1
|
Gibney A, Kellett A. Gene Editing with Artificial DNA Scissors. Chemistry 2024; 30:e202401621. [PMID: 38984588 DOI: 10.1002/chem.202401621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/11/2024]
Abstract
Artificial metallo-nucleases (AMNs) are small molecule DNA cleavage agents, also known as DNA molecular scissors, and represent an important class of chemotherapeutic with high clinical potential. This review provides a primary level of exploration on the concepts key to this area including an introduction to DNA structure, function, recognition, along with damage and repair mechanisms. Building on this foundation, we describe hybrid molecules where AMNs are covalently attached to directing groups that provide molecular scissors with enhanced or sequence specific DNA damaging capabilities. As this research field continues to evolve, understanding the applications of AMNs along with synthetic conjugation strategies can provide the basis for future innovations, particularly for designing new artificial gene editing systems.
Collapse
Affiliation(s)
- Alex Gibney
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| | - Andrew Kellett
- SSPC, The Science Foundation Ireland Research Centre for Pharmaceuticals, School of Chemical Sciences, Dublin City University, Glasnevin, Dublin, 9, Ireland
| |
Collapse
|
2
|
Yao H, Wu Y, Zhong Y, Huang C, Guo Z, Jin Y, Wang X. Role of c-Fos in DNA damage repair. J Cell Physiol 2024; 239:e31216. [PMID: 38327128 DOI: 10.1002/jcp.31216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/17/2024] [Accepted: 01/27/2024] [Indexed: 02/09/2024]
Abstract
c-Fos, a member of the immediate early gene, serves as a widely used marker of neuronal activation induced by various types of brain damage. In addition, c-Fos is believed to play a regulatory role in DNA damage repair. This paper reviews the literature on c-Fos' involvement in the regulation of DNA damage repair and indicates that genes of the Fos family can be induced by various forms of DNA damage. In addition, cells lacking c-Fos have difficulties in DNA repair. c-Fos is involved in tumorigenesis and progression as a proto-oncogene that maintains cancer cell survival, which may also be related to DNA repair. c-Fos may impact the repair of DNA damage by regulating the expression of downstream proteins, including ATR, ERCC1, XPF, and others. Nonetheless, the underlying mechanisms necessitate further exploration.
Collapse
Affiliation(s)
- Haiyang Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yilun Wu
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiming Zhong
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenxuan Huang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zimo Guo
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yinpeng Jin
- Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Xianli Wang
- School of Public Health, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Blasco-Brusola A, Tamarit L, Navarrete-Miguel M, Roca-Sanjuán D, Miranda MA, Vayá I. Photolytic splitting of homodimeric quinone-derived oxetanes studied by ultrafast transient absorption spectroscopy and quantum chemistry. Phys Chem Chem Phys 2024; 26:13489-13496. [PMID: 38651219 DOI: 10.1039/d4cp00830h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The photoinduced cycloreversion of oxetane derivatives is of considerable biological interest since these compounds are involved in the photochemical formation and repair of the highly mutagenic pyrimidine (6-4) pyrimidone DNA photoproducts ((6-4)PPs). Previous reports have dealt with the photoreactivity of heterodimeric oxetanes composed mainly of benzophenone (BP) and thymine (Thy) or uracil (Ura) derivatives. However, these models are far from the non-isolable Thy〈º〉Thy dimers, which are the real precursors of (6-4)PPs. Thus, we have synthesized two chemically stable homodimeric oxetanes through the Paternò-Büchi reaction between two identical enone units, i.e. 1,4-benzoquinone (BQ) and 1,4-naphthoquinone (NQ), that led to formation of BQ-Ox and NQ-Ox, respectively. Their photoreactivity has been studied by means of steady-state photolysis and transient absorption spectroscopy from the femtosecond to the microsecond time scale. Thus, photolysis of BQ-Ox and NQ-Ox led to formation of the monomeric BQ or NQ, respectively, through ring opening in a "non-adiabatic" process. Accordingly, the transient absorption spectra of the triplet excited quinones (3BQ* and 3NQ*) were not observed as a result of direct photolysis of the quinone-derived oxetanes. In the case of NQ-Ox, a minor signal corresponding to 3NQ* was detected; its formation was ascribed to minor photodegradation of the oxetane during acquisitions of the spectra during the laser experiments. These results are supported by computational analyses based on density functional theory and multiconfigurational quantum chemistry (CASSCF/CASPT2); here, an accessible conical intersection between the ground and excited singlet states has been characterized as the main structure leading to deactivation of excited BQ-Ox or NQ-Ox. This behavior contrasts with those previously observed for heterodimeric thymine-derived oxetanes, where a certain degree of ring opening into the excited triplet state is observed.
Collapse
Affiliation(s)
- Alejandro Blasco-Brusola
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, València 46022, Spain.
| | - Lorena Tamarit
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, València 46022, Spain.
| | - Miriam Navarrete-Miguel
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, València 46071, Spain
| | - Daniel Roca-Sanjuán
- Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, València 46071, Spain
| | - Miguel A Miranda
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, València 46022, Spain.
| | - Ignacio Vayá
- Departamento de Química/Instituto de Tecnología Química UPV-CSIC, Universitat Politècnica de València, Camino de Vera s/n, València 46022, Spain.
| |
Collapse
|
4
|
Meir A, Raina VB, Rivera CE, Marie L, Symington LS, Greene EC. The separation pin distinguishes the pro- and anti-recombinogenic functions of Saccharomyces cerevisiae Srs2. Nat Commun 2023; 14:8144. [PMID: 38065943 PMCID: PMC10709652 DOI: 10.1038/s41467-023-43918-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 11/23/2023] [Indexed: 12/18/2023] Open
Abstract
Srs2 is an Sf1a helicase that helps maintain genome stability in Saccharomyces cerevisiae through its ability to regulate homologous recombination. Srs2 downregulates HR by stripping Rad51 from single-stranded DNA, and Srs2 is also thought to promote synthesis-dependent strand annealing by unwinding D-loops. However, it has not been possible to evaluate the relative contributions of these two distinct activities to any aspect of recombination. Here, we used a structure-based approach to design an Srs2 separation-of-function mutant that can dismantle Rad51-ssDNA filaments but is incapable of disrupting D-loops, allowing us to assess the relative contributions of these pro- and anti-recombinogenic functions. We show that this separation-of-function mutant phenocopies wild-type SRS2 in vivo, suggesting that the ability of Srs2 to remove Rad51 from ssDNA is its primary role during HR.
Collapse
Affiliation(s)
- Aviv Meir
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Vivek B Raina
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Carly E Rivera
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA
| | - Léa Marie
- Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA
- Institute of Pharmacology and Structural Biology (IPBS), French National Centre for Scientific Research (CNRS), Université Toulouse III, Toulouse, France
| | - Lorraine S Symington
- Department of Microbiology & Immunology, Columbia University, New York, NY, 10032, USA
- Department of Genetics & Development, Columbia University, New York, NY, 10032, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY, 10032, USA.
| |
Collapse
|
5
|
Mustafi M, Kwon Y, Sung P, Greene EC. Single-molecule visualization of Pif1 helicase translocation on single-stranded DNA. J Biol Chem 2023; 299:104817. [PMID: 37178921 PMCID: PMC10279920 DOI: 10.1016/j.jbc.2023.104817] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Pif1 is a broadly conserved helicase that is essential for genome integrity and participates in numerous aspects of DNA metabolism, including telomere length regulation, Okazaki fragment maturation, replication fork progression through difficult-to-replicate sites, replication fork convergence, and break-induced replication. However, details of its translocation properties and the importance of amino acids residues implicated in DNA binding remain unclear. Here, we use total internal reflection fluorescence microscopy with single-molecule DNA curtain assays to directly observe the movement of fluorescently tagged Saccharomyces cerevisiae Pif1 on single-stranded DNA (ssDNA) substrates. We find that Pif1 binds tightly to ssDNA and translocates very rapidly (∼350 nucleotides per second) in the 5'→3' direction over relatively long distances (∼29,500 nucleotides). Surprisingly, we show the ssDNA-binding protein replication protein A inhibits Pif1 activity in both bulk biochemical and single-molecule measurements. However, we demonstrate Pif1 can strip replication protein A from ssDNA, allowing subsequent molecules of Pif1 to translocate unimpeded. We also assess the functional attributes of several Pif1 mutations predicted to impair contact with the ssDNA substrate. Taken together, our findings highlight the functional importance of these amino acid residues in coordinating the movement of Pif1 along ssDNA.
Collapse
Affiliation(s)
- Mainak Mustafi
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York, USA
| | - Youngho Kwon
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Patrick Sung
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, Texas, USA
| | - Eric C Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, New York, USA.
| |
Collapse
|
6
|
Cherry ME, Dubiel K, Henry C, Wood EA, Revitt-Mills SA, Keck JL, Cox MM, van Oijen AM, Ghodke H, Robinson A. Spatiotemporal Dynamics of Single-stranded DNA Intermediates in Escherichia coli. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539320. [PMID: 37214928 PMCID: PMC10197600 DOI: 10.1101/2023.05.08.539320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Single-stranded DNA gaps form within the E. coli chromosome during replication, repair and recombination. However, information about the extent of ssDNA creation in the genome is limited. To complement a recent whole-genome sequencing study revealing ssDNA gap genomic distribution, size, and frequency, we used fluorescence microscopy to monitor the spatiotemporal dynamics of single-stranded DNA within live E. coli cells. The ssDNA was marked by a functional fluorescent protein fusion of the SSB protein that replaces the wild type SSB. During log-phase growth the SSB fusion produces a mixture of punctate foci and diffuse fluorescence spread throughout the cytosol. Many foci are clustered. Fluorescent markers of DNA polymerase III frequently co-localize with SSB foci, often localizing to the outer edge of the large SSB features. Novel SSB-enriched features form and resolve regularly during normal growth. UV irradiation induces a rapid increase in SSB foci intensity and produces large features composed of multiple partially overlapping foci. The results provide a critical baseline for further exploration of ssDNA generation during DNA metabolism. Alterations in the patterns seen in a mutant lacking RecB function tentatively suggest associations of particular SSB features with the repair of double strand breaks and post-replication gaps.
Collapse
|
7
|
Datta A, Sommers JA, Jhujh SS, Harel T, Stewart GS, Brosh RM. Discovery of a new hereditary RECQ helicase disorder RECON syndrome positions the replication stress response and genome homeostasis as centrally important processes in aging and age-related disease. Ageing Res Rev 2023; 86:101887. [PMID: 36805074 PMCID: PMC10018417 DOI: 10.1016/j.arr.2023.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/02/2023] [Accepted: 02/15/2023] [Indexed: 02/22/2023]
Abstract
Characterizing the molecular deficiencies underlying human aging has been a formidable challenge as it is clear that a complex myriad of factors including genetic mutations, environmental influences, and lifestyle choices influence the deterioration responsible for human pathologies. In addition, the common denominators of human aging, exemplified by the newly updated hallmarks of aging (López-Otín et al., 2023), suggest multiple avenues and layers of crosstalk between pathways important for genome and cellular homeostasis, both of which are major determinants of both good health and lifespan. In this regard, we postulate that hereditary disorders characterized by chromosomal instability offer a unique window of insight into aging and age-related disease processes. Recently, we discovered a new RECQ helicase disorder, designated RECON syndrome attributed to bi-allelic mutations in the RECQL1 gene (Abu-Libdeh et al., 2022). Cells deficient in RECQL1 exhibit genomic instability and a compromised response to replication stress, providing further evidence for the significance of genome homeostasis to suppress disease phenotypes. Here we provide a perspective on the pathology of RECON syndrome to inform the reader as to how molecular defects in the RECQL1 gene contribute to underlying deficiencies in nucleic acid metabolism often seen in certain aging or age-related diseases.
Collapse
Affiliation(s)
- Arindam Datta
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Joshua A Sommers
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA
| | - Satpal S Jhujh
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Tamar Harel
- Department of Genetics, Hadassah Medical Organization and Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Grant S Stewart
- Institute for Cancer and Genomic Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Robert M Brosh
- Helicases and Genomic Integrity Section, Translational Gerontology Branch, National Institute on Aging, NIH, Baltimore, Maryland, USA.
| |
Collapse
|
8
|
Du P, Li G, Wu L, Huang M. Perspectives of ERCC1 in early-stage and advanced cervical cancer: From experiments to clinical applications. Front Immunol 2023; 13:1065379. [PMID: 36713431 PMCID: PMC9875293 DOI: 10.3389/fimmu.2022.1065379] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 12/22/2022] [Indexed: 01/13/2023] Open
Abstract
Cervical cancer is a public health problem of extensive clinical importance. Excision repair cross-complementation group 1 (ERCC1) was found to be a promising biomarker of cervical cancer over the years. At present, there is no relevant review article that summarizes such evidence. In this review, nineteen eligible studies were included for evaluation and data extraction. Based on the data from clinical and experimental studies, ERCC1 plays a key role in the progression of carcinoma of the uterine cervix and the therapeutic response of chemoradiotherapy. The majority of the included studies (13/19, 68%) suggested that ERCC1 played a pro-oncogenic role in both early-stage and advanced cervical cancer. High expression of ERCC1 was found to be associated with the poor survival rates of the patients. ERCC1 polymorphism analyses demonstrated that ERCC1 might be a useful tool for predicting the risk of cervical cancer and the treatment-related toxicities. Experimental studies indicated that the biological effects exerted by ERCC1 in cervical cancer might be mediated by its associated genes and affected signaling pathways (i.e., XPF, TUBB3, and. To move towards clinical applications by targeting ERCC1 in cervical cancer, more clinical, in-vitro, and in-vivo investigations are still warranted in the future.
Collapse
|
9
|
Thakur M, Muniyappa K. Macrophage activation highlight an important role for NER proteins in the survival, latency and multiplication of Mycobacterium tuberculosis. Tuberculosis (Edinb) 2023; 138:102284. [PMID: 36459831 DOI: 10.1016/j.tube.2022.102284] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/14/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Nucleotide excision repair (NER) is one of the most extensively studied DNA repair processes in both prokaryotes and eukaryotes. The NER pathway is a highly conserved, ATP-dependent multi-step process involving several proteins/enzymes that function in a concerted manner to recognize and excise a wide spectrum of helix-distorting DNA lesions and bulky adducts by nuclease cleavage on either side of the damaged bases. As such, the NER pathway of Mycobacterium tuberculosis (Mtb) is essential for its survival within the hostile environment of macrophages and disease progression. This review focuses on present published knowledge about the crucial roles of Mtb NER proteins in the survival and multiplication of the pathogen within the macrophages and as potential targets for drug discovery.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| |
Collapse
|
10
|
Miner KM, Jamenis AS, Bhatia TN, Clark RN, Rajasundaram D, Sauvaigo S, Mason DM, Posimo JM, Abraham N, DeMarco BA, Hu X, Stetler RA, Chen J, Sanders LH, Luk KC, Leak RK. α-synucleinopathy exerts sex-dimorphic effects on the multipurpose DNA repair/redox protein APE1 in mice and humans. Prog Neurobiol 2022; 216:102307. [PMID: 35710046 PMCID: PMC9514220 DOI: 10.1016/j.pneurobio.2022.102307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 04/05/2022] [Accepted: 06/10/2022] [Indexed: 11/16/2022]
Abstract
Lewy body disorders are characterized by oxidative damage to DNA and inclusions rich in aggregated forms of α-synuclein. Among other roles, apurinic/apyrimidinic endonuclease 1 (APE1) repairs oxidative DNA damage, and APE1 polymorphisms have been linked to cases of Lewy body disorders. However, the link between APE1 and α-synuclein is unexplored. We report that knockdown or inhibition of APE1 amplified inclusion formation in primary hippocampal cultures challenged with preformed α-synuclein fibrils. Fibril infusions into the mouse olfactory bulb/anterior olfactory nucleus (OB/AON) elicited a modest decrease in APE1 expression in the brains of male mice but an increase in females. Similarly, men with Lewy body disorders displayed lower APE1 expression in the OB and amygdala compared to women. Preformed fibril infusions of the mouse OB/AON induced more robust base excision repair of DNA lesions in females than males. No fibril-mediated loss of APE1 expression was observed in male mice when the antioxidant N-acetylcysteine was added to their diet. These findings reveal a potential sex-biased link between α-synucleinopathy and APE1 in mice and humans. Further studies are warranted to determine how this multifunctional protein modifies α-synuclein inclusions and, conversely, how α-synucleinopathy and biological sex interact to modify APE1.
Collapse
Affiliation(s)
- Kristin M Miner
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Anuj S Jamenis
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Tarun N Bhatia
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Rachel N Clark
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Dhivyaa Rajasundaram
- Department of Pediatrics, Rangos Research Center, UPMC Children's Hospital of Pittsburgh, PA 15224, USA
| | | | - Daniel M Mason
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Jessica M Posimo
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Nevil Abraham
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Brett A DeMarco
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| | - Xiaoming Hu
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Jun Chen
- Department of Neurology, University of Pittsburgh, PA 15213, USA
| | - Laurie H Sanders
- Department of Neurology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Kelvin C Luk
- Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA 19147, USA
| | - Rehana K Leak
- Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA.
| |
Collapse
|
11
|
Zhao M, Zhao Y, Lin W, Xiao KQ. An overview of experimental simulations of microbial activity in early Earth. Front Microbiol 2022; 13:1052831. [PMID: 36713221 PMCID: PMC9878457 DOI: 10.3389/fmicb.2022.1052831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/16/2022] [Indexed: 01/15/2023] Open
Abstract
Microbial activity has shaped the evolution of the ocean and atmosphere throughout the Earth history. Thus, experimental simulations of microbial metabolism under the environment conditions of the early Earth can provide vital information regarding biogeochemical cycles and the interaction and coevolution between life and environment, with important implications for extraterrestrial exploration. In this review, we discuss the current scope and knowledge of experimental simulations of microbial activity in environments representative of those of early Earth, with perspectives on future studies. Inclusive experimental simulations involving multiple species, and cultivation experiments with more constraints on environmental conditions similar to early Earth would significantly advance our understanding of the biogeochemical cycles of the geological past.
Collapse
Affiliation(s)
- Mingyu Zhao
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Yao Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Wei Lin
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Ke-Qing Xiao
- Key Laboratory of Earth and Planetary Physics, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
12
|
Meir A, Greene EC. Srs2 and Pif1 as Model Systems for Understanding Sf1a and Sf1b Helicase Structure and Function. Genes (Basel) 2021; 12:1319. [PMID: 34573298 PMCID: PMC8469786 DOI: 10.3390/genes12091319] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 01/19/2023] Open
Abstract
Helicases are enzymes that convert the chemical energy stored in ATP into mechanical work, allowing them to move along and manipulate nucleic acids. The helicase superfamily 1 (Sf1) is one of the largest subgroups of helicases and they are required for a range of cellular activities across all domains of life. Sf1 helicases can be further subdivided into two classes called the Sf1a and Sf1b helicases, which move in opposite directions on nucleic acids. The results of this movement can range from the separation of strands within duplex nucleic acids to the physical remodeling or removal of nucleoprotein complexes. Here, we describe the characteristics of the Sf1a helicase Srs2 and the Sf1b helicase Pif1, both from the model organism Saccharomyces cerevisiae, focusing on the roles that they play in homologous recombination, a DNA repair pathway that is necessary for maintaining genome integrity.
Collapse
Affiliation(s)
| | - Eric C. Greene
- Department of Biochemistry & Molecular Biophysics, Columbia University, New York, NY 10032, USA;
| |
Collapse
|
13
|
Fernandez A, O’Leary C, O’Byrne KJ, Burgess J, Richard DJ, Suraweera A. Epigenetic Mechanisms in DNA Double Strand Break Repair: A Clinical Review. Front Mol Biosci 2021; 8:685440. [PMID: 34307454 PMCID: PMC8292790 DOI: 10.3389/fmolb.2021.685440] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/24/2021] [Indexed: 12/14/2022] Open
Abstract
Upon the induction of DNA damage, the chromatin structure unwinds to allow access to enzymes to catalyse the repair. The regulation of the winding and unwinding of chromatin occurs via epigenetic modifications, which can alter gene expression without changing the DNA sequence. Epigenetic mechanisms such as histone acetylation and DNA methylation are known to be reversible and have been indicated to play different roles in the repair of DNA. More importantly, the inhibition of such mechanisms has been reported to play a role in the repair of double strand breaks, the most detrimental type of DNA damage. This occurs by manipulating the chromatin structure and the expression of essential proteins that are critical for homologous recombination and non-homologous end joining repair pathways. Inhibitors of histone deacetylases and DNA methyltransferases have demonstrated efficacy in the clinic and represent a promising approach for cancer therapy. The aims of this review are to summarise the role of histone deacetylase and DNA methyltransferase inhibitors involved in DNA double strand break repair and explore their current and future independent use in combination with other DNA repair inhibitors or pre-existing therapies in the clinic.
Collapse
Affiliation(s)
- Alejandra Fernandez
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
| | - Connor O’Leary
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Kenneth J O’Byrne
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Joshua Burgess
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Derek J Richard
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| | - Amila Suraweera
- Centre for Genomics and Personalised Health, School of Biomedical Sciences and Translational Research Institute, Queensland University of Technology (QUT), Brisbane, QLD, Australia
- Princess Alexandra Hospital, Woolloongabba, QLD, Australia
| |
Collapse
|
14
|
Jin SG, Pettinga D, Johnson J, Li P, Pfeifer GP. The major mechanism of melanoma mutations is based on deamination of cytosine in pyrimidine dimers as determined by circle damage sequencing. SCIENCE ADVANCES 2021; 7:eabi6508. [PMID: 34330711 PMCID: PMC8324051 DOI: 10.1126/sciadv.abi6508] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/14/2021] [Indexed: 05/22/2023]
Abstract
Sunlight-associated melanomas carry a unique C-to-T mutation signature. UVB radiation induces cyclobutane pyrimidine dimers (CPDs) as the major form of DNA damage, but the mechanism of how CPDs cause mutations is unclear. To map CPDs at single-base resolution genome wide, we developed the circle damage sequencing (circle-damage-seq) method. In human cells, CPDs form preferentially in a tetranucleotide sequence context (5'-Py-T<>Py-T/A), but this alone does not explain the tumor mutation patterns. To test whether mutations arise at CPDs by cytosine deamination, we specifically mapped UVB-induced cytosine-deaminated CPDs. Transcription start sites (TSSs) were protected from CPDs and deaminated CPDs, but both lesions were enriched immediately upstream of the TSS, suggesting a mutation-promoting role of bound transcription factors. Most importantly, the genomic dinucleotide and trinucleotide sequence specificity of deaminated CPDs matched the prominent mutation signature of melanomas. Our data identify the cytosine-deaminated CPD as the leading premutagenic lesion responsible for mutations in melanomas.
Collapse
Affiliation(s)
- Seung-Gi Jin
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Dean Pettinga
- Bioinformatics and Biostatistics Core, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Jennifer Johnson
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Peipei Li
- Department of Neurodegenerative Science, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Gerd P Pfeifer
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| |
Collapse
|
15
|
Assessment on the influence of TLR4 and DNA repair genes in laryngeal cancer susceptibility: a selective examination in a Romanian case control study. REV ROMANA MED LAB 2021. [DOI: 10.2478/rrlm-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Background: Tumor characterization through the study of molecular biology has become an invaluable tool in understanding cancer development and evolution due to its relationship with chromosomal mutations, alterations or aberrations. The purpose of this study was to investigate the involvement of genes such as TLR-4 and DNA repair pathways (XRCC1 and XPD) in laryngeal cancer susceptibility in a Romanian population. Method: We performed a case-control study on 157 laryngeal cancer patients and 101 healthy controls. Genetic testing was carried out using Polymerase Chain Reaction-Restriction Fragment Length Polymorphism. Results: We identified the Gln allele of the XPDLys751Gln polymorphism as an individual risk factor in laryngeal cancer development (Gln vs Lys, adjusted OR=1.65, 95%CI=1.13–2.40, P=0.008). Subjects with the mutant homozygote variant (Gln/Gln) had a two fold increase in cancer risk (adjusted OR=2.18, 95%CI=1.06–4.47, p=0.028) when compared to the reference wild type genotype (Lys/Lys). Stratification by sex and age, identified males under 62 years as the most susceptible group with an almost three fold risk (adjusted OR=2.94, 95%CI=1.31–6.59, p=0.007) for the dominant model (Lys/Gln+Gln/Gln). No associations were found for TLR-4Thr399Ile, XRCC1Arg194Trp and XRCC1Arg399Gln. Conclusion: The results of the study show that the XPDLys751Gln polymorphism may be among other independent risk factors for developing laryngeal cancer where as TLR-4Thr399Ile, XRCC1Arg194Trp and XRCC1 Arg399Gln show no such association. However, we consider the relative small number of the subjects selected for this analyses a possible limitation towards the real influence the obtain results may pertain in laryngeal cancer evolution.
Collapse
|
16
|
Bian Z, Huang X, Chen Y, Meng J, Feng X, Zhang M, Zhang L, Zhou J, Liang C. Fifteen-MiRNA-Based Signature Is a Reliable Prognosis-Predicting Tool for Prostate Cancer Patients. Int J Med Sci 2021; 18:284-294. [PMID: 33390797 PMCID: PMC7738977 DOI: 10.7150/ijms.49412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 11/02/2020] [Indexed: 12/09/2022] Open
Abstract
Recurrence is a major problem for prostate cancer patients, thus, identifying prognosis-related markers to evaluate clinical outcomes is essential. Here, we established a fifteen-miRNA-based recurrence-free survival (RFS) predicting signature based on the miRNA expression profile extracted from The Cancer Genome Atlas (TCGA) database by the LASSO Cox regression analysis. The median risk score generated by the signature in both the TCGA training and the external Memorial Sloan-Kettering Cancer Center (MSKCC) validation cohorts was employed and the patients were subclassified into low- and high-risk subgroups. The Kaplan-Meier plot and log-rank analyses showed significant survival differences between low- and high-risk subgroups of patients (TCGA, log-rank P < 0.001 & MSKCC, log-rank P = 0.045). In addition, the receiver operating characteristic curves of both the training and external validation cohorts indicated the good performance of our model. After predicting the downstream genes of these miRNAs, the miRNA-mRNA network was visualized by Cytoscape software. In addition, pathway analyses found that the differences between two groups were mainly enriched on tumor progression and drug resistance-related pathways. Multivariate analyses revealed that the miRNA signature is an independent indicator of RFS prognosis for prostate cancer patients with or without clinicopathological features. In summary, our novel fifteen-miRNA-based prediction signature is a reliable method to evaluate the prognosis of prostate cancer patients.
Collapse
Affiliation(s)
- Zichen Bian
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Xinbo Huang
- Guangdong and Shenzhen Key Laboratory of Male Reproductive Medicine and Genetics, Institute of Urology, Peking University Shenzhen Hospital, Shenzhen-Peking University-the Hong Kong University of Science and Technology Medical Center, Shenzhen 518000, China
| | - Yiding Chen
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Jialin Meng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Xingliang Feng
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Meng Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China.,Institute of Urology of Shenzhen University, The Third Affiliated Hospital of Shenzhen University, Shenzhen Luohu Hospital Group, Shenzhen 518000, People's Republic of China
| | - Li Zhang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Jun Zhou
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| | - Chaozhao Liang
- Department of Urology, The First Affiliated Hospital of Anhui Medical University and Institute of Urology and Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Jixi Road 218th, Shushan District, Hefei, Anhui, 230022, People's Republic of China
| |
Collapse
|
17
|
Pehlivanoglu B, Aysal A, Demir Kececi S, Ekmekci S, Erdogdu IH, Ertunc O, Gundogdu B, Kelten Talu C, Sahin Y, Toper MH. A Nobel-Winning Scientist: Aziz Sancar and the Impact of his Work on the Molecular Pathology of Neoplastic Diseases. Turk Patoloji Derg 2021; 37:93-105. [PMID: 33973640 PMCID: PMC10512686 DOI: 10.5146/tjpath.2020.01504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/14/2020] [Indexed: 11/18/2022] Open
Abstract
Aziz Sancar, Nobel Prize winning Turkish scientist, made several discoveries which had a major impact on molecular sciences, particularly disciplines that focus on carcinogenesis and cancer treatment, including molecular pathology. Cloning the photolyase gene, which was the initial step of his work on DNA repair mechanisms, discovery of the "Maxicell" method, explanation of the mechanism of nucleotide excision repair and transcription-coupled repair, discovery of "molecular matchmakers", and mapping human excision repair genes at single nucleotide resolution constitute his major research topics. Moreover, Sancar discovered the cryptochromes, the clock genes in humans, in 1998, and this discovery led to substantial progress in the understanding of the circadian clock and the introduction of the concept of "chrono-chemoterapy" for more effective therapy in cancer patients. This review focuses on Aziz Sancar's scientific studies and their reflections on molecular pathology of neoplastic diseases. While providing a new perspective for researchers working in the field of pathology and molecular pathology, this review is also an evidence of how basic sciences and clinical sciences complete each other.
Collapse
Affiliation(s)
- Burcin Pehlivanoglu
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Anil Aysal
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Sibel Demir Kececi
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Sumeyye Ekmekci
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Ibrahim Halil Erdogdu
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Onur Ertunc
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Betul Gundogdu
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Canan Kelten Talu
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Yasemin Sahin
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| | - Muhammed Hasan Toper
- Department of Molecular Pathology, Dokuz Eylul University, Graduate School of Health Sciences, Izmir, Turkey
| |
Collapse
|
18
|
Structure based identification of first-in-class fragment inhibitors that target the NMN pocket of M. tuberculosis NAD +-dependent DNA ligase A. J Struct Biol 2020; 213:107655. [PMID: 33197566 DOI: 10.1016/j.jsb.2020.107655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/08/2020] [Accepted: 10/19/2020] [Indexed: 12/25/2022]
Abstract
NAD+-dependent DNA ligase (LigA) is the essential replicative ligase in bacteria and differs from ATP-dependent counterparts like the human DNA ligase I (HligI) in several aspects. LigA uses NAD+ as the co-factor while the latter uses ATP. Further, the LigA carries out enzymatic activity with a single divalent metal ion in the active site while ATP-dependent ligases use two metal ions. Instead of the second metal ion, LigA have a unique NMN binding subdomain that facilitates the orientation of the β-phosphate and NMN leaving group. LigA are therefore attractive targets for new anti-bacterial therapeutic development. Others and our group have earlier identified several LigA inhibitors that mainly bind to AMP binding site of LigA. However, no inhibitor is known to bind to the unique NMN binding subdomain. We initiated a fragment inhibitor discovery campaign against the M. tuberculosis LigA based on our co-crystal structure of adenylation domain with AMP and NMN. The study identified two fragments, 4-(4-fluorophenyl)-4,5,6,7-tetrahydro-3H imidazo[4,5-c] pyridine and N-(4-methylbenzyl)-1H-pyrrole-2-carboxamide, that bind to the NMN site. The fragments inhibit LigA with IC50 of 16.9 and 28.7 µM respectively and exhibit MIC of ~20 and 60 µg/ml against a temperature sensitive E. coli GR501 ligAts strain, rescued by MtbLigA. Co-crystal structures of the fragments with the adenylation domain of LigA show that they mimic the interactions of NMN. Overall, our results suggest that the NMN binding-site is a druggable target site for developing anti-LigA therapeutic strategies.
Collapse
|
19
|
Wang L, Zhao H, He D, Wu Y, Jin L, Li G, Su N, Li H, Xing XH. Insights into the molecular-level effects of atmospheric and room-temperature plasma on mononucleotides and single-stranded homo- and hetero-oligonucleotides. Sci Rep 2020; 10:14298. [PMID: 32868795 PMCID: PMC7459345 DOI: 10.1038/s41598-020-71152-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Accepted: 08/09/2020] [Indexed: 01/18/2023] Open
Abstract
Atmospheric and room-temperature plasma (ARTP) has been successfully developed as a useful mutation tool for mutation breeding of various microbes and plants as well animals by genetic alterations. However, understanding of the molecular mechanisms underlying the biological responses to ARTP irradiation is still limited. Therefore, to gain a molecular understanding of how irradiation with ARTP damages DNA, we irradiated the artificially synthesized mononucleotides of dATP, dTTP, dGTP, and dCTP, and the oligonucleotides of dA8, dT8, dG8, dC8, and dA2dT2dG2dC2 as chemical building blocks of DNA with ARTP for 1-4 min, identified the mononucleotide products using 31P- and 1H-nuclear magnetic resonance spectroscopy (NMR), and identified the oligonucleotide products using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) during ARTP treatment. The observed 31P-and 1H-NMR spectrum signals for the plasma-treated and untreated mononucleotides indicated that dATP was less stable to plasma irradiation than the other mononucleotides. The oligonucleotides after treatment with ARTP were found to have been broken into small fragments as shown by mass spectrometry, with the cleaved bonds and produced fragments identified according to their expected spectral m/z values or molecular weights derived from their m/z values. The stabilities of the oligonucleotides differed to ARTP irradiation, with dT8 being the most stable and was more beneficial to stabilizing single-stranded oligonucleotide structures compared to the other base groups (A, G, and C). This was consistent with the average potential energy level obtained by the molecular dynamic simulation of the oligonucleotides, i.e., dT8 > dC8 > dA8 > dG8 > dA2dT2dG2dC2. In summary, we found that ARTP treatment caused various structural changes to the oligonucleotides that may account for the wide and successful applications reported for ARTP-induced mutation breeding of various organisms.
Collapse
Affiliation(s)
- Liyan Wang
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic and Systems Biology, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China
- Biobreeding Center, Wuxi Research Institute of Applied Technologies, Tsinghua University, Wuxi, 214072, People's Republic of China
- TmaxTree Biotechnology Co. Ltd., Luoyang, 471023, People's Republic of China
| | - Hongxin Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, People's Republic of China
| | - Dong He
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic and Systems Biology, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China
| | - Yinan Wu
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic and Systems Biology, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China
| | - Lihua Jin
- College of Bioengineering, Beijing Polytechnic, Beijing, 100176, People's Republic of China
| | - Guo Li
- Department of Engineering Physics, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China
| | - Nan Su
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic and Systems Biology, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China
| | - Heping Li
- Department of Engineering Physics, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China.
| | - Xin-Hui Xing
- MOE Key Laboratory for Industrial Biocatalysis, Department of Chemical Engineering, Center for Synthetic and Systems Biology, Tsinghua University, Haidian District, Beijing, 100084, People's Republic of China.
- Center for Synthetic and System Biology, Tsinghua University, Beijing, People's Republic of China.
- Institute of Biopharmaceutical and Health Engineering, Tsinghua Shenzhen International Graduate School, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
20
|
Arya A, Gangwar A, Singh SK, Bhargava K. Polyethylene glycol functionalized cerium oxide nanoparticle confer protection against UV- induced oxidative damage in skin: evidences for a new class of UV filter. NANO EXPRESS 2020. [DOI: 10.1088/2632-959x/ab934c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Abstract
Acute exposure to high dose of ultraviolet (UV) radiations is known to cause significant harm to skin, primarily due to the generation of free radicals and damage to DNA, which often culminate in rapid aging of the skin, or cancers. Keratinocytes being the most abundant skin’s cells are affected most by UV. Although a degree of endogenous protection is present, the vulnerability of UV-induced damaged can be minimized using protective agents. A few UV filters (organic and inorganic) have been successfully commercialized, yet, due to prevailing disadvantages such as low solubility, photostability, and aesthetic sense, suitable and more efficient UV filters continue to be explored as potential ingredients of cosmaceutical agents. A recently studied antioxidant enzyme mimetic cerium oxide nanoparticles showed emerging piece of evidence on benefits under environmental stress. However, its protective abilities as potential UV filter and therefore applicability in cosmaceutical has not yet been completely explored. This study provides a piece of evidence in support of beneficial effects of this new class of UV filters, polyethyleneglycol functionalized nanoceria (PEG-CNP) against UV - induced damage in vitro and in vivo. The nanomolar concentration of PEG-CNPs in the cell culture showed significant protection from UV exposure, by direct ROS scavenging, the rescue of cells from cell cycle arrest and DNA damage. Further, a proof of the concept study in dehaired rat skin showed that the topical application of 50 μM PEG-CNPs prevented the initial signs of UV induced damage. Unlike conventional UV filters, PEG-CNPs confer protection by internalizing the cells, and scavenging the radicals.
Collapse
|
21
|
Mmbando GS, Teranishi M, Hidema J. Very high sensitivity of African rice to artificial ultraviolet-B radiation caused by genotype and quantity of cyclobutane pyrimidine dimer photolyase. Sci Rep 2020; 10:3158. [PMID: 32081870 PMCID: PMC7035317 DOI: 10.1038/s41598-020-59720-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 02/03/2020] [Indexed: 12/11/2022] Open
Abstract
Ultraviolet-B (UVB) radiation damages plants and decreases their growth and productivity. We previously demonstrated that UVB sensitivity varies widely among Asian rice (Oryza sativa L.) cultivars and that the activity of cyclobutane pyrimidine dimer (CPD) photolyase, which repairs UVB-induced CPDs, determines UVB sensitivity. Unlike Asian rice, African rice (Oryza glaberrima Steud. and Oryza barthii A. Chev.) has mechanisms to adapt to African climates and to protect itself against biotic and abiotic stresses. However, information about the UVB sensitivity of African rice species is largely absent. We showed that most of the African rice cultivars examined in this study were UVB-hypersensitive or even UVB-super-hypersensitive in comparison with the UVB sensitivity of Asian O. sativa cultivars. The difference in UVB resistance correlated with the total CPD photolyase activity, which was determined by its activity and its cellular content. The UVB-super-hypersensitive cultivars had low enzyme activity caused by newly identified polymorphisms and low cellular CPD photolyase contents. The new polymorphisms were only found in cultivars from West Africa, particularly in those from countries believed to be centres of O. glaberrima domestication. This study provides new tools for improving both Asian and African rice productivity.
Collapse
Affiliation(s)
| | - Mika Teranishi
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan
| | - Jun Hidema
- Graduate School of Life Sciences, Tohoku University, Sendai, 980-8577, Japan.
| |
Collapse
|
22
|
Thakur M, Muniyappa K. Deciphering the essentiality and function of SxSx motif in Mycobacterium tuberculosis UvrB. Biochimie 2020; 170:94-105. [PMID: 31923481 DOI: 10.1016/j.biochi.2020.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 01/06/2020] [Indexed: 10/25/2022]
Abstract
The UvrB subunit is a central component of the UvrABC incision complex and plays a pivotal role in damage recognition, strand excision and repair synthesis. A conserved structural motif (the SxSx motif) present in UvrB is analogous to a similar motif (TxGx) in the helicases of superfamily 2, whose function is not fully understood. To elucidate the significance of the SxSx (Ser143-Val144-Ser145-Cys146) motif in Mycobacterium tuberculosis UvrB (MtUvrB), different variants of MtUvrB subunit were constructed and characterized. The SxSx motif indeed was found to be essential for MtUvrB function: while Ser143 and Cys146 residues within this motif were crucial for MtUvrB function, Ser145 plays an important but less essential role. The SxSx motif-deleted mutant was drastically attenuated and three single (S143A, S145A and C146A) mutants and a double (S143A/S145A) mutant exhibited various degrees of severity in their DNA-binding, DNA helicase and ATPase activities. Taken together, these results highlight a hitherto unrecognized role for SxSx motif in the catalytic activities of UvrB.
Collapse
Affiliation(s)
- Manoj Thakur
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India
| | - K Muniyappa
- Department of Biochemistry, Indian Institute of Science, Bangalore, 560012, India.
| |
Collapse
|
23
|
Liu J, Lee R, Britton BM, London JA, Yang K, Hanne J, Lee JB, Fishel R. MutL sliding clamps coordinate exonuclease-independent Escherichia coli mismatch repair. Nat Commun 2019; 10:5294. [PMID: 31757945 PMCID: PMC6876574 DOI: 10.1038/s41467-019-13191-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Accepted: 10/22/2019] [Indexed: 01/09/2023] Open
Abstract
A shared paradigm of mismatch repair (MMR) across biology depicts extensive exonuclease-driven strand-specific excision that begins at a distant single-stranded DNA (ssDNA) break and proceeds back past the mismatched nucleotides. Historical reconstitution studies concluded that Escherichia coli (Ec) MMR employed EcMutS, EcMutL, EcMutH, EcUvrD, EcSSB and one of four ssDNA exonucleases to accomplish excision. Recent single-molecule images demonstrated that EcMutS and EcMutL formed cascading sliding clamps on a mismatched DNA that together assisted EcMutH in introducing ssDNA breaks at distant newly replicated GATC sites. Here we visualize the complete strand-specific excision process and find that long-lived EcMutL sliding clamps capture EcUvrD helicase near the ssDNA break, significantly increasing its unwinding processivity. EcSSB modulates the EcMutL–EcUvrD unwinding dynamics, which is rarely accompanied by extensive ssDNA exonuclease digestion. Together these observations are consistent with an exonuclease-independent MMR strand excision mechanism that relies on EcMutL–EcUvrD helicase-driven displacement of ssDNA segments between adjacent EcMutH–GATC incisions. The mechanics of MMR strand specific excision that begins at a distant ssDNA break are not yet clear. Here the authors have used multiple single molecule imaging techniques to visualize the behavior of MMR components on mismatched DNA substrates and reveal an exonuclease-independent mechanism for E.coli MMR.
Collapse
Affiliation(s)
- Jiaquan Liu
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Ryanggeun Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea
| | - Brooke M Britton
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - James A London
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Keunsang Yang
- School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, 37673, Korea
| | - Jeungphill Hanne
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Jong-Bong Lee
- Department of Physics, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, 37673, Korea. .,School of Interdisciplinary Bioscience and Bioengineering, POSTECH, Pohang, Gyeongbuk, 37673, Korea.
| | - Richard Fishel
- Department of Cancer Biology and Genetics, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
24
|
Asgerov E, Şenol Ö, Güler A, Berdeli A. Distribution of nucleotide variants in the DNA sequence of ERCC1 and XRCC1 genes and the effect of phenotype in patients with gastric cancer. TURKISH JOURNAL OF GASTROENTEROLOGY 2019; 30:517-523. [PMID: 31144657 DOI: 10.5152/tjg.2019.18100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
BACKGROUND/AIMS Gastric cancers vary across countries and ethnic groups. They are the second most common type of cancer worldwide. Dietary and non-dietary factors as well as genetic and epigenetic alterations of many mechanisms are implicated in the development of gastric cancer. We aimed to determine the sequence of possible nucleotide changes, polymorphisms, and mutations, and to establish genotype and phenotype relation by performing whole DNA sequence analysis of the XRCC1 and ERCC1 genes belonging to base excision repair (BER) and nucleotide excision repair (NER) family of DNA repair genes in patients with gastric cancer. MATERIALS AND METHODS We included 50 patients of both sexes who had received diagnosis of gastric cancer and 50 healthy people who showed same demographic traits that forms the control group. We analyzed the ERCC1 and XRCC1 genes by DNA sequence analysis on both groups. After the analysis, we compared the genotype-phenotype relation. RESULTS Neither patients nor the control group has any nucleotide replacement in any exon of ERCC1 genes. We could not detect significant difference between patients and healthy groups when we correlated genotype contribution of mutations Arg194Trp, Arg208His, Arg399Gln detected in the XRCC1 gene and allele frequency. CONCLUSION According to our study, the ERCC1 gene in Turkish population is not getting mutation in patients with gastric cancer and healthy individuals. Three mutations were detected in the XRCC1 gene, and these mutations were not associated with gastric cancer.
Collapse
Affiliation(s)
- Elmir Asgerov
- Department of General Surgery, Ege University School of Medicine, İzmir, Turkey
| | - Özgür Şenol
- Molecular Medicine Laboratory, Ege University School of Medicine, İzmir, Turkey
| | - Adem Güler
- Department of General Surgery, Ege University School of Medicine, İzmir, Turkey
| | - Afig Berdeli
- Molecular Medicine Laboratory, Ege University School of Medicine, İzmir, Turkey
| |
Collapse
|
25
|
Chen SH, Yu X. Human DNA ligase IV is able to use NAD+ as an alternative adenylation donor for DNA ends ligation. Nucleic Acids Res 2019; 47:1321-1334. [PMID: 30496552 PMCID: PMC6379666 DOI: 10.1093/nar/gky1202] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 11/09/2018] [Accepted: 11/15/2018] [Indexed: 12/29/2022] Open
Abstract
All the eukaryotic DNA ligases are known to use adenosine triphosphate (ATP) for DNA ligation. Here, we report that human DNA ligase IV, a key enzyme in DNA double-strand break (DSB) repair, is able to use NAD+ as a substrate for double-stranded DNA ligation. In the in vitro ligation assays, we show that the recombinant Ligase IV can use both ATP and NAD+ for DNA ligation. For NAD+-mediated ligation, the BRCA1 C-terminal (BRCT) domain of Ligase IV recognizes NAD+ and facilitates the adenylation of Ligase IV, the first step of ligation. Although XRCC4, the functional partner of Ligase IV, is not required for the NAD+-mediated adenylation, it regulates the transfer of AMP moiety from Ligase IV to the DNA end. Moreover, cancer-associated mutation in the BRCT domain of Ligase IV disrupts the interaction with NAD+, thus abolishes the NAD+-mediated adenylation of Ligase IV and DSB ligation. Disrupting the NAD+ recognition site in the BRCT domain impairs non-homologous end joining (NHEJ) in cell. Taken together, our study reveals that in addition to ATP, Ligase IV may use NAD+ as an alternative adenylation donor for NHEJ repair and maintaining genomic stability.
Collapse
Affiliation(s)
- Shih-Hsun Chen
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| | - Xiaochun Yu
- Department of Cancer Genetics & Epigenetics, Beckman Research Institute, City of Hope, Duarte, CA 91010, USA
| |
Collapse
|
26
|
Zhu J, Ji S, Hu Q, Chen Q, Liu Z, Wu J, Gu K. The prognostic value of excission repair cross-complementation group one enzyme expression in locally advanced cervical carcinoma patients treated with cisplatin-based treatment: a meta-analysis. Int J Gynecol Cancer 2019; 29:35-41. [PMID: 30640681 DOI: 10.1136/ijgc-2018-000027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Revised: 08/07/2018] [Accepted: 09/06/2018] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND Recently, several studies observed that locally advanced cervical carcinoma with negative excision repair crross-complementation group one enzyme expression has better outcomes in cisplatin-based chemotherapy or chemoradiotherapy than carcinoma with positive excission repair cross-complementation group one enzyme expression. In this meta-analysis, we quantitatively evaluated the prognostic value of excission repair cross-complementation group one enzyme expression in locally advanced cervical carcinoma patients receiving platinum-based chemotherapy or chemoradiotherapy. MATERIALS A systematic search for relevant studies was conducted in the PubMed, Cochrane Library, EMBASE and Medline databases. Fixed- or random-effects models were used for pooled analysis. The endpoints were overall survival and disease-free survival () reported as ORs and 95% CIs. The effects of excission repair cross-complementation group one enzyme expression on the clinicopathological parameters were measured by the pooled ORs and their 95% CIs. RESULTS Eight studies (612 patients in total) satisfied the inclusion criteria. Negative/low excission repair cross-complementation group one enzyme expression was significantly associated with better overall survival (OR, 1.92; 95% CI, 1.22 to 3.05; P = 0.005) and disease-free survival (OR, 5.77; 95% CI, 1.90 to 17.54; P = 0.002). Additionally, there were significant associations between excission repair cross-complementation group one enzyme expression and lymph node metastasis (OR, 2.57; 95% CI, 1.28 to 5.16; P = 0.008). CONCLUSIONS This meta-analysis suggested that pretreatment excission repair cross-complementation group one enzyme expression might be a useful biomarker to predict prognoses for locally advanced cervical carcinoma patients receiving platinum-based chemotherapy or chemoradiotherapy.
Collapse
Affiliation(s)
- Jiahao Zhu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
- Department of Oncology, Nanjing Medical University, Nanjing, China
| | - Shengjun Ji
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qunchao Hu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Qingqing Chen
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Zhengcao Liu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Jinchang Wu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| | - Ke Gu
- Department of Radiation Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, China
| |
Collapse
|
27
|
Drzeżdżon J, Jacewicz D, Chmurzyński L. The impact of environmental contamination on the generation of reactive oxygen and nitrogen species - Consequences for plants and humans. ENVIRONMENT INTERNATIONAL 2018; 119:133-151. [PMID: 29957355 DOI: 10.1016/j.envint.2018.06.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 06/15/2018] [Accepted: 06/16/2018] [Indexed: 05/23/2023]
Abstract
Environmental contaminants, such as heavy metals, nanomaterials, and pesticides, induce the formation of reactive oxygen and nitrogen species (RONS). Plants interact closely with the atmosphere, water, and soil, and consequently RONS intensely affect their biochemistry. For the past 30 years researchers have thoroughly examined the role of RONS in plant organisms and oxidative modifications to cellular components. Hydrogen peroxide, superoxide anion, nitrogen(II) oxide, and hydroxyl radicals have been found to take part in many metabolic pathways. In this review the various aspects of the oxidative stress induced by environmental contamination are described based on an analysis of literature. The review reinforces the contention that RONS play a dual role, that is, both a deleterious and a beneficial one, in plants. Environmental contamination affects human health, also, and so we have additionally described the impact of RONS on the coupled human - environment system.
Collapse
Affiliation(s)
- Joanna Drzeżdżon
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Dagmara Jacewicz
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Lech Chmurzyński
- Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
28
|
Ban EZ, Lye MS, Chong PP, Yap YY, Lim SYC, Abdul Rahman H. Association of hOGG1 Ser326Cys, ITGA2 C807T, TNF-A -308G>A and XPD Lys751Gln polymorphisms with the survival of Malaysian NPC patients. PLoS One 2018; 13:e0198332. [PMID: 29912899 PMCID: PMC6005472 DOI: 10.1371/journal.pone.0198332] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/17/2018] [Indexed: 12/12/2022] Open
Abstract
Background Nasopharyngeal carcinoma is a rare form of cancer across the world except in certain areas such as Southern China, Hong Kong and Malaysia. NPC is considered a relatively radiosensitive tumor and patients diagnosed at early stages tend to survive longer compared to those with advanced disease. Given that early symptoms of NPC are non-specific and that the nasopharynx is relatively inaccessible, less invasive screening methods such as biomarker screening might be the key to improve NPC survival and management. A number of genes with their respective polymorphisms have been shown in past studies to be associated with survival of various cancers. hOGG1 and XPD genes encode for a DNA glycosylase and a DNA helicase respectively; both are proteins that are involved in DNA repair. ITGA2 is the alpha subunit of the transmembrane receptor integrin and is mainly responsible for cell-cell and cell-extracellular matrix interaction. TNF-α is a cytokine that is released by immune cells during inflammation. Methods Restriction fragment length polymorphism-polymerase chain reaction (RFLP-PCR) was used to genotype all the aforementioned gene polymorphisms. Kaplan-Meier survival function, log-rank test and Cox regression were used to investigate the effect of gene polymorphisms on the all-cause survival of NPC. Results NPC cases carrying T/T genotype of ITGA2 C807T have poorer all-cause survival compared to those with C/C genotypes, with an adjusted HR of 2.06 (95% CI = 1.14–3.72) in individual model. The 5-year survival rate of C/C carriers was 55% compared to those with C/T and T/T where the survival rates were 50% and 43%, respectively. Conclusion The finding from the present study showed that ITGA2 C807T polymorphism could be potentially useful as a prognostic biomarker for NPC. However, the prognostic value of ITGA2 C807T polymorphism has to be validated by well-designed further studies with larger patient numbers.
Collapse
Affiliation(s)
- Eng-Zhuan Ban
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Munn-Sann Lye
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
- * E-mail:
| | - Pei Pei Chong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | - Yoke-Yeow Yap
- Department of Otorhinolaryngology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| | | | - Hejar Abdul Rahman
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
29
|
Chiarugi V, Magnelli L, Cinelli M. Role of P53 Mutations in the Radiosensitivity Status of Tumor Cells. TUMORI JOURNAL 2018; 84:517-20. [PMID: 9862508 DOI: 10.1177/030089169808400501] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Wild-type p53 is involved in cellular response to DNA damage including cell cycle control, DNA repair and activation of apoptosis. Accumulation of p53 protein following DNA damage may initiate the apoptotic process, resulting in cell death. DNA damage induced by radiation is an example of apoptotic stimulus involving p53. Regulation of apoptosis by p53 can occur through transcriptional regulation of pro-apoptotic (e.g. bax) and anti-apoptotic (e.g. bel-2) factors. Although wild-type p53 usually sensitizes cells to radiation therapy, p53 mutations have a variable effect on radiation response. For example p53 mutations in bone or breast tumors have been found to be associated with resistance to chemotherapeutic drugs or ionizing radiation. Mutated p53 has has been reported to increase sensitivity to radiation and drugs in colorectal and bladder tumors. The present brief commentary tries to find an explanation at molecular level of these conflicting results.
Collapse
Affiliation(s)
- V Chiarugi
- Laboratory of Molecular Biology, Institute of General Pathology, University of Florence, Italy
| | | | | |
Collapse
|
30
|
Ryu H, Song IC, Choi YS, Yun HJ, Jo DY, Kim JM, Ko YB, Lee HJ. ERCC1 expression status predicts the response and survival of patients with metastatic or recurrent cervical cancer treated via platinum-based chemotherapy. Medicine (Baltimore) 2017; 96:e9402. [PMID: 29390553 PMCID: PMC5758255 DOI: 10.1097/md.0000000000009402] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 11/30/2017] [Accepted: 11/30/2017] [Indexed: 12/27/2022] Open
Abstract
The deoxyribonucleic acid (DNA) repair gene encoding the excision-repair cross-complementation group 1 (ERCC1) protein is known to predict the response to platinum-based chemotherapy. Our aim was to explore whether ERCC1 expression predicted tumor response and survival in patients with recurrent or metastatic cervical cancer treated via platinum-based chemotherapy. We analyzed 32 such patients. ERCC1 expression was assessed immunohistochemically in pretreatment biopsy samples. Of the 32 patients, 13 (40.6%) were ERCC1 high. ERCC1-low patients exhibited a significantly higher response rate (73.7%) than did others (15.4%). The median progression-free survival differed significantly by ERCC1 status, being 135 days in ERCC1-high and 242 days in ERCC1-low patients (hazard ratio, 2.428; 95% confidence interval, 1.145-5.148, P = .032). Overall survival was significantly longer in ERCC1-low (617 days) than in ERCC1-high (320 days) patients (hazard ratio, 2.322; 95% confidence interval, 1.051-5.29; P = .037). Thus, pretreatment ERCC1 expression status can be used to predict tumor response and survival of patients with recurrent or metastatic uterine cervical cancer receiving platinum-based chemotherapy.
Collapse
Affiliation(s)
| | | | | | | | | | - Jin Man Kim
- Department of Pathology
- Infection Control Convergence Research Center
| | - Young Bok Ko
- Department of Obstetrics and Gynecology, Chungnam National University College of Medicine, Daejeon, South Korea
| | - Hyo Jin Lee
- Department of Internal Medicine
- Infection Control Convergence Research Center
| |
Collapse
|
31
|
Haplotype CGC from XPD, hOGG1 and ITGA2 polymorphisms increases the risk of nasopharyngeal carcinoma in Malaysia. PLoS One 2017; 12:e0187200. [PMID: 29121049 PMCID: PMC5679532 DOI: 10.1371/journal.pone.0187200] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 10/16/2017] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND 8-oxoG, a common DNA lesion resulting from reactive oxygen species (ROS), has been shown to be associated with cancer initiation. hOGG1 DNA glycosylase is the primary enzyme responsible for excision of 8-oxoG through base excision repair (BER). Integrins are members of a family of cell surface receptors that mediate the cell-cell and extracellular matrix (ECM) interactions. Integrins are involved in almost every aspect of carcinogenesis, from cell differentiation, cell proliferation, metastasis to angiogenesis. Loss of ITGA2 expression was associated with enhanced tumor intravasation and metastasis of breast and colon cancer. XPD gene encodes DNA helicase enzyme that is involved in nucleotide excision repair (NER). It is shown in previous research that XPD homozygous wildtype Lys/Lys genotype was associated with higher odds of NPC. METHODS We conducted a 1 to N case-control study involving 300 nasopharyngeal carcinoma (NPC) cases and 533 controls matched by age, gender and ethnicity to investigate the effect of hOGG1 Ser326Cys, ITGA2 C807T and XPD Lys751Gln polymorphisms on NPC risk. Linkage disequilibrium and haplotype analysis were conducted to explore the association of allele combinations with NPC risk. Restriction fragment length polymorphism (RFLP-PCR) was used for DNA genotyping. RESULTS No significant association was observed between hOGG1 Ser326Cys and ITGA2 C807T polymorphisms with NPC risk after adjustment for age, gender, ethnicity, cigarette smoking, alcohol and salted fish consumption. Lys/Lys genotype of XPD Lys751Gln polymorphism was associated with increased NPC risk (OR = 1.60, 95% CI = 1.06-2.43). Subjects with history of smoking (OR = 1.81, 95% CI = 1.26-2.60), and salted fish consumption before age of 10 (OR = 1.77, 95% CI = 1.30-2.42) were observed to have increased odds of NPC. The odds of developing NPC of CGC haplotype was significantly higher compared to reference AGC haplotype (OR = 2.20, 95% CI = 1.06-4.58). CONCLUSION The allele combination of CGC from hOGG1, ITGA2 and XPD polymorphisms was significantly associated with increased odds of NPC.
Collapse
|
32
|
Zhao Z, Zhang G, Li W. Elevated Expression of ERCC6 Confers Resistance to 5-Fluorouracil and Is Associated with Poor Patient Survival in Colorectal Cancer. DNA Cell Biol 2017; 36:781-786. [PMID: 28665687 DOI: 10.1089/dna.2017.3768] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Excision repair cross-complementation (ERCC) enzymes are key members of the nucleotide excision repair pathway. Dysregulation of ERCC family members has been shown to be involved in chemoresistance in several malignancies. However, the function of ERCC6 in regulating chemo response has not been evaluated in colorectal cancer (CRC). We stably knocked down ERCC6 expression using short hairpin RNA (shRNA) in HCT116 and DLD1 human colon cancer cell lines, followed by chemosensitivity assay. In vivo chemosensitizing effects of ERCC6 were examined in xenograft experiments. Downregulation of ERCC6 conferred sensitivity to 5-fluorouracil (5-FU) in HCT116 and DLD1 cells. Stable knockdown of ERCC6 significantly enhanced antitumor activity of 5-FU in HCT116 xenograft mouse model. ERCC6 was upregulated in CRC tissues compared to matched noncancerous adjacent tissues and was also upregulated in patients who were resistant to 5-FU treatment. In addition, high expression of ERCC6 was associated with poor overall survival in CRC patients with or without receiving 5-FU therapy. Elevated expression of ERCC6 contributes to chemoresistance in CRC cells. Low ERCC6 expression is associated with better chemo response and survival in CRC patients. Therefore, this protein represents a novel therapeutic target for improvement of chemotherapeutic efficacy and predictive biomarker for patient survival.
Collapse
Affiliation(s)
- Zhicheng Zhao
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin, People's Republic of China
| | - Guojing Zhang
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin, People's Republic of China
| | - Weidong Li
- Department of General Surgery, Tianjin Medical University General Hospital , Tianjin, People's Republic of China
| |
Collapse
|
33
|
Liang F, Guo Y, Hou S, Quan Q. Photonic-plasmonic hybrid single-molecule nanosensor measures the effect of fluorescent labels on DNA-protein dynamics. SCIENCE ADVANCES 2017; 3:e1602991. [PMID: 28560341 PMCID: PMC5446212 DOI: 10.1126/sciadv.1602991] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/23/2017] [Indexed: 05/21/2023]
Abstract
Current methods to study molecular interactions require labeling the subject molecules with fluorescent reporters. However, the effect of the fluorescent reporters on molecular dynamics has not been quantified because of a lack of alternative methods. We develop a hybrid photonic-plasmonic antenna-in-a-nanocavity single-molecule biosensor to study DNA-protein dynamics without using fluorescent labels. Our results indicate that the fluorescein and fluorescent protein labels decrease the interaction between a single DNA and a protein due to weakened electrostatic interaction. Although the study is performed on the DNA-XPA system, the conclusion has a general implication that the traditional fluorescent labeling methods might be misestimating the molecular interactions.
Collapse
Affiliation(s)
- Feng Liang
- Rowland Institute at Harvard University, 100 Edwin Land Boulevard, Cambridge, MA 02142, USA
| | - Yuzheng Guo
- Rowland Institute at Harvard University, 100 Edwin Land Boulevard, Cambridge, MA 02142, USA
- College of Engineering, Swansea University, Swansea SA1 8EN, UK
| | - Shaocong Hou
- Rowland Institute at Harvard University, 100 Edwin Land Boulevard, Cambridge, MA 02142, USA
| | - Qimin Quan
- Rowland Institute at Harvard University, 100 Edwin Land Boulevard, Cambridge, MA 02142, USA
| |
Collapse
|
34
|
Zhong D, Cadet J. Introduction. Photochem Photobiol 2017; 93:5-6. [PMID: 28211126 DOI: 10.1111/php.12722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 01/18/2017] [Indexed: 01/20/2023]
Affiliation(s)
| | - Jean Cadet
- University of Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
35
|
Lee SM, Falzon M, Blackhall F, Spicer J, Nicolson M, Chaudhuri A, Middleton G, Ahmed S, Hicks J, Crosse B, Napier M, Singer JM, Ferry D, Lewanski C, Forster M, Rolls SA, Capitanio A, Rudd R, Iles N, Ngai Y, Gandy M, Lillywhite R, Hackshaw A. Randomized Prospective Biomarker Trial of ERCC1 for Comparing Platinum and Nonplatinum Therapy in Advanced Non-Small-Cell Lung Cancer: ERCC1 Trial (ET). J Clin Oncol 2017; 35:402-411. [PMID: 27893326 DOI: 10.1200/jco.2016.68.1841] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Purpose Retrospective studies indicate that expression of excision repair cross complementing group 1 (ERCC1) protein is associated with platinum resistance and survival in non-small-cell lung cancer (NSCLC). We conducted the first randomized trial, to our knowledge, to evaluate ERCC1 prospectively and to assess the superiority of nonplatinum therapy over platinum doublet therapy for ERCC1-positive NSCLC as well as noninferiority for ERCC1-negative NSCLC. Patients and Methods This trial had a marker-by-treatment interaction phase III design, with ERCC1 (8F1 antibody) status as a randomization stratification factor. Chemonaïve patients with NSCLC (stage IIIB and IV) were eligible. Patients with squamous histology were randomly assigned to cisplatin and gemcitabine or paclitaxel and gemcitabine; nonsquamous patients received cisplatin and pemetrexed or paclitaxel and pemetrexed. Primary end point was overall survival (OS). We also evaluated an antibody specific for XPF (clone 3F2). The target hazard ratio (HR) for patients with ERCC1-positive NSCLC was ≤ 0.78. Results Of patients, 648 were recruited (177 squamous, 471 nonsquamous). ERCC1-positive rates were 54.5% and 76.7% in nonsquamous and squamous patients, respectively, and the corresponding XPF-positive rates were 70.5% and 68.5%. Accrual stopped early in 2012 for squamous patients because OS for nonplatinum therapy was inferior to platinum therapy (median OS, 7.6 months [paclitaxel and gemcitabine] v 10.7 months [cisplatin and gemcitabine]; HR, 1.46; P = .02). Accrual for nonsquamous patients halted in 2013. Median OS was 8.0 (paclitaxel and pemetrexed) versus 9.6 (cisplatin and pemetrexed) months for ERCC1-positive patients (HR, 1.11; 95% CI, 0.85 to 1.44), and 10.3 (paclitaxel and pemetrexed) versus 11.6 (cisplatin and pemetrexed) months for ERCC1-negative patients (HR, 0.99; 95% CI, 0.73 to 1.33; interaction P = .64). OS HR was 1.09 (95% CI, 0.83 to 1.44) for XPF-positive patients, and 1.39 (95% CI, 0.90 to 2.15) for XPF-negative patients (interaction P = .35). Neither ERCC1 nor XPF were prognostic: among nonsquamous patients, OS HRs for positive versus negative were ERCC1, 1.11 ( P = .32), and XPF, 1.08 ( P = .55). Conclusion Superior outcomes were observed for patients with squamous histology who received platinum therapy compared with nonplatinum chemotherapy; however, selecting chemotherapy by using commercially available ERCC1 or XPF antibodies did not confer any extra survival benefit.
Collapse
Affiliation(s)
- Siow Ming Lee
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Mary Falzon
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Fiona Blackhall
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - James Spicer
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Marianne Nicolson
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Abhro Chaudhuri
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Gary Middleton
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Samreen Ahmed
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Jonathan Hicks
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Barbara Crosse
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Mark Napier
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Julian M Singer
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - David Ferry
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Conrad Lewanski
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Martin Forster
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Sally-Ann Rolls
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Arrigo Capitanio
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Robin Rudd
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Natasha Iles
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Yenting Ngai
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Michael Gandy
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Rachel Lillywhite
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| | - Allan Hackshaw
- Siow Ming Lee, Mary Falzon, Martin Forster, Arrigo Capitanio, Robin Rudd, Natasha Iles, Yenting Ngai, Michael Gandy, Rachel Lillywhite, and Allan Hackshaw, University College London, University College London Hospitals; James Spicer, Guy's and St Thomas's NHS Foundation Trust; Conrad Lewanski, Charing Cross Hospital, London; Fiona Blackhall, The Christie NHS Foundation Trust, Manchester; Marianne Nicolson, Aberdeen Royal Infirmary, Aberdeen; Abhro Chaudhuri, Lincoln County Hospital, Lincoln; Gary Middleton, University of Birmingham, Birmingham; Samreen Ahmed, Leicester Royal Infirmary, Leicester; Jonathan Hicks, New Victoria Hospital, Kingston Upon Thames; Barbara Crosse, Calderdale and Huddersfield NHS Foundation Trust, Huddersfield; Mark Napier, North Devon District Hospital, Barnstaple; Julian M. Singer, Princess Alexandra Hospital NHS Foundation Trust, Harlow; David Ferry, New Cross Hospital, Wolverhampton; and Sally-Ann Rolls, Withybush General Hospital, Haverfordwest, United Kingdom
| |
Collapse
|
36
|
Kang MK, Park NH. Conversion of Normal To Malignant Phenotype: Telomere Shortening, Telomerase Activation, and Genomic Instability During Immortalization of Human Oral Keratinocytes. ACTA ACUST UNITED AC 2016; 12:38-54. [PMID: 11349961 DOI: 10.1177/10454411010120010301] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Normal somatic cells terminate their replicative life span through a pathway leading to cellular senescence, which is triggered by activation of p53 and/or pRb in response to critically shortened telomere DNA. Potentially neoplastic cells must first overcome the senescence checkpoint mechanisms and subsequently activate telomerase to propagate indefinitely. Although telomerase activation is closely associated with cellular immortality, telomerase alone is not sufficient to warrant tumorigenicity. Environmental factors, including chemical carcinogens and viral infection, often contribute to aberrant changes leading to tumorigenic conversion of normal cells. Of particular importance in oral cancer development are tobacco-related chemical carcinogens and human papillomavirus (HPV) infection. To describe the molecular mechanisms by which these environmental factors facilitate the genesis of oral cancer, we first established an in vitro multistep oral carcinogenesis model by sequential exposure of normal human oral keratinocytes (NHOK) to "high risk" HPV and chemical carcinogens. Upon introduction of the HPV genome, the cells bypassed the senescence checkpoint and entered into an extended, but not immortal, life span during which telomere DNA continued to shorten. In a few immortal clones surviving beyond the crisis, we found a marked elevation of telomerase activity and stabilization of telomere length. Furthermore, the E6 and E7 oncoproteins of "high risk" HPV disrupted the cell cycle control and DNA repair in immortalized HOK, and enhanced mutation frequency resulting from genomic instability. However, HPV infection alone failed to give rise to a tumorigenic cell population, which required further exposure to chemical carcinogens in addition to HPV infection. Analysis of the data presented suggests that oral carcinogenesis is a series of discrete genetic alterations that result from a continued genotoxic challenge by environmental risk factors. Our in vitro model may be useful for investigators with interest in furthering our understanding of oral carcinogenesis.
Collapse
Affiliation(s)
- M K Kang
- School of Dentistry and Dental Research Institute, University of California, Los Angeles 90095, USA
| | | |
Collapse
|
37
|
Simon N, Ebert C, Schneider S. Structural Basis for Bulky-Adduct DNA-Lesion Recognition by the Nucleotide Excision Repair Protein Rad14. Chemistry 2016; 22:10782-5. [DOI: 10.1002/chem.201602438] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Indexed: 01/06/2023]
Affiliation(s)
- Nina Simon
- Center for Integrated Protein Science Munich CIPSM; Department of Chemistry; Ludwig-Maximilians Universität München; Butenandtstrasse 13 81377 München Germany
| | - Charlotte Ebert
- Center for Integrated Protein Science Munich CIPSM; Department of Chemistry; Ludwig-Maximilians Universität München; Butenandtstrasse 13 81377 München Germany
| | - Sabine Schneider
- Center for Integrated Protein Science Munich CIPSM; Department of Chemistry; Technische Universität München; Lichtenbergstrasse 4 85748 Garching Germany
| |
Collapse
|
38
|
Sancar A. Mechanisms of DNA Repair by Photolyase and Excision Nuclease (Nobel Lecture). Angew Chem Int Ed Engl 2016; 55:8502-27. [PMID: 27337655 DOI: 10.1002/anie.201601524] [Citation(s) in RCA: 184] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Indexed: 01/27/2023]
Abstract
Ultraviolet light damages DNA by converting two adjacent thymines into a thymine dimer which is potentially mutagenic, carcinogenic, or lethal to the organism. This damage is repaired by photolyase and the nucleotide excision repair system in E. coli by nucleotide excision repair in humans. The work leading to these results is presented by Aziz Sancar in his Nobel Lecture.
Collapse
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics, University of North Carolina School of Medicine, Chapel Hill, North Carolina, USA.
| |
Collapse
|
39
|
Sancar A. Mechanismen der DNA-Reparatur durch Photolyasen und Exzisionsnukleasen (Nobel-Aufsatz). Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601524] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Aziz Sancar
- Department of Biochemistry and Biophysics; University of North Carolina School of Medicine; Chapel Hill North Carolina USA
| |
Collapse
|
40
|
Metal binding mediated conformational change of XPA protein:a potential cytotoxic mechanism of nickel in the nucleotide excision repair. J Mol Model 2016; 22:156. [PMID: 27307058 DOI: 10.1007/s00894-016-3017-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Accepted: 05/26/2016] [Indexed: 12/13/2022]
Abstract
Nucleotide excision repair (NER) is a pivotal life process for repairing DNA nucleotide mismatch caused by chemicals, metal ions, radiation, and other factors. As the initiation step of NER, the xeroderma pigmentosum complementation group A protein (XPA) recognizes damaged DNA molecules, and recruits the replication protein A (RPA), another important player in the NER process. The stability of the Zn(2+)-chelated Zn-finger domain of XPA center core portion (i.e., XPA98-210) is the foundation of its biological functionality, while the displacement of the Zn(2+) by toxic metal ions (such as Ni(2+), a known human carcinogen and allergen) may impair the effectiveness of NER and hence elevate the chance of carcinogenesis. In this study, we first calculated the force field parameters for the bonded model in the metal center of the XPA98-210 system, showing that the calculated results, including charges, bonds, angles etc., are congruent with previously reported results measured by spectrometry experiments and quantum chemistry computation. Then, comparative molecular dynamics simulations using these parameters revealed the changes in the conformation and motion mode of XPA98-210 Zn-finger after the substitution of Zn(2+) by Ni(2+). The results showed that Ni(2+) dramatically disrupted the relative positions of the four Cys residues in the Zn-finger structure, forcing them to collapse from a tetrahedron into an almost planar structure. Finally, we acquired the binding mode of XPA98-210 with its ligands RPA70N and DNA based on molecular docking and structural alignment. We found that XPA98-210's Zn-finger domain primarily binds to a V-shaped cleft in RPA70N, while the cationic band in its C-terminal subdomain participates in the recognition of damaged DNA. In addition, this article sheds light on the multi-component interaction pattern among XPA, DNA, and other NER-related proteins (i.e., RPA70N, RPA70A, RPA70B, RPA70C, RPA32, and RPA14) based on previously reported structural biology information. Thus, we derived a putative cytotoxic mechanism associated with the nickel ion, where the Ni(2+) disrupts the conformation of the XPA Zn-finger, directly weakening its interaction with RPA70N, and thus lowering the effectiveness of the NER process. In sum, this work not only provides a theoretical insight into the multi-protein interactions involved in the NER process and potential cytotoxic mechanism associated with Ni(2+) binding in XPA, but may also facilitate rational anti-cancer drug design based on the NER mechanism.
Collapse
|
41
|
Profile of Tomas Lindahl, Paul Modrich, and Aziz Sancar, 2015 Nobel Laureates in Chemistry. Proc Natl Acad Sci U S A 2015; 113:242-5. [PMID: 26715755 DOI: 10.1073/pnas.1521829112] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
|
42
|
Tajedin L, Tarique M, Tuteja R. Plasmodium falciparum XPD translocates in 5' to 3' direction, is expressed throughout the blood stages, and interacts with p44. PROTOPLASMA 2015; 252:1487-1504. [PMID: 25708921 DOI: 10.1007/s00709-015-0779-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2014] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
XPD helicase, a TFIIH subunit, is essential for several processes including transcription, NER, cell cycle regulation, and apoptosis in eukaryotes. Another component of TFIIH, namely p44, is among the well-known interacting partners of XPD and is vital in regulating the helicase activities of latter. However, none of the above mentioned proteins have been functionally characterized in Plasmodium falciparum. Consequently, in this study, we performed detailed studies on XPD and its interacting partner, p44, from P. falciparum 3D7 strain. Accordingly, we expressed and purified recombinant PfXPD and its fragments and Pfp44 proteins and characterized the enzymatic activities of PfXPD and its fragments. The in vivo stage-specific expression and subcellular localizations of PfXPD and Pfp44 proteins were studied using the specific antibodies in the intraerythrocytic developmental stages of P. falciparum 3D7 strain. Our results suggest that PfXPD displays the characteristic ssDNA-dependent ATPase and 5'-3' DNA helicase activities. We also report the existence of two high molecular weight forms of p44 in P. falciparum 3D7 strain. Both PfXPD and Pfp44 colocalize in the nucleus and interact with each other, which suggest that they are most likely components of the same complex apparently, TFIIH. Furthermore, during trophozoite and schizont stages, both proteins exhibit a distinct cytoplasmic distribution pattern which implies that PfXPD and Pfp44 might also be involved in other functions. These studies will aid in understanding the basic biology of malaria parasite.
Collapse
Affiliation(s)
- Leila Tajedin
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Mohammed Tarique
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Road, New Delhi, 110067, India
| | - Renu Tuteja
- Malaria Group, International Centre for Genetic Engineering and Biotechnology, P. O. Box 10504, Aruna Asaf Ali Road, New Delhi, 110067, India.
| |
Collapse
|
43
|
Structural insights into the recognition of cisplatin and AAF-dG lesion by Rad14 (XPA). Proc Natl Acad Sci U S A 2015; 112:8272-7. [PMID: 26100901 DOI: 10.1073/pnas.1508509112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nucleotide excision repair (NER) is responsible for the removal of a large variety of structurally diverse DNA lesions. Mutations of the involved proteins cause the xeroderma pigmentosum (XP) cancer predisposition syndrome. Although the general mechanism of the NER process is well studied, the function of the XPA protein, which is of central importance for successful NER, has remained enigmatic. It is known, that XPA binds kinked DNA structures and that it interacts also with DNA duplexes containing certain lesions, but the mechanism of interactions is unknown. Here we present two crystal structures of the DNA binding domain (DBD) of the yeast XPA homolog Rad14 bound to DNA with either a cisplatin lesion (1,2-GG) or an acetylaminofluorene adduct (AAF-dG). In the structures, we see that two Rad14 molecules bind to the duplex, which induces DNA melting of the duplex remote from the lesion. Each monomer interrogates the duplex with a β-hairpin, which creates a 13mer duplex recognition motif additionally characterized by a sharp 70° DNA kink at the position of the lesion. Although the 1,2-GG lesion stabilizes the kink due to the covalent fixation of the crosslinked dG bases at a 90° angle, the AAF-dG fully intercalates into the duplex to stabilize the kinked structure.
Collapse
|
44
|
Lye MS, Visuvanathan S, Chong PP, Yap YY, Lim CC, Ban EZ. Homozygous Wildtype of XPD K751Q Polymorphism Is Associated with Increased Risk of Nasopharyngeal Carcinoma in Malaysian Population. PLoS One 2015; 10:e0130530. [PMID: 26086338 PMCID: PMC4472930 DOI: 10.1371/journal.pone.0130530] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2015] [Accepted: 05/21/2015] [Indexed: 01/26/2023] Open
Abstract
The xeroderma pigmentosum group D (XPD) gene encodes a DNA helicase, an important component in transcription factor IIH (TFIIH) complex. XPD helicase plays a pivotal role in unwinding DNA at the damaged region during nucleotide excision repair (NER) mechanism. Dysfunctional XPD helicase protein from polymorphic diversity may contribute to increased risk of developing cancers. This study aims to determine the association between XPD K751Q polymorphism (rs13181) and risk of nasopharyngeal carcinoma (NPC) in the Malaysian population. In this hospital-based matched case-control study, 356 controls were matched by age, gender and ethnicity to 356 cases. RFLP-PCR was used to genotype the XPD K751Q polymorphism. A significant association was observed between XPD K751Q polymorphism and the risk of NPC using conditional logistic regression. Subjects with homozygous Lys/Lys (wildtype) genotype have 1.58 times higher odds of developing NPC compared to subjects with recessive combination of heterozygous Lys/Gln and homozygous Gln/Gln genotypes (OR = 1.58, 95% CI = 1.05–2.38 p = 0.028) adjusted for cigarette smoking, alcohol and salted fish consumption. Our data suggests that Lys/Lys (wildtype) of XPD K751Q contributes to increased risk of NPC in the Malaysian population.
Collapse
Affiliation(s)
- Munn-Sann Lye
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- * E-mail:
| | - Shaneeta Visuvanathan
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Pei-Pei Chong
- Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Yoke-Yeow Yap
- Department of Surgery, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chin-Chye Lim
- National Cancer Institute, Ministry of Health Malaysia, Putrajaya, Malaysia
| | - Eng-Zhuan Ban
- Department of Community Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
45
|
Karentz D. Beyond xeroderma pigmentosum: DNA damage and repair in an ecological context. A tribute to James E. Cleaver. Photochem Photobiol 2014; 91:460-74. [PMID: 25395165 DOI: 10.1111/php.12388] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 10/29/2014] [Indexed: 12/12/2022]
Abstract
The ability to repair DNA is a ubiquitous characteristic of life on Earth and all organisms possess similar mechanisms for dealing with DNA damage, an indication of a very early evolutionary origin for repair processes. James E. Cleaver's career (initiated in the early 1960s) has been devoted to the study of mammalian ultraviolet radiation (UVR) photobiology, specifically the molecular genetics of xeroderma pigmentosum and other human diseases caused by defects in DNA damage recognition and repair. This work by Jim and others has influenced the study of DNA damage and repair in a variety of taxa. Today, the field of DNA repair is enhancing our understanding of not only how to treat and prevent human disease, but is providing insights on the evolutionary history of life on Earth and how natural populations are coping with UVR-induced DNA damage from anthropogenic changes in the environment such as ozone depletion.
Collapse
Affiliation(s)
- Deneb Karentz
- Department of Biology, University of San Francisco, San Francisco, CA
| |
Collapse
|
46
|
Oxidatively induced DNA damage and its repair in cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2014; 763:212-45. [PMID: 25795122 DOI: 10.1016/j.mrrev.2014.11.002] [Citation(s) in RCA: 191] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Revised: 11/03/2014] [Accepted: 11/04/2014] [Indexed: 12/28/2022]
Abstract
Oxidatively induced DNA damage is caused in living organisms by endogenous and exogenous reactive species. DNA lesions resulting from this type of damage are mutagenic and cytotoxic and, if not repaired, can cause genetic instability that may lead to disease processes including carcinogenesis. Living organisms possess DNA repair mechanisms that include a variety of pathways to repair multiple DNA lesions. Mutations and polymorphisms also occur in DNA repair genes adversely affecting DNA repair systems. Cancer tissues overexpress DNA repair proteins and thus develop greater DNA repair capacity than normal tissues. Increased DNA repair in tumors that removes DNA lesions before they become toxic is a major mechanism for development of resistance to therapy, affecting patient survival. Accumulated evidence suggests that DNA repair capacity may be a predictive biomarker for patient response to therapy. Thus, knowledge of DNA protein expressions in normal and cancerous tissues may help predict and guide development of treatments and yield the best therapeutic response. DNA repair proteins constitute targets for inhibitors to overcome the resistance of tumors to therapy. Inhibitors of DNA repair for combination therapy or as single agents for monotherapy may help selectively kill tumors, potentially leading to personalized therapy. Numerous inhibitors have been developed and are being tested in clinical trials. The efficacy of some inhibitors in therapy has been demonstrated in patients. Further development of inhibitors of DNA repair proteins is globally underway to help eradicate cancer.
Collapse
|
47
|
In TFIIH, XPD helicase is exclusively devoted to DNA repair. PLoS Biol 2014; 12:e1001954. [PMID: 25268380 PMCID: PMC4182028 DOI: 10.1371/journal.pbio.1001954] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 08/14/2014] [Indexed: 01/13/2023] Open
Abstract
The eukaryotic XPD helicase is an essential subunit of TFIIH involved in both transcription and nucleotide excision repair (NER). Mutations in human XPD are associated with several inherited diseases such as xeroderma pigmentosum, Cockayne syndrome, and trichothiodystrophy. We performed a comparative analysis of XPD from Homo sapiens and Chaetomium thermophilum (a closely related thermostable fungal orthologue) to decipher the different molecular prerequisites necessary for either transcription or DNA repair. In vitro and in vivo assays demonstrate that mutations in the 4Fe4S cluster domain of XPD abrogate the NER function of TFIIH and do not affect its transcriptional activity. We show that the p44-dependent activation of XPD is promoted by the stimulation of its ATPase activity. Furthermore, we clearly demonstrate that XPD requires DNA binding, ATPase, and helicase activity to function in NER. In contrast, these enzymatic properties are dispensable for transcription initiation. XPD helicase is thus exclusively devoted to NER and merely acts as a structural scaffold to maintain TFIIH integrity during transcription.
Collapse
|
48
|
Tartarotti B, Saul N, Chakrabarti S, Trattner F, Steinberg CEW, Sommaruga R. UV-induced DNA damage in Cyclops abyssorum tatricus populations from clear and turbid alpine lakes. JOURNAL OF PLANKTON RESEARCH 2014; 36:557-566. [PMID: 24616551 PMCID: PMC3945874 DOI: 10.1093/plankt/fbt109] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2013] [Accepted: 10/10/2013] [Indexed: 05/16/2023]
Abstract
Zooplankton from clear alpine lakes thrive under high levels of solar UV radiation (UVR), but in glacially turbid ones they are more protected from this damaging radiation. Here, we present results from experiments done with Cyclops abyssorum tatricus to assess UV-induced DNA damage and repair processes using the comet assay. Copepods were collected from three alpine lakes of differing UV transparency ranging from clear to glacially turbid, and exposed to artificial UVR. In addition, photoprotection levels [mycosporine-like amino acids (MAAs) and lipophilic antioxidant capacity] were estimated in the test populations. Similar UV-induced DNA damage levels were observed among the copepods from all lakes, but background DNA damage (time zero and dark controls) was lowest in the copepods from the glacially turbid lake, resulting in a higher relative DNA damage accumulation. Most DNA strand breaks were repaired after recovery in the dark. Low MAA concentrations were found in the copepods from the glacially turbid lake, while the highest levels were observed in the population from the most UV transparent lake. However, the highest lipophilic antioxidant capacities were measured in the copepods from the lake with intermediate UV transparency. Photoprotection and the ability to repair DNA damage, and consequently reducing UV-induced damage, are part of the response mechanisms in zooplankton to changes in water transparency caused by glacier retreat.
Collapse
Affiliation(s)
- Barbara Tartarotti
- Laboratory of Aquatic Photobiology and Plankton Ecology, Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
- corresponding author:
| | - Nadine Saul
- Laboratory of Freshwater and Stress Ecology, Department of Biology, Humboldt-Universität Zu Berlin, Arboretum, Späthstraße 80/81, 12437 Berlin, Germany
| | - Shumon Chakrabarti
- Laboratory of Freshwater and Stress Ecology, Department of Biology, Humboldt-Universität Zu Berlin, Arboretum, Späthstraße 80/81, 12437 Berlin, Germany
| | - Florian Trattner
- Laboratory of Aquatic Photobiology and Plankton Ecology, Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| | - Christian E. W. Steinberg
- Laboratory of Freshwater and Stress Ecology, Department of Biology, Humboldt-Universität Zu Berlin, Arboretum, Späthstraße 80/81, 12437 Berlin, Germany
| | - Ruben Sommaruga
- Laboratory of Aquatic Photobiology and Plankton Ecology, Institute of Ecology, University of Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria
| |
Collapse
|
49
|
Xu Y, Zhang Z, Sun Z. Drug resistance to Mycobacterium tuberculosis: from the traditional Chinese view to modern systems biology. Crit Rev Microbiol 2014; 41:399-410. [PMID: 24433008 DOI: 10.3109/1040841x.2013.860948] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The pathogen, Mycobacterium tuberculosis (M. tuberculosis) is a well-evolved, organized pathogen that has developed drug resistance, specifically multidrug resistance (MDR) and extensive drug resistance (XDR). This review primarily summarizes the mechanisms of drug resistance by M. tuberculosis according to the traditional Chinese view. The traditional Chinese view of drug resistance includes: the physical barrier of the cell wall; mutations relating to current anti-TB agents; drug efflux pumps; and drug stress, including the SOS response systems, the mismatch repair systems and the toxin-antitoxin systems. In addition, this review addresses the integrated systems biology of genomics, transcriptomics, proteomics, metabolomics and interactomics. Development of the various levels of systems biology has enabled determination of the anatomy of bacteria. Finally, the current review proposes that further investigation regarding the population of individuals with a high drug metabolic speed is vital to further understand drug resistance in M. tuberculosis.
Collapse
Affiliation(s)
- Yuhui Xu
- Department of Molecular Biology, Beijing Tuberculosis & Thoracic Tumor Research Institute , Tongzhou District, Beijing , China
| | | | | |
Collapse
|
50
|
Lu ZM, Luo TH, Nie MM, Fang GE, Ma LY, Xue XC, Wei G, Ke CW, Bi JW. Influence of ERCC1 and ERCC4 polymorphisms on response to prognosis in gastric cancer treated with FOLFOX-based chemotherapy. Tumour Biol 2013; 35:2941-8. [PMID: 24318989 DOI: 10.1007/s13277-013-1378-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Accepted: 10/30/2013] [Indexed: 10/25/2022] Open
Abstract
Polymorphisms in the excision repair cross-complimentary group 1 (ERCC1)-excision repair cross-complimentary group 4 (ERCC4) genes have been implicated in the prognosis of various cancers. We conducted a cohort study to investigate the role of ERCC1-ERCC4 gene polymorphisms on the response to chemotherapy and the role of these two gene polymorphisms on the clinical outcomes of gastric cancer. Four hundred forty-seven patients with newly diagnosed and histopathologically confirmed primary gastric cancer were collected in our study and were followed up until March 2012. ERCC1 (rs11615, rs3212986C>A, and rs2298881) and ERCC4 (rs226466C>G, rs2276465, and rs6498486) were selected and genotyped. The overall chemotherapy response rate for treatment was 68 %. Carriers of the rs11615 TT and T allele and ERCC1 rs2298881 CC and C allele had a marginally significantly higher response rate to the chemotherapy. In the Cox proportional hazard model, the hazard ratios (HRs) for overall survival (OS) in patients carrying ERCC1 rs11615 TT genotype and T allele were 0.53 (0.29-0.95) and 0.63 (0.42-0.94), respectively. Similarly, we found a significant decreased risk of death from gastric cancer among patients carrying ERCC1 rs2298881 CC genotype and C allele when compared with CC genotype, and HRs (95% confidence interval (CI)) of OS were 0.50 (0.24-0.98) and 0.62 (0.40-0.96), respectively. Moreover, individuals carrying ERCC1 rs11615 T allele and rs2298881 C allele could decrease a 0.62-fold risk of death from gastric cancer. This study reported a carriage of ERCC1 rs11615, and rs2298881 polymorphism can be used as a predictor of response to folinic acid/5-fluorouracil (5-FU)/oxaliplatin (FOLFOX)-based chemotherapy in gastric cancer patients.
Collapse
Affiliation(s)
- Zheng-mao Lu
- Department of General Surgery, Changhai Hospital, The Second Military Medical University, Shanghai, 200433, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|