleukin-10 secreted from the CD4+CD25- T cells and expanded regulatory T cells, supernatants were collected after 2 and 7 days, respectively. Cytokine levels were determined using an enzyme-linked immunosorbent assay. Potential medicinal components of the A. princeps extract were determined using gas chromatography–mass spectrometry.
Key findings
A. princeps (30 μg/ml) effectively suppressed proliferation of CD4+CD25- T cells that were stimulated with anti-CD3/CD28 without causing cytotoxicity in spleen cells incubated under conditions lacking antigen stimulation. A. princeps inhibited production of the pro-inflammatory cytokines interleukin-2 and interferon-γ in anti-CD3/CD28-stimulated CD4+CD25- T cells. Also, the extract slightly increased production of the anti-inflammatory cytokine interleukin-10 in these cells. In regulatory T cells expanded by anti-CD3/CD28, A. princeps increased production of interleukin-10 and Foxp3.
Conclusions
The results suggest that A. princeps may be useful in the treatment of autoimmune diseases and organ transplantation rejection by inhibiting proliferation of inflammatory T cells, suppressing inflammatory processes in antigen-stimulated CD4+CD25- T cells and increasing activity of expanded regulatory T cells.
Collapse
Affiliation(s)
- Sung HoChang
- BK21 Medical Science Education Center and Department of Biochemistry, Pusan National University School of Medicine, Yangsan-city, Gyeongsangnam-do, Korea
| | - Eun Jung Jung
- Department of Surgery and Asan Institute for Life Sciences, Ulsan University College of Medicine and Asan Medical Center, Songpa-gu, Seoul, Korea
| | - Youn Hee Park
- Department of Surgery and Asan Institute for Life Sciences, Ulsan University College of Medicine and Asan Medical Center, Songpa-gu, Seoul, Korea
| | - Dong Gyun Lim
- Department of Surgery and Asan Institute for Life Sciences, Ulsan University College of Medicine and Asan Medical Center, Songpa-gu, Seoul, Korea
| | - Na Young Ko
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Korea
| | - Wahn Soo Choi
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Korea
| | - Erk Her
- Department of Immunology, College of Medicine, Konkuk University, Chungju, Korea
| | - Soo Hyun Kim
- Laboratory of Cytokine Immunology, Institute of Biomedical Science and Technology, Konkuk University, Gwangjin-gu, Seoul, Korea
| | - Kang Duk Choi
- Gyeong-gi Regional Research Center, Hankyong National University, Ansung-city, Gyeonggi-do, Korea
| | - Jae Ho Bae
- BK21 Medical Science Education Center and Department of Biochemistry, Pusan National University School of Medicine, Yangsan-city, Gyeongsangnam-do, Korea
| | - Sun Hee Kim
- BK21 Medical Science Education Center and Department of Biochemistry, Pusan National University School of Medicine, Yangsan-city, Gyeongsangnam-do, Korea
| | - Chi Dug Kang
- BK21 Medical Science Education Center and Department of Biochemistry, Pusan National University School of Medicine, Yangsan-city, Gyeongsangnam-do, Korea
| | - Duck Jong Han
- Department of Surgery and Asan Institute for Life Sciences, Ulsan University College of Medicine and Asan Medical Center, Songpa-gu, Seoul, Korea
| | - Song Cheol Kim
- Department of Surgery and Asan Institute for Life Sciences, Ulsan University College of Medicine and Asan Medical Center, Songpa-gu, Seoul, Korea
| |
Collapse
|
36
|
Regulation of type 1 diabetes, tuberculosis, and asthma by parasites. J Mol Med (Berl) 2009; 88:27-38. [PMID: 19844667 DOI: 10.1007/s00109-009-0546-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 07/27/2009] [Accepted: 09/18/2009] [Indexed: 10/20/2022]
Abstract
Helminth infection is a worldwide health problem. In addition to directly causing disease, helminthic infection also affects the incidence and progression of other diseases by exerting immune modulatory effects. In animal models, infection with helminthic parasites can prevent autoimmune diseases and allergic inflammatory diseases, but worsens protective immunity to certain infectious pathogens. In this review, we summarize current findings regarding the effects of helminth infection on type 1 diabetes, tuberculosis, and asthma and discuss possible mechanisms through which helminthic parasites modulate host immunity. Investigating these mechanisms could lead to treatment strategies that specifically modulate the immune response as well as address fundamental questions in immunobiology.
Collapse
|
37
|
Ekici R, Sundstrom M, Thay B, Lejon K. Enhanced capture of extramembranous IgM and IgG on B cells in the NOD mouse--implications for immune complex trapping. Int Immunol 2009; 21:533-41. [DOI: 10.1093/intimm/dxp024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
38
|
Abstract
Type 1 diabetes (T1D) is a T cell-mediated autoimmune disease in which the insulin producing beta cells are destroyed. Antigen-based immunotherapy provides an approach to selectively tolerize pathogenic beta cell-specific T cells, while leaving the remainder of the immune system intact. In this article, we discuss our group's experience in defining the parameters that impact the efficacy of beta cell antigen "vaccination" for the prevention and treatment of T1D.
Collapse
|
39
|
Sgouroudis E, Piccirillo CA. Control of type 1 diabetes by CD4+Foxp3+ regulatory T cells: lessons from mouse models and implications for human disease. Diabetes Metab Res Rev 2009; 25:208-18. [PMID: 19214972 DOI: 10.1002/dmrr.945] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, there has been a revival of the concept of CD4(+) regulatory T (T(reg)) cells as being a central control point in various immune responses, including autoimmune responses and immunity to transplants, allergens, tumours and infectious microbes. The current literature suggests that T(reg) cells are diverse in their phenotype and mechanism(s) of action, and as such, may constitute a myriad of naturally occurring and induced T cell precursors with variable degrees of regulatory potential. In this review, we summarize research from various laboratories, including our own, showing that CD4(+)Foxp3(+) T(reg) cells are critical in the control of type 1 diabetes (T1D) in mouse models and humans. In this review, we also discuss cellular and molecular determinants that impact CD4(+)Foxp3(+) T(reg) cell development and function and consequential resistance to organ-specific autoimmune disease. Recent advances in the use of CD4(+)Foxp3(+) T(reg) cellular therapy to promote immunological tolerance in the absence of long-term generalized immunosuppression are also presented.
Collapse
Affiliation(s)
- Evridiki Sgouroudis
- Department of Microbiology and Immunology, McGill University, Montreal, QC, Canada, H3A 2B4
| | | |
Collapse
|
40
|
Frelinger JA. Novel epitope begets a novel pathway in type 1 diabetes progression. J Clin Invest 2008; 118:3268-71. [PMID: 18802485 DOI: 10.1172/jci37125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
While CD8+ T cells are critical to diabetogenesis in NOD mice, evidence of their involvement in human type 1 diabetes (T1D) has been circumstantial. The existence of CD8+ T cells specific for beta cell peptides has been demonstrated, but functional data regarding the role of these cells in T1D have been lacking. In this issue of the JCI, Skowera et al. describe an unusual self-peptide epitope derived from the leader sequence of preproinsulin (PPI) and show that 50% of HLA-A2+ patients with new-onset T1D possessed circulating CD8+ T cells specific for this epitope, suggesting that PPI plays a critical role in the development of T1D (see the related article beginning on page 3390). They also report that beta cells upregulate PPI expression in the presence of high glucose levels, rendering these cells more susceptible to lysis and potentially accelerating disease. This suggests that interventions aimed at decreasing the PPI-specific CD8+ T cell response early after T1D diagnosis may be efficacious in ameliorating the disease process.
Collapse
Affiliation(s)
- Jeffrey A Frelinger
- Department of Microbiology and Immunology, University of North Carolina, Chapel Hill, North Carolina 27599-7290, USA.
| |
Collapse
|
41
|
Wang B, Tisch R. Parameters influencing antigen-specific immunotherapy for type 1 diabetes. Immunol Res 2008; 41:175-87. [DOI: 10.1007/s12026-008-8020-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
42
|
Abstract
In vivo depletion of CD4- and CD8-specific T cells is a means of studying the role of these subpopulations in the initiation and effector phases of particular in vivo immune responses. In this unit, a protocol is provided for harvesting anti-CD4 or anti-CD8 monoclonal antibody- producing ascites fluid or tissue culture supernatant from rat or mouse T cell hybridomas. The antibody (preferably IgG) is then purified and injected intraperitoneally into adult mice. Depletion of the appropriate subset of T cells is verified by flow cytometry analysis of lymph node and spleen cell suspensions in pilot experiments. Once conditions have been established, depleted mice can be used to study the impact of T cell subsets on in vivo immune responses. The depleted condition is maintained by repeated injections of the monoclonal antibody.
Collapse
Affiliation(s)
- A M Kruisbeek
- Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
43
|
Burton AR, Vincent E, Arnold PY, Lennon GP, Smeltzer M, Li CS, Haskins K, Hutton J, Tisch RM, Sercarz EE, Santamaria P, Workman CJ, Vignali DAA. On the pathogenicity of autoantigen-specific T-cell receptors. Diabetes 2008; 57:1321-30. [PMID: 18299317 DOI: 10.2337/db07-1129] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE Type 1 diabetes is mediated by T-cell entry into pancreatic islets and destruction of insulin-producing beta-cells. The relative contribution of T-cells specific for different autoantigens is largely unknown because relatively few have been assessed in vivo. RESEARCH DESIGN AND METHODS We generated mice possessing a monoclonal population of T-cells expressing 1 of 17 T-cell receptors (TCR) specific for either known autoantigens (GAD65, insulinoma-associated protein 2 (IA2), IA2beta/phogrin, and insulin), unknown islet antigens, or control antigens on a NOD.scid background using retroviral-mediated stem cell gene transfer and 2A-linked multicistronic retroviral vectors (referred to herein as retrogenic [Rg] mice). The TCR Rg approach provides a mechanism by which T-cells with broad phenotypic differences can be directly compared. RESULTS Neither GAD- nor IA2-specific TCRs mediated T-cell islet infiltration or diabetes even though T-cells developed in these Rg mice and responded to their cognate epitope. IA2beta/phogrin and insulin-specific Rg T-cells produced variable levels of insulitis, with one TCR producing delayed diabetes. Three TCRs specific for unknown islet antigens produced a hierarchy of insulitogenic and diabetogenic potential (BDC-2.5 > NY4.1 > BDC-6.9), while a fourth (BDC-10.1) mediated dramatically accelerated disease, with all mice diabetic by day 33, well before full T-cell reconstitution (days 42-56). Remarkably, as few as 1,000 BDC-10.1 Rg T-cells caused rapid diabetes following adoptive transfer into NOD.scid mice. CONCLUSIONS; Our data show that relatively few autoantigen-specific TCRs can mediate islet infiltration and beta-cell destruction on their own and that autoreactivity does not necessarily imply pathogenicity.
Collapse
Affiliation(s)
- Amanda R Burton
- Department of Immunology, St. Jude Children's Research Hospital, 332 N. Lauderdale, Memphis, TN 38105-2794, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Bour-Jordan H, Bluestone JA. B cell depletion: a novel therapy for autoimmune diabetes? J Clin Invest 2008; 117:3642-5. [PMID: 18060022 DOI: 10.1172/jci34236] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Autoimmune diabetes is believed to be mediated primarily by T cells. However, B cells have been implicated in the pathogenesis of the disease in NOD mice. Although preclinical studies have been limited by the absence of anti-CD20 reagents that can induce B cell depletion in mice, a clinical trial using the B cell-depleting anti-CD20 monoclonal antibody rituximab (Rituxan) is underway in type 1 diabetes patients. In this issue of the JCI, Hu et al. describe the generation of transgenic NOD mice that express human CD20 on B cells (see the related article beginning on page 3857). They show that anti-CD20 therapy induces B cell depletion in these mice and offers some level of protection against diabetes. Although many questions remain unanswered, this mouse model represents the first opportunity to evaluate the potential value of rituximab as a novel therapy for autoimmune diabetes.
Collapse
Affiliation(s)
- Hélène Bour-Jordan
- Diabetes Center, Department of Medicine, UCSF, San Francisco, California 94143-0540, USA
| | | |
Collapse
|
45
|
Orban T, Kis J, Szereday L, Engelmann P, Farkas K, Jalahej H, Treszl A. Reduced CD4+ T-cell-specific gene expression in human type 1 diabetes mellitus. J Autoimmun 2007; 28:177-87. [PMID: 17320348 DOI: 10.1016/j.jaut.2007.01.002] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2006] [Revised: 01/04/2007] [Accepted: 01/05/2007] [Indexed: 11/18/2022]
Abstract
Type 1 diabetes mellitus (T1DM) in humans is characterized by the T-cell-dependent destruction of the insulin producing pancreatic beta cells; however, the precise pathogenesis of the disease, especially the initiation of pathologic immune response, is still largely unknown. We hypothesized that the function of human CD4+ T cells is altered in T1DM and analyzed unstimulated human peripheral blood CD4+ T-cell gene expression. We used a novel three-way comparison of DNA microarray data of CD4+ T cells isolated from patients with new onset T1DM, patients with long-term Type 2 diabetes (T2DM), and from healthy control subjects in order to eliminate any possible influence of glucose homeostasis on our findings. We analyzed the T1DM specific gene-expression changes and their functional relevance to T1DM autoimmunity. Our genetic and functional data show that T1DM CD4+ T cells are down-regulated specifically affecting key immune functions and cell cycle. Histone deacetylase gene expression, a key regulator of epigenetic modification is also reduced. The CD4+ T cells showed impaired function, including an abnormal immune response, which may be a key element that leads to the breakdown of self-tolerance.
Collapse
MESH Headings
- CD4-Positive T-Lymphocytes/enzymology
- CD4-Positive T-Lymphocytes/immunology
- CD4-Positive T-Lymphocytes/pathology
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Diabetes Mellitus, Type 1/pathology
- Diabetes Mellitus, Type 2/enzymology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/immunology
- Diabetes Mellitus, Type 2/pathology
- Down-Regulation/immunology
- Epigenesis, Genetic/immunology
- Female
- Gene Expression Regulation, Enzymologic/immunology
- Histone Deacetylases/biosynthesis
- Histone Deacetylases/genetics
- Histone Deacetylases/immunology
- Humans
- Immune Tolerance/genetics
- Insulin-Secreting Cells/enzymology
- Insulin-Secreting Cells/immunology
- Insulin-Secreting Cells/pathology
- Male
Collapse
Affiliation(s)
- Tihamer Orban
- Section of Immunology and Immunogenetics, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02115, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Giarratana N, Penna G, Adorini L. Animal models of spontaneous autoimmune disease: type 1 diabetes in the nonobese diabetic mouse. Methods Mol Biol 2007; 380:285-311. [PMID: 17876100 DOI: 10.1007/978-1-59745-395-0_17] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The nonobese diabetic (NOD) mouse represents probably the best spontaneous model for a human autoimmune disease. It has provided not only essential information on type 1 diabetes (T1D) pathogenesis, but also valuable insights into mechanisms of immunoregulation and tolerance. Importantly, it allows testing of immunointervention strategies potentially applicable to man. The fact that T1D incidence in the NOD mouse is sensitive to environmental conditions, and responds, sometimes dramatically, to immunomanipulation, does not represent a limit of the model, but is likely to render it even more similar to its human counterpart. In both cases, macrophages, dendritic cells, CD4+, CD8+, and B cells are present in the diseased islets. T1D is a polygenic disease, but, both in human and in NOD mouse T1D, the primary susceptibility gene is located within the MHC. On the other hand, T1D incidence is significantly higher in NOD females, although insulitis is similar in both sexes, whereas in humans, T1D occurs with about equal frequency in males and females. In addition, NOD mice have a more widespread autoimmune disorder, which is not the case in the majority of human T1D cases. Despite these differences, the NOD mouse remains the most representative model of human T1D, with similarities also in the putative target autoantigens, including glutamic acid decarboxylase IA-2, and insulin.
Collapse
|
47
|
Mason AL. An autoimmune biliary disease mouse model for primary biliary cirrhosis: something for everyone. Hepatology 2006; 44:1047-50. [PMID: 17006941 DOI: 10.1002/hep.21390] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Andrew L Mason
- Division of Gastroenterology, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
48
|
Chatenoud L. CD3-specific antibodies as promising tools to aim at immune tolerance in the clinic. Int Rev Immunol 2006; 25:215-33. [PMID: 16818372 DOI: 10.1080/08830180600743032] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Currently, therapies applied in transplantation and autoimmunity are essentially based on the use of immunosuppressants. These agents depress all immune responses and expose individuals to the recurrence of the pathogenic immune process once they are withdrawn, thus necessitating a chronic administration leading to the risk of recurrent infections and increased frequency of tumors. At variance, CD3 monoclonal antibodies appear unique in their capacity to induce immunological tolerance that is an antigen-specific unresponsiveness in the absence of chronic immunosuppression. This has been well-established in experimental models, and recent data show successful clinical translation using humanized anti-CD3 antibodies. The aim of this brief review is to discuss the main characteristics of these very promising tools and to present the experimental and clinical results arguing for their unique tolerogenic ability.
Collapse
Affiliation(s)
- Lucienne Chatenoud
- Université René Descartes Paris 5, Hôpital Necker Enfants Malades, Paris, France.
| |
Collapse
|
49
|
Alard P, Manirarora JN, Parnell SA, Hudkins JL, Clark SL, Kosiewicz MM. Deficiency in NOD antigen-presenting cell function may be responsible for suboptimal CD4+CD25+ T-cell-mediated regulation and type 1 diabetes development in NOD mice. Diabetes 2006; 55:2098-105. [PMID: 16804081 DOI: 10.2337/db05-0810] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Various defects in antigen-presenting cells (APCs) and T-cells, including regulatory cells, have been associated with type 1 diabetes development in NOD mice. CD4(+)CD25(+) regulatory cells play a crucial role in controlling various autoimmune diseases, and a deficiency in their number or function could be involved in disease development. The current study shows that NOD mice had fewer CD4(+)CD25(+) regulatory cells, which expressed normal levels of glucocorticoid-induced tumor necrosis factor receptor and cytotoxic T-lymphocyte-associated antigen-4. We have also found that NOD CD4(+)CD25(+) cells regulate poorly in vitro after stimulation with anti-CD3 and NOD APCs in comparison with B6 CD4(+)CD25(+) cells stimulated with B6 APCs. Surprisingly, stimulation of NOD CD4(+)CD25(+) cells with B6 APCs restored regulation, whereas with the reciprocal combination, NOD APCs failed to activate B6 CD4(+)CD25(+) cells properly. Interestingly, APCs from disease-free (>30 weeks of age), but not diabetic, NOD mice were able to activate CD4(+)CD25(+) regulatory function in vitro and apparently in vivo because only spleens of disease-free NOD mice contained potent CD4(+)CD25(+) regulatory cells that prevented disease development when transferred into young NOD recipients. These data suggest that the failure of NOD APCs to activate CD4(+)CD25(+) regulatory cells may play an important role in controlling type 1 diabetes development in NOD mice.
Collapse
Affiliation(s)
- Pascale Alard
- Department of Microbiology and Immunology, University of Louisville, 319 Abraham Flexner Way, Bldg. 55A, Rm. 405, Louisville, KY 40202, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Shoda LKM, Young DL, Ramanujan S, Whiting CC, Atkinson MA, Bluestone JA, Eisenbarth GS, Mathis D, Rossini AA, Campbell SE, Kahn R, Kreuwel HTC. A comprehensive review of interventions in the NOD mouse and implications for translation. Immunity 2005; 23:115-26. [PMID: 16111631 DOI: 10.1016/j.immuni.2005.08.002] [Citation(s) in RCA: 231] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Type 1 diabetes (T1D) animal models such as the nonobese diabetic (NOD) mouse have improved our understanding of disease pathophysiology, but many candidate therapeutics identified therein have failed to prevent/cure human disease. We have performed a comprehensive evaluation of disease-modifying agents tested in the NOD mouse based on treatment timing, duration, study length, and efficacy. Interestingly, some popular tenets regarding NOD interventions were not confirmed: all treatments do not prevent disease, treatment dose and timing strongly influence efficacy, and several therapies have successfully treated overtly diabetic mice. The analysis provides a unique perspective on NOD interventions and suggests that the response of this model to therapeutic interventions can be a useful predictor of the human response as long as careful consideration is given to treatment dose, timing, and protocols; more thorough investigation of these parameters should improve clinical translation.
Collapse
|