1
|
Zheng Q, Wang D, Lin R, Xu W. Pyroptosis, ferroptosis, and autophagy in spinal cord injury: regulatory mechanisms and therapeutic targets. Neural Regen Res 2025; 20:2787-2806. [PMID: 39101602 PMCID: PMC11826477 DOI: 10.4103/nrr.nrr-d-24-00112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/24/2024] [Accepted: 06/07/2024] [Indexed: 08/06/2024] Open
Abstract
Regulated cell death is a form of cell death that is actively controlled by biomolecules. Several studies have shown that regulated cell death plays a key role after spinal cord injury. Pyroptosis and ferroptosis are newly discovered types of regulated cell deaths that have been shown to exacerbate inflammation and lead to cell death in damaged spinal cords. Autophagy, a complex form of cell death that is interconnected with various regulated cell death mechanisms, has garnered significant attention in the study of spinal cord injury. This injury triggers not only cell death but also cellular survival responses. Multiple signaling pathways play pivotal roles in influencing the processes of both deterioration and repair in spinal cord injury by regulating pyroptosis, ferroptosis, and autophagy. Therefore, this review aims to comprehensively examine the mechanisms underlying regulated cell deaths, the signaling pathways that modulate these mechanisms, and the potential therapeutic targets for spinal cord injury. Our analysis suggests that targeting the common regulatory signaling pathways of different regulated cell deaths could be a promising strategy to promote cell survival and enhance the repair of spinal cord injury. Moreover, a holistic approach that incorporates multiple regulated cell deaths and their regulatory pathways presents a promising multi-target therapeutic strategy for the management of spinal cord injury.
Collapse
Affiliation(s)
- Qingcong Zheng
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Du Wang
- Arthritis Clinical and Research Center, Peking University People’s Hospital, Beijing, China
| | - Rongjie Lin
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou, Fujian Province, China
| | - Weihong Xu
- Department of Spinal Surgery, the First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
2
|
Balla T. Phosphatidylinositol 4-phosphate; A minor lipid with multiple personalities. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159615. [PMID: 40262701 PMCID: PMC12145240 DOI: 10.1016/j.bbalip.2025.159615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/08/2025] [Accepted: 04/18/2025] [Indexed: 04/24/2025]
Abstract
Phosphorylated products of phosphatidylinositol (PI), named Diphosphoinositide (DPI) and triphosphoinositide (TPI) were identified long time ago and found to exhibit high turnover rates based on their rapid 32P-phosphate labeling. The PI kinase activities that were responsible for their production were subsequently identified and found to be associated with different organelle membranes, including the plasma membrane. These activities were then linked with a certain group of cell surface receptors that activated phospholipase C enzymes to hydrolyze PI and used calcium or cGMP as a second messenger. This visionary concept was introduced in the seminal BBA review written by Robert Michell, exactly 50 years ago. The enzymology and functional diversity of PI 4-phosphate (PI4P) (the term that has replaced DPI) has since underwent an expansion that could not have been foreseen. In this review I will attempt to revisit this expansion with some historical reflections celebrating the 50th anniversary of the Michell review.
Collapse
Affiliation(s)
- Tamas Balla
- Section on Molecular Signal Transduction, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
3
|
Bankaitis VA, Khan D, Chen XR, Wang Y, Igumenova TI. A brief history of phosphatidylinositol transfer proteins: from the backwaters of cell biology to prime time in lipid signaling. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159625. [PMID: 40354930 DOI: 10.1016/j.bbalip.2025.159625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/24/2025] [Accepted: 05/07/2025] [Indexed: 05/14/2025]
Abstract
How lipids are sorted between intracellular compartments and what mechanisms support inter-organellar lipid transport define questions that have enjoyed long-standing interest in the cell biology community. Despite tantalizing evidence to the effect that lipids can move between organelles independently of standard modes of vesicular membrane trafficking through the secretory pathway, biochemical dissection of these non-vesicular pathways was initially fraught with experimental challenges. Many of the obstacles have now been overcome and, following initial breakthroughs, the last two decades have witnessed a renaissance in the field of lipid trafficking. Indeed, lipid trafficking and mobilization are now significant components of any discussion regarding secretory vesicle trafficking, organelle biogenesis, agonist-stimulated lipid signaling, and inter-compartmental communication pathways that involve every organelle in the eukaryotic cell. In accord with the theme of this special issue, we focus on the topic of soluble lipid transfer proteins that interface with the metabolism of phosphatidylinositol (PtdIns) and its phosphorylated derivatives - the phosphoinositides. Although phosphoinositides are quantitatively minor lipids in cells, these molecules represent the chemical codes for a major pathway of intracellular signaling in all eukaryotic cells. It is now clear that soluble PtdIns transfer proteins (PITPs) are physiologically critical regulators of specific pathways of phosphoinositide - particularly PtdIns-4-phosphate - signaling. The 'where' PITPs determine the biological outcomes of phosphoinositide signaling, and the 'how' by which PITPs do so, represent increasingly active areas of research in contemporary cell biology. It is these issues we explore from a historical perspective with a focus on the Sec14-like PITPs.
Collapse
Affiliation(s)
- Vytas A Bankaitis
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX 77843, USA.
| | - Danish Khan
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Xiao-Ru Chen
- Department of Physiology & Cellular Biophysics, Columbia University, New York, NY 10032, USA
| | - Yaxi Wang
- Department of Microbiology, University of Washington, Seattle, WA 98109, USA
| | - Tatyana I Igumenova
- Department of Cell Biology & Genetics, Texas A&M Health Science Center, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
4
|
Cook ASI, Chen M, Nguyen TN, Cabezudo AC, Khuu G, Rao S, Garcia SN, Yang M, Iavarone AT, Ren X, Lazarou M, Hummer G, Hurley JH. Structural pathway for PI3-kinase regulation by VPS15 in autophagy. Science 2025; 388:eadl3787. [PMID: 39913640 PMCID: PMC11985297 DOI: 10.1126/science.adl3787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 09/30/2024] [Accepted: 01/15/2025] [Indexed: 02/13/2025]
Abstract
The class III phosphatidylinositol-3 kinase complexes I and II (PI3KC3-C1 and PI3KC3-C2) have vital roles in macroautophagy and endosomal maturation, respectively. We elucidated a structural pathway of enzyme activation through cryo-electron microscopy analysis of PI3KC3-C1. The inactive conformation of the VPS15 pseudokinase stabilizes the inactive conformation, sequestering its N-myristate in the N-lobe of the pseudokinase. Upon activation, the myristate is liberated such that the VPS34 lipid kinase catalyzes phosphatidylinositol-3 phosphate production on membranes. The VPS15 pseudokinase domain binds tightly to guanosine triphosphate and stabilizes a web of interactions to autoinhibit the cytosolic complex and promote activation upon membrane binding. These findings show in atomistic detail how the VPS34 lipid kinase is activated in the context of a complete PI3K complex.
Collapse
Affiliation(s)
- Annan S I Cook
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Minghao Chen
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Thanh N Nguyen
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Ainara Claveras Cabezudo
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
| | - Grace Khuu
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Shanlin Rao
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Samantha N Garcia
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Mingxuan Yang
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Anthony T Iavarone
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Xuefeng Ren
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Michael Lazarou
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Melbourne, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Melbourne, Victoria, Australia
| | - Gerhard Hummer
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- IMPRS on Cellular Biophysics, Max Planck Institute of Biophysics, Frankfurt am Main, Germany
- Institute of Biophysics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - James H Hurley
- Graduate Group in Biophysics, University of California, Berkeley, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
5
|
D'Souza-Schorey C, Stahl PD. Resolving the two-body problem: A postulated role for the V0 sector of the V0V1-ATPase in exosome biogenesis and multivesicular body fate. Mol Biol Cell 2025; 36:pe1. [PMID: 39705591 PMCID: PMC11742106 DOI: 10.1091/mbc.e24-09-0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/04/2024] [Accepted: 11/22/2024] [Indexed: 12/22/2024] Open
Abstract
Because the discovery of the multivesicular body (MVB) as the origin of secreted vesicles or exosomes, the question arose and still looms-what distinguishes an MVB destined for fusion with the plasma membrane (EXO-MVB) facilitating exosome release from an MVB involved in transport of content to the lysosome (LYSO-MVB). Do they have independent origins? Hence, the two-body problem. We hypothesize that a key to this conundrum is the membrane spanning V0 sector of the proton pump, V0V1-ATPase. The V0V1-ATPase participates in the acidification of intracellular compartments, although V0 can function separately from V1 and different V0 isoforms are endowed with membrane binding capabilities that allow the V0V1-ATPase to selectively localize to different endocytic compartments including early and late endosomes and lysosomes. We propose that V0, in collaboration with cholesterol and phosphoinositides, plays a central role in the early endosome as a nucleation center to direct the de novo assembly of an EXO-MVB scaffold. The EXO-MVB scaffold may play multiple roles-operating as an assembly platform, participating in membrane fission as well as providing downstream navigational queues necessary for exosome secretion. Thus, V0 may represent an influential nexus, a starting point, in exosome biogenesis.
Collapse
Affiliation(s)
| | - Philip D. Stahl
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO
| |
Collapse
|
6
|
Sheng Z, Beck P, Gabby M, Habte-Mariam S, Mitkos K. Molecular Basis of Oncogenic PI3K Proteins. Cancers (Basel) 2024; 17:77. [PMID: 39796708 PMCID: PMC11720314 DOI: 10.3390/cancers17010077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The dysregulation of phosphatidylinositol 3-kinase (PI3K) signaling plays a pivotal role in driving neoplastic transformation by promoting uncontrolled cell survival and proliferation. This oncogenic activity is primarily caused by mutations that are frequently found in PI3K genes and constitutively activate the PI3K signaling pathway. However, tumorigenesis can also arise from nonmutated PI3K proteins adopting unique active conformations, further complicating the understanding of PI3K-driven cancers. Recent structural studies have illuminated the functional divergence among highly homologous PI3K proteins, revealing how subtle structural alterations significantly impact their activity and contribute to tumorigenesis. In this review, we summarize current knowledge of Class I PI3K proteins and aim to unravel the complex mechanism underlying their oncogenic traits. These insights will not only enhance our understanding of PI3K-mediated oncogenesis but also pave the way for the design of novel PI3K-based therapies to combat cancers driven by this signaling pathway.
Collapse
Affiliation(s)
- Zhi Sheng
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
- Department of Internal Medicine, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- Department of Neurosurgery, Virginia Tech Carilion School of Medicine, Roanoke, VA 24016, USA
- School of Neuroscience, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
- Faculty of Health Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Patrick Beck
- Division of General Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Maegan Gabby
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| | | | - Katherine Mitkos
- Fralin Biomedical Research Institute at VTC, Roanoke, VA 24016, USA
| |
Collapse
|
7
|
Jia L, Meng Q, Xu X. Autophagy-related miRNAs, exosomal miRNAs, and circRNAs in tumor progression and drug-and radiation resistance in colorectal cancer. Pathol Res Pract 2024; 263:155597. [PMID: 39426141 DOI: 10.1016/j.prp.2024.155597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/16/2024] [Accepted: 09/20/2024] [Indexed: 10/21/2024]
Abstract
Targeted therapies are often more tolerable than traditional cytotoxic ones. Nurses play a critical role in providing patients and caregivers with information about the disease, available therapies, and the kind, severity, and identification of any potential adverse events. By doing this, it may be possible to ensure that any adverse effects are managed quickly, maximizing the therapeutic benefit. In colorectal cancer (CRC), autophagy-related activities are significantly influenced by miRNAs and exosomal miRNAs. CRC development and treatment resistance have been associated with the cellular process of autophagy. miRNAs, which are short non-coding RNA molecules, have the ability to control the expression of genes by binding to the 3' untranslated region (UTR) of target mRNAs and either preventing or suppressing translation. It has been discovered that several miRNAs are significant regulators of CRC autophagy. By preventing autophagy, these miRNAs enhance the survival and growth of cancer cells. Exosomes are small membrane vesicles that are released by cells and include miRNAs among other bioactive compounds. Exosomes have the ability to modify recipient cells' biological processes by delivering their cargo, which includes miRNAs. It has been demonstrated that exosomal miRNAs control autophagy in CRC in both autocrine and paracrine ways. We will discuss the potential roles of miRNAs, exosomal miRNAs, and circRNAs in CRC autophagy processes and how nursing care can reduce unfavorable outcomes.
Collapse
Affiliation(s)
- Liting Jia
- Cardiovascular Center, Beijing Friendship Hospital, Capital Medical University, Beijing 102413, China
| | - Qingyun Meng
- Gastroenterology Department, Qingdao Municipal Hospital, Qingdao 266000, China
| | - Xiaofeng Xu
- Thoracic Surgery, Qingdao Municipal Hospital, Qingdao 266000, China.
| |
Collapse
|
8
|
Gupta I, Gaykalova DA. Unveiling the role of PIK3R1 in cancer: A comprehensive review of regulatory signaling and therapeutic implications. Semin Cancer Biol 2024; 106-107:58-86. [PMID: 39197810 DOI: 10.1016/j.semcancer.2024.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/11/2024] [Accepted: 08/20/2024] [Indexed: 09/01/2024]
Abstract
Phosphoinositide 3-kinase (PI3K) is responsible for phosphorylating phosphoinositides to generate secondary signaling molecules crucial for regulating various cellular processes, including cell growth, survival, and metabolism. The PI3K is a heterodimeric enzyme complex comprising of a catalytic subunit (p110α, p110β, or p110δ) and a regulatory subunit (p85). The binding of the regulatory subunit, p85, with the catalytic subunit, p110, forms an integral component of the PI3K enzyme. PIK3R1 (phosphoinositide-3-kinase regulatory subunit 1) belongs to class IA of the PI3K family. PIK3R1 exhibits structural complexity due to alternative splicing, giving rise to distinct isoforms, prominently p85α and p55α. While the primary p85α isoform comprises multiple domains, including Src homology 3 (SH3) domains, a Breakpoint Cluster Region Homology (BH) domain, and Src homology 2 (SH2) domains (iSH2 and nSH2), the shorter isoform, p55α, lacks certain domains present in p85α. In this review, we will highlight the intricate regulatory mechanisms governing PI3K signaling along with the impact of PIK3R1 alterations on cellular processes. We will further delve into the clinical significance of PIK3R1 mutations in various cancer types and their implications for prognosis and treatment outcomes. Additionally, we will discuss the evolving landscape of targeted therapies aimed at modulating PI3K-associated pathways. Overall, this review will provide insights into the dynamic interplay of PIK3R1 in cancer, fostering advancements in precision medicine and the development of targeted interventions.
Collapse
Affiliation(s)
- Ishita Gupta
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA
| | - Daria A Gaykalova
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, USA; Department of Otorhinolaryngology-Head and Neck Surgery, Marlene & Stewart Greenebaum Comprehensive Cancer Center, University of Maryland Medical Center, Baltimore, MD, USA; Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
9
|
Liu T, Yuan J, Dai C, Chen MX, Fan J, Humphreys BD, Fulton DJR, Kleven DT, Fan X, Dong Z, Chen JK. Pik3c3 expression profiling in the mouse kidney and its role in proximal tubule cell physiology. Am J Physiol Cell Physiol 2024; 327:C1094-C1110. [PMID: 39250817 PMCID: PMC11481994 DOI: 10.1152/ajpcell.00564.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/11/2024]
Abstract
The class 3 phosphatidylinositol 3-kinase (Pik3c3) plays critical roles in regulating autophagy, endocytosis, and nutrient sensing, but its expression profile in the kidney remains undefined. Recently, we validated a Pik3c3 antibody through immunofluorescence staining of kidney tissues from cell type-specific Pik3c3 knockout mice. Immunohistochemistry unveiled significant disparities in Pik3c3 expression levels across various kidney cell types. Notably, renal interstitial cells exhibit minimal Pik3c3 expression. Further, coimmunofluorescence staining, utilizing nephron segment- or cell type-specific markers, revealed nearly undetectable levels of Pik3c3 expression in glomerular mesangial cells and endothelial cells. Intriguingly, although podocytes exhibit the highest Pik3c3 expression levels among all kidney cell types, the renal proximal tubule cells (RPTCs) express the highest level of Pik3c3 among all renal tubules. RPTCs are known to express the highest level of the epidermal growth factor receptor (EGFR) in adult kidneys; however, the role of Pik3c3 in EGFR signaling within RPTCs remains unexplored. Therefore, we conducted additional cell culture studies. The results demonstrated that Pik3c3 inhibition significantly delayed EGF-stimulated EGFR degradation and the termination of EGFR signaling in RPTCs. Mechanistically, Pik3c3 inhibition surprisingly did not affect the initial endocytosis process but instead impeded the lysosomal degradation of EGFR. In summary, this study defines, for the first time, the expression profile of Pik3c3 in the mouse kidney and also highlights a pivotal role of Pik3c3 in the proximal tubule cells. These findings shed light on the intricate mechanisms underlying Pik3c3-mediated regulation of EGFR signaling, providing valuable insights into the role of Pik3c3 in renal cell physiology. NEW & NOTEWORTHY This is the first report defining the class 3 phosphatidylinositol 3-kinase (Pik3c3) expression profile in the kidney. Pik3c3 is nearly absent in renal interstitial cells, glomerular mesangial cells, and endothelial cells. Remarkably, glomerular podocytes express the highest Pik3c3 level in the kidney. However, the proximal tubule exhibits the highest expression level among all renal tubules. This study also unveils the pivotal role of Pik3c3 in regulating EGFR degradation and signaling termination in RPTCs, furthering our understanding of Pik3c3 in renal cell physiology.
Collapse
Affiliation(s)
- Ting Liu
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Jialing Yuan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Caihong Dai
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Mystie X Chen
- Geisinger Commonwealth School of Medicine, Scranton, Pennsylvania, United States
| | - Jerry Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Lakeside High School, Evans, Georgia, United States
| | - Benjamin D Humphreys
- Division of Nephrology, Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| | - David J R Fulton
- Vascular Biology Center, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Pharmacology and Toxicology, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Daniel T Kleven
- Athens Regional Pathology, Piedmont Athens Regional Hospital, Athens, Georgia, United States
| | - Xingjun Fan
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Charlie Norwood Veterans Affairs Medical Center, Augusta, Georgia, United States
| | - Jian-Kang Chen
- Department of Cellular Biology and Anatomy, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
- Department of Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, United States
| |
Collapse
|
10
|
Desmarini D, Liu G, Jessen H, Bowring B, Connolly A, Crossett B, Djordjevic JT. Arg1 from Cryptococcus neoformans lacks PI3 kinase activity and conveys virulence roles via its IP 3-4 kinase activity. mBio 2024; 15:e0060824. [PMID: 38742909 PMCID: PMC11237472 DOI: 10.1128/mbio.00608-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/18/2024] [Indexed: 05/16/2024] Open
Abstract
Inositol tris/tetrakis phosphate kinases (IP3-4K) in the human fungal priority pathogens, Cryptococcus neoformans (CnArg1) and Candida albicans (CaIpk2), convey numerous virulence functions, yet it is not known whether the IP3-4K catalytic activity or a scaffolding role is responsible. We therefore generated a C. neoformans strain with a non-functional kinase, referred to as the dead-kinase (dk) CnArg1 strain (dkArg1). We verified that, although dkARG1 cDNA cloned from this strain produced a protein with the expected molecular weight, dkArg1 was catalytically inactive with no IP3-4K activity. Using recombinant CnArg1 and CaIpk2, we confirmed that, unlike the IP3-4K homologs in humans and Saccharomyces cerevisiae, CnArg1 and CaIpk2 do not phosphorylate the lipid-based substrate, phosphatidylinositol 4,5-bisphosphate, and therefore do not function as class I PI3Ks. Inositol polyphosphate profiling using capillary electrophoresis-electrospray ionization-mass spectrometry revealed that IP3 conversion is blocked in the dkArg1 and ARG1 deletion (Cnarg1Δ) strains and that 1-IP7 and a recently discovered isomer (4/6-IP7) are made by wild-type C. neoformans. Importantly, the dkArg1 and Cnarg1Δ strains had similar virulence defects, including suppressed growth at 37°C, melanization, capsule production, and phosphate starvation response, and were avirulent in an insect model, confirming that virulence is dependent on IP3-4K catalytic activity. Our data also implicate the dkArg1 scaffold in transcriptional regulation of arginine metabolism but via a different mechanism to S. cerevisiae since CnArg1 is dispensable for growth on different nitrogen sources. IP3-4K catalytic activity therefore plays a dominant role in fungal virulence, and IPK pathway function has diverged in fungal pathogens.IMPORTANCEThe World Health Organization has emphasized the urgent need for global action in tackling the high morbidity and mortality rates stemming from invasive fungal infections, which are exacerbated by the limited variety and compromised effectiveness of available drug classes. Fungal IP3-4K is a promising target for new therapy, as it is critical for promoting virulence of the human fungal priority pathogens, Cryptococcus neoformans and Candida albicans, and impacts numerous functions, including cell wall integrity. This contrasts to current therapies, which only target a single function. IP3-4K enzymes exert their effect through their inositol polyphosphate products or via the protein scaffold. Here, we confirm that the IP3-4K catalytic activity of CnArg1 promotes all virulence traits in C. neoformans that are attenuated by ARG1 deletion, reinforcing our ongoing efforts to find inositol polyphosphate effector proteins and to create inhibitors targeting the IP3-4K catalytic site, as a new antifungal drug class.
Collapse
Affiliation(s)
- Desmarini Desmarini
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
| | - Guizhen Liu
- Institute of Organic Chemistry, University of Freiburg, Freiburg im Breisgau, Germany
- Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Henning Jessen
- Institute of Organic Chemistry, University of Freiburg, Freiburg im Breisgau, Germany
- Centre for Integrative Biological Signaling Studies, University of Freiburg, Freiburg im Breisgau, Germany
| | - Bethany Bowring
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
| | - Angela Connolly
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - Ben Crossett
- Sydney Mass Spectrometry, University of Sydney, Sydney, Australia
| | - Julianne Teresa Djordjevic
- Centre for Infectious Diseases and Microbiology, The Westmead Institute for Medical Research, Sydney, Australia
- Faculty of Medicine and Health, Sydney Institute for Infectious Diseases, University of Sydney, Sydney, Australia
- Westmead Hospital, Western Sydney Local Health District, Sydney, Australia
| |
Collapse
|
11
|
Singh K, Das S, Sutradhar S, Howard J, Ray K. Insulin signaling accelerates the anterograde movement of Rab4 vesicles in axons through Klp98A/KIF16B recruitment via Vps34-PI3Kinase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.24.590898. [PMID: 38895253 PMCID: PMC11185528 DOI: 10.1101/2024.04.24.590898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Rab4 GTPase organizes endosomal sorting essential for maintaining the balance between recycling and degradative pathways. Rab4 localizes to many cargos whose transport in neurons is critical for regulating neurotransmission and neuronal health. Furthermore, elevated Rab4 levels in the CNS are associated with synaptic atrophy and neurodegeneration in Drosophila and humans, respectively. However, how the transport of Rab4-associated vesicles is regulated in neurons remains unknown. Using in vivo time-lapse imaging of Drosophila larvae, we show that activation of insulin signaling via Dilp2 and dInR increases the anterograde velocity, run length, and flux of Rab4 vesicles in the axons. Molecularly, we show that activation of neuronal insulin signaling further activates Vps34, elevates the levels of PI(3)P on Rab4-associated vesicles, recruits Klp98A (a PI(3)P-binding kinesin-3 motor) and activates their anterograde transport. Together, these observations delineate the role of insulin signaling in regulating axonal transport and synaptic homeostasis.
Collapse
Affiliation(s)
- Kamaldeep Singh
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai - 400005, India
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT - 06520, United States
| | - Semanti Das
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai - 400005, India
| | - Sabyasachi Sutradhar
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT - 06520, United States
| | - Jonathon Howard
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT - 06520, United States
| | - Krishanu Ray
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai - 400005, India
- National Brain Research Centre, Manesar, Haryana – 122051, India
| |
Collapse
|
12
|
Klössel S, Zhu Y, Amado L, Bisinski DD, Ruta J, Liu F, González Montoro A. Yeast TLDc domain proteins regulate assembly state and subcellular localization of the V-ATPase. EMBO J 2024; 43:1870-1897. [PMID: 38589611 PMCID: PMC11066047 DOI: 10.1038/s44318-024-00097-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/06/2024] [Accepted: 03/08/2024] [Indexed: 04/10/2024] Open
Abstract
Yeast vacuoles perform crucial cellular functions as acidic degradative organelles, storage compartments, and signaling hubs. These functions are mediated by important protein complexes, including the vacuolar-type H+-ATPase (V-ATPase), responsible for organelle acidification. To gain a more detailed understanding of vacuole function, we performed cross-linking mass spectrometry on isolated vacuoles, detecting many known as well as novel protein-protein interactions. Among these, we identified the uncharacterized TLDc-domain-containing protein Rtc5 as a novel interactor of the V-ATPase. We further analyzed the influence of Rtc5 and of Oxr1, the only other yeast TLDc-domain-containing protein, on V-ATPase function. We find that both Rtc5 and Oxr1 promote the disassembly of the vacuolar V-ATPase in vivo, counteracting the role of the RAVE complex, a V-ATPase assembly chaperone. Furthermore, Oxr1 is necessary for the retention of a Golgi-specific subunit of the V-ATPase in this compartment. Collectively, our results shed light on the in vivo roles of yeast TLDc-domain proteins as regulators of the V-ATPase, highlighting the multifaceted regulation of this crucial protein complex.
Collapse
Affiliation(s)
- Samira Klössel
- Osnabrück University, Department of Biology/Chemistry, Cellular Communication Laboratory, Barbarastrasse 13, 49076, Osnabrück, Germany
| | - Ying Zhu
- Department of Structural Biology, Leibniz - Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, Berlin, 13125, Germany
| | - Lucia Amado
- Osnabrück University, Department of Biology/Chemistry, Cellular Communication Laboratory, Barbarastrasse 13, 49076, Osnabrück, Germany
| | - Daniel D Bisinski
- Osnabrück University, Department of Biology/Chemistry, Cellular Communication Laboratory, Barbarastrasse 13, 49076, Osnabrück, Germany
| | - Julia Ruta
- Department of Structural Biology, Leibniz - Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, Berlin, 13125, Germany
| | - Fan Liu
- Department of Structural Biology, Leibniz - Forschungsinstitut für Molekulare Pharmakologie (FMP), Robert-Roessle-Str. 10, Berlin, 13125, Germany
- Charité - Universitätsmedizin Berlin, Charitépl. 1, 10117, Berlin, Germany
| | - Ayelén González Montoro
- Osnabrück University, Department of Biology/Chemistry, Cellular Communication Laboratory, Barbarastrasse 13, 49076, Osnabrück, Germany.
- Osnabrück University, Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Barbarastrasse 11, 49076, Osnabrück, Germany.
| |
Collapse
|
13
|
Khezri MR, Mohammadipanah S, Ghasemnejad-Berenji M. The pharmacological effects of Berberine and its therapeutic potential in different diseases: Role of the phosphatidylinositol 3-kinase/AKT signaling pathway. Phytother Res 2024; 38:349-367. [PMID: 37922566 DOI: 10.1002/ptr.8040] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/15/2023] [Accepted: 09/30/2023] [Indexed: 11/07/2023]
Abstract
The phosphatidylinositol 3-kinase (PI3K)/AKT signaling pathway plays a central role in cell growth and survival and is disturbed in various pathologies. The PI3K is a kinase that generates phosphatidylinositol-3,4,5-trisphosphate (PI (3-5) P3), as a second messenger responsible for the translocation of AKT to the plasma membrane and its activation. However, due to the crucial role of the PI3K/AKT pathway in regulation of cell survival processes, it has been introduced as a main therapeutic target for natural compounds during the progression of different pathologies. Berberine, a plant-derived isoquinone alkaloid, is known because of its anti-inflammatory, antioxidant, antidiabetic, and antitumor properties. The effect of this natural compound on cell survival processes has been shown to be mediated by modulation of the intracellular pathways. However, the effects of this natural compound on the PI3K/AKT pathway in various pathologies have not been reviewed so far. Therefore, this paper aims to review the PI3K/AKT-mediated effects of Berberine in different types of cancer, diabetes, cardiovascular, and central nervous system diseases.
Collapse
Affiliation(s)
- Mohammad Rafi Khezri
- Student Research Committee, Urmia University of Medical Sciences, Urmia, Iran
- School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | | | - Morteza Ghasemnejad-Berenji
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
- Research Center for Experimental and Applied Pharmaceutical Sciences, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
14
|
Giner-Llorca M, Locascio A, Del Real JA, Marcos JF, Manzanares P. Novel findings about the mode of action of the antifungal protein PeAfpA against Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2023; 107:6811-6829. [PMID: 37688596 PMCID: PMC10589166 DOI: 10.1007/s00253-023-12749-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/13/2023] [Accepted: 08/24/2023] [Indexed: 09/11/2023]
Abstract
Antifungal proteins (AFPs) from filamentous fungi offer the potential to control fungal infections that threaten human health and food safety. AFPs exhibit broad antifungal spectra against harmful fungi, but limited knowledge of their killing mechanism hinders their potential applicability. PeAfpA from Penicillium expansum shows strong antifungal potency against plant and human fungal pathogens and stands above other AFPs for being active against the yeast Saccharomyces cerevisiae. We took advantage of this and used a model laboratory strain of S. cerevisiae to gain insight into the mode of action of PeAfpA by combining (i) transcriptional profiling, (ii) PeAfpA sensitivity analyses of deletion mutants available in the S. cerevisiae genomic deletion collection and (iii) cell biology studies using confocal microscopy. Results highlighted and confirmed the role of the yeast cell wall (CW) in the interaction with PeAfpA, which can be internalized through both energy-dependent and independent mechanisms. The combined results also suggest an active role of the CW integrity (CWI) pathway and the cAMP-PKA signalling in the PeAfpA killing mechanism. Besides, our studies revealed the involvement of phosphatidylinositol metabolism and the participation of ROX3, which codes for the subunit 19 of the RNA polymerase II mediator complex, in the yeast defence strategy. In conclusion, our study provides clues about both the killing mechanism of PeAfpA and the fungus defence strategies against the protein, suggesting also targets for the development of new antifungals. KEY POINTS: • PeAfpA is a cell-penetrating protein with inhibitory activity against S. cerevisiae. • The CW integrity (CWI) pathway is a key player in the PeAfpA killing mechanism. • Phosphatidylinositol metabolism and ROX3 are involved in the yeast defence strategy.
Collapse
Affiliation(s)
- Moisés Giner-Llorca
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Antonella Locascio
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Javier Alonso Del Real
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Jose F Marcos
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain
| | - Paloma Manzanares
- Department of Food Biotechnology, Instituto de Agroquímica y Tecnología de Alimentos (IATA), Consejo Superior de Investigaciones Científicas (CSIC), Catedrático Agustín Escardino 7, Paterna, Valencia, 46980, Spain.
| |
Collapse
|
15
|
Wang T, Li X, Liu N, Yang Y, Gong Q. TurboID-based proximity labelling reveals a connection between VPS34 and cellular homeostasis. JOURNAL OF PLANT PHYSIOLOGY 2023; 289:154100. [PMID: 37748420 DOI: 10.1016/j.jplph.2023.154100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 09/27/2023]
Abstract
Unlike animals, plants and yeasts only have a class III phosphatidylinositol 3-kinase (PI3KC3). Its lipid product, phosphatidylinositol 3-phosphate (PtdIns-3-P, PI3P), organizes intracellular trafficking routes such as autophagosome formation, multivesicular body (MVB) formation, retro-transport from trans-Golgi network (TGN) to late Golgi, and the fusion events between autophagosomes and MVBs and the vacuole. The catalytic subunit of plant PI3KC3 is encoded by the essential gene Vacuolar Protein Sorting 34 (VPS34). Despite the importance of VPS34 in cellular homeostasis and plant development, a VPS34 interactome is lacking. Here we employed TurboID, an enzyme-catalyzed proximity labelling (PL) method, to describe a proximal interactome of Arabidopsis VPS34. TurboID catalyzed spatially restricted biotinylation and enabled VPS34-specific enrichment of 273 proteins from affinity purification coupled with mass spectrometry. The interactome confirmed known functions of VPS34 in endo-lysosomal trafficking. Intriguingly, carbohydrate metabolism was the most enriched Gene Ontology (GO) term, including glycolytic enzymes in the triose portion and enzymes functioning in chloroplast triose export and sucrose biosynthesis. The interaction between VPS34 and the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH, GAPC1/2) was validated in planta. Also verified was the interaction between VPS34 and the plasma membrane H+-ATPase AHA2, a primary determinant of membrane potential. Our study links PI3KC3 to carbohydrate metabolism and membrane potential, two key processes that maintain cellular homeostasis.
Collapse
Affiliation(s)
- Taotao Wang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xinjing Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Ningjing Liu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Yi Yang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, PR China.
| |
Collapse
|
16
|
Drury F, Grover M, Hintze M, Saunders J, Fasseas MK, Constantinou C, Barkoulas M. A PAX6-regulated receptor tyrosine kinase pairs with a pseudokinase to activate immune defense upon oomycete recognition in Caenorhabditis elegans. Proc Natl Acad Sci U S A 2023; 120:e2300587120. [PMID: 37725647 PMCID: PMC10523662 DOI: 10.1073/pnas.2300587120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 08/21/2023] [Indexed: 09/21/2023] Open
Abstract
Oomycetes were recently discovered as natural pathogens of Caenorhabditis elegans, and pathogen recognition alone was shown to be sufficient to activate a protective transcriptional program characterized by the expression of multiple chitinase-like (chil) genes. However, the molecular mechanisms underlying oomycete recognition in animals remain fully unknown. We performed here a forward genetic screen to uncover regulators of chil gene induction and found several independent loss-of-function alleles of old-1 and flor-1, which encode receptor tyrosine kinases belonging to the C. elegans-specific KIN-16 family. We report that OLD-1 and FLOR-1 are both necessary for mounting the immune response and act in the epidermis. FLOR-1 is a pseudokinase that acts downstream of the active kinase OLD-1 and regulates OLD-1 levels at the plasma membrane. Interestingly, the old-1 locus is adjacent to the chil genes in the C. elegans genome, thereby revealing a genetic cluster important for oomycete resistance. Furthermore, we demonstrate that old-1 expression at the anterior side of the epidermis is regulated by the VAB-3/PAX6 transcription factor, well known for its role in visual system development in other animals. Taken together, our study reveals both conserved and species-specific factors shaping the activation and spatial characteristics of the immune response to oomycete recognition.
Collapse
Affiliation(s)
- Florence Drury
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Manish Grover
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Mark Hintze
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Jonathan Saunders
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Michael K. Fasseas
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Charis Constantinou
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| | - Michalis Barkoulas
- Department of Life Sciences, Imperial College, LondonSW7 2AZ, United Kingdom
| |
Collapse
|
17
|
Nenadic A, Zaman MF, Johansen J, Volpiana MW, Beh CT. Increased Phospholipid Flux Bypasses Overlapping Essential Requirements for the Yeast Sac1p Phosphoinositide Phosphatase and ER-PM Membrane Contact Sites. J Biol Chem 2023; 299:105092. [PMID: 37507017 PMCID: PMC10470028 DOI: 10.1016/j.jbc.2023.105092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 07/13/2023] [Accepted: 07/17/2023] [Indexed: 07/30/2023] Open
Abstract
In budding yeast cells, much of the inner surface of the plasma membrane (PM) is covered with the endoplasmic reticulum (ER). This association is mediated by seven ER membrane proteins that confer cortical ER-PM association at membrane contact sites (MCSs). Several of these membrane "tether" proteins are known to physically interact with the phosphoinositide phosphatase Sac1p. However, it is unclear how or if these interactions are necessary for their interdependent functions. We find that SAC1 inactivation in cells lacking the homologous synaptojanin-like genes INP52 and INP53 results in a significant increase in cortical ER-PM MCSs. We show in sac1Δ, sac1tsinp52Δ inp53Δ, or Δ-super-tether (Δ-s-tether) cells lacking all seven ER-PM tethering genes that phospholipid biosynthesis is disrupted and phosphoinositide distribution is altered. Furthermore, SAC1 deletion in Δ-s-tether cells results in lethality, indicating a functional overlap between SAC1 and ER-PM tethering genes. Transcriptomic profiling indicates that SAC1 inactivation in either Δ-s-tether or inp52Δ inp53Δ cells induces an ER membrane stress response and elicits phosphoinositide-dependent changes in expression of autophagy genes. In addition, by isolating high-copy suppressors that rescue sac1Δ Δ-s-tether lethality, we find that key phospholipid biosynthesis genes bypass the overlapping function of SAC1 and ER-PM tethers and that overexpression of the phosphatidylserine/phosphatidylinositol-4-phosphate transfer protein Osh6 also provides limited suppression. Combined with lipidomic analysis and determinations of intracellular phospholipid distributions, these results suggest that Sac1p and ER phospholipid flux controls lipid distribution to drive Osh6p-dependent phosphatidylserine/phosphatidylinositol-4-phosphate counter-exchange at ER-PM MCSs.
Collapse
Affiliation(s)
- Aleksa Nenadic
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Mohammad F Zaman
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Jesper Johansen
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Matthew W Volpiana
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Christopher T Beh
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, British Columbia, Canada; Centre for Cell Biology, Development, and Disease, Simon Fraser University, Burnaby, British Columbia, Canada.
| |
Collapse
|
18
|
Abstract
Phosphoinositides (PIs) are phospholipids derived from phosphatidylinositol. PIs are regulated via reversible phosphorylation, which is directed by the opposing actions of PI kinases and phosphatases. PIs constitute a minor fraction of the total cellular lipid pool but play pleiotropic roles in multiple aspects of cell biology. Genetic mutations of PI regulatory enzymes have been identified in rare congenital developmental syndromes, including ciliopathies, and in numerous human diseases, such as cancer and metabolic and neurological disorders. Accordingly, PI regulatory enzymes have been targeted in the design of potential therapeutic interventions for human diseases. Recent advances place PIs as central regulators of membrane dynamics within functionally distinct subcellular compartments. This brief review focuses on the emerging role PIs play in regulating cell signaling within the primary cilium and in directing transfer of molecules at interorganelle membrane contact sites and identifies new roles for PIs in subcellular spaces.
Collapse
Affiliation(s)
- Elizabeth Michele Davies
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Christina Anne Mitchell
- Cancer Program, Monash Biomedicine Discovery Institute and Department of Biochemistry and Molecular Biology, Monash University, Victoria 3800, Australia
| | - Harald Alfred Stenmark
- Department of Molecular Cell Biology, Institute for Cancer Research. The Norwegian Radium Hospital, Montebello, N-0379 Oslo, Norway
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Montebello, N-0379 Oslo, Norway
| |
Collapse
|
19
|
Hu Z, Luo Y, Liu Y, Luo Y, Wang L, Gou S, Peng Y, Wei R, Jia D, Wang Y, Gao S, Zhang Y. Partial inhibition of class III PI3K VPS-34 ameliorates motor aging and prolongs health span. PLoS Biol 2023; 21:e3002165. [PMID: 37432924 DOI: 10.1371/journal.pbio.3002165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 05/13/2023] [Indexed: 07/13/2023] Open
Abstract
Global increase of life expectancy is rarely accompanied by increased health span, calling for a greater understanding of age-associated behavioral decline. Motor independence is strongly associated with the quality of life of elderly people, yet the regulators for motor aging have not been systematically explored. Here, we designed a fast and efficient genome-wide screening assay in Caenorhabditis elegans and identified 34 consistent genes as potential regulators of motor aging. Among the top hits, we found VPS-34, the class III phosphatidylinositol 3-kinase that phosphorylates phosphatidylinositol (PI) to phosphatidylinositol 3-phosphate (PI(3)P), regulates motor function in aged but not young worms. It primarily functions in aged motor neurons by inhibiting PI(3)P-PI-PI(4)P conversion to reduce neurotransmission at the neuromuscular junction (NMJ). Genetic and pharmacological inhibition of VPS-34 improve neurotransmission and muscle integrity, ameliorating motor aging in both worms and mice. Thus, our genome-wide screening revealed an evolutionarily conserved, actionable target to delay motor aging and prolong health span.
Collapse
Affiliation(s)
- Zhongliang Hu
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yamei Luo
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yuting Liu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yaru Luo
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liangce Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shengsong Gou
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuling Peng
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Rui Wei
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Da Jia
- Key Laboratory of Birth Defects and Related Diseases of Women and Children, Department of Pediatrics, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Yuan Wang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Shangbang Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Zhang
- National Clinical Research Center for Geriatrics, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
20
|
Park JS, Perl A. Endosome Traffic Modulates Pro-Inflammatory Signal Transduction in CD4 + T Cells-Implications for the Pathogenesis of Systemic Lupus Erythematosus. Int J Mol Sci 2023; 24:10749. [PMID: 37445926 DOI: 10.3390/ijms241310749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/10/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Endocytic recycling regulates the cell surface receptor composition of the plasma membrane. The surface expression levels of the T cell receptor (TCR), in concert with signal transducing co-receptors, regulate T cell responses, such as proliferation, differentiation, and cytokine production. Altered TCR expression contributes to pro-inflammatory skewing, which is a hallmark of autoimmune diseases, such as systemic lupus erythematosus (SLE), defined by a reduced function of regulatory T cells (Tregs) and the expansion of CD4+ helper T (Th) cells. The ensuing secretion of inflammatory cytokines, such as interferon-γ and interleukin (IL)-4, IL-17, IL-21, and IL-23, trigger autoantibody production and tissue infiltration by cells of the adaptive and innate immune system that induce organ damage. Endocytic recycling influences immunological synapse formation by CD4+ T lymphocytes, signal transduction from crosslinked surface receptors through recruitment of adaptor molecules, intracellular traffic of organelles, and the generation of metabolites to support growth, cytokine production, and epigenetic control of DNA replication and gene expression in the cell nucleus. This review will delineate checkpoints of endosome traffic that can be targeted for therapeutic interventions in autoimmune and other disease conditions.
Collapse
Affiliation(s)
- Joy S Park
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| | - Andras Perl
- Department of Medicine, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Biochemistry and Molecular Biology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
- Department of Microbiology and Immunology, Norton College of Medicine, State University of New York, Upstate Medical University, Syracuse, NY 13210, USA
| |
Collapse
|
21
|
Cabral-Dias R, Antonescu CN. Control of phosphatidylinositol-3-kinase signaling by nanoscale membrane compartmentalization. Bioessays 2023; 45:e2200196. [PMID: 36567275 DOI: 10.1002/bies.202200196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 09/12/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Phosphatidylinositol-3-kinases (PI3Ks) are lipid kinases that produce 3-phosphorylated derivatives of phosphatidylinositol upon activation by various cues. These 3-phosphorylated lipids bind to various protein effectors to control many cellular functions. Lipid phosphatases such as phosphatase and tensin homolog (PTEN) terminate PI3K-derived signals and are critical to ensure appropriate signaling outcomes. Many lines of evidence indicate that PI3Ks and PTEN, as well as some specific lipid effectors are highly compartmentalized, either in plasma membrane nanodomains or in endosomal compartments. We examine the evidence for specific recruitment of PI3Ks, PTEN, and other related enzymes to membrane nanodomains and endocytic compartments. We then examine the hypothesis that scaffolding of the sources (PI3Ks), terminators (PTEN), and effectors of these lipid signals with a common plasma membrane nanodomain may achieve highly localized lipid signaling and ensure selective activation of specific effectors. This highlights the importance of spatial regulation of PI3K signaling in various physiological and disease contexts.
Collapse
Affiliation(s)
- Rebecca Cabral-Dias
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| | - Costin N Antonescu
- Department of Chemistry and Biology and Graduate Program in Molecular Science, Toronto Metropolitan University, Toronto, Ontario, Canada
| |
Collapse
|
22
|
Hewitt N, Ma N, Arang N, Martin SA, Prakash A, DiBerto JF, Knight KM, Ghosh S, Olsen RHJ, Roth BL, Gutkind JS, Vaidehi N, Campbell SL, Dohlman HG. Catalytic site mutations confer multiple states of G protein activation. Sci Signal 2023; 16:eabq7842. [PMID: 36787384 PMCID: PMC10021883 DOI: 10.1126/scisignal.abq7842] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 01/31/2023] [Indexed: 02/16/2023]
Abstract
Heterotrimeric guanine nucleotide-binding proteins (G proteins) that function as molecular switches for cellular growth and metabolism are activated by GTP and inactivated by GTP hydrolysis. In uveal melanoma, a conserved glutamine residue critical for GTP hydrolysis in the G protein α subunit is often mutated in Gαq or Gα11 to either leucine or proline. In contrast, other glutamine mutations or mutations in other Gα subtypes are rare. To uncover the mechanism of the genetic selection and the functional role of this glutamine residue, we analyzed all possible substitutions of this residue in multiple Gα isoforms. Through cell-based measurements of activity, we showed that some mutants were further activated and inactivated by G protein-coupled receptors. Through biochemical, molecular dynamics, and nuclear magnetic resonance-based structural studies, we showed that the Gα mutants were functionally distinct and conformationally diverse, despite their shared inability to hydrolyze GTP. Thus, the catalytic glutamine residue contributes to functions beyond GTP hydrolysis, and these functions include subtype-specific, allosteric modulation of receptor-mediated subunit dissociation. We conclude that G proteins do not function as simple on-off switches. Rather, signaling emerges from an ensemble of active states, a subset of which are favored in disease and may be uniquely responsive to receptor-directed ligands.
Collapse
Affiliation(s)
- Natalie Hewitt
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Nadia Arang
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Sarah A. Martin
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ajit Prakash
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffrey F. DiBerto
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Kevin M. Knight
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Soumadwip Ghosh
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
- Current address: Illumina Inc, 5200 Illumina Way, San Diego, CA 92037, USA
| | - Reid H. J. Olsen
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Current address: GPCR Pharmacology, Discovery Biology, Exscientia Ai, Oxford, UK OX4 4GE
| | - Bryan L. Roth
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - J. Silvio Gutkind
- Department of Pharmacology, University of California San Diego, San Diego, CA, 92093, USA
- Moores Cancer Center, University of California San Diego, La Jolla, CA 92093, USA
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA 91010, USA
| | - Sharon L. Campbell
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Henrik G. Dohlman
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
23
|
Sun X, Liang Y, Wang Y, Zhang H, Zhao T, Yao B, Luo H, Huang H, Su X. Simultaneous manipulation of multiple genes within a same regulatory stage for iterative evolution of Trichoderma reesei. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:26. [PMID: 35248141 PMCID: PMC8898424 DOI: 10.1186/s13068-022-02122-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 02/19/2022] [Indexed: 11/12/2022]
Abstract
Background While there is growing interest in developing non-canonical filamentous fungi as hosts for producing secretory proteins, genetic engineering of filamentous fungi for improved expression often relies heavily on the understanding of regulatory mechanisms. Results In this study, using the cellulase-producing filamentous fungus Trichoderma reesei as a model system, we designed a semi-rational strategy by arbitrarily dividing the regulation of cellulase production into three main stages-transcription, secretion, and cell metabolism. Selected regulatory or functional genes that had been experimentally verified or predicted to enhance cellulase production were overexpressed using strong inducible or constitutive promoters, while those that would inhibit cellulase production were repressed via RNAi-mediated gene silencing. A T. reesei strain expressing the surface-displayed DsRed fluorescent protein was used as the recipient strain. After three consecutive rounds of engineering, the cellulase activity increased to up to 4.35-fold and the protein concentration increased to up to 2.97-fold in the genetically modified strain. Conclusions We demonstrated that, as a proof-of-concept, selected regulatory or functional genes within an arbitrarily defined stage could be pooled to stimulate secretory cellulase production, and moreover, this method could be iteratively used for further improvement. This method is semi-rational and can essentially be used in filamentous fungi with little regulatory information. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02122-0.
Collapse
|
24
|
Vps21 Directs the PI3K-PI(3)P-Atg21-Atg16 Module to Phagophores via Vps8 for Autophagy. Int J Mol Sci 2022; 23:ijms23179550. [PMID: 36076954 PMCID: PMC9455592 DOI: 10.3390/ijms23179550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/20/2022] [Accepted: 08/21/2022] [Indexed: 11/28/2022] Open
Abstract
Phosphatidylinositol 3-phosphate (PI(3)P) serves important functions in endocytosis, phagocytosis, and autophagy. PI(3)P is generated by Vps34 of the class III phosphatidylinositol 3-kinase (PI3K) complex. The Vps34-PI3K complex can be divided into Vps34-PI3K class II (containing Vps38, endosomal) and Vps34-PI3K class I (containing Atg14, autophagosomal). Most PI(3)Ps are associated with endosomal membranes. In yeast, the endosomal localization of Vps34 and PI(3)P is tightly regulated by Vps21-module proteins. At yeast phagophore assembly site (PAS) or mammalian omegasomes, PI(3)P binds to WD-repeat protein interacting with phosphoinositide (WIPI) proteins to further recruit two conjugation systems, Atg5-Atg12·Atg16 and Atg8-PE (LC3-II), to initiate autophagy. However, the spatiotemporal regulation of PI(3)P during autophagy remains obscure. Therefore, in this study, we determined the effect of Vps21 on localization and interactions of Vps8, Vps34, Atg21, Atg8, and Atg16 upon autophagy induction. The results showed that Vps21 was required for successive colocalizations and interactions of Vps8-Vps34 and Vps34-Atg21 on endosomes, and Atg21-Atg8/Atg16 on the PAS. In addition to disrupted localization of the PI3K complex II subunits Vps34 and Vps38 on endosomes, the localization of the PI3K complex I subunits Vps34 and Atg14, as well as Atg21, was partly disrupted from the PAS in vps21∆ cells. The impaired PI3K-PI(3)P-Atg21-Atg16 axis in vps21∆ cells might delay autophagy, which is consistent with the delay of early autophagy when Atg21 was absent. This study provides the first insight into the upstream sequential regulation of the PI3K-PI(3)P-Atg21-Atg16 module by Vps21 in autophagy.
Collapse
|
25
|
Heterologous Expressed NbSWP12 from Microsporidia Nosema bombycis Can Bind with Phosphatidylinositol 3-phosphate and Affect Vesicle Genesis. J Fungi (Basel) 2022; 8:jof8080764. [PMID: 35893133 PMCID: PMC9332396 DOI: 10.3390/jof8080764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/15/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
Microsporidia are a big group of single-celled obligate intracellular organisms infecting most animals and some protozoans. These minimalist eukaryotes lack numerous genes in metabolism and vesicle trafficking. Here, we demonstrated that the spore wall protein NbSWP12 of microsporidium Nosema bombycis belongs to Bin/Amphiphysin/Rvs (BAR) protein family and can specifically bind with phosphatidylinositol 3-phosphate [Ptdlns(3)P]. Since Ptdlns(3)P is involved in endosomal vesicle biogenesis and trafficking, we heterologous expressed NbSWP12 in yeast Saccharomyces cerevisiae and proved that NbSWP12 can target the cell membrane and endocytic vesicles. Nbswp12 transformed into Gvp36 (a BAR protein of S. cerevisiae) deletion mutant rescued the defect phenotype of vesicular traffic. This study identified a BAR protein function in vesicle genesis and sorting and provided clues for further understanding of how microsporidia internalize nutrients and metabolites during proliferation.
Collapse
|
26
|
Yılmaz D, Culha M. Discrimination of Receptor-Mediated Endocytosis by Surface-Enhanced Raman Scattering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6281-6294. [PMID: 35549265 PMCID: PMC9134499 DOI: 10.1021/acs.langmuir.1c03305] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Cellular energy required for the maintenance of cellular life is stored in the form of adenosine triphosphate (ATP). Understanding cellular mechanisms, including ATP-dependent metabolisms, is crucial for disease diagnosis and treatment, including drug development and investigation of new therapeutic systems. As an ATP-dependent metabolism, endocytosis plays a key role not only in the internalization of molecules but also in processes including cell growth, differentiation, and signaling. To understand cellular mechanisms including endocytosis, many techniques ranging from molecular approaches to spectroscopy are used. Surface-enhanced Raman scattering (SERS) is shown to provide valuable label-free molecular information from living cells. In this study, receptor-mediated endocytosis was investigated with SERS by inhibiting endocytosis with ATP depletion agents: sodium azide (NaN3) and 2-deoxy-d-glucose (dG). Human lung bronchial epithelium (Beas-2b) cells, normal prostate epithelium (PNT1A) cells, and cervical cancer epithelium (HeLa) cells were used as models. First, the effect of NaN3 and dG on the cells were examined through cytotoxicity, apoptosis-necrosis, ATP assay, and uptake inhibition analysis. An attempt to relate the spectral changes in the cellular spectra to the studied cellular events, receptor-mediated endocytosis inhibition, was made. It was found that the effect of two different ATP depletion agents can be discriminated by SERS, and hence receptor-mediated endocytosis can be tracked from single living cells with the technique without using a label and with limited sample preparation.
Collapse
Affiliation(s)
- Deniz Yılmaz
- Faculty
of Engineering, Department of Genetics and Bioengineering, Yeditepe University, 34755 Istanbul, Turkey
| | - Mustafa Culha
- Sabanci
University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
- Department
of Ophthalmology and Internal Medicine, Morsani College of Medicine, The University of South Florida, Tampa, Florida 33612, United States
| |
Collapse
|
27
|
Walpole GFW, Pacheco J, Chauhan N, Clark J, Anderson KE, Abbas YM, Brabant-Kirwan D, Montaño-Rendón F, Liu Z, Zhu H, Brumell JH, Deiters A, Stephens LR, Hawkins PT, Hammond GRV, Grinstein S, Fairn GD. Kinase-independent synthesis of 3-phosphorylated phosphoinositides by a phosphotransferase. Nat Cell Biol 2022; 24:708-722. [PMID: 35484249 PMCID: PMC9107517 DOI: 10.1038/s41556-022-00895-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 03/08/2022] [Indexed: 01/10/2023]
Abstract
Despite their low abundance, phosphoinositides play a central role in membrane traffic and signalling. PtdIns(3,4,5)P3 and PtdIns(3,4)P2 are uniquely important, as they promote cell growth, survival and migration. Pathogenic organisms have developed means to subvert phosphoinositide metabolism to promote successful infection and their survival in host organisms. We demonstrate that PtdIns(3,4)P2 is a major product generated in host cells by the effectors of the enteropathogenic bacteria Salmonella and Shigella. Pharmacological, gene silencing and heterologous expression experiments revealed that, remarkably, the biosynthesis of PtdIns(3,4)P2 occurs independently of phosphoinositide 3-kinases. Instead, we found that the Salmonella effector SopB, heretofore believed to be a phosphatase, generates PtdIns(3,4)P2 de novo via a phosphotransferase/phosphoisomerase mechanism. Recombinant SopB is capable of generating PtdIns(3,4,5)P3 and PtdIns(3,4)P2 from PtdIns(4,5)P2 in a cell-free system. Through a remarkable instance of convergent evolution, bacterial effectors acquired the ability to synthesize 3-phosphorylated phosphoinositides by an ATP- and kinase-independent mechanism, thereby subverting host signalling to gain entry and even provoke oncogenic transformation.
Collapse
Affiliation(s)
- Glenn F W Walpole
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Jonathan Pacheco
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Neha Chauhan
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada
| | | | | | - Yazan M Abbas
- Molecular Medicine Program, Hospital for Sick Children, Toronto, Ontario, Canada
| | | | - Fernando Montaño-Rendón
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
| | - Zetao Liu
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| | - Hongxian Zhu
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - John H Brumell
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | - Gerald R V Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Sergio Grinstein
- Division of Cell Biology, Hospital for Sick Children, Toronto, Ontario, Canada.
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
| | - Gregory D Fairn
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, Ontario, Canada.
- Institute of Medical Sciences, University of Toronto, Toronto, Ontario, Canada.
- Department of Pathology, Dalhousie University, Halifax, Nova Scotia, Canada.
| |
Collapse
|
28
|
Gao J, Nicastro R, Péli-Gulli MP, Grziwa S, Chen Z, Kurre R, Piehler J, De Virgilio C, Fröhlich F, Ungermann C. The HOPS tethering complex is required to maintain signaling endosome identity and TORC1 activity. J Biophys Biochem Cytol 2022; 221:213121. [PMID: 35404387 PMCID: PMC9011323 DOI: 10.1083/jcb.202109084] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/27/2022] [Accepted: 02/28/2022] [Indexed: 12/04/2022] Open
Abstract
The endomembrane system of eukaryotic cells is essential for cellular homeostasis during growth and proliferation. Previous work showed that a central regulator of growth, namely the target of rapamycin complex 1 (TORC1), binds both membranes of vacuoles and signaling endosomes (SEs) that are distinct from multivesicular bodies (MVBs). Interestingly, the endosomal TORC1, which binds membranes in part via the EGO complex, critically defines vacuole integrity. Here, we demonstrate that SEs form at a branch point of the biosynthetic and endocytic pathways toward the vacuole and depend on MVB biogenesis. Importantly, function of the HOPS tethering complex is essential to maintain the identity of SEs and proper endosomal and vacuolar TORC1 activities. In HOPS mutants, the EGO complex redistributed to the Golgi, which resulted in a partial mislocalization of TORC1. Our study uncovers that SE function requires a functional HOPS complex and MVBs, suggesting a tight link between trafficking and signaling along the endolysosomal pathway.
Collapse
Affiliation(s)
- Jieqiong Gao
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Raffaele Nicastro
- Department of Biology, University of Fribourg, Chemin du Musée, Fribourg, Switzerland
| | | | - Sophie Grziwa
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Zilei Chen
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Rainer Kurre
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| | - Jacob Piehler
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
- Department of Biology/Chemistry, Biophysics Section, Osnabrück University, Osnabrück, Germany
| | - Claudio De Virgilio
- Department of Biology, University of Fribourg, Chemin du Musée, Fribourg, Switzerland
| | - Florian Fröhlich
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
- Department of Biology/Chemistry, Molecular Membrane Biology Section, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
- Center of Cellular Nanoanalytic Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
29
|
Laidlaw KME, Paine KM, Bisinski DD, Calder G, Hogg K, Ahmed S, James S, O’Toole PJ, MacDonald C. Endosomal cargo recycling mediated by Gpa1 and phosphatidylinositol 3-kinase is inhibited by glucose starvation. Mol Biol Cell 2022; 33:ar31. [PMID: 35080991 PMCID: PMC9250360 DOI: 10.1091/mbc.e21-04-0163] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 01/29/2023] Open
Abstract
Cell surface protein trafficking is regulated in response to nutrient availability, with multiple pathways directing surface membrane proteins to the lysosome for degradation in response to suboptimal extracellular nutrients. Internalized protein and lipid cargoes recycle back to the surface efficiently in glucose-replete conditions, but this trafficking is attenuated following glucose starvation. We find that cells with either reduced or hyperactive phosphatidylinositol 3-kinase (PI3K) activity are defective for endosome to surface recycling. Furthermore, we find that the yeast Gα subunit Gpa1, an endosomal PI3K effector, is required for surface recycling of cargoes. Following glucose starvation, mRNA and protein levels of a distinct Gα subunit Gpa2 are elevated following nuclear translocation of Mig1, which inhibits recycling of various cargoes. As Gpa1 and Gpa2 interact at the surface where Gpa2 concentrates during glucose starvation, we propose that this disrupts PI3K activity required for recycling, potentially diverting Gpa1 to the surface and interfering with its endosomal role in recycling. In support of this model, glucose starvation and overexpression of Gpa2 alter PI3K endosomal phosphoinositide production. Glucose deprivation therefore triggers a survival mechanism to increase retention of surface cargoes in endosomes and promote their lysosomal degradation.
Collapse
Affiliation(s)
| | | | | | - Grant Calder
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Karen Hogg
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sophia Ahmed
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Sally James
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Peter J. O’Toole
- Bioscience Technology Facility, Department of Biology, University of York, YO10 5DD York, UK
| | - Chris MacDonald
- York Biomedical Research Institute and Department of Biology and
| |
Collapse
|
30
|
Hao G, Zhao X, Zhang M, Ying J, Yu F, Li S, Zhang Y. Vesicle trafficking in
Arabidopsis
pollen tubes. FEBS Lett 2022; 596:2231-2242. [DOI: 10.1002/1873-3468.14343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/08/2022] [Accepted: 03/08/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Guang‐Jiu Hao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Xin‐Ying Zhao
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | | | - Jun Ying
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Fei Yu
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Sha Li
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
| | - Yan Zhang
- State Key Laboratory of Crop Biology College of Life Sciences Shandong Agricultural University Tai’an, Shandong China
- College of Life Sciences Nankai University China
- Frontiers Science Center for Cell Responses Nankai University China
| |
Collapse
|
31
|
Abstract
Phosphoinositides are signalling lipids derived from phosphatidylinositol, a ubiquitous phospholipid in the cytoplasmic leaflet of eukaryotic membranes. Initially discovered for their roles in cell signalling, phosphoinositides are now widely recognized as key integrators of membrane dynamics that broadly impact on all aspects of cell physiology and on disease. The past decade has witnessed a vast expansion of our knowledge of phosphoinositide biology. On the endocytic and exocytic routes, phosphoinositides direct the inward and outward flow of membrane as vesicular traffic is coupled to the conversion of phosphoinositides. Moreover, recent findings on the roles of phosphoinositides in autophagy and the endolysosomal system challenge our view of lysosome biology. The non-vesicular exchange of lipids, ions and metabolites at membrane contact sites in between organelles has also been found to depend on phosphoinositides. Here we review our current understanding of how phosphoinositides shape and direct membrane dynamics to impact on cell physiology, and provide an overview of emerging concepts in phosphoinositide regulation.
Collapse
|
32
|
Robinson BP, Hawbaker S, Chiang A, Jordahl EM, Anaokar S, Nikiforov A, Bowman RW, Ziegler P, McAtee CK, Patton-Vogt J, O’Donnell AF. Alpha-arrestins Aly1/Art6 and Aly2/Art3 regulate trafficking of the glycerophosphoinositol transporter Git1 and impact phospholipid homeostasis. Biol Cell 2022; 114:3-31. [PMID: 34562280 PMCID: PMC11583686 DOI: 10.1111/boc.202100007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 12/20/2022]
Abstract
BACKGROUND INFORMATION Phosphatidylinositol (PI) is an essential phospholipid, critical to membrane bilayers. The complete deacylation of PI by B-type phospholipases produces intracellular and extracellular glycerophosphoinositol (GPI). Extracellular GPI is transported into the cell via Git1, a member of the Major Facilitator Superfamily of transporters at the yeast plasma membrane. Internalized GPI is degraded to produce inositol, phosphate and glycerol, thereby contributing to these pools. GIT1 gene expression is controlled by nutrient balance, with phosphate or inositol starvation increasing GIT1 expression to stimulate GPI uptake. However, less is known about control of Git1 protein levels or localization. RESULTS We find that the α-arrestins, an important class of protein trafficking adaptor, regulate Git1 localization and this is dependent upon their interaction with the ubiquitin ligase Rsp5. Specifically, α-arrestin Aly2 stimulates Git1 trafficking to the vacuole under basal conditions, but in response to GPI-treatment, either Aly1 or Aly2 promote Git1 vacuole trafficking. Cell surface retention of Git1, as occurs in aly1∆ aly2∆ cells, is linked to impaired growth in the presence of exogenous GPI and results in increased uptake of radiolabeled GPI, suggesting that accumulation of GPI somehow causes cellular toxicity. Regulation of α-arrestin Aly1 by the protein phosphatase calcineurin improves steady-state and substrate-induced trafficking of Git1, however, calcineurin plays a larger role in Git1 trafficking beyond regulation of α-arrestins. Interestingly, loss of Aly1 and Aly2 increased phosphatidylinositol-3-phosphate on the limiting membrane of the vacuole, and this was further exacerbated by GPI addition, suggesting that the effect is partially linked to Git1. Loss of Aly1 and Aly2 leads to increased incorporation of inositol label from [3 H]-inositol-labelled GPI into PI, confirming that internalized GPI influences PI balance and indicating a role for the a-arrestins in this regulation. CONCLUSIONS The α-arrestins Aly1 and Aly2 are novel regulators of Git1 trafficking with previously unanticipated roles in controlling phospholipid distribution and balance. SIGNIFICANCE To our knowledge, this is the first example of α-arrestin regulation of phosphatidyliniositol-3-phosphate levels. In future studies it will be exciting to determine if other α-arrestins similarly alter PI and PIPs to change the cellular landscape.
Collapse
Affiliation(s)
| | - Sarah Hawbaker
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Annette Chiang
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eric M. Jordahl
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Sanket Anaokar
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Alexiy Nikiforov
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ray W. Bowman
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Philip Ziegler
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Ceara K. McAtee
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jana Patton-Vogt
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| | - Allyson F. O’Donnell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biological Sciences, Duquesne University, Pittsburgh, PA, USA
| |
Collapse
|
33
|
|
34
|
Bouhamdani N, Comeau D, Turcotte S. A Compendium of Information on the Lysosome. Front Cell Dev Biol 2021; 9:798262. [PMID: 34977038 PMCID: PMC8714965 DOI: 10.3389/fcell.2021.798262] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 12/16/2022] Open
Abstract
For a long time, lysosomes were considered as mere waste bags for cellular constituents. Thankfully, studies carried out in the past 15 years were brimming with elegant and crucial breakthroughs in lysosome research, uncovering their complex roles as nutrient sensors and characterizing them as crucial multifaceted signaling organelles. This review presents the scientific knowledge on lysosome physiology and functions, starting with their discovery and reviewing up to date ground-breaking discoveries highlighting their heterogeneous functions as well as pending questions that remain to be answered. We also review the roles of lysosomes in anti-cancer drug resistance and how they undergo a series of molecular and functional changes during malignant transformation which lead to tumor aggression, angiogenesis, and metastases. Finally, we discuss the strategy of targeting lysosomes in cancer which could lead to the development of new and effective targeted therapies.
Collapse
Affiliation(s)
- Nadia Bouhamdani
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Dr. Georges-L. Dumont University Hospital Centre, Clinical Research Sector, Vitalité Health Network, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Dominique Comeau
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| | - Sandra Turcotte
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, Canada
- Atlantic Cancer Research Institute, Moncton, NB, Canada
| |
Collapse
|
35
|
Jin X, Zhao H, Zhou M, Zhang J, An T, Fu W, Li D, Cao X, Liu B. Retromer Complex and PI3K Complex II-Related Genes Mediate the Yeast ( Saccharomyces cerevisiae) Sodium Metabisulfite Resistance Response. Cells 2021; 10:cells10123512. [PMID: 34944020 PMCID: PMC8699849 DOI: 10.3390/cells10123512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 11/16/2022] Open
Abstract
Sodium metabisulfite (Na2S2O5) is widely used as a preservative in the food and wine industry. However, it causes varying degrees of cellular damage to organisms. In order to improve our knowledge regarding its cyto-toxicity, a genome-wide screen using the yeast single deletion collection was performed. Additionally, a total of 162 Na2S2O5-sensitive strains and 16 Na2S2O5-tolerant strains were identified. Among the 162 Na2S2O5 tolerance-related genes, the retromer complex was the top enriched cellular component. Further analysis demonstrated that retromer complex deletion leads to increased sensitivity to Na2S2O5, and that Na2S2O5 can induce mislocalization of retromer complex proteins. Notably, phosphatidylinositol 3-monophosphate kinase (PI3K) complex II, which is important for retromer recruitment to the endosome, might be a potential regulator mediating retromer localization and the yeast Na2S2O5 tolerance response. Na2S2O5 can decrease the protein expressions of Vps34, which is the component of PI3K complex. Therefore, Na2S2O5-mediated retromer redistribution might be caused by the effects of decreased Vps34 expression levels. Moreover, both pharmaceutical inhibition of Vps34 functions and deletions of PI3K complex II-related genes affect cell tolerance to Na2S2O5. The results of our study provide a global picture of cellular components required for Na2S2O5 tolerance and advance our understanding concerning Na2S2O5-induced cytotoxicity effects.
Collapse
Affiliation(s)
- Xuejiao Jin
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Huihui Zhao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Min Zhou
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Jie Zhang
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Tingting An
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Wenhao Fu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Danqi Li
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
| | - Xiuling Cao
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
- Correspondence: (X.C.); (B.L.)
| | - Beidong Liu
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang A&F University, Lin’an, Hangzhou 311300, China; (X.J.); (H.Z.); (M.Z.); (J.Z.); (T.A.); (W.F.); (D.L.)
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Goteborg, Sweden
- Center for Large-Scale Cell-Based Screening, Faculty of Science, University of Gothenburg, Medicinaregatan 9C, SE-413 90 Goteborg, Sweden
- Correspondence: (X.C.); (B.L.)
| |
Collapse
|
36
|
Chung LH, Liu D, Liu XT, Qi Y. Ceramide Transfer Protein (CERT): An Overlooked Molecular Player in Cancer. Int J Mol Sci 2021; 22:13184. [PMID: 34947980 PMCID: PMC8705978 DOI: 10.3390/ijms222413184] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/02/2021] [Accepted: 12/05/2021] [Indexed: 12/26/2022] Open
Abstract
Sphingolipids are a class of essential lipids implicated in constructing cellular membranes and regulating nearly all cellular functions. Sphingolipid metabolic network is centered with the ceramide-sphingomyelin axis. Ceramide is well-recognized as a pro-apoptotic signal; while sphingomyelin, as the most abundant type of sphingolipids, is required for cell growth. Therefore, the balance between these two sphingolipids can be critical for cancer cell survival and functioning. Ceramide transfer protein (CERT) dictates the ratio of ceramide to sphingomyelin within the cell. It is the only lipid transfer protein that specifically delivers ceramide from the endoplasmic reticulum to the Golgi apparatus, where ceramide serves as the substrate for sphingomyelin synthesis. In the past two decades, an increasing body of evidence has suggested a critical role of CERT in cancer, but much more intensive efforts are required to draw a definite conclusion. Herein, we review all research findings of CERT, focusing on its molecular structure, cellular functions and implications in cancer. This comprehensive review of CERT will help to better understand the molecular mechanism of cancer and inspire to identify novel druggable targets.
Collapse
Affiliation(s)
- Long Hoa Chung
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| | | | | | - Yanfei Qi
- Centenary Institute of Cancer Medicine and Cell Biology, University of Sydney, Camperdown, NSW 2050, Australia; (D.L.); (X.T.L.)
| |
Collapse
|
37
|
De Camilli P. How a first research experience had an impact on my scientific journey. Mol Biol Cell 2021; 32:ae1. [PMID: 34735266 PMCID: PMC8694089 DOI: 10.1091/mbc.e21-08-0397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
As I look back to my scientific trajectory on the occasion of being the recipient of the E. B. Wilson Medal of the American Society for Cell Biology, I realize how much an early scientific experience had an impact on my research many years later. The major influence that the first scientific encounters can have in defining a scientist’s path makes the choice of the training environment so important for a future career.
Collapse
Affiliation(s)
- Pietro De Camilli
- Departments of Neuroscience and Cell Biology, Howard Hughes Medical Institute, Program in Cellular Neuroscience, Neurodegeneration and Repair, Kavli Institute for Neuroscience, Yale School of Medicine, New Haven, CT 06510
| |
Collapse
|
38
|
Ohashi Y. Activation Mechanisms of the VPS34 Complexes. Cells 2021; 10:cells10113124. [PMID: 34831348 PMCID: PMC8624279 DOI: 10.3390/cells10113124] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/09/2021] [Accepted: 11/09/2021] [Indexed: 01/18/2023] Open
Abstract
Phosphatidylinositol-3-phosphate (PtdIns(3)P) is essential for cell survival, and its intracellular synthesis is spatially and temporally regulated. It has major roles in two distinctive cellular pathways, namely, the autophagy and endocytic pathways. PtdIns(3)P is synthesized from phosphatidylinositol (PtdIns) by PIK3C3C/VPS34 in mammals or Vps34 in yeast. Pathway-specific VPS34/Vps34 activity is the consequence of the enzyme being incorporated into two mutually exclusive complexes: complex I for autophagy, composed of VPS34/Vps34-Vps15/Vps15-Beclin 1/Vps30-ATG14L/Atg14 (mammals/yeast), and complex II for endocytic pathways, in which ATG14L/Atg14 is replaced with UVRAG/Vps38 (mammals/yeast). Because of its involvement in autophagy, defects in which are closely associated with human diseases such as cancer and neurodegenerative diseases, developing highly selective drugs that target specific VPS34/Vps34 complexes is an essential goal in the autophagy field. Recent studies on the activation mechanisms of VPS34/Vps34 complexes have revealed that a variety of factors, including conformational changes, lipid physicochemical parameters, upstream regulators, and downstream effectors, greatly influence the activity of these complexes. This review summarizes and highlights each of these influences as well as clarifying key questions remaining in the field and outlining future perspectives.
Collapse
Affiliation(s)
- Yohei Ohashi
- MRC Laboratory of Molecular Biology, Protein and Nucleic Acid Chemistry Division, Francis Crick Avenue, Cambridge CB2 0QH, UK
| |
Collapse
|
39
|
Arabidopsis P4 ATPase-mediated cell detoxification confers resistance to Fusarium graminearum and Verticillium dahliae. Nat Commun 2021; 12:6426. [PMID: 34741039 PMCID: PMC8571369 DOI: 10.1038/s41467-021-26727-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 10/18/2021] [Indexed: 02/07/2023] Open
Abstract
Many toxic secondary metabolites produced by phytopathogens can subvert host immunity, and some of them are recognized as pathogenicity factors. Fusarium head blight and Verticillium wilt are destructive plant diseases worldwide. Using toxins produced by the causal fungi Fusarium graminearum and Verticillium dahliae as screening agents, here we show that the Arabidopsis P4 ATPases AtALA1 and AtALA7 are responsible for cellular detoxification of mycotoxins. Through AtALA1-/AtALA7-mediated vesicle transport, toxins are sequestered in vacuoles for degradation. Overexpression of AtALA1 and AtALA7 significantly increases the resistance of transgenic plants to F. graminearum and V. dahliae, respectively. Notably, the concentration of deoxynivalenol, a mycotoxin harmful to the health of humans and animals, was decreased in transgenic Arabidopsis siliques and maize seeds. This vesicle-mediated cell detoxification process provides a strategy to increase plant resistance against different toxin-associated diseases and to reduce the mycotoxin contamination in food and feed.
Collapse
|
40
|
Borchers AC, Langemeyer L, Ungermann C. Who's in control? Principles of Rab GTPase activation in endolysosomal membrane trafficking and beyond. J Cell Biol 2021; 220:212549. [PMID: 34383013 PMCID: PMC8366711 DOI: 10.1083/jcb.202105120] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/08/2021] [Accepted: 07/08/2021] [Indexed: 12/12/2022] Open
Abstract
The eukaryotic endomembrane system consists of multiple interconnected organelles. Rab GTPases are organelle-specific markers that give identity to these membranes by recruiting transport and trafficking proteins. During transport processes or along organelle maturation, one Rab is replaced by another, a process termed Rab cascade, which requires at its center a Rab-specific guanine nucleotide exchange factor (GEF). The endolysosomal system serves here as a prime example for a Rab cascade. Along with endosomal maturation, the endosomal Rab5 recruits and activates the Rab7-specific GEF Mon1-Ccz1, resulting in Rab7 activation on endosomes and subsequent fusion of endosomes with lysosomes. In this review, we focus on the current idea of Mon1-Ccz1 recruitment and activation in the endolysosomal and autophagic pathway. We compare identified principles to other GTPase cascades on endomembranes, highlight the importance of regulation, and evaluate in this context the strength and relevance of recent developments in in vitro analyses to understand the underlying foundation of organelle biogenesis and maturation.
Collapse
Affiliation(s)
- Ann-Christin Borchers
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Lars Langemeyer
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany
| | - Christian Ungermann
- Department of Biology/Chemistry, Biochemistry Section, Osnabrück University, Osnabrück, Germany.,Center of Cellular Nanoanalytics Osnabrück (CellNanOs), Osnabrück University, Osnabrück, Germany
| |
Collapse
|
41
|
Wilson ZN, Buysse D, West M, Ahrens D, Odorizzi G. Vacuolar H+-ATPase dysfunction rescues intralumenal vesicle cargo sorting in yeast lacking PI(3,5)P2 or Doa4. J Cell Sci 2021; 134:jcs258459. [PMID: 34342352 PMCID: PMC8353521 DOI: 10.1242/jcs.258459] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 06/25/2021] [Indexed: 12/19/2022] Open
Abstract
Endosomes undergo a maturation process highlighted by a reduction in lumenal pH, a conversion of surface markers that prime endosome-lysosome fusion and the sequestration of ubiquitylated transmembrane protein cargos within intralumenal vesicles (ILVs). We investigated ILV cargo sorting in mutant strains of the budding yeast Saccharomyces cerevisiae that are deficient for either the lysosomal/vacuolar signaling lipid PI(3,5)P2 or the Doa4 ubiquitin hydrolase that deubiquitylates ILV cargos. Disruption of PI(3,5)P2 synthesis or Doa4 function causes a defect in sorting of a subset of ILV cargos. We show that these cargo-sorting defects are suppressed by mutations that disrupt Vph1, a subunit of vacuolar H+-ATPase (V-ATPase) complexes that acidify late endosomes and vacuoles. We further show that Vph1 dysfunction increases endosome abundance, and disrupts vacuolar localization of Ypt7 and Vps41, two crucial mediators of endosome-vacuole fusion. Because V-ATPase inhibition attenuates this fusion and rescues the ILV cargo-sorting defects in yeast that lack PI(3,5)P2 or Doa4 activity, our results suggest that the V-ATPase has a role in coordinating ILV cargo sorting with the membrane fusion machinery. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | | | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| |
Collapse
|
42
|
Gong B, Guo Y, Ding S, Liu X, Meng A, Li D, Jia S. A Golgi-derived vesicle potentiates PtdIns4P to PtdIns3P conversion for endosome fission. Nat Cell Biol 2021; 23:782-795. [PMID: 34183801 DOI: 10.1038/s41556-021-00704-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 05/26/2021] [Indexed: 02/06/2023]
Abstract
Endosome fission is essential for cargo sorting and targeting in the endosomal system. However, whether organelles other than the endoplasmic reticulum (ER) participate in endosome fission through membrane contacts is unknown. Here, we characterize a Golgi-derived vesicle, the SEC14L2 compartment, that plays a unique role in facilitating endosome fission through ternary contacts with endosomes and the ER. Localized to the ER-mediated endosome fission site, the phosphatidylinositol transfer protein SEC14L2 promotes phosphatidylinositol 4-phosphate (PtdIns4P) to phosphatidylinositol 3-phosphate (PtdIns3P) conversion before endosome fission. In the absence of SEC14L2, endosome fission is attenuated and more enlarged endosomes arise due to endosomal accumulation of PtdIns4P and reduction in PtdIns3P. Collectively, our data suggest roles of the Golgi network in ER-associated endosome fission and a mechanism involving ER-endosome contacts in the regulation of endosomal phosphoinositide conversion.
Collapse
Affiliation(s)
- Bo Gong
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yuting Guo
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shihui Ding
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaohui Liu
- School of Life Sciences, National Protein Science Facility, Tsinghua University, Beijing, China
| | - Anming Meng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Dong Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China.
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Shunji Jia
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
43
|
Li L, Tong M, Fu Y, Chen F, Zhang S, Chen H, Ma X, Li D, Liu X, Zhong Q. Lipids and membrane-associated proteins in autophagy. Protein Cell 2021; 12:520-544. [PMID: 33151516 PMCID: PMC8225772 DOI: 10.1007/s13238-020-00793-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 08/07/2020] [Indexed: 12/19/2022] Open
Abstract
Autophagy is essential for the maintenance of cellular homeostasis and its dysfunction has been linked to various diseases. Autophagy is a membrane driven process and tightly regulated by membrane-associated proteins. Here, we summarized membrane lipid composition, and membrane-associated proteins relevant to autophagy from a spatiotemporal perspective. In particular, we focused on three important membrane remodeling processes in autophagy, lipid transfer for phagophore elongation, membrane scission for phagophore closure, and autophagosome-lysosome membrane fusion. We discussed the significance of the discoveries in this field and possible avenues to follow for future studies. Finally, we summarized the membrane-associated biochemical techniques and assays used to study membrane properties, with a discussion of their applications in autophagy.
Collapse
Affiliation(s)
- Linsen Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mindan Tong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yuhui Fu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Fang Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shen Zhang
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Hanmo Chen
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xi Ma
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Defa Li
- State Key Laboratory of Animal Nutrition, Ministry of Agriculture Feed Industry Centre, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Xiaoxia Liu
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Qing Zhong
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
44
|
Vps34 and TOR Kinases Coordinate HAC1 mRNA Translation in the Presence or Absence of Ire1-Dependent Splicing. Mol Cell Biol 2021; 41:e0066220. [PMID: 33972394 DOI: 10.1128/mcb.00662-20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
In the budding yeast Saccharomyces cerevisiae, an mRNA, called HAC1, exists in a translationally repressed form in the cytoplasm. Under conditions of cellular stress, such as when unfolded proteins accumulate inside the endoplasmic reticulum (ER), an RNase Ire1 removes an intervening sequence (intron) from the HAC1 mRNA by nonconventional cytosolic splicing. Removal of the intron results in translational derepression of HAC1 mRNA and production of a transcription factor that activates expression of many enzymes and chaperones to increase the protein-folding capacity of the cell. Here, we show that Ire1-mediated RNA cleavage requires Watson-Crick base pairs in two RNA hairpins, which are located at the HAC1 mRNA exon-intron junctions. Then, we show that the translational derepression of HAC1 mRNA can occur independent of cytosolic splicing. These results are obtained from HAC1 variants that translated an active Hac1 protein from the unspliced mRNA. Additionally, we show that the phosphatidylinositol-3-kinase Vps34 and the nutrient-sensing kinases TOR and GCN2 are key regulators of HAC1 mRNA translation and consequently the ER stress responses. Collectively, our data suggest that the cytosolic splicing and the translational derepression of HAC1 mRNA are coordinated by unique and parallel networks of signaling pathways.
Collapse
|
45
|
Zhang Z, Richmond A. The Role of PI3K Inhibition in the Treatment of Breast Cancer, Alone or Combined With Immune Checkpoint Inhibitors. Front Mol Biosci 2021; 8:648663. [PMID: 34026830 PMCID: PMC8139556 DOI: 10.3389/fmolb.2021.648663] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 04/06/2021] [Indexed: 12/24/2022] Open
Abstract
Dysregulation of phosphoinositide 3-kinase (PI3K) signaling is highly implicated in tumorigenesis, disease progression, and the development of resistance to the current standard of care treatments in breast cancer patients. This review discusses the role of PI3K pathway in breast cancer and evaluates the clinical development of PI3K inhibitors in both early and metastatic breast cancer settings. Further, this review examines the evidence for the potential synergistic benefit for the combination treatment of PI3K inhibition and immunotherapy in breast cancer treatment.
Collapse
Affiliation(s)
- Zhizhu Zhang
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Ann Richmond
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States.,Department of Veterans Affairs, Tennessee Valley Healthcare System, Nashville, TN, United States
| |
Collapse
|
46
|
Batrouni AG, Baskin JM. The chemistry and biology of phosphatidylinositol 4-phosphate at the plasma membrane. Bioorg Med Chem 2021; 40:116190. [PMID: 33965837 DOI: 10.1016/j.bmc.2021.116190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 12/29/2022]
Abstract
Phosphoinositides are an important class of anionic, low abundance signaling lipids distributed throughout intracellular membranes. The plasma membrane contains three phosphoinositides: PI(4)P, PI(4,5)P2, and PI(3,4,5)P3. Of these, PI(4)P has remained the most mysterious, despite its characterization in this membrane more than a half-century ago. Fortunately, recent methodological innovations at the chemistry-biology interface have spurred a renaissance of interest in PI(4)P. Here, we describe these new toolsets and how they have revealed novel functions for the plasma membrane PI(4)P pool. We examine high-resolution structural characterization of the plasma membrane PI 4-kinase complex that produces PI(4)P, tools for modulating PI(4)P levels including isoform-selective PI 4-kinase inhibitors, and fluorescent probes for visualizing PI(4)P. Collectively, these chemical and biochemical approaches have revealed insights into how cells regulate synthesis of PI(4)P and its downstream metabolites as well as new roles for plasma membrane PI(4)P in non-vesicular lipid transport, membrane homeostasis and trafficking, and cell signaling pathways.
Collapse
Affiliation(s)
- Alex G Batrouni
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA
| | - Jeremy M Baskin
- Department of Chemistry and Chemical Biology and Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
47
|
Park JY, Sohn HY, Koh YH, Jo C. Curcumin activates Nrf2 through PKCδ-mediated p62 phosphorylation at Ser351. Sci Rep 2021; 11:8430. [PMID: 33875681 PMCID: PMC8055680 DOI: 10.1038/s41598-021-87225-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Curcumin, a phytochemical extracted from Curcuma longa rhizomes, is known to be protective in neurons via activation of Nrf2, a master regulator of endogenous defense against oxidative stress in cells. However, the exact mechanism by which curcumin activates Nrf2 remains controversial. Here, we observed that curcumin induced the expression of genes downstream of Nrf2 such as HO-1, NQO1, and GST-mu1 in neuronal cells, and increased the level of Nrf2 protein. Notably, the level of p62 phosphorylation at S351 (S349 in human) was significantly increased in cells treated with curcumin. Additionally, curcumin-induced Nrf2 activation was abrogated in p62 knockout (−/−) MEFs, indicating that p62 phosphorylation at S351 played a crucial role in curcumin-induced Nrf2 activation. Among the kinases involved in p62 phosphorylation at S351, PKCδ was activated in curcumin-treated cells. The phosphorylation of p62 at S351 was enhanced by transfection of PKCδ expression plasmid; in contrast, it was inhibited in cells treated with PKCδ-specific siRNA. Together, these results suggest that PKCδ is mainly involved in curcumin-induced p62 phosphorylation and Nrf2 activation. Accordingly, we demonstrate for the first time that curcumin activates Nrf2 through PKCδ-mediated p62 phosphorylation at S351.
Collapse
Affiliation(s)
- Jee-Yun Park
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 363-951, South Korea
| | - Hee-Young Sohn
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 363-951, South Korea
| | - Young Ho Koh
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 363-951, South Korea
| | - Chulman Jo
- Division of Brain Disease Research, Department for Chronic Disease Convergence Research, Korea National Institute of Health, 187 Osongsaengmyeong2-ro, Osong-eup, Cheongju-si, Chungcheongbuk-do, 363-951, South Korea.
| |
Collapse
|
48
|
Vitale SR, Martorana F, Stella S, Motta G, Inzerilli N, Massimino M, Tirrò E, Manzella L, Vigneri P. PI3K inhibition in breast cancer: Identifying and overcoming different flavors of resistance. Crit Rev Oncol Hematol 2021; 162:103334. [PMID: 33865994 DOI: 10.1016/j.critrevonc.2021.103334] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 04/03/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/protein kinase B (AKT)/mammalian target of rapamycin (mTOR) signaling pathway is commonly deregulated in many human tumors, including breast cancer. Somatic mutations of the PI3K alpha catalytic subunit (PIK3CA) are the most common cause of pathway hyperactivation. Hence, several PI3K inhibitors have been investigated with one of them, alpelisib, recently approved for the treatment of endocrine sensitive, PIK3CA mutated, metastatic breast cancer. Unfortunately, all patients receiving a PI3K inhibitor eventually develop resistance to these compounds. Mechanisms of resistance include oncogenic PI3K alterations, pathway reactivation through upstream or downstream effectors and enhancement of parallel pro-survival pathways. We review the prognostic and predictive role of PI3K alterations in breast cancer, focusing on resistance to PI3K inhibitors and on biomarkers with potential clinical relevance. We also discuss combination strategies that may overcome resistance to PI3K inhibitors, thus increasing the efficacy of these drugs in breast cancer.
Collapse
Affiliation(s)
- Silvia Rita Vitale
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Federica Martorana
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Stefania Stella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Gianmarco Motta
- Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Nicola Inzerilli
- Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Michele Massimino
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Elena Tirrò
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Livia Manzella
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy
| | - Paolo Vigneri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy; Center of Experimental Oncology and Hematology, A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy; Medical Oncology A.O.U. Policlinico "G. Rodolico - San Marco", Catania, Italy.
| |
Collapse
|
49
|
Tremel S, Ohashi Y, Morado DR, Bertram J, Perisic O, Brandt LTL, von Wrisberg MK, Chen ZA, Maslen SL, Kovtun O, Skehel M, Rappsilber J, Lang K, Munro S, Briggs JAG, Williams RL. Structural basis for VPS34 kinase activation by Rab1 and Rab5 on membranes. Nat Commun 2021; 12:1564. [PMID: 33692360 PMCID: PMC7946940 DOI: 10.1038/s41467-021-21695-2] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/01/2021] [Indexed: 02/07/2023] Open
Abstract
The lipid phosphatidylinositol-3-phosphate (PI3P) is a regulator of two fundamental but distinct cellular processes, endocytosis and autophagy, so its generation needs to be under precise temporal and spatial control. PI3P is generated by two complexes that both contain the lipid kinase VPS34: complex II on endosomes (VPS34/VPS15/Beclin 1/UVRAG), and complex I on autophagosomes (VPS34/VPS15/Beclin 1/ATG14L). The endosomal GTPase Rab5 binds complex II, but the mechanism of VPS34 activation by Rab5 has remained elusive, and no GTPase is known to bind complex I. Here we show that Rab5a–GTP recruits endocytic complex II to membranes and activates it by binding between the VPS34 C2 and VPS15 WD40 domains. Electron cryotomography of complex II on Rab5a-decorated vesicles shows that the VPS34 kinase domain is released from inhibition by VPS15 and hovers over the lipid bilayer, poised for catalysis. We also show that the GTPase Rab1a, which is known to be involved in autophagy, recruits and activates the autophagy-specific complex I, but not complex II. Both Rabs bind to the same VPS34 interface but in a manner unique for each. These findings reveal how VPS34 complexes are activated on membranes by specific Rab GTPases and how they are recruited to unique cellular locations. The phosphatidylinositol-3-phosphate (PI3P) is generated by the lipid kinase VPS34, in the context of VPS34 complex I on autophagosomes or complex II on endosomes. Biochemical and structural analyses provide insights into the mechanism of both VPS34 complexes recruitment to and activation on membranes by specific Rab GTPases.
Collapse
Affiliation(s)
| | - Yohei Ohashi
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Dustin R Morado
- MRC Laboratory of Molecular Biology, Cambridge, UK.,Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, Solna, Sweden
| | | | - Olga Perisic
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | - Marie-Kristin von Wrisberg
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Lab for Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, TUM-IAS, Garching, Germany
| | - Zhuo A Chen
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany
| | | | | | - Mark Skehel
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Juri Rappsilber
- Bioanalytics, Institute of Biotechnology, Technische Universität Berlin, Berlin, Germany.,Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, UK
| | - Kathrin Lang
- Center for Integrated Protein Science Munich (CIPSM), Department of Chemistry, Lab for Synthetic Biochemistry, Technical University of Munich, Institute for Advanced Study, TUM-IAS, Garching, Germany
| | - Sean Munro
- MRC Laboratory of Molecular Biology, Cambridge, UK.
| | | | | |
Collapse
|
50
|
Ohashi Y. Class III phosphatidylinositol 3-kinase complex I subunit NRBF2/Atg38 - from cell and structural biology to health and disease. Autophagy 2021; 17:3897-3907. [PMID: 33459128 PMCID: PMC8726667 DOI: 10.1080/15548627.2021.1872240] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Macroautophagy/autophagy is triggered by various starvation and stress conditions. The phospholipid phosphatidylinositol-3-phosphate (PtdIns3P) is essential for the formation of the autophagosome both in yeast and mammals. The class III phosphatidylinositol 3-kinase, PIK3C3C in humans or Vps34 in yeast, produces PtdIns3P by phosphorylating the 3'-OH position of phosphatidylinositol (PtdIns). In order to synthesize PtdIns3P for the initiation of autophagy, PIK3C3/Vps34 has a heterotetrameric core, the PIK3C3 complex I (hereafter complex I) composed of PIK3C3/Vps34, PIK3R4/Vps15, BECN1/Vps30, and ATG14/Atg14. A fifth component of complex I, NRBF2 in mammals and Atg38 in yeast, was found and has been characterized in the past decade. The field has been expanding from cell and structural biology to mouse model and cohort studies. Here I will summarize the structures and models of complex I binding NRBF2/Atg38, its intracellular roles, and its involvement in health and disease. Along with this expansion of the field, different conclusions have been drawn in several topics. I will clarify what has and has not been agreed, and what is to be clarified in the future.
Collapse
Affiliation(s)
- Yohei Ohashi
- Division of Protein and Nucleic Acid Chemistry, MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|