1
|
Perner F, Pahl HL, Zeiser R, Heidel FH. Malignant JAK-signaling: at the interface of inflammation and malignant transformation. Leukemia 2025:10.1038/s41375-025-02569-8. [PMID: 40140631 DOI: 10.1038/s41375-025-02569-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/21/2025] [Accepted: 03/13/2025] [Indexed: 03/28/2025]
Abstract
The JAK pathway is central to mammalian cell communication, characterized by rapid responses, receptor versatility, and fine-tuned regulation. It involves Janus kinases (JAK1, JAK2, JAK3, TYK2), which are activated when natural ligands bind to receptors, leading to autophosphorylation and activation of STAT transcription factors [1, 2]. JAK-dependent signaling plays a pivotal role in coordinating cell communication networks across a broad spectrum of biological systems including development, immune responses, cell growth, and differentiation. JAKs are frequently mutated in the aging hematopoietic system [3, 4] and in hematopoietic cancers [5]. Thus, dysregulation of the pathway results in various diseases, including cancers and immune disorders. The binding of extracellular ligands to class I and II cytokine receptors initiates a critical signaling cascade through the activation of Janus kinases (JAKs). Upon ligand engagement, JAKs become activated and phosphorylate specific tyrosine residues on the receptor, creating docking sites for signal transducer and activator of transcription (STAT) proteins. Subsequent JAK-mediated phosphorylation of STATs enables their dimerization and nuclear translocation, where they function as transcription factors to modulate gene expression. Under physiological conditions, JAK-signaling is a tightly regulated mechanism that governs cellular responses to external cues, such as cytokines and growth factors, ensuring homeostasis and maintaining the functional integrity of tissues and organs. Highly defined regulation of JAK-signaling is essential for balancing cellular responses to inflammatory stimuli and growth signals, thus safeguarding tissue health. In contrast, dysregulated JAK-signaling results in chronic inflammation and unrestrained cellular proliferation associated with various diseases. Understanding the qualitative and quantitative differences at the interface of physiologic JAK-signaling and its aberrant activation in disease is crucial for the development of targeted therapies that precisely tune this pathway to target pathologic activation patterns while leaving homeostatic processes largely unaffected. Consequently, pharmaceutical research has targeted this pathway for drug development leading to the approval of several substances with different selectivity profiles towards individual JAKs. Yet, the precise impact of inhibitor selectivity and the complex interplay of different functional modules within normal and malignant cells remains incompletely understood. In this review, we summarize the current knowledge on JAK-signaling in health and disease and highlight recent advances and future directions in the field.
Collapse
Affiliation(s)
- Florian Perner
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany
| | - Heike L Pahl
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian H Heidel
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation, Hannover Medical School (MHH), Hannover, Germany.
- Leibniz-Institute on Aging, Fritz-Lipmann-Institute (FLI), Jena, Germany.
- Cellular Therapy Center (CTC), Hannover Medical School (MHH), Hannover, Germany.
| |
Collapse
|
2
|
Wu JW, Wang BX, Shen LP, Chen YL, Du ZY, Du SQ, Lu XJ, Zhao XD. Investigating the Potential Therapeutic Targeting of the JAK-STAT Pathway in Cerebrovascular Diseases: Opportunities and Challenges. Mol Neurobiol 2025:10.1007/s12035-025-04834-4. [PMID: 40102347 DOI: 10.1007/s12035-025-04834-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Accepted: 03/09/2025] [Indexed: 03/20/2025]
Abstract
Cerebrovascular disease (CVD) is a significant neurological condition resulting from pathological changes in the brain's blood supply and is currently the leading cause of death and disability worldwide. The progression of CVD is closely associated with endothelial damage, plaque formation, and thrombosis, driven by long-term alterations in vascular endothelial cells, smooth muscle cells, microglia, and other immune-inflammatory cells. Among the key molecular pathways involved, the Janus kinase/signal transducer and activator of transcription (JAK-STAT) signaling pathway plays a central role. Dysregulation of the JAK-STAT pathway is implicated in the pathogenesis of CVD by influencing the aforementioned cell types and associated pathological processes. Importantly, the role of the JAK-STAT pathway varies across different types of CVD and throughout different stages of disease progression (e.g., pre-morbid, acute, and chronic phases). This review examines the composition, activation, and regulation of the JAK-STAT pathway and summarizes recent findings on its involvement in CVD. We discuss the distinct roles of JAK-STAT signaling in various CVD conditions, the potential reasons for these differences, and explore the clinical translational prospects and technical challenges of targeting the JAK-STAT pathway for therapeutic intervention in CVD.
Collapse
Affiliation(s)
- Jia-Wei Wu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Bing-Xin Wang
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Li-Ping Shen
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
| | - Yong-Lin Chen
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Zhi-Yong Du
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Shi-Qing Du
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China
| | - Xiao-Jie Lu
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China.
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China.
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, Jiangsu Province, China.
| | - Xu-Dong Zhao
- Department of Neurosurgery, Jiangnan University Medical Center, Wuxi, 214002, Jiangsu Province, China.
- Wuxi Neurosurgical Institute, Wuxi, 214002, Jiangsu Province, China.
- Department of Clinical Medicine, Medical College, Nantong University, Nantong, 226001, Jiangsu Province, China.
| |
Collapse
|
3
|
Maji L, Sengupta S, Purawarga Matada GS, Teli G, Biswas G, Das PK, Panduranga Mudgal M. Medicinal chemistry perspective of JAK inhibitors: synthesis, biological profile, selectivity, and structure activity relationship. Mol Divers 2024; 28:4467-4513. [PMID: 38236444 DOI: 10.1007/s11030-023-10794-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/19/2024]
Abstract
JAK-STAT signalling pathway was discovered more than quarter century ago. The JAK-STAT pathway protein is considered as one of the crucial hubs for cytokine secretion which mediates activation of different inflammatory, cellular responses and hence involved in different etiological factors. The various etiological factors involved are haematopoiesis, immune fitness, tissue repair, inflammation, apoptosis, and adipogenesis. The presence of the active mutation V617K plays a significant role in the progression of the JAK-STAT pathway-related disease. Consequently, targeting the JAK-STAT pathway could be a promising therapeutic approach for addressing a range of causative factors. In this current review, we provided a comprehensive discussion for the in-detail study of anatomy and physiology of the JAK-STAT pathway which contributes structural domain rearrangement, activation, and negative regulation associated with the downstream signaling pathway, relationship between different cytokines and diseases. This review also discussed the recent development of clinical trial entities. Additionally, this review also provides updates on FDA-approved drugs. In the current investigation, we have classified recently developed small molecule inhibitors of JAK-STAT pathway according to different chemical classes and we emphasized their synthetic routes, biological evaluation, selectivity, and structure-activity relationship.
Collapse
Affiliation(s)
- Lalmohan Maji
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | - Sindhuja Sengupta
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | | - Ghanshyam Teli
- School of Pharmacy, Sangam University, Atoon, Bhilwara, 311001, Rajasthan, India
| | - Gourab Biswas
- Department of Pharmaceutical Technology, Brainware University, Kolkata, West Bengal, India
| | - Pronoy Kanti Das
- Integrated Drug Discovery Centre, Department of Pharmaceutical Chemistry, Acharya & BM Reddy College of Pharmacy, Bengaluru, Karnataka, India
| | | |
Collapse
|
4
|
Lv Y, Qi J, Babon JJ, Cao L, Fan G, Lang J, Zhang J, Mi P, Kobe B, Wang F. The JAK-STAT pathway: from structural biology to cytokine engineering. Signal Transduct Target Ther 2024; 9:221. [PMID: 39169031 PMCID: PMC11339341 DOI: 10.1038/s41392-024-01934-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/12/2024] [Accepted: 07/16/2024] [Indexed: 08/23/2024] Open
Abstract
The Janus kinase-signal transducer and activator of transcription (JAK-STAT) pathway serves as a paradigm for signal transduction from the extracellular environment to the nucleus. It plays a pivotal role in physiological functions, such as hematopoiesis, immune balance, tissue homeostasis, and surveillance against tumors. Dysregulation of this pathway may lead to various disease conditions such as immune deficiencies, autoimmune diseases, hematologic disorders, and cancer. Due to its critical role in maintaining human health and involvement in disease, extensive studies have been conducted on this pathway, ranging from basic research to medical applications. Advances in the structural biology of this pathway have enabled us to gain insights into how the signaling cascade operates at the molecular level, laying the groundwork for therapeutic development targeting this pathway. Various strategies have been developed to restore its normal function, with promising therapeutic potential. Enhanced comprehension of these molecular mechanisms, combined with advances in protein engineering methodologies, has allowed us to engineer cytokines with tailored properties for targeted therapeutic applications, thereby enhancing their efficiency and safety. In this review, we outline the structural basis that governs key nodes in this pathway, offering a comprehensive overview of the signal transduction process. Furthermore, we explore recent advances in cytokine engineering for therapeutic development in this pathway.
Collapse
Affiliation(s)
- You Lv
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Jianxun Qi
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100080, China
| | - Jeffrey J Babon
- The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Longxing Cao
- School of Life Sciences, Westlake University, Hangzhou, Zhejiang, 310024, China
| | - Guohuang Fan
- Immunophage Biotech Co., Ltd, No. 10 Lv Zhou Huan Road, Shanghai, 201112, China
| | - Jiajia Lang
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China
| | - Jin Zhang
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi, 710026, China
| | - Pengbing Mi
- School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, Hunan, 421001, China.
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland, 4072, Australia.
| | - Faming Wang
- Center for Molecular Biosciences and Non-communicable Diseases Research, Xi'an University of Science and Technology, Xi'an, Shaanxi, 710054, China.
| |
Collapse
|
5
|
Bernstein ZJ, Shenoy A, Chen A, Heller NM, Spangler JB. Engineering the IL-4/IL-13 axis for targeted immune modulation. Immunol Rev 2023; 320:29-57. [PMID: 37283511 DOI: 10.1111/imr.13230] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 05/19/2023] [Indexed: 06/08/2023]
Abstract
The structurally and functionally related interleukin-4 (IL-4) and IL-13 cytokines play pivotal roles in shaping immune activity. The IL-4/IL-13 axis is best known for its critical role in T helper 2 (Th2) cell-mediated Type 2 inflammation, which protects the host from large multicellular pathogens, such as parasitic helminth worms, and regulates immune responses to allergens. In addition, IL-4 and IL-13 stimulate a wide range of innate and adaptive immune cells, as well as non-hematopoietic cells, to coordinate various functions, including immune regulation, antibody production, and fibrosis. Due to its importance for a broad spectrum of physiological activities, the IL-4/IL-13 network has been targeted through a variety of molecular engineering and synthetic biology approaches to modulate immune behavior and develop novel therapeutics. Here, we review ongoing efforts to manipulate the IL-4/IL-13 axis, including cytokine engineering strategies, formulation of fusion proteins, antagonist development, cell engineering approaches, and biosensor design. We discuss how these strategies have been employed to dissect IL-4 and IL-13 pathways, as well as to discover new immunotherapies targeting allergy, autoimmune diseases, and cancer. Looking ahead, emerging bioengineering tools promise to continue advancing fundamental understanding of IL-4/IL-13 biology and enabling researchers to exploit these insights to develop effective interventions.
Collapse
Affiliation(s)
- Zachary J Bernstein
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Anjali Shenoy
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Amy Chen
- Department of Molecular and Cellular Biology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Nicola M Heller
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Division of Allergy and Clinical Immunology, Johns Hopkins University, School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Jamie B Spangler
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Molecular Microbiology and Immunology, The Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland, USA
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, Baltimore, Maryland, USA
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Oncology, The Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Sidney Kimmel Cancer Center, The Johns Hopkins University, Baltimore, Maryland, USA
- Department of Ophthalmology, Johns Hopkins School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
6
|
Sudholz H, Delconte RB, Huntington ND. Interleukin-15 cytokine checkpoints in natural killer cell anti-tumor immunity. Curr Opin Immunol 2023; 84:102364. [PMID: 37451129 DOI: 10.1016/j.coi.2023.102364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/08/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Over recent years, the use of immune checkpoint inhibitors (ICI) has progressed to first and second-line treatments in several cancer types, transforming patient outcomes. While these treatments target T cell checkpoints, such as PD-1, LAG3 and CTLA-4, their efficacy can be compromised through adaptive resistance whereby tumors acquire mutations in genes regulating neoantigen presentation by MHC-I [93]. ICI-responsive tumor types such as advanced metastatic melanoma typically have a high mutational burden and immune infiltration; however, most patients still do not benefit from ICI monotherapy for a number of reasons [94]. This highlights the need for novel immunotherapy strategies that evoke the immune control of tumor cells with low neoantigen/MHC-I expression, overcome immune suppressive tumor microenvironments and promote tumor inflammation. In this regard, targeting natural killer (NK) cells may offer a solution to some of these bottlenecks.
Collapse
Affiliation(s)
- Harrison Sudholz
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Rebecca B Delconte
- Immunology Program, Memorial Sloan Kettering Cancer Center, New York 10065, USA
| | - Nicholas D Huntington
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia; oNKo-Innate Pty Ltd, Moonee Ponds, Victoria 3039, Australia.
| |
Collapse
|
7
|
López-Mejía JA, Mantilla-Ollarves JC, Rocha-Zavaleta L. Modulation of JAK-STAT Signaling by LNK: A Forgotten Oncogenic Pathway in Hormone Receptor-Positive Breast Cancer. Int J Mol Sci 2023; 24:14777. [PMID: 37834225 PMCID: PMC10573125 DOI: 10.3390/ijms241914777] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Breast cancer remains the most frequently diagnosed cancer in women worldwide. Tumors that express hormone receptors account for 75% of all cases. Understanding alternative signaling cascades is important for finding new therapeutic targets for hormone receptor-positive breast cancer patients. JAK-STAT signaling is commonly activated in hormone receptor-positive breast tumors, inducing inflammation, proliferation, migration, and treatment resistance in cancer cells. In hormone receptor-positive breast cancer, the JAK-STAT cascade is stimulated by hormones and cytokines, such as prolactin and IL-6. In normal cells, JAK-STAT is inhibited by the action of the adaptor protein, LNK. However, the role of LNK in breast tumors is not fully understood. This review compiles published reports on the expression and activation of the JAK-STAT pathway by IL-6 and prolactin and potential inhibition of the cascade by LNK in hormone receptor-positive breast cancer. Additionally, it includes analyses of available datasets to determine the level of expression of LNK and various members of the JAK-STAT family for the purpose of establishing associations between expression and clinical outcomes. Together, experimental evidence and in silico studies provide a better understanding of the potential implications of the JAK-STAT-LNK loop in hormone receptor-positive breast cancer progression.
Collapse
Affiliation(s)
- José A. López-Mejía
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Jessica C. Mantilla-Ollarves
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
| | - Leticia Rocha-Zavaleta
- Departamento de Biología Molecular y Biotecnología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico; (J.A.L.-M.); (J.C.M.-O.)
- Programa Institucional de Cáncer de Mama, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City 03100, Mexico
| |
Collapse
|
8
|
Yamaoka K, Oku K. JAK inhibitors in rheumatology. Immunol Med 2023; 46:143-152. [PMID: 36744577 DOI: 10.1080/25785826.2023.2172808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/22/2023] [Indexed: 02/07/2023] Open
Abstract
Janus kinase inhibitors (JAKis) are a group of drugs with a different mechanism of action from biologics and are most rapidly uptaken in the rheumatology field. JAK is a protein kinase activated in the cytoplasm by multiple cytokines and hormones involved in inflammatory pathology. The expression of JAK has been observed in various diseases, indicating the utility of JAK inhibitors in a wide variety of immune-mediated inflammatory diseases. Clinical trials are underway for a number of different rheumatic diseases based on the therapeutic efficacy of JAKis, which is comparable to that of biologics. This article will review the current status of JAKis for rheumatic diseases in terms of efficacy and safety and extend to future clinical applications for rare diseases.
Collapse
Affiliation(s)
- Kunihiro Yamaoka
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| | - Kenji Oku
- Department of Rheumatology and Infectious Diseases, Kitasato University School of Medicine, Kanagawa, Japan
| |
Collapse
|
9
|
Fallone L, Walzer T, Marçais A. Signaling Pathways Leading to mTOR Activation Downstream Cytokine Receptors in Lymphocytes in Health and Disease. Int J Mol Sci 2023; 24:12736. [PMID: 37628917 PMCID: PMC10454121 DOI: 10.3390/ijms241612736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
CD8+ T cells and Natural Killer (NK) cells are cytotoxic lymphocytes important in the response to intracellular pathogens and cancer. Their activity depends on the integration of a large set of intracellular and environmental cues, including antigenic signals, cytokine stimulation and nutrient availability. This integration is achieved by signaling hubs, such as the mechanistic target of rapamycin (mTOR). mTOR is a conserved protein kinase that controls cellular growth and metabolism in eukaryotic cells and, therefore, is essential for lymphocyte development and maturation. However, our current understanding of mTOR signaling comes mostly from studies performed in transformed cell lines, which constitute a poor model for comprehending metabolic pathway regulation. Therefore, it is only quite recently that the regulation of mTOR in primary cells has been assessed. Here, we review the signaling pathways leading to mTOR activation in CD8+ T and NK cells, focusing on activation by cytokines. We also discuss how this knowledge can contribute to immunotherapy development, particularly for cancer treatment.
Collapse
Affiliation(s)
| | | | - Antoine Marçais
- CIRI—Centre International de Recherche en Infectiologie (Team Lyacts), Inserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, F-69007 Lyon, France; (L.F.); (T.W.)
| |
Collapse
|
10
|
Valle-Mendiola A, Gutiérrez-Hoya A, Soto-Cruz I. JAK/STAT Signaling and Cervical Cancer: From the Cell Surface to the Nucleus. Genes (Basel) 2023; 14:1141. [PMID: 37372319 DOI: 10.3390/genes14061141] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/13/2023] [Accepted: 05/22/2023] [Indexed: 06/29/2023] Open
Abstract
The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) signaling pathway constitutes a rapid signaling module from the cell surface to the nucleus, and activates different cellular responses, such as proliferation, survival, migration, invasion, and inflammation. When the JAK/STAT pathway is altered, it contributes to cancer progression and metastasis. STAT proteins play a central role in developing cervical cancer, and inhibiting the JAK/STAT signaling may be necessary to induce tumor cell death. Several cancers show continuous activation of different STATs, including cervical cancer. The constitutive activation of STAT proteins is associated with a poor prognosis and overall survival. The human papillomavirus (HPV) oncoproteins E6 and E7 play an essential role in cervical cancer progression, and they activate the JAK/STAT pathway and other signals that induce proliferation, survival, and migration of cancer cells. Moreover, there is a crosstalk between the JAK/STAT signaling cascade with other signaling pathways, where a plethora of different proteins activate to induce gene transcription and cell responses that contribute to tumor growth. Therefore, inhibition of the JAK/STAT pathway shows promise as a new target in cancer treatment. In this review, we discuss the role of the JAK/STAT pathway components and the role of the HPV oncoproteins associated with cellular malignancy through the JAK/STAT proteins and other signaling pathways to induce tumor growth.
Collapse
Affiliation(s)
- Arturo Valle-Mendiola
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| | - Adriana Gutiérrez-Hoya
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
- Cátedra CONACYT, FES Zaragoza, National University of Mexico, Mexico City 09230, Mexico
| | - Isabel Soto-Cruz
- Molecular Oncology Laboratory, Cell Differentiation and Cancer Research Unit, FES Zaragoza, National University of Mexico, Batalla 5 de Mayo s/n, Colonia Ejército de Oriente, Mexico City 09230, Mexico
| |
Collapse
|
11
|
Xue C, Yao Q, Gu X, Shi Q, Yuan X, Chu Q, Bao Z, Lu J, Li L. Evolving cognition of the JAK-STAT signaling pathway: autoimmune disorders and cancer. Signal Transduct Target Ther 2023; 8:204. [PMID: 37208335 DOI: 10.1038/s41392-023-01468-7] [Citation(s) in RCA: 166] [Impact Index Per Article: 83.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 04/22/2023] [Indexed: 05/21/2023] Open
Abstract
The Janus kinase (JAK) signal transducer and activator of transcription (JAK-STAT) pathway is an evolutionarily conserved mechanism of transmembrane signal transduction that enables cells to communicate with the exterior environment. Various cytokines, interferons, growth factors, and other specific molecules activate JAK-STAT signaling to drive a series of physiological and pathological processes, including proliferation, metabolism, immune response, inflammation, and malignancy. Dysregulated JAK-STAT signaling and related genetic mutations are strongly associated with immune activation and cancer progression. Insights into the structures and functions of the JAK-STAT pathway have led to the development and approval of diverse drugs for the clinical treatment of diseases. Currently, drugs have been developed to mainly target the JAK-STAT pathway and are commonly divided into three subtypes: cytokine or receptor antibodies, JAK inhibitors, and STAT inhibitors. And novel agents also continue to be developed and tested in preclinical and clinical studies. The effectiveness and safety of each kind of drug also warrant further scientific trials before put into being clinical applications. Here, we review the current understanding of the fundamental composition and function of the JAK-STAT signaling pathway. We also discuss advancements in the understanding of JAK-STAT-related pathogenic mechanisms; targeted JAK-STAT therapies for various diseases, especially immune disorders, and cancers; newly developed JAK inhibitors; and current challenges and directions in the field.
Collapse
Affiliation(s)
- Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qinfan Yao
- Kidney Disease Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinyu Gu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Zhengyi Bao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Juan Lu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
12
|
Lang JJ, Lv Y, Kobe B, Chen H, Tan Y, Chen L, Wang X, Mi P, Zheng X, Lin YW. Discovery of C-5 Pyrazole-Substituted Pyrrolopyridine Derivatives as Potent and Selective Inhibitors for Janus Kinase 1. J Med Chem 2023; 66:6725-6742. [PMID: 37163463 DOI: 10.1021/acs.jmedchem.3c00050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Developing selective inhibitors for Janus kinase 1 (JAK1) is a significant focus for improving the efficacy and alleviating the adverse effects in treating immune-inflammatory diseases. Herein, we report the discovery of a series of C-5 pyrazole-modified pyrrolopyrimidine derivatives as JAK1-selective inhibitors. The potential hydrogen bond between the pyrazole group and E966 in JAK1 is the key point that enhances JAK1 selectivity. These compounds exhibit 10- to 20-fold JAK1 selectivity over JAK2 in enzyme assays. Compound 12b also exhibits excellent JAK1 selectivity in Ba/F3-TEL-JAK cellular assays. Metabolism studies and the results of the hair growth model in mice indicate that compound 12b may be a viable lead compound for the development of highly JAK1-selective inhibitors for immune and inflammatory diseases.
Collapse
Affiliation(s)
- Jia-Jia Lang
- Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Hengyang Medical College, School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - You Lv
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
- Xi'an Amazinggene Co., Ltd, Xi'an, Shaanxi 710026, China
| | - Bostjan Kobe
- School of Chemistry and Molecular Biosciences, Institute for Molecular Bioscience and Australian Infectious Diseases Research Centre, University of Queensland, Brisbane, Queensland 4072, Australia
| | - Hongfei Chen
- Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Yan Tan
- Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Limei Chen
- Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Xuechuan Wang
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Pengbing Mi
- Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| | - Xing Zheng
- Department of Pharmacy, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
- Department of Pharmacy, Hunan Vocational College of Science and Technology, Changsha 410004, China
| | - Ying-Wu Lin
- Hengyang Medical College, School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China
- Key Lab of Protein Structure and Function of Universities in Hunan Province, University of South China, Hengyang 421001, China
| |
Collapse
|
13
|
Harris F, Berdugo YA, Tree T. IL-2-based approaches to Treg enhancement. Clin Exp Immunol 2023; 211:149-163. [PMID: 36399073 PMCID: PMC10019135 DOI: 10.1093/cei/uxac105] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 09/12/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Immune homeostasis is heavily dependent on the action of regulatory T cells (Tregs) which act to suppress the activation of many immune cell types including autoreactive conventional T cells. A body of evidence has shown that Tregs are intrinsically defective in many common autoimmune diseases, and gene polymorphisms which increase the susceptibility of autoimmune disease development have implicated the interleukin-2 (IL-2) signaling pathway as a key dysregulated mechanism. IL-2 is essential for Treg function and survival, and Tregs are highly sensitive to low levels of this cytokine in their environment. This review will revisit the rationale behind using low-dose IL-2 as a therapy to treat autoimmune diseases and evaluate the outcomes of trials to date. Furthermore, novel engineered IL-2 therapies with increased Treg specificity have shown promise in pre-clinical studies and human clinical trials for some agents have begun. Future studies will determine whether low-dose IL-2 or engineered IL-2 therapies can change the course of autoimmune and inflammatory diseases in patients.
Collapse
Affiliation(s)
- Ffion Harris
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Yoana Arroyo Berdugo
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
| | - Timothy Tree
- Department of Immunobiology, Faculty of Life Sciences and Medicine, King’s College, London, UK
- National Institute of Health Research Biomedical Research Centre at Guy’s and St. Thomas’ National Health Service Foundation Trust, King’s College London, London, UK
| |
Collapse
|
14
|
Kumar S, Mehan S, Narula AS. Therapeutic modulation of JAK-STAT, mTOR, and PPAR-γ signaling in neurological dysfunctions. J Mol Med (Berl) 2023; 101:9-49. [PMID: 36478124 DOI: 10.1007/s00109-022-02272-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 10/10/2022] [Accepted: 11/11/2022] [Indexed: 12/12/2022]
Abstract
The cytokine-activated Janus kinase (JAK)-signal transducer and activator of transcription (STAT) cascade is a pleiotropic pathway that involves receptor subunit multimerization. The mammalian target of rapamycin (mTOR) is a ubiquitously expressed serine-threonine kinase that perceives and integrates a variety of intracellular and environmental stimuli to regulate essential activities such as cell development and metabolism. Peroxisome proliferator-activated receptor-gamma (PPARγ) is a prototypical metabolic nuclear receptor involved in neural differentiation and axon polarity. The JAK-STAT, mTOR, and PPARγ signaling pathways serve as a highly conserved signaling hub that coordinates neuronal activity and brain development. Additionally, overactivation of JAK/STAT, mTOR, and inhibition of PPARγ signaling have been linked to various neurocomplications, including neuroinflammation, apoptosis, and oxidative stress. Emerging research suggests that even minor disruptions in these cellular and molecular processes can have significant consequences manifested as neurological and neuropsychiatric diseases. Of interest, target modulators have been proven to alleviate neuronal complications associated with acute and chronic neurological deficits. This research-based review explores the therapeutic role of JAK-STAT, mTOR, and PPARγ signaling modulators in preventing neuronal dysfunctions in preclinical and clinical investigations.
Collapse
Affiliation(s)
- Sumit Kumar
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India
| | - Sidharth Mehan
- Division of Neuroscience, Department of Pharmacology, ISF College of Pharmacy, Punjab, Moga, India.
| | - Acharan S Narula
- Narula Research, LLC, 107 Boulder Bluff, Chapel Hill, NC, 27516, USA
| |
Collapse
|
15
|
Le Floc'h A, Nagashima K, Birchard D, Scott G, Ben LH, Ajithdoss D, Gayvert K, Romero Hernandez A, Herbin O, Tay A, Farrales P, Korgaonkar CK, Pan H, Shah S, Kamat V, Chatterjee I, Popke J, Oyejide A, Lim WK, Kim JH, Huang T, Franklin M, Olson W, Norton T, Perlee L, Yancopoulos GD, Murphy AJ, Sleeman MA, Orengo JM. Blocking common γ chain cytokine signaling ameliorates T cell-mediated pathogenesis in disease models. Sci Transl Med 2023; 15:eabo0205. [PMID: 36630481 DOI: 10.1126/scitranslmed.abo0205] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The common γ chain (γc; IL-2RG) is a subunit of the interleukin (IL) receptors for the γc cytokines IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. The lack of appropriate neutralizing antibodies recognizing IL-2RG has made it difficult to thoroughly interrogate the role of γc cytokines in inflammatory and autoimmune disease settings. Here, we generated a γc cytokine receptor antibody, REGN7257, to determine whether γc cytokines might be targeted for T cell-mediated disease prevention and treatment. Biochemical, structural, and in vitro analysis showed that REGN7257 binds with high affinity to IL-2RG and potently blocks signaling of all γc cytokines. In nonhuman primates, REGN7257 efficiently suppressed T cells without affecting granulocytes, platelets, or red blood cells. Using REGN7257, we showed that γc cytokines drive T cell-mediated disease in mouse models of graft-versus-host disease (GVHD) and multiple sclerosis by affecting multiple aspects of the pathogenic response. We found that our xenogeneic GVHD mouse model recapitulates hallmarks of acute and chronic GVHD, with T cell expansion/infiltration into tissues and liver fibrosis, as well as hallmarks of immune aplastic anemia, with bone marrow aplasia and peripheral cytopenia. Our findings indicate that γc cytokines contribute to GVHD and aplastic anemia pathology by promoting these characteristic features. By demonstrating that broad inhibition of γc cytokine signaling with REGN7257 protects from immune-mediated disorders, our data provide evidence of γc cytokines as key drivers of pathogenic T cell responses, offering a potential strategy for the management of T cell-mediated diseases.
Collapse
Affiliation(s)
- Audrey Le Floc'h
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kirsten Nagashima
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dylan Birchard
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George Scott
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Li-Hong Ben
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Dharani Ajithdoss
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Kaitlyn Gayvert
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | - Olivier Herbin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Amanda Tay
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Pamela Farrales
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | | | - Hao Pan
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Sweta Shah
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Vishal Kamat
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Ishita Chatterjee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jon Popke
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Adelekan Oyejide
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Wei Keat Lim
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jee H Kim
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Tammy Huang
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew Franklin
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - William Olson
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Thomas Norton
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Lorah Perlee
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - George D Yancopoulos
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Andrew J Murphy
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Matthew A Sleeman
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| | - Jamie M Orengo
- Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA
| |
Collapse
|
16
|
Sun H, Ma D, Cheng Y, Li J, Zhang W, Jiang T, Li Z, Li X, Meng H. The JAK-STAT Signaling Pathway in Epilepsy. Curr Neuropharmacol 2023; 21:2049-2069. [PMID: 36518035 PMCID: PMC10556373 DOI: 10.2174/1570159x21666221214170234] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/08/2022] [Accepted: 11/21/2022] [Indexed: 12/16/2022] Open
Abstract
Epilepsy is defined as spontaneous recurrent seizures in the brain. There is increasing evidence that inflammatory mediators and immune cells are involved in epileptic seizures. As more research is done on inflammatory factors and immune cells in epilepsy, new targets for the treatment of epilepsy will be revealed. The Janus kinase-signal transducer and transcriptional activator (JAKSTAT) signaling pathway is strongly associated with many immune and inflammatory diseases, At present, more and more studies have found that the JAK-STAT pathway is involved in the development and development of epilepsy, indicating the JAK-STAT pathway's potential promise as a target in epilepsy treatment. In this review, we discuss the composition, activation, and regulation of the JAK-STAT pathway and the relationship between the JAK-STAT pathway and epilepsy. In addition, we summarize the common clinical inhibitors of JAK and STAT that we would expect to be used in epilepsy treatment in the future.
Collapse
Affiliation(s)
- Huaiyu Sun
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Di Ma
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Yu Cheng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Jiaai Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Wuqiong Zhang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Ting Jiang
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Zhaoran Li
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| | - Xuewei Li
- Department of Radiology, The First Hospital of Jilin University, Changchun, China
| | - Hongmei Meng
- Department of Neurology and Neuroscience Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
17
|
Zebrafish Model of Severe Combined Immunodeficiency (SCID) Due to JAK3 Mutation. Biomolecules 2022; 12:biom12101521. [PMID: 36291730 PMCID: PMC9599616 DOI: 10.3390/biom12101521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/14/2022] [Accepted: 10/18/2022] [Indexed: 11/18/2022] Open
Abstract
JAK3 is principally activated by members of the interleukin-2 receptor family and plays an essential role in lymphoid development, with inactivating JAK3 mutations causing autosomal-recessive severe combined immunodeficiency (SCID). This study aimed to generate an equivalent zebrafish model of SCID and to characterize the model across the life-course. Genome editing of zebrafish jak3 created mutants similar to those observed in human SCID. Homozygous jak3 mutants showed reduced embryonic T lymphopoiesis that continued through the larval stage and into adulthood, with B cell maturation and adult NK cells also reduced and neutrophils impacted. Mutant fish were susceptible to lymphoid leukemia. This model has many of the hallmarks of human SCID resulting from inactivating JAK3 mutations and will be useful for a variety of pre-clinical applications.
Collapse
|
18
|
Beenen AC, Sauerer T, Schaft N, Dörrie J. Beyond Cancer: Regulation and Function of PD-L1 in Health and Immune-Related Diseases. Int J Mol Sci 2022; 23:ijms23158599. [PMID: 35955729 PMCID: PMC9369208 DOI: 10.3390/ijms23158599] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 12/20/2022] Open
Abstract
Programmed Cell Death 1 Ligand 1 (PD-L1, CD274, B7-H1) is a transmembrane protein which is strongly involved in immune modulation, serving as checkpoint regulator. Interaction with its receptor, Programmed Cell Death Protein 1 (PD-1), induces an immune-suppressive signal, which modulates the activity of T cells and other effector cells. This mediates peripheral tolerance and contributes to tumor immune escape. PD-L1 became famous due to its deployment in cancer therapy, where blockage of PD-L1 with the help of therapeutic antagonistic antibodies achieved impressive clinical responses by reactivating effector cell functions against tumor cells. Therefore, in the past, the focus has been placed on PD-L1 expression and its function in various malignant cells, whereas its role in healthy tissue and diseases apart from cancer remained largely neglected. In this review, we summarize the function of PD-L1 in non-cancerous cells, outlining its discovery and origin, as well as its involvement in different cellular and immune-related processes. We provide an overview of transcriptional and translational regulation, and expression patterns of PD-L1 in different cells and organs, and illuminate the involvement of PD-L1 in different autoimmune diseases as well as in the context of transplantation and pregnancy.
Collapse
Affiliation(s)
- Amke C. Beenen
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Tatjana Sauerer
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Niels Schaft
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
| | - Jan Dörrie
- Department of Dermatology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Hartmannstraße 14, 91052 Erlangen, Germany; (A.C.B.); (T.S.); (N.S.)
- Comprehensive Cancer Center Erlangen European Metropolitan Area of Nuremberg (CCC ER-EMN), Östliche Stadtmauerstraße 30, 91054 Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Ulmenweg 18, 91054 Erlangen, Germany
- Correspondence: ; Tel.: +49-9131-85-31127
| |
Collapse
|
19
|
Yen M, Ren J, Liu Q, Glassman CR, Sheahan TP, Picton LK, Moreira FR, Rustagi A, Jude KM, Zhao X, Blish CA, Baric RS, Su LL, Garcia KC. Facile discovery of surrogate cytokine agonists. Cell 2022; 185:1414-1430.e19. [PMID: 35325595 PMCID: PMC9021867 DOI: 10.1016/j.cell.2022.02.025] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 01/11/2022] [Accepted: 02/22/2022] [Indexed: 12/26/2022]
Abstract
Cytokines are powerful immune modulators that initiate signaling through receptor dimerization, but natural cytokines have structural limitations as therapeutics. We present a strategy to discover cytokine surrogate agonists by using modular ligands that exploit induced proximity and receptor dimer geometry as pharmacological metrics amenable to high-throughput screening. Using VHH and scFv to human interleukin-2/15, type-I interferon, and interleukin-10 receptors, we generated combinatorial matrices of single-chain bispecific ligands that exhibited diverse spectrums of functional activities, including potent inhibition of SARS-CoV-2 by surrogate interferons. Crystal structures of IL-2R:VHH complexes revealed that variation in receptor dimer geometries resulted in functionally diverse signaling outputs. This modular platform enabled engineering of surrogate ligands that compelled assembly of an IL-2R/IL-10R heterodimer, which does not naturally exist, that signaled through pSTAT5 on T and natural killer (NK) cells. This "cytokine med-chem" approach, rooted in principles of induced proximity, is generalizable for discovery of diversified agonists for many ligand-receptor systems.
Collapse
Affiliation(s)
- Michelle Yen
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junming Ren
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Qingxiang Liu
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caleb R Glassman
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Timothy P Sheahan
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lora K Picton
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Fernando R Moreira
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Arjun Rustagi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Kevin M Jude
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiang Zhao
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A Blish
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Ralph S Baric
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Leon L Su
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - K Christopher Garcia
- Departments of Molecular and Cellular Physiology, and Structural Biology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
20
|
Zhao M, Xing J, Tang X, Sheng X, Chi H, Zhan W. Expression of Interleukin-2 receptor subunit gamma (IL-2Rγ) and its binding with IL-2 induced activation of CD4 T lymphocytes in flounder (Paralichthys olivaceus). FISH & SHELLFISH IMMUNOLOGY 2022; 122:426-436. [PMID: 35183740 DOI: 10.1016/j.fsi.2022.02.033] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Interleukin-2 receptor (IL-2R), as the specific ligand of interleukin-2 (IL-2), binds to IL-2 and transmits signals and then can induce the proliferation of T lymphocytes in mammals. In this paper, the subunit of IL-2R in flounder (Paralichthys olivaceus), interleukin-2 receptor subunit gamma (IL-2Rγ) was cloned, and polyclonal antibodies (Abs) against its extracellular region were produced, then the expression of flounder IL-2Rγ (fIL-2Rγ) at transcriptional and cellular levels were characterized. Moreover, the interaction of flounder IL-2 (fIL-2) with fIL-2Rγ was investigated, and the variations on CD4+/IL-2Rγ+ cells in flounder after treatment with recombinant IL-2 (rIL-2), anti-IL-2Rγ Abs were detected, respectively. The results showed that fIL-2Rγ protein had a typical fibronectin type III (FN3) domain. The Abs could specifically recognize native fIL-2Rγ molecules at 39.9 kDa. FIL-2Rγ was localized on both T and B lymphocytes, and the percentages of CD4+/IL-2Rγ+ and IgM+/IL-2Rγ+ lymphocytes were high in spleen. In addition, pBiFC-VN173-IL-2Rγ plasmids could bind to pBiFC-VC155-IL-2 plasmids. The percentage of CD4+/IL-2Rγ+ lymphocytes was significantly decreased after blocking with anti-IL-2Rγ Abs both in vivo and in vitro. In the meantime, four T cell markers genes and six IL-2-IL-2R pathway genes were down-regulated in anti-IL-2Rγ Abs group. These results first demonstrated that fIL-2Rγ molecules were expressed on both T and B lymphocytes in flounder, and the bond between fIL-2Rγ and fIL-2 activated the CD4 T lymphocytes. This study gave a new sight into the exploration of IL-2R function on T lymphocytes proliferation in fish.
Collapse
Affiliation(s)
- Mengmeng Zhao
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Jing Xing
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China.
| | - Xiaoqian Tang
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Xiuzhen Sheng
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Heng Chi
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China
| | - Wenbin Zhan
- Laboratory of Pathology and Immunology of Aquatic Animals, KLMME, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, No. 1 Wenhai Road, Aoshanwei Town, Qingdao, China
| |
Collapse
|
21
|
Fu Y, Wang J, Zhou B, Pajulas A, Gao H, Ramdas B, Koh B, Ulrich BJ, Yang S, Kapur R, Renauld JC, Paczesny S, Liu Y, Tighe RM, Licona-Limón P, Flavell RA, Takatsuka S, Kitamura D, Tepper RS, Sun J, Kaplan MH. An IL-9-pulmonary macrophage axis defines the allergic lung inflammatory environment. Sci Immunol 2022; 7:eabi9768. [PMID: 35179949 PMCID: PMC8991419 DOI: 10.1126/sciimmunol.abi9768] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Despite IL-9 functioning as a pleiotropic cytokine in mucosal environments, the IL-9-responsive cell repertoire is still not well defined. Here, we found that IL-9 mediates proallergic activities in the lungs by targeting lung macrophages. IL-9 inhibits alveolar macrophage expansion and promotes recruitment of monocytes that develop into CD11c+ and CD11c- interstitial macrophage populations. Interstitial macrophages were required for IL-9-dependent allergic responses. Mechanistically, IL-9 affected the function of lung macrophages by inducing Arg1 activity. Compared with Arg1-deficient lung macrophages, Arg1-expressing macrophages expressed greater amounts of CCL5. Adoptive transfer of Arg1+ lung macrophages but not Arg1- lung macrophages promoted allergic inflammation that Il9r-/- mice were protected against. In parallel, the elevated expression of IL-9, IL-9R, Arg1, and CCL5 was correlated with disease in patients with asthma. Thus, our study uncovers an IL-9/macrophage/Arg1 axis as a potential therapeutic target for allergic airway inflammation.
Collapse
Affiliation(s)
- Yongyao Fu
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jocelyn Wang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baohua Zhou
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Abigail Pajulas
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Hongyu Gao
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Baskar Ramdas
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Byunghee Koh
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Benjamin J Ulrich
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Shuangshuang Yang
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Reuben Kapur
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jean-Christophe Renauld
- Ludwig Institute for Cancer Research, Experimental Medicine Unit, Université Catholique de Louvain, Brussels, 1200 Belgium
| | - Sophie Paczesny
- Department of Microbiology and Immunology, Medical University of South Carolina, 171 Ashley Avenue, Charleston, SC 29425
| | - Yunlong Liu
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Robert M Tighe
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, Durham, NC 27710, United States
| | - Paula Licona-Limón
- Departamento de Biologia Celular y del Desarrollo, Instituto de Fisiologia Celular, Universidad Nacional Autónoma de México, 04510, Mexico City, Mexico
| | - Richard A. Flavell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Shogo Takatsuka
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Robert S. Tepper
- Department of Pediatrics and Herman B Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| | - Jie Sun
- Department of Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
| |
Collapse
|
22
|
Rutkowska-Zapała M, Szaflarska A, Kluczewska A, Ciȩciwa J, Plewka J, Michalska A, Siedlar M. Novel IL2RG Gene Mutation in One of Dizygotic Twins Causing Profound Changes of Receptor Structure. Front Pediatr 2022; 10:858166. [PMID: 35498802 PMCID: PMC9053642 DOI: 10.3389/fped.2022.858166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
In this study, we report a 4-month-old boy with T-B+NK- severe combined immunodeficiency (SCID) due to a novel mutation in exon 2 of IL2RG, the gene encoding the interleukin (IL) common gamma chain (γc) of the cytokine receptors for IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21. The patient was born from a twin pregnancy. He manifested recurrent infections of the gastrointestinal tract, whereas his twin brother was asymptomatic with no immune defects. In order to evaluate the effect of this unreported variant on the protein structure, a structural modeling process was performed showing prominent biochemical alterations of the protein features, including molecular weight, isoelectric charge, and possible changes to its secondary and tertiary structure.
Collapse
Affiliation(s)
- Magdalena Rutkowska-Zapała
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Szaflarska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Anna Kluczewska
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Kraków, Poland
| | - Julia Ciȩciwa
- Department of Clinical Immunology, University Children Hospital, Krakow, Poland
| | - Jacek Plewka
- Malopolska Centre of Biotechnology, Jagiellonian University, Kraków, Poland
| | - Anna Michalska
- Department of Clinical Immunology, University Children Hospital, Krakow, Poland
| | - Maciej Siedlar
- Department of Clinical Immunology, Institute of Paediatrics, Jagiellonian University Medical College, Kraków, Poland
| |
Collapse
|
23
|
Somatic Reversion of a Novel IL2RG Mutation Resulting in Atypical X-Linked Combined Immunodeficiency. Genes (Basel) 2021; 13:genes13010035. [PMID: 35052377 PMCID: PMC8774591 DOI: 10.3390/genes13010035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/17/2021] [Accepted: 12/19/2021] [Indexed: 12/11/2022] Open
Abstract
Mutations of the IL2RG gene, which encodes for the interleukin-2 receptor common gamma chain (γC, CD132), can lead to X-linked severe combined immunodeficiency (X-SCID) associated with a T−B+NK− phenotype as a result of dysfunctional γC-JAK3-STAT5 signaling. Lately, hypomorphic mutations of the IL2RG gene have been described causing atypical SCID with a milder phenotype. Here, we report three brothers with low-normal lymphocyte counts and susceptibility to recurrent respiratory infections and cutaneous warts. The clinical presentation combined with dysgammaglobulinemia suspected an inherited immunity disorder, which has been proven by Next Generation Sequencing as a novel c.458T > C; p.Ile153Thr IL2RG missense-mutation. Subsequent functional characterization revealed impaired T-cell proliferation, low TREC levels and a skewed TCR Vβ repertoire in all three patients. Interestingly, investigation of various subpopulations showed normal expression of CD132 but with partially impaired STAT5 phosphorylation compared to healthy controls. Additionally, we performed precise genetic analysis of subpopulations revealing spontaneous somatic reversion, predominately in lymphoid derived CD3+, CD4+ and CD8+ T cells. Our data demonstrate that the atypical SCID phenotype noticed in these three brothers is due to the combination of hypomorphic IL-2RG function and somatic reversion.
Collapse
|
24
|
Mu P, Huo J, Sun M, Chen X, Ao J. Identification and expression analysis of IL-2 receptors in large yellow croaker (Larimichthys crocea). FISH AND SHELLFISH IMMUNOLOGY REPORTS 2021; 2:100008. [DOI: 10.1016/j.fsirep.2021.100008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/03/2021] [Accepted: 03/11/2021] [Indexed: 01/06/2023] Open
|
25
|
Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther 2021; 6:402. [PMID: 34824210 PMCID: PMC8617206 DOI: 10.1038/s41392-021-00791-1] [Citation(s) in RCA: 1160] [Impact Index Per Article: 290.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 09/09/2021] [Accepted: 09/21/2021] [Indexed: 02/08/2023] Open
Abstract
The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway was discovered more than a quarter-century ago. As a fulcrum of many vital cellular processes, the JAK/STAT pathway constitutes a rapid membrane-to-nucleus signaling module and induces the expression of various critical mediators of cancer and inflammation. Growing evidence suggests that dysregulation of the JAK/STAT pathway is associated with various cancers and autoimmune diseases. In this review, we discuss the current knowledge about the composition, activation, and regulation of the JAK/STAT pathway. Moreover, we highlight the role of the JAK/STAT pathway and its inhibitors in various diseases.
Collapse
Affiliation(s)
- Xiaoyi Hu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China
| | - Jing Li
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Maorong Fu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China
| | - Xia Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
- Department of Gynecology and Obstetrics, Development and Related Disease of Women and Children Key Laboratory of Sichuan Province, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, 610041, Chengdu, P. R. China.
| | - Wei Wang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center for Biotherapy Chengdu, 610041, Sichuan, P. R. China.
| |
Collapse
|
26
|
Zha L, Dong J, Chen Q, Liao Y, Zhang H, Xie T, Tang T, Xia N, Zhang M, Jiao J, Zhou Y, Wu J, Yang X, Xu C, Wang QK, Tu X, Cheng X, Nie S. Genetic association analysis between IL9 and coronary artery disease in a Chinese Han population. Cytokine 2021; 150:155761. [PMID: 34814015 DOI: 10.1016/j.cyto.2021.155761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Revised: 09/04/2021] [Accepted: 11/02/2021] [Indexed: 11/28/2022]
Abstract
Interleukin-9 (IL-9) plays important role in coronary artery disease (CAD). However, the exact relationship between them is not explored yet. Here, four tag SNPs covering IL9 (rs31563, rs2069868, rs2069870 and rs31564) were selected to conduct case-control association analyses in a total of 3704 individuals from Chinese Han population (1863 CAD vs 1841 control). Results showed that: first, rs2069868 was associated with CAD combined with hypertension (Padj = 0.027); second, IL9 haplotype (CGAT) was associated with CAD (Padj = 0.035), and the combination genotype of "rs31563_CC/rs31564_TT" would remarkably decrease the risk of CAD (Padj = 0.001); third, significant associations were found between rs2069870 and decreased LDL-c levels and decreased total cholesterol levels, and between rs31563 and increased HDL-c levels (Padj < 0.05). Therefore, we conclude that IL9 might play a causal role in CAD by interacted with CAD traditional risk factors, which might confer a new way to improve the prevention and treatment of CAD.
Collapse
Affiliation(s)
- Lingfeng Zha
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiangtao Dong
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiovascular Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qianwen Chen
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Maternal and Child Health Hospital, Wuhan 430070, China
| | - Yuhua Liao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongsong Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Department of Cardiology, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu 210006, China
| | - Tian Xie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Tingting Tang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ni Xia
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Min Zhang
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jiao Jiao
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yingchao Zhou
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Jianfei Wu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiangping Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of Ministry of Education, College of Life Science and Technology, Center for Human Genome Research, Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiang Cheng
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Shaofang Nie
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
27
|
Wang G, Tajima M, Honjo T, Ohta A. STAT5 interferes with PD-1 transcriptional activation and affects CD8+ T-cell sensitivity to PD-1-dependent immunoregulation. Int Immunol 2021; 33:563-572. [PMID: 34453440 DOI: 10.1093/intimm/dxab059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 08/27/2021] [Indexed: 01/22/2023] Open
Abstract
Programmed cell death-1 (PD-1) is a co-inhibitory receptor that dampens immune responses upon interaction with PD-L1 and PD-L2. Although PD-1 expression on T cells is known to be activation-dependent, how cytokines modify its regulation is not fully resolved. Using polyclonal T-cell activation to study cytokine-dependent PD-1 regulation, we found that IL-2 inhibited transcriptional up-regulation of PD-1 despite the promotion of T-cell activation. The IL-2-mediated reduction in PD-1 expression augmented CD8+ T-cell activities against PD-L1-expressing target cells. To study the mechanism of PD-1 reduction, we focused on STAT5 activation in the IL-2 signaling pathway. Bioinformatic analysis suggested a novel conserved PD-1 promoter domain where NFAT and STAT5 can potentially compete with each other for binding. NFAT1 interaction with this domain revealed substantial potency in PD-1 transcription compared to STAT5A, and STAT5A overexpression could quench NFAT1-dependent PD-1 up-regulation in a sequence-specific manner. Chromatin immunoprecipitation analysis of activated T cells showed that IL-2 treatment significantly diminished the binding of NFAT1 and NFAT2 in the hypothesized competition site, while STAT5 binding to the same region was increased. These results raise the possibility that the competition of transcriptional factors might be involved in the fine-tuning of PD-1 expression by cytokines such as IL-2.
Collapse
Affiliation(s)
- Guanning Wang
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Masaki Tajima
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Akio Ohta
- Department of Immunology, Foundation for Biomedical Research and Innovation at Kobe, Kobe 650-0047, Japan
| |
Collapse
|
28
|
Belaid B, Lamara Mahammed L, Mohand Oussaid A, Migaud M, Khadri Y, Casanova JL, Puel A, Ben Halla N, Djidjik R. Case Report: Interleukin-2 Receptor Common Gamma Chain Defect Presented as a Hyper-IgE Syndrome. Front Immunol 2021; 12:696350. [PMID: 34248995 PMCID: PMC8264782 DOI: 10.3389/fimmu.2021.696350] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/07/2021] [Indexed: 11/16/2022] Open
Abstract
X-linked severe combined immunodeficiency (X-SCID) is caused by mutations of IL2RG, the gene encoding the interleukin common gamma chain (IL-2Rγ or γc) of cytokine receptors for interleukin (IL)-2, IL-4, IL-7, IL-9, IL-15, and IL-21. Hypomorphic mutations of IL2RG may cause combined immunodeficiencies with atypical clinical and immunological presentations. Here, we report a clinical, immunological, and functional characterization of a missense mutation in exon 1 (c.115G>A; p. Asp39Asn) of IL2RG in a 7-year-old boy. The patient suffered from recurrent sinopulmonary infections and refractory eczema. His total lymphocyte counts have remained normal despite skewed T cell subsets, with a pronounced serum IgE elevation. Surface expression of IL-2Rγ was reduced on his lymphocytes. Signal transducer and activator of transcription (STAT) phosphorylation in response to IL-2, IL-4, and IL-7 showed a partially preserved receptor function. T-cell proliferation in response to mitogens and anti-CD3/anti-CD28 monoclonal antibodies was significantly reduced. Further analysis revealed a decreased percentage of CD4+ T cells capable of secreting IFN-γ, but not IL-4 or IL-17. Studies on the functional consequences of IL-2Rγ variants are important to get more insight into the pathogenesis of atypical phenotypes which may lay the ground for novel therapeutic strategies.
Collapse
Affiliation(s)
- Brahim Belaid
- Department of Medical Immunology, Beni-Messous University Hospital Center, Algiers, Algeria.,Faculty of Medicine, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria
| | - Lydia Lamara Mahammed
- Department of Medical Immunology, Beni-Messous University Hospital Center, Algiers, Algeria.,Faculty of Medicine, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria
| | - Aida Mohand Oussaid
- Faculty of Medicine, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria.,Department of Pediatrics A, Beni-Messous University Hospital Center, Algiers, Algeria
| | - Melanie Migaud
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Paris, France.,Imagine Institute, University of Paris, Paris, France
| | - Yasmine Khadri
- Department of Pediatrics A, Beni-Messous University Hospital Center, Algiers, Algeria
| | - Jean Laurent Casanova
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Paris, France.,Imagine Institute, University of Paris, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States.,Howard Hughes Medical Institute, New York, NY, United States
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, Necker Hospital for Sick Children, INSERM UMR 1163, Paris, France.,Imagine Institute, University of Paris, Paris, France.,St Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller University, New York, NY, United States
| | - Nafissa Ben Halla
- Faculty of Medicine, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria.,Department of Pediatrics A, Beni-Messous University Hospital Center, Algiers, Algeria
| | - Reda Djidjik
- Department of Medical Immunology, Beni-Messous University Hospital Center, Algiers, Algeria.,Faculty of Medicine, Benyoucef Benkhedda University of Algiers 1, Algiers, Algeria
| |
Collapse
|
29
|
Jones DM, Read KA, Oestreich KJ. Dynamic Roles for IL-2-STAT5 Signaling in Effector and Regulatory CD4 + T Cell Populations. THE JOURNAL OF IMMUNOLOGY 2021; 205:1721-1730. [PMID: 32958706 DOI: 10.4049/jimmunol.2000612] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 06/22/2020] [Indexed: 12/22/2022]
Abstract
CD4+ Th cells are responsible for orchestrating diverse, pathogen-specific immune responses through their differentiation into a number of subsets, including TH1, TH2, TH9, T follicular helper, T follicular regulatory, and regulatory T cells. The differentiation of each subset is guided by distinct regulatory requirements, including those derived from extracellular cytokine signals. IL-2 has emerged as a critical immunomodulatory cytokine that both positively and negatively affects the differentiation of individual Th cell subsets. IL-2 signals are propagated, in part, via activation of STAT5, which functions as a key regulator of CD4+ T cell gene programs. In this review, we discuss current understanding of the mechanisms that allow IL-2-STAT5 signaling to exert divergent effects across CD4+ T cell subsets and highlight specific roles for this pathway in the regulation of individual Th cell differentiation programs.
Collapse
Affiliation(s)
- Devin M Jones
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Kaitlin A Read
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and.,Biomedical Sciences Graduate Program, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210
| | - Kenneth J Oestreich
- Department of Microbial Infection and Immunity, The Ohio State University College of Medicine and Wexner Medical Center, Columbus, OH 43210; and
| |
Collapse
|
30
|
Kim YY, Kim JS, Che JH, Ku SY, Kang BC, Yun JW. Comparison of Genetically Engineered Immunodeficient Animal Models for Nonclinical Testing of Stem Cell Therapies. Pharmaceutics 2021; 13:130. [PMID: 33498509 PMCID: PMC7909568 DOI: 10.3390/pharmaceutics13020130] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/12/2021] [Accepted: 01/18/2021] [Indexed: 12/23/2022] Open
Abstract
For the recovery or replacement of dysfunctional cells and tissue-the goal of stem cell research-successful engraftment of transplanted cells and tissues are essential events. The event is largely dependent on the immune rejection of the recipient; therefore, the immunogenic evaluation of candidate cells or tissues in immunodeficient animals is important. Understanding the immunodeficient system can provide insights into the generation and use of immunodeficient animal models, presenting a unique system to explore the capabilities of the innate immune system. In this review, we summarize various immunodeficient animal model systems with different target genes as valuable tools for biomedical research. There have been numerous immunodeficient models developed by different gene defects, resulting in many different features in phenotype. More important, mice, rats, and other large animals exhibit very different immunological and physiological features in tissue and organs, including genetic background and a representation of human disease conditions. Therefore, the findings from this review may guide researchers to select the most appropriate immunodeficient strain, target gene, and animal species based on the research type, mutant gene effects, and similarity to human immunological features for stem cell research.
Collapse
Affiliation(s)
- Yoon-Young Kim
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Jin-Soo Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Jeong-Hwan Che
- Biomedical Center for Animal Resource and Development, Seoul National University College of Medicine, Seoul 03080, Korea;
| | - Seung-Yup Ku
- Department of Obstetrics and Gynecology, Seoul National University Hospital, Seoul 03080, Korea; (Y.-Y.K.); (S.-Y.K.)
| | - Byeong-Cheol Kang
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul 03080, Korea
| | - Jun-Won Yun
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Korea;
| |
Collapse
|
31
|
Della Mina E, Guérin A, Tangye SG. Molecular requirements for human lymphopoiesis as defined by inborn errors of immunity. Stem Cells 2021; 39:389-402. [PMID: 33400834 DOI: 10.1002/stem.3327] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Accepted: 12/07/2020] [Indexed: 12/19/2022]
Abstract
Hematopoietic stem cells (HSCs) are the progenitor cells that give rise to the diverse repertoire of all immune cells. As they differentiate, HSCs yield a series of cell states that undergo gradual commitment to become mature blood cells. Studies of hematopoiesis in murine models have provided critical insights about the lineage relationships among stem cells, progenitors, and mature cells, and these have guided investigations of the molecular basis for these distinct developmental stages. Primary immune deficiencies are caused by inborn errors of immunity that result in immune dysfunction and subsequent susceptibility to severe and recurrent infection(s). Over the last decade there has been a dramatic increase in the number and depth of the molecular, cellular, and clinical characterization of such genetically defined causes of immune dysfunction. Patients harboring inborn errors of immunity thus represent a unique resource to improve our understanding of the multilayered and complex mechanisms underlying lymphocyte development in humans. These breakthrough discoveries not only enable significant advances in the diagnosis of such rare and complex conditions but also provide substantial improvement in the development of personalized treatments. Here, we will discuss the clinical, cellular, and molecular phenotypes, and treatments of selected inborn errors of immunity that impede, either intrinsically or extrinsically, the development of B- or T-cells at different stages.
Collapse
Affiliation(s)
- Erika Della Mina
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Antoine Guérin
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| | - Stuart G Tangye
- Immunology and Immunodeficiency Laboratory, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St. Vincent's Clinical School, University of New South Wales, Darlinghurst, New South Wales, Australia
| |
Collapse
|
32
|
Yahya AM, Al-Hammadi S, AlHashaykeh NO, Alkaabi SS, Elomami AS, AlMulla AA, Alremeithi MM, Kabbary RM, Vijayan R, Souid AK. Case Report: Reactive Lymphohistiocytic Proliferation in Infant With a Novel Nonsense Variant of IL2RG Who Received BCG Vaccine. Front Pediatr 2021; 9:713924. [PMID: 34796149 PMCID: PMC8592917 DOI: 10.3389/fped.2021.713924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
We present here a male young infant with X-linked severe combined immunodeficiency (MIM#300400) due to the novel nonsense variant of IL2RG (interleukin 2 receptor, gamma; MIM#308380), NM_000206.2(IL2RG):c.820_823dup p.Ser275Asnfs*29. He developed aggressive reactive lymphohistiocytic proliferation after receiving the live-attenuated Bacillus Calmette-Guérin (BCG) vaccine at birth. This report advocates for modifying the current practice of early use of BCG. The natural history of his disease also suggests considering IL2RG variants as a potential cause of "X-linked recessive Mendelian susceptibility to mycobacterial disease" (MSMD). His reactive lymphohistiocytic proliferation and massive hepatosplenomegaly simulated hemophagocytic lymphohistiocytosis (HLH, likely triggered by the BCG disease). This entity was masked by the absence of fever and markedly elevated inflammatory biomarkers. Thus, his findings stimulate discussion on the need to modify the diagnostic criteria of HLH, in order to accommodate conditions, such IL2RG variants that block systemic inflammation.
Collapse
Affiliation(s)
- Amal M Yahya
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Suleiman Al-Hammadi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| | | | - Salwa S Alkaabi
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | | | - Asia A AlMulla
- Department of Hematology Oncology, Tawam Hospital, Al Ain, United Arab Emirates
| | - Majed M Alremeithi
- Department of Hematology Oncology, Tawam Hospital, Al Ain, United Arab Emirates
| | - Rewan M Kabbary
- Department of Pediatrics, Tawam Hospital, Al Ain, United Arab Emirates
| | - Ranjit Vijayan
- Department of Biology, College of Science, United Arab Emirates University, Al Ain, United Arab Emirates
| | - Abdul-Kader Souid
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates
| |
Collapse
|
33
|
Nogueira M, Puig L, Torres T. JAK Inhibitors for Treatment of Psoriasis: Focus on Selective TYK2 Inhibitors. Drugs 2020; 80:341-352. [PMID: 32020553 DOI: 10.1007/s40265-020-01261-8] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Despite advances in the treatment of psoriasis, there is an unmet need for effective and safe oral treatments. The Janus Kinase-Signal Transducer and Activator of Transcription (JAK-STAT) pathway plays a significant role in intracellular signalling of cytokines of numerous cellular processes, important in both normal and pathological states of immune-mediated inflammatory diseases. Particularly in psoriasis, where the interleukin (IL)-23/IL-17 axis is currently considered the crucial pathogenic pathway, blocking the JAK-STAT pathway with small molecules would be expected to be clinically effective. However, relative non-specificity and low therapeutic index of the available JAK inhibitors have delayed their integration into the therapeutic armamentarium of psoriasis. Current research appears to be focused on Tyrosine kinase 2 (TYK2), the first described member of the JAK family. Data from the Phase II trial of BMS-986165-a selective TYK2 inhibitor-in psoriasis have been published and clinical results are encouraging, with a large Phase III programme ongoing. Further, the selective TYK2 inhibitor PF-06826647 is being tested in moderate-to-severe psoriasis in a Phase II clinical trial. Brepocitinib, a potent TYK2/JAK1 inhibitor, is also being evaluated, as both oral and topical treatment. Results of studies with TYK2 inhibitors will be important in assessing the clinical efficacy and safety of these drugs and their place in the therapeutic armamentarium of psoriasis. This article reviews current data on the impact of JAK inhibitors in the treatment of adult patients with moderate-to-severe psoriasis.
Collapse
Affiliation(s)
- Miguel Nogueira
- Department of Dermatology, Centro Hospitalar Universitário do Porto, Porto, Portugal
| | - Luis Puig
- Department of Dermatology, Hospital de la Santa Creu i Sant Pau, Barcelona, Spain
| | - Tiago Torres
- Department of Dermatology, Centro Hospitalar Universitário do Porto, Porto, Portugal. .,Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Porto, Portugal.
| |
Collapse
|
34
|
Yang C, Malarkannan S. Transcriptional Regulation of NK Cell Development by mTOR Complexes. Front Cell Dev Biol 2020; 8:566090. [PMID: 33240877 PMCID: PMC7683515 DOI: 10.3389/fcell.2020.566090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 10/16/2020] [Indexed: 11/13/2022] Open
Abstract
The mechanistic target of Rapamycin (mTOR) is essential for multiple cellular processes. The unique roles of mTOR complex 1 (mTORC1) or mTOR2 in regulating immune functions are emerging. NK cells are the major lymphocyte subset of innate immunity, and their development and effector functions require metabolic reprogramming. Recent studies demonstrate that in NK cells, conditionally disrupting the formation of mTORC1 or mTOR complex 2 (mTORC2) alters their development significantly. Transcriptomic profiling of NK cells at the single-cell level demonstrates that mTORC1 was critical for the early developmental progression, while mTORC2 regulated the terminal maturation. In this review, we summarize the essential roles of mTOR complexes in NK development and functions.
Collapse
Affiliation(s)
- Chao Yang
- Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Versiti Blood Research Institute, Milwaukee, WI, United States.,Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Medicine, Medical College of Wisconsin, Milwaukee, WI, United States.,Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
35
|
IL-9-producing T cells: potential players in allergy and cancer. Nat Rev Immunol 2020; 21:37-48. [PMID: 32788707 DOI: 10.1038/s41577-020-0396-0] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/02/2020] [Indexed: 01/03/2023]
Abstract
IL-9-producing CD4+ T cells have been considered to represent a distinct T helper cell (TH cell) subset owing to their unique developmental programme in vitro, their expression of distinct transcription factors (including PU.1) and their copious production of IL-9. It remains debatable whether these cells represent a truly unique TH cell subset in vivo, but they are closely related to the T helper 2 (TH2) cells that are detected in allergic diseases. In recent years, increasing evidence has also indicated that IL-9-producing T cells may have potent abilities in eradicating advanced tumours, particularly melanomas. Here, we review the latest literature on the development of IL-9-producing T cells and their functions in disease settings, with a particular focus on allergy and cancer. We also discuss recent ideas concerning the therapeutic targeting of these cells in patients with chronic allergic diseases and their potential use in cancer immunotherapy.
Collapse
|
36
|
Sarkar S, Hessell AJ, Haigwood NL, Kobie JJ. Cloning and functional testing of rhesus macaque (Macaca mulatta) IL-9 and IL-33. J Med Primatol 2020; 49:144-152. [PMID: 32017131 DOI: 10.1111/jmp.12464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 12/19/2019] [Accepted: 01/19/2020] [Indexed: 11/29/2022]
Abstract
BACKGROUND IL-9 and IL-33 can profoundly influence immune responses. As a necessary first step toward defining their impact in the rhesus macaque model, we confirmed their endogenous expression and sequence identity and generated expression vectors for the recombinant expression of rhesus IL-9 and IL-33. METHODS RT-PCR and Sanger sequencing was used to define the expression and sequences for rhesus IL-9 and IL-33. The resulting recombinant cytokines were tested by ELISA and proliferation assays. RESULTS Full-length rhesus IL-9 and the mature form of rhesus IL-33 share 78% and 73% nucleotide similarity, respectively, with humans. Both cytokines are expressed in lymphocytes, with IL-9 expression also evident in CD4+ T cells. Recombinantly expressed rhesus IL-9 and IL-33 were each biologically active in vitro, including enhancing the proliferation of a rhesus B cell line. CONCLUSIONS The recombinant rhesus IL-9 and IL-33 constructs produce biologically active cytokines that can act upon rhesus B cells.
Collapse
Affiliation(s)
- Sanghita Sarkar
- Infectious Diseases Division, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ann J Hessell
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - Nancy L Haigwood
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA
| | - James J Kobie
- Infectious Diseases Division, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
37
|
Kim D, Kobayashi T, Voisin B, Jo JH, Sakamoto K, Jin SP, Kelly M, Pasieka HB, Naff JL, Meyerle JH, Ikpeama ID, Fahle GA, Davis FP, Rosenzweig SD, Alejo JC, Pittaluga S, Kong HH, Freeman AF, Nagao K. Targeted therapy guided by single-cell transcriptomic analysis in drug-induced hypersensitivity syndrome: a case report. Nat Med 2020; 26:236-243. [PMID: 31959990 PMCID: PMC7105105 DOI: 10.1038/s41591-019-0733-7] [Citation(s) in RCA: 118] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 12/06/2019] [Indexed: 12/17/2022]
Abstract
Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms (DiHS/DRESS) is a potentially fatal multiorgan inflammatory disease associated with herpesvirus reactivation and subsequent onset of autoimmune diseases1-4. Pathophysiology remains elusive and therapeutic options are limited. Cases refractory to corticosteroid therapy pose a clinical challenge1,5 and approximately 30% of patients with DiHS/DRESS develop complications, including infections and inflammatory and autoimmune diseases1,2,5. Progress in single-cell RNA sequencing (scRNA-seq) provides an opportunity to dissect human disease pathophysiology at unprecedented resolutions6, particularly in diseases lacking animal models, such as DiHS/DRESS. We performed scRNA-seq on skin and blood from a patient with refractory DiHS/DRESS, identifying the JAK-STAT signaling pathway as a potential target. We further showed that central memory CD4+ T cells were enriched with DNA from human herpesvirus 6b. Intervention via tofacitinib enabled disease control and tapering of other immunosuppressive agents. Tofacitinib, as well as antiviral agents, suppressed culprit-induced T cell proliferation in vitro, further supporting the roles of the JAK-STAT pathway and herpesviruses in mediating the adverse drug reaction. Thus, scRNA-seq analyses guided successful therapeutic intervention in the patient with refractory DiHS/DRESS. scRNA-seq may improve our understanding of complicated human disease pathophysiology and provide an alternative approach in personalized medicine.
Collapse
Affiliation(s)
- Doyoung Kim
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
- Department of Dermatology and Cutaneous Biology Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Tetsuro Kobayashi
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Benjamin Voisin
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Jay-Hyun Jo
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, NIAMS, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Keiko Sakamoto
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Seon-Pil Jin
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA
| | - Michael Kelly
- Cancer Research Technology Program, Single-Cell Analysis Facility, Frederick National Laboratory for Cancer Research, Frederick, MD, USA
| | - Helena B Pasieka
- Department of Dermatology, MedStar Washington Hospital Center & Georgetown University Hospital, Washington, DC, USA
| | - Jessica L Naff
- Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Jon H Meyerle
- Department of Dermatology, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Ijeoma D Ikpeama
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Gary A Fahle
- Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Fred P Davis
- Molecular Immunology and Inflammation Branch, NIAMS, NIH, Bethesda, MD, USA
| | - Sergio D Rosenzweig
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH, Bethesda, MD, USA
| | - Julie C Alejo
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Heidi H Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, NIAMS, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Alexandra F Freeman
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases (NIAID), NIH, Bethesda, MD, USA
| | - Keisuke Nagao
- Cutaneous Leukocyte Biology Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, MD, USA.
| |
Collapse
|
38
|
Arcas-García A, Garcia-Prat M, Magallón-Lorenz M, Martín-Nalda A, Drechsel O, Ossowski S, Alonso L, Rivière JG, Soler-Palacín P, Colobran R, Sayós J, Martínez-Gallo M, Franco-Jarava C. The IL-2RG R328X nonsense mutation allows partial STAT-5 phosphorylation and defines a critical region involved in the leaky-SCID phenotype. Clin Exp Immunol 2020; 200:61-72. [PMID: 31799703 DOI: 10.1111/cei.13405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2019] [Indexed: 01/10/2023] Open
Abstract
In addition to their detection in typical X-linked severe combined immunodeficiency, hypomorphic mutations in the interleukin (IL)-2 receptor common gamma chain gene (IL2RG) have been described in patients with atypical clinical and immunological phenotypes. In this leaky clinical phenotype the diagnosis is often delayed, limiting prompt therapy in these patients. Here, we report the biochemical and functional characterization of a nonsense mutation in exon 8 (p.R328X) of IL2RG in two siblings: a 4-year-old boy with lethal Epstein-Barr virus-related lymphoma and his asymptomatic 8-month-old brother with a Tlow B+ natural killer (NK)+ immunophenotype, dysgammaglobulinemia, abnormal lymphocyte proliferation and reduced levels of T cell receptor excision circles. After confirming normal IL-2RG expression (CD132) on T lymphocytes, signal transducer and activator of transcription-1 (STAT-5) phosphorylation was examined to evaluate the functionality of the common gamma chain (γc ), which showed partially preserved function. Co-immunoprecipitation experiments were performed to assess the interaction capacity of the R328X mutant with Janus kinase (JAK)3, concluding that R328X impairs JAK3 binding to γc . Here, we describe how the R328X mutation in IL-2RG may allow partial phosphorylation of STAT-5 through a JAK3-independent pathway. We identified a region of three amino acids in the γc intracellular domain that may be critical for receptor stabilization and allow this alternative signaling. Identification of the functional consequences of pathogenic IL2RG variants at the cellular level is important to enable clearer understanding of partial defects leading to leaky phenotypes.
Collapse
Affiliation(s)
- A Arcas-García
- CIBBIM-Nanomedicine-Immune Regulation and Immunotherapy Group, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Garcia-Prat
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Magallón-Lorenz
- CIBBIM-Nanomedicine-Immune Regulation and Immunotherapy Group, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - A Martín-Nalda
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - O Drechsel
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - S Ossowski
- Center for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.,Institute of Medical Genetics and Applied Genomics, University of Tübingen, Tübingen, Germany
| | - L Alonso
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Hematopoietic Stem Cell Transplantation Unit, Pediatric Hematology and Oncology Department, Vall d'Hebron Campus Hospitalari, Barcelona, Spain
| | - J G Rivière
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - P Soler-Palacín
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Campus Hospitalari, Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - R Colobran
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain.,Genetics Department, Hospital Universitari Vall d'Hebron (HUVH), Barcelona, Spain
| | - J Sayós
- CIBBIM-Nanomedicine-Immune Regulation and Immunotherapy Group, Institut de Recerca Vall d'Hebron (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - M Martínez-Gallo
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| | - C Franco-Jarava
- Jeffrey Model Foundation Excellence Center, Barcelona, Spain.,Immunology Division, Department of Cell Biology, Physiology and Immunology, Hospital Universitari Vall d'Hebron (HUVH), Vall d'Hebron Research Institute (VHIR), Universitat Autònoma de Barcelona (UAB), Barcelona, Spain
| |
Collapse
|
39
|
Sabry SA, El-Senduny FF, Abousamra NK, Salah El-Din M, Youssef MM. Oxidative stress in CLL patients leads to activation of Th9 cells: an experimental and comprehensive survey. Immunol Med 2019; 43:36-46. [PMID: 31829825 DOI: 10.1080/25785826.2019.1700747] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Older adults are mostly affected by chronic lymphocytic leukemia (CLL). The present study aimed to evaluate oxidative stress in CLL and to assess its impact on IL-9, Th9 cells levels and prognosis of cases. Seventy Egyptian CLL patients and 15 healthy controls were included. Th9 cell and immunophenotyping of abnormal B cells were assessed by flow cytometry, IL-9 level using ELISA, IL-9 mRNA by qRT-PCR, cytogenetics using FISH, and oxidative stress parameters were determined spectrophotometrically and with native gel electrophoresis. Oxidative stress was elevated in CLL that correlated with abnormal immunophenotyping, cytogenetic changes, bad prognosis, Th9 cells, and overexpression of IL-9. Levels of IL-9 and Th9 cells were strongly correlated with oxidative stress and bad prognostic markers in CLL, indicating that these cells may contribute to CLL by novel mechanisms that could include oxidant injury.
Collapse
Affiliation(s)
- Sabry A Sabry
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Fardous F El-Senduny
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Nashwa K Abousamra
- Clinical Pathology Department, Hematology Unit, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Manal Salah El-Din
- Medical Oncology Department, Oncology Center, Mansoura University, Mansoura, Egypt
| | - Magdy M Youssef
- Biochemistry Division, Chemistry Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
40
|
Pan W, Wang Q, Chen Q. The cytokine network involved in the host immune response to periodontitis. Int J Oral Sci 2019; 11:30. [PMID: 31685798 PMCID: PMC6828663 DOI: 10.1038/s41368-019-0064-z] [Citation(s) in RCA: 397] [Impact Index Per Article: 66.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 07/29/2019] [Indexed: 02/06/2023] Open
Abstract
Periodontitis is an inflammatory disease involving the destruction of both soft and hard tissue in the periodontal region. Although dysbiosis of the local microbial community initiates local inflammation, over-activation of the host immune response directly activates osteoclastic activity and alveolar bone loss. Many studies have reported on the cytokine network involved in periodontitis and its crucial and pleiotropic effect on the recruitment of specific immunocytes, control of pathobionts and induction or suppression of osteoclastic activity. Nonetheless, particularities in the stimulation of pathogens in the oral cavity that lead to the specific and complex periodontal cytokine network are far from clarified. Thus, in this review, we begin with an up-to-date aetiological hypothesis of periodontal disease and summarize the roles of cytokines in the host immune response. In addition, we also summarize the latest cytokine-related therapeutic measures for periodontal disease.
Collapse
Affiliation(s)
- Weiyi Pan
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qingxuan Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
41
|
Leonard WJ, Lin JX, O'Shea JJ. The γ c Family of Cytokines: Basic Biology to Therapeutic Ramifications. Immunity 2019; 50:832-850. [PMID: 30995502 DOI: 10.1016/j.immuni.2019.03.028] [Citation(s) in RCA: 255] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/22/2019] [Accepted: 03/26/2019] [Indexed: 12/15/2022]
Abstract
The common cytokine receptor γ chain, γc, is a component of the receptors for interleukin-2 (IL-2), IL-4, IL-7, IL-9, IL-15, and IL-21. Mutation of the gene encoding γc results in X-linked severe combined immunodeficiency in humans, and γc family cytokines collectively regulate development, proliferation, survival, and differentiation of immune cells. Here, we review the basic biology of these cytokines, highlighting mechanisms of signaling and gene regulation that have provided insights for immunodeficiency, autoimmunity, allergic diseases, and cancer. Moreover, we discuss how studies of this family stimulated the development of JAK3 inhibitors and present an overview of current strategies targeting these pathways in the clinic, including novel antibodies, antagonists, and partial agonists. The diverse roles of these cytokines on a range of immune cells have important therapeutic implications.
Collapse
Affiliation(s)
- Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| | - John J O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis, Metabolic, and Skin Diseases, National Institutes of Health, Bethesda, MD 20892-1674, USA.
| |
Collapse
|
42
|
Spolski R, Li P, Leonard WJ. Biology and regulation of IL-2: from molecular mechanisms to human therapy. Nat Rev Immunol 2019; 18:648-659. [PMID: 30089912 DOI: 10.1038/s41577-018-0046-y] [Citation(s) in RCA: 401] [Impact Index Per Article: 66.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
IL-2 was first identified as a growth factor capable of driving the expansion of activated human T cell populations. In the more than 40 years since its discovery, a tremendous amount has been learned regarding the mechanisms that regulate the expression of both IL-2 and its cell surface receptor, its mechanisms of signalling and its range of biological actions. More recently, the mechanisms by which IL-2 regulates CD4+ T cell differentiation and function have been elucidated. IL-2 also regulates the effector and memory responses of CD8+ T cells, and the loss of IL-2 or responsiveness to IL-2 at least in part explains the exhausted phenotype that occurs during chronic viral infections and in tumour responses. These basic mechanistic studies have led to the therapeutic ability to manipulate the action of IL-2 on regulatory T (Treg) cells for the treatment of autoimmune disease and on CD8+ T cells for immunotherapy of cancer. IL-2 can have either positive or deleterious effects, and we discuss here recent ideas and approaches for manipulating the actions and overall net effects of IL-2 in disease settings, including cancer.
Collapse
Affiliation(s)
- Rosanne Spolski
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Peng Li
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA
| | - Warren J Leonard
- Laboratory of Molecular Immunology and The Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
43
|
Perner F, Perner C, Ernst T, Heidel FH. Roles of JAK2 in Aging, Inflammation, Hematopoiesis and Malignant Transformation. Cells 2019; 8:cells8080854. [PMID: 31398915 PMCID: PMC6721738 DOI: 10.3390/cells8080854] [Citation(s) in RCA: 150] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/05/2019] [Accepted: 08/06/2019] [Indexed: 12/22/2022] Open
Abstract
Clonal alterations in hematopoietic cells occur during aging and are often associated with the establishment of a subclinical inflammatory environment. Several age-related conditions and diseases may be initiated or promoted by these alterations. JAK2 mutations are among the most frequently mutated genes in blood cells during aging. The most common mutation within the JAK2 gene is JAK2-V617F that leads to constitutive activation of the kinase and thereby aberrant engagement of downstream signaling pathways. JAK2 mutations can act as central drivers of myeloproliferative neoplasia, a pre-leukemic and age-related malignancy. Likewise, hyperactive JAK-signaling is a hallmark of immune diseases and critically influences inflammation, coagulation and thrombosis. In this review we aim to summarize the current knowledge on JAK2 in clonal hematopoiesis during aging, the role of JAK-signaling in inflammation and lymphocyte biology and JAK2 function in age-related diseases and malignant transformation.
Collapse
Affiliation(s)
- Florian Perner
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, 07747 Jena, Germany
- Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany
- Dana-Farber Cancer Institute, Department of Pediatric Oncology, Harvard University, Boston, MA 02467, USA
| | - Caroline Perner
- Center for Immunology & Inflammatory Diseases, Massachusetts General Hospital, and Harvard Medical School, Boston, 02129 MA, USA
| | - Thomas Ernst
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, 07747 Jena, Germany
| | - Florian H Heidel
- Innere Medizin 2, Hämatologie und Onkologie, Universitätsklinikum Jena, 07747 Jena, Germany.
- Leibniz-Institute on Aging-Fritz Lipmann Institute (FLI), 07745 Jena, Germany.
| |
Collapse
|
44
|
Abstract
The discovery of interleukin-2 (IL-2) changed the molecular understanding of how the immune system is controlled. IL-2 is a pleiotropic cytokine, and dissecting the signaling pathways that allow IL-2 to control the differentiation and homeostasis of both pro- and anti-inflammatory T cells is fundamental to determining the molecular details of immune regulation. The IL-2 receptor couples to JAK tyrosine kinases and activates the STAT5 transcription factors. However, IL-2 does much more than control transcriptional programs; it is a key regulator of T cell metabolic programs. The development of global phosphoproteomic approaches has expanded the understanding of IL-2 signaling further, revealing the diversity of phosphoproteins that may be influenced by IL-2 in T cells. However, it is increasingly clear that within each T cell subset, IL-2 will signal within a framework of other signal transduction networks that together will shape the transcriptional and metabolic programs that determine T cell fate.
Collapse
Affiliation(s)
- Sarah H Ross
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| | - Doreen A Cantrell
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 5EH, Scotland, United Kingdom;
| |
Collapse
|
45
|
Abstract
Cytokines are secreted or otherwise released polypeptide factors that exert autocrine and/or paracrine actions, with most cytokines acting in the immune and/or hematopoietic system. They are typically pleiotropic, controlling development, cell growth, survival, and/or differentiation. Correspondingly, cytokines are clinically important, and augmenting or attenuating cytokine signals can have deleterious or therapeutic effects. Besides physiological fine-tuning of cytokine signals, altering the nature or potency of the signal can be important in pathophysiological responses and can also provide novel therapeutic approaches. Here, we give an overview of cytokines, their signaling and actions, and the physiological mechanisms and pharmacologic strategies to fine-tune their actions. In particular, the differential utilization of STAT proteins by a single cytokine or by different cytokines and STAT dimerization versus tetramerization are physiological mechanisms of fine-tuning, whereas anticytokine and anticytokine receptor antibodies and cytokines with altered activities, including cytokine superagonists, partial agonists, and antagonists, represent new ways of fine-tuning cytokine signals.
Collapse
Affiliation(s)
- Jian-Xin Lin
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA; ,
| | - Warren J Leonard
- Laboratory of Molecular Immunology and the Immunology Center, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892-1674, USA; ,
| |
Collapse
|
46
|
Wang W, Wang Y, Tian X, Lu M, Ehsan M, Yan R, Song X, Xu L, Li X. Y75B8A.8 (HC8) protein of Haemonchus contortus: A functional inhibitor of host IL-2. Parasite Immunol 2019; 41:e12625. [PMID: 30883834 DOI: 10.1111/pim.12625] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 03/01/2019] [Accepted: 03/08/2019] [Indexed: 12/24/2022]
Abstract
Interleukin 2 (IL-2) is an important immune regulatory factor in the immune response of the host. However, little is known about the inhibitor of host IL-2 in Haemonchus contortus infection. In this study, we found that globin domain-containing protein (HCGB) and Protein Y75B8A.8 (HC8) from H contortus excretory and secretory products are two binding proteins of IL-2 in goats. The yeast two-hybrid screening further validated the positive interactions of IL-2 with HCGB and HC8. Meanwhile, we found that HC8 had inhibitory effects on IL-2-induced peripheral blood mononuclear cell (PBMC) proliferation, while HCGB did not. Furthermore, transcriptional analysis revealed that HC8 could block the IL-2-activated signalling pathway. Our results showed that HC8 was a functional inhibitor of goat IL-2.
Collapse
Affiliation(s)
- Wenjuan Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Yujian Wang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Xiaowei Tian
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Mingmin Lu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Muhammad Ehsan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - LiXin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
47
|
Abbas AK, Trotta E, R Simeonov D, Marson A, Bluestone JA. Revisiting IL-2: Biology and therapeutic prospects. Sci Immunol 2019; 3:3/25/eaat1482. [PMID: 29980618 DOI: 10.1126/sciimmunol.aat1482] [Citation(s) in RCA: 414] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 06/07/2018] [Indexed: 12/13/2022]
Abstract
Interleukin-2 (IL-2), the first cytokine that was molecularly cloned, was shown to be a T cell growth factor essential for the proliferation of T cells and the generation of effector and memory cells. On the basis of this activity, the earliest therapeutic application of IL-2 was to boost immune responses in cancer patients. Therefore, it was a surprise that genetic deletion of the cytokine or its receptor led not only to the expected immune deficiency but also to systemic autoimmunity and lymphoproliferation. Subsequent studies established that IL-2 is essential for the maintenance of Foxp3+ regulatory T cells (Treg cells), and in its absence, there is a profound deficiency of Treg cells and resulting autoimmunity. We now know that IL-2 promotes the generation, survival, and functional activity of Treg cells and thus has dual and opposing functions: maintaining Treg cells to control immune responses and stimulating conventional T cells to promote immune responses. It is well documented that certain IL-2 conformations result in selective targeting of Treg cells by increasing reliance on CD25 binding while compromising CD122 binding. Recent therapeutic strategies have emerged to use IL-2, monoclonal antibodies to IL-2, or IL-2 variants to boost Treg cell numbers and function to treat autoimmune diseases while dealing with the continuing challenges to minimize the generation of effector and memory cells, natural killer cells, and other innate lymphoid populations.
Collapse
Affiliation(s)
- Abul K Abbas
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA.
| | - Eleonora Trotta
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dimitre R Simeonov
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Alexander Marson
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.,Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Jeffrey A Bluestone
- Diabetes Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
48
|
Tang A, Harding F. The challenges and molecular approaches surrounding interleukin-2-based therapeutics in cancer. Cytokine X 2019. [PMCID: PMC7885892 DOI: 10.1016/j.cytox.2018.100001] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IL2-based cancer therapies are limited by their toxicity and pleiotropy. Current engineering approaches target IL2 half-life and cell/receptor specificity. IL2 may enhance the efficacy of checkpoint inhibitors and CAR-T-based therapies.
Interleukin-2 has had a long history as a promising cancer therapeutic, being capable of eliciting complete and durable remissions in patients with metastatic renal cell carcinoma and metastatic melanoma. Despite high toxicity and efficacy limited to only certain patient subpopulations and cancer types, the prospective use of novel, engineered IL2 formats in combination with the presently expanding repertoire of immuno-oncological targets remains very encouraging. This is possible due to the significant research efforts in the IL2 field that have yielded critical structural and biological insights that have made IL2 more effective and more broadly applicable in the clinic. In this review, we discuss some of the molecular approaches that have been used to further improve IL2 therapy for cancer.
Collapse
|
49
|
Lim CK, Abolhassani H, Appelberg SK, Sundin M, Hammarström L. IL2RG hypomorphic mutation: identification of a novel pathogenic mutation in exon 8 and a review of the literature. Allergy Asthma Clin Immunol 2019; 15:2. [PMID: 30622570 PMCID: PMC6320602 DOI: 10.1186/s13223-018-0317-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 12/26/2018] [Indexed: 11/10/2022] Open
Abstract
Background Atypical X-linked severe combined immunodeficiency (X-SCID) is a variant of cellular immunodeficiency due to hypomorphic mutations in the interleukin 2 receptor gamma (IL2RG) gene. Due to a leaky clinical phenotype, diagnosis and appropriate treatment are challenging in these patients. Case presentation We report a 16-year-old patient with a Tlow B+ NK+ cellular immunodeficiency due to a novel nonsense mutation in exon 8 (p.R328X) of the IL2RG gene. Functional impairment of the IL2RG was confirmed by IL2-Janus kinase 3-signal transducer and activator of transcription signaling pathway investigation. In addition, the characteristics of the mutations previously described in 39 patients with an atypical phenotype were reviewed and analyzed from the literature. Conclusion This is the first report of an atypical X-SCID phenotype due to an exon 8 mutation in the IL2RG gene. The variability in the phenotypic spectrum of classic X-SCID associated gene highlights the necessity of multi-disciplinary cooperation vigilance for a more accurate diagnostic workup.
Collapse
Affiliation(s)
- Che Kang Lim
- 1Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.,2Department of Clinical Translational Research, Singapore General Hospital, Singapore, Singapore
| | - Hassan Abolhassani
- 1Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.,3Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Sofia K Appelberg
- 1Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden
| | - Mikael Sundin
- 4Department of Blood Disorders, Immunodeficiency and Stem Cell Transplantation, Astrid Lindgren Children's Hospital, Stockholm, Sweden.,5Division of Pediatrics, Department of Clinical Science, Intervention and Technology, Karolinska Institutet, Stockholm, Sweden
| | - Lennart Hammarström
- 1Division of Clinical Immunology and Transfusion Medicine, Department of Laboratory Medicine, Karolinska Institutet at Karolinska University Hospital Huddinge, 141 86, Stockholm, Sweden.,6BGI-Shenzhen, Shenzhen, 518083 China
| |
Collapse
|
50
|
Other Forms of Immunosuppression. KIDNEY TRANSPLANTATION - PRINCIPLES AND PRACTICE 2019. [PMCID: PMC7152196 DOI: 10.1016/b978-0-323-53186-3.00020-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|