1
|
Wu Y, Deng Y, Tan G, You J. Persistent acyclic Cp*Ir(III) complexes and their reactivities in cross-coupling reactions. Nat Commun 2025; 16:4499. [PMID: 40368984 DOI: 10.1038/s41467-025-59817-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Accepted: 05/06/2025] [Indexed: 05/16/2025] Open
Abstract
Iridium(III) complexes play a prominent role in organometallic chemistry, with significant research efforts directed toward Cp*Ir(III) species, broadly categorized into cyclic and acyclic types. Although studies on these two classes began roughly simultaneously, the development of acyclic Cp*Ir(III) complexes has lagged significantly behind their cyclic counterparts. Herein, we report a general and efficient strategy for synthesizing various persistent aryl Cp*Ir(III)(CO)Cl complexes directly from aryl aldehydes, with in situ generated CO as a stabilizing ligand. These acyclic Cp*Ir(III) complexes showcase exceptional reactivity, undergoing reactions with up to eight classes of nucleophiles to generate diverse diorganoiridium(III) species with remarkable stability. Electrochemical analysis of these complexes provides insights into their reductive elimination processes. Guided by these findings, Cp*Ir(III)-mediated decarbonylative C-C and C-O cross-couplings of aryl aldehydes are successfully developed. This study establishes a robust platform for the exploration of acyclic Cp*Ir(III) complexes, paving the way for further advancements in iridium(III) chemistry.
Collapse
Affiliation(s)
- Yimin Wu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Yayin Deng
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Guangying Tan
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
2
|
Westawker LP, Bouley BS, Vura-Weis J, Mirica LM. Photochemistry of Ni(II) Tolyl Chlorides Supported by Bidentate Ligand Frameworks. J Am Chem Soc 2025. [PMID: 40354153 DOI: 10.1021/jacs.5c03770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2025]
Abstract
Herein, we investigate the photoactivity of four NiII tolyl chloride complexes supported by either the new bidentate [2.2]pyridinophane (HN2) ligand or the traditional 4,4'-di-tert-butyl-2,2'-dipyridyl (tBubpy) ligand. Despite a change in the ligand framework, we observe similar quantum yields for the photodegradation of all four NiII complexes, while noting changes in their affinity for radical side reactivity and ability to stabilize the photogenerated mononuclear NiI species. Furthermore, changing from an ortho-tolyl to a para-tolyl group affects the geometry of the complexes and makes the Ni center more susceptible to side reactivity. By leveraging the newly developed HN2 ligand, a bidentate ligand that hinders axial interactions with the Ni center, we limit the radical side reactivity. Time-dependent density functional theory (TDDFT) and complete active space self-consistent field (CASSCF) calculations predict that all four complexes have accessible MLCTs that excite an electron from a Ni-aryl bonding orbital into a Ni-aryl antibonding orbital, initiating photolysis. By decreasing this energy gap and stabilizing the tetrahedral triplet excited state, we increase quantum yields of photoexcitation. Importantly, we characterize the photogenerated mononuclear NiI chloride species using X-band EPR spectroscopy and show that the HN2-supported NiI complexes do not undergo the deleterious dimerization and tetramerization observed for the (bpy)NiICl species. Overall, this study provides valuable insight into how the steric environment around the Ni center affects its photoactivity and demonstrates that such photoactivity is not unique to bipyridyl-supported Ni compounds.
Collapse
Affiliation(s)
- Luke P Westawker
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Bailey S Bouley
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
3
|
Hoover JM. Fundamental Principles in Catalysis from Mechanistic Studies of Oxidative Decarboxylative Coupling Reactions. Acc Chem Res 2025. [PMID: 40335885 DOI: 10.1021/acs.accounts.5c00142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
ConspectusOxidative decarboxylative coupling (ODC) reactions have been recognized as powerful alternatives to traditional cross-coupling reactions due to the ability to generate (hetero)biaryl structures from simple and readily available carboxylic acid precursors. These reactions, however, are underdeveloped due to the requirement for ortho-nitrobenzoate coupling partners and silver salts as oxidants. Our research program has focused on the development of new catalytic ODC reactions, as well as mechanistic studies of these reactions to uncover the origin of these synthetic limitations. As the framework for these studies, we explored two key ODC reactions developed in our group: (1) a Ni-catalyzed decarboxylative arylation reaction that relies on silver as the oxidant and (2) a Cu-catalyzed decarboxylative thiolation reaction capable of operating under aerobic conditions. Our findings, disclosed in this Account, have uncovered the importance of the ortho-substituent and revealed that Ag-based oxidants are also responsible for mediating the decarboxylation and transmetalation steps.Systematic exploration of the decarboxylation of a series of well-defined Ag-benzoate complexes allowed us to probe the importance of the ortho-nitro group in the decarboxylation step. Kinetic measurements of a large series of differently substituted benzoates were found to correlate with the field effect (F) of the ortho-substituent, revealing this feature to be responsible for the enhanced reactivity of these favored benzoates.Our studies of the Ni-catalyzed decarboxylative arylation reaction uncovered an unexpected redox transmetalation step in this system. Synthesis and isolation of the proposed nickelacycle and Ag-aryl intermediates enabled direct study of the fundamental coupling steps. Catalytic and stoichiometric reactions of these complexes, paired with DFT calculations, supported a redox transmetalation step in which the Ag-aryl intermediate transfers the aryl ligand from AgI to NiII with concomitant oxidation to generate a NiIII-bis(aryl) intermediate.Finally, detailed mechanistic studies of our Cu-catalyzed decarboxylative thiolation reaction demonstrated how this catalyst system is able to use O2 as the terminal oxidant. Kinetic studies paired with the synthesis and reactivity of well-defined copper intermediates revealed decarboxylation from a CuI-benzoate resting state, despite the oxidizing reaction conditions which could support higher oxidation state intermediates. We also identified the intermediacy of diphenyl disulfide (PhSSPh) formed from the thiophenol (PhSH) coupling partner under the aerobic Cu-catalyzed conditions. The reaction of PhSSPh with the catalyst proceeds via oxidative transfer of the PhS fragment to CuI that is analogous to that of the redox transmetalation observed in Ni-catalyzed decarboxylative arylation.These studies combined suggest significant implications for ODC reactions more broadly. For example, it appears that silver is important for mediating the decarboxylation step when the catalyst is unable (as is the case with nickel) but is not needed when the catalyst is an efficient decarboxylation mediator on its own (as with copper). Furthermore, silver plays an additional role in mediating an oxidative transfer of the coupling partner in arylation reactions but is not required when the coupling partner is itself oxidizing (such as PhSSPh). We anticipate that these mechanistic insights will facilitate the development of new ODC reactions that operate under milder conditions and with broader substrate scopes.
Collapse
Affiliation(s)
- Jessica M Hoover
- Department of Chemistry, University of Minnesota-Twin Cities, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
4
|
Biswas N, Mondal R, Ansari KU, Yaseen R, Lord RL, Groysman S, Shimon D, Gelman D. High-Valent Nickel Complexes Supported by a Functionalized PC(sp 3)P Pincer Ligand: Properties and Catalysis. Chemistry 2025:e202500618. [PMID: 40195909 DOI: 10.1002/chem.202500618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 04/02/2025] [Accepted: 04/03/2025] [Indexed: 04/09/2025]
Abstract
This article presents the synthesis and characterization of a series of robust high-valent organometallic nickel (Ni) complexes stabilized by a functionalized PC(sp3)P pincer ligand. Notably, the nickel center, covalently confined within the 3D ligand framework, demonstrates predictable coordination and redox behavior, coupled with remarkable stability across oxidation states +2, +3, and +4. These states were found to interconvert via one-electron transfer reactions. Among these complexes, the Ni(III)-PC(sp3)P species was identified as an efficient catalyst for the mild and selective hydrosilylation of alkenes, operating through a nonoxidative reaction mechanism.
Collapse
Affiliation(s)
- Nandita Biswas
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, Jerusalem, 91904, Israel
| | - Rajarshi Mondal
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, Jerusalem, 91904, Israel
| | - Kamal Uddin Ansari
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, Jerusalem, 91904, Israel
| | - Roaa Yaseen
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, Jerusalem, 91904, Israel
| | - Richard L Lord
- Department of Chemistry, Grand Valley State University, Allendale, MI, 9190401, USA
| | - Stanislav Groysman
- Department of Chemistry, Wayne State University, Detroit, MI, 9190401, USA
| | - Daphna Shimon
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, Jerusalem, 91904, Israel
| | - Dmitri Gelman
- Institute of Chemistry, The Hebrew University, Edmund Safra Campus, Jerusalem, 91904, Israel
| |
Collapse
|
5
|
LeComte A, Sailer R, Mahato S, VandeVen W, Zhou W, Paterson AR, Desmau M, Ebrahim AM, Thomas F, Chiang L. Synthesis and Characterization of Co Complexes Coordinated by a Tetraanionic Bis(amidateanilido) Ligand. Inorg Chem 2025; 64:5986-5995. [PMID: 40100031 PMCID: PMC11962833 DOI: 10.1021/acs.inorgchem.4c05005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
The synthesis and characterization of a square planar CoII complex coordinated by the tetraanionic bis(amidateanilido) L4- ligand, 12-, and its corresponding one-electron oxidized forms 2-, 3, and 4+ are discussed herein. 12- undergoes aerobic oxidation to form 2-, a square planar S = 1 CoIII complex. This aerobic reactivity is attributed to a remarkably negative CoII/CoIII potential, as observed in its cyclic voltammogram, which is among the most negative CoII/CoIII couples reported. This supports the conclusion that the L4- ligation is strongly stabilizing to the oxidized CoIII center. The cyclic voltammogram of 2- also reveals that further oxidations are possible at mild potentials. Indeed, the stoichiometric addition of a suitable chemical oxidant yields a ligand-oxidized S = 1/2 CoIII complex, 3, while the addition of a further equivalent of the oxidant putatively yields 4+. The formation of the ligand oxidized species 3 suggests that bis(amidateanilido) ligation can further behave as a redox-active ligand upon additional oxidation.
Collapse
Affiliation(s)
- Avery LeComte
- Department
of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Rachel Sailer
- Department
of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Samyadeb Mahato
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Warren VandeVen
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Wen Zhou
- Department
of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
- Department
of Chemistry, University of Calgary, 2500 University Dr. NW, Calgary, Alberta T2N 1N4, Canada
| | - Alisa R. Paterson
- Canadian
Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Morgane Desmau
- Canadian
Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Amani M. Ebrahim
- Canadian
Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Fabrice Thomas
- Univ.
Grenoble Alpes, DCM, CNRS, Grenoble 38000, CEDEX 9, France
| | - Linus Chiang
- Department
of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
6
|
Souilah C, Jannuzzi SAV, Becker FJ, Demirbas D, Jenisch D, Ivlev S, Xie X, Peredkov S, Lichtenberg C, DeBeer S, Casitas A. Synthesis of Iron(IV) Alkynylide Complexes and Their Reactivity to Form 1,3-Diynes. Angew Chem Int Ed Engl 2025; 64:e202421222. [PMID: 39551703 DOI: 10.1002/anie.202421222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 11/14/2024] [Accepted: 11/14/2024] [Indexed: 11/19/2024]
Abstract
The isolation of thermally unstable and highly reactive organoiron(IV) complexes is a challenge for synthetic chemists. In particular, the number of examples where the C-based ligand is not part of the chelating ligand remains scarce. These compounds are of interest because they could pave the way to designing catalytic cycles of bond forming reactions proceeding via organoiron(IV) intermediates. Herein, we report the synthesis and characterization, including single-crystal X-ray diffraction, of a family of alkynylferrates(III) and Fe(IV) alkynylide complexes. The alkynylferrates(III) are formed by transmetalation of the Fe(III) precursor [(N3N')FeIII] (N3N'3- is tris(N-tert-butyldimethylsilyl-2-amidoethyl)amine) with lithium alkynylides, and their further one-electron oxidation enables the synthesis of the corresponding Fe(IV) alkynylides. The electronic structure of this family of organometallic Fe(III) and Fe(IV) complexes has been thoroughly investigated by spectroscopic methods (EPR, NMR, 57Fe Mössbauer, X-Ray absorption (XAS) and emission (XES) spectroscopies) and theoretical calculations. While alkynylferrates(III) are sluggish to engage into C-C bond forming processes, the Fe(IV) alkynylides react to afford 1,3-diynes at room temperature. A bimolecular reductive elimination from a bimetallic Fe(IV) intermediate to form the 1,3-diynes is proposed based on the mechanistic investigations performed.
Collapse
Affiliation(s)
- Charafa Souilah
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergio A V Jannuzzi
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Felix J Becker
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Derya Demirbas
- Max-Planck-Institut für Kohlenforschung (MPI KOFO), Kaiser-Wilhelm-Platz 1, 45470, Mülheim an der Ruhr, Germany
| | - Daniel Jenisch
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergei Ivlev
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Xiulan Xie
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Crispin Lichtenberg
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion (MPI CEC), Stiftstraße 34-36, 45470, Mülheim an der Ruhr, Germany
| | - Alicia Casitas
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Straße 4, 35043, Marburg, Germany
| |
Collapse
|
7
|
Khamrai A, Ghosh S, Ganesh V. Advances in accessing rare oxidation states of nickel for catalytic innovation. Chem Commun (Camb) 2025; 61:3037-3060. [PMID: 39841009 DOI: 10.1039/d4cc06415a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Nickel catalysis has experienced a renaissance over the past two decades, driven by its ability to access diverse oxidation states (0 to +4) and unique reactivity. This review consolidates the advancements in nickel chemistry, providing an overview of ligands that stabilize specific nickel oxidation states. The stability, reactivity, and catalytic applications of Ni0 sources, including in situ generation from air- and moisture-stable NiII precursors, are discussed, along with the roles of NiI and NiIII intermediates in catalytic cycles. The progress in synthesizing and utilizing NiIV complexes highlights their emerging importance in catalysis. Advances in spectroscopic and theoretical tools have enhanced the understanding of nickel's complex catalytic behavior.
Collapse
Affiliation(s)
- Aankhi Khamrai
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Sudipta Ghosh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| | - Venkataraman Ganesh
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
8
|
Karmalkar DG, Lim H, Sundararajan M, Lee YM, Seo MS, Bae DY, Lu X, Hedman B, Hodgson KO, Kim WS, Lee E, Solomon EI, Fukuzumi S, Nam W. Synthesis, Structure, and Redox Reactivity of Ni Complexes Bearing a Redox and Acid-Base Non-innocent Ligand with Ni II, Ni III, and Ni IV Formal Oxidation States. J Am Chem Soc 2025; 147:3981-3993. [PMID: 39849908 DOI: 10.1021/jacs.4c11751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2025]
Abstract
A series of Ni complexes bearing a redox and acid-base noninnocent tetraamido macrocyclic ligand, H4-(TAML-4) {H4-(TAML-4) = 15,15-dimethyl-5,8,13,17-tetrahydro-5,8,13,17-tetraaza-dibenzo[a,g]cyclotridecene-6,7,14,16-tetraone}, with formal oxidation states of NiII, NiIII, and NiIV were synthesized and characterized structurally and spectroscopically. The X-ray crystallographic analysis of the Ni complexes revealed a square planar geometry, and the [Ni(TAML-4)] complex with the formal oxidation state of NiIV was characterized to be [NiIII(TAML-4•+)] with the oxidation state of the NiIII ion and the one-electron oxidized TAML-4 ligand, TAML-4•+. The NiIII oxidation state and the TAML-4 radical cation ligand, TAML-4•+, were supported by X-ray absorption spectroscopy and density functional theory calculations. The reversible interconversions between [NiII(TAML-4)]2- and [NiIII(TAML-4)]- and between [NiIII(TAML-4)]- and [NiIII(TAML-4•+)] were demonstrated in spectroelectrochemical measurements as well as in chemical oxidation and reduction reactions. The reactivities of [NiIII(TAML-4)]- and [NiIII(TAML-4•+)] were then investigated in hydride transfer reactions using NADH analogs. Hydride transfer from 9,10-dihydro-10-methylacridine (AcrH2) to [NiIII(TAML-4•+)] was found to proceed via electron transfer (ET) from AcrH2 to [NiIII(TAML-4•+)] with no deuterium kinetic isotope effect (kH/kD = 1.0(2)). In contrast, hydride transfer from AcrH2 to [NiIII(TAML-4)]- proceeded much more slowly via a concerted proton-coupled electron transfer (PCET) process with kH/kD = 7.0(5). In the latter reaction, an electron and a proton were transferred to the NiIII center and the TAML-4 ligand, respectively. The mechanisms of the ET by [NiIII(TAML-4•+)] and the concerted PCET by [NiIII(TAML-4)]- were ascribed to the different redox potentials of the Ni complexes.
Collapse
Affiliation(s)
- Deepika G Karmalkar
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemical Sciences, Goa University, Taleigao, Goa 403206, India
| | - Hyeongtaek Lim
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Mahesh Sundararajan
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Dae Young Bae
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Xiaoyan Lu
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
| | - Britt Hedman
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Keith O Hodgson
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Won-Suk Kim
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Eunsung Lee
- Department of Chemistry, Pohang University of Science and Technology, Pohang 37673, Korea
| | - Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- College of Chemistry and Chemical Engineering, Henan Key Laboratory of Function-Oriented Porous Materials, Luoyang Normal University, Luoyang 471934, PR China
- Graduate Program in Innovative Biomaterials Convergence, Ewha Womans University, Seoul 03760, Korea
| |
Collapse
|
9
|
Ding L, Wang M, Liu Y, Lu H, Zhao Y, Shi Z. Stereoselective Vinylic C-H Addition via Metallaphotoredox Migration. Angew Chem Int Ed Engl 2025; 64:e202413557. [PMID: 39322622 DOI: 10.1002/anie.202413557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 09/27/2024]
Abstract
Geometrically defined allylic alcohols with SE, SZ, RE and RZ stereoisomers serve as valuable intermediates in synthetic chemistry, attributed to the stereoselective transformations enabled by the alkenyl and hydroxyl functionalities. When an ideal scenario presents itself with four distinct stereoisomers as potential products, the simultaneous control vicinal stereochemistry in a single step would offer a direct pathway to any desired stereoisomer. Here, we unveil a metallaphotoredox migration strategy to access stereodefined allylic alcohols through vinylic C-H activation with aldehydes. This method harnesses a chiral nickel catalyst in concert with a photocatalyst to enable a 1,4-Ni migration by using readily accessible 2-vinyl iodoarenes as starting materials. The efficacy of this methodology is highlighted by the precise construction of all stereoisomers of allylic alcohols bearing analogous substituents and the efficient synthesis of key intermediates en route to Myristinin family. Experimental and computational studies have shed light on pivotal aspects including the synergy of metal catalysis and photocatalysis, the driving forces behind the migration, and the determination of absolute configuration in the C-H addition process.
Collapse
Affiliation(s)
- Linlin Ding
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yiming Liu
- Department of Chemistry, University of California, Davis, California, Davis, 95616, United States
| | - Hongjian Lu
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, China
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing
- China and School of Chemistry and Chemical Engineering, Henan Normal University, 453007, Xinxiang, China
| |
Collapse
|
10
|
Boronski JT, Crumpton AE, Aldridge S. A Crystalline NiX 6 Complex. J Am Chem Soc 2024; 146:35208-35215. [PMID: 39668527 DOI: 10.1021/jacs.4c12125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
High-valent nickel species are implicated as intermediates in industrially relevant chemical transformations and in the catalytic cycles of metalloenzymes. Although a small number of tetravalent NiX4 complexes have been crystallographically characterized, higher nickel valence states have not been identified. Here we report a stable, crystalline NiX6 complex, Ni(BeCp)6 (1; cyclopentadienyl anion (Cp)), formed by the insertion of zerovalent nickel into three Be-Be bonds. This 16-electron species features an inverted ligand field, is diamagnetic, and exhibits C3v symmetry, on account of the lifting of Ni 4p-orbital degeneracy in this molecular geometry. Single-crystal X-ray diffraction and quantum chemical calculations both reveal a toroidal band of electron density perpendicular to the C3 axis of the complex, which may be attributed to delocalized, multicenter aromatic NiBe6 bonding.
Collapse
Affiliation(s)
- Josef T Boronski
- Chemistry Research Laboratory, Department of Chemistry, Oxford OX1 3TA, U.K
- Department of Chemistry, Molecular Sciences Research Hub, Imperial College London, 82 Wood Lane, White City, London W12 7TA, U.K
| | | | - Simon Aldridge
- Chemistry Research Laboratory, Department of Chemistry, Oxford OX1 3TA, U.K
| |
Collapse
|
11
|
Wang DM, Shan HM, She LQ, He YQ, Wu Y, Tang Y, Xu LP, Wang P. Ligand-enabled Ni-catalysed dicarbofunctionalisation of alkenes with diverse native functional groups. Nat Commun 2024; 15:10333. [PMID: 39609388 PMCID: PMC11604661 DOI: 10.1038/s41467-024-54170-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/31/2024] [Indexed: 11/30/2024] Open
Abstract
The transition metal-catalysed dicarbofunctionalisation of unactivated alkenes normally requires exogenous strong coordinated directing groups, thus reducing the overall reaction efficiency. Here, we report a ligand-enabled Ni(II)-catalysed dicarbofunctionalisation of unactivated alkenes with aryl/alkenyl boronic acids and alkyl halides as the coupling partners with a diverse range of native functional groups as the directing group. This dicarbofunctionalisation protocol provides an efficient and direct route towards vicinal 1,2-disubstituted alkanes using primary, secondary, tertiary amides, sulfonamides, as well as secondary and tertiary amines under redox-neutral conditions that are challenging to access through conventional methods. The key to the success of this reaction is the use of a bulky β-diketone ligand, which could enable the insertion of alkene to aryl-Ni(II) species, stabilize the alkyl-Ni(II) species and inhibit the homolytic alkyl-Ni(II) cleavage, supporting by both experimental and computational studies. This dicarbofunctionalisation reaction features the use of native directing group, a broad substrate scope, and excellent scalability.
Collapse
Affiliation(s)
- Dao-Ming Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| | - Hui-Mei Shan
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, PR China
| | - Li-Qin She
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China
| | - Yu-Qing He
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, PR China
| | - Yichen Wu
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China
| | - Yong Tang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China
- Chang-Kung Chuang Institute, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, PR China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, PR China.
| | - Peng Wang
- State Key Laboratory of Organometallic Chemistry and Shanghai-Hong Kong Joint Laboratory in Chemical Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences (CAS), Shanghai, PR China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, PR China.
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry, and Material Technology of Ministry of Education, Hangzhou Normal University, Hangzhou, PR China.
| |
Collapse
|
12
|
Li H, Zheng H. Theoretical study on the concerted catalysis of Ir/Ni for amino radical transfer for C(sp 2)-C(sp 3) bond formation. Dalton Trans 2024; 53:18047-18053. [PMID: 39445399 DOI: 10.1039/d4dt02567a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Thomas C. Maier's group has reported a synergistic Ir/Ni catalysis method for the synthesis of C(sp2)-C(sp3) bonds through an amino radical transfer (ART) strategy to generate alkyl radicals. This work employed density functional theory (DFT) to investigate the reaction mechanism, including the redox mechanism of Ir complexes in the generation process of amino radicals, analyzed the role and rationale behind alkyl boronic esters becoming dominant reaction pathways in the ART process, and discussed the competitive reaction mechanisms between oxidative addition and radical capture during C(sp2)-C(sp3) cross-coupling with Ni complexes. Through this theoretical calculation study, we aim to provide a theoretical foundation for constructing key carbon radical intermediates using ART and Ni-complex catalyzed free-radical-involved C(sp2)-C(sp3) cross-coupling reactions.
Collapse
Affiliation(s)
- Hui Li
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, China
| | - He Zheng
- Key Laboratory of Chemical Engineering and Technology, State Ethnic Affairs Commission, North Minzu University, Yinchuan, China.
- Ningxia Key Laboratory of Solar Chemical Conversion Technology, North Minzu University, Yinchuan, China
| |
Collapse
|
13
|
Zhang TY, Bilal M, Wang TZ, Zhang CP, Liang YF. Magnesium-promoted nickel-catalysed chlorination of aryl halides and triflates under mild conditions. Chem Commun (Camb) 2024; 60:12213-12216. [PMID: 39356216 DOI: 10.1039/d4cc04383a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2024]
Abstract
In this study, we present a ligand-free nickel(II)-catalyzed halogen exchange of aromatic halides with magnesium chloride. This method effectively facilitates the retro-Finkelstein reaction for a wide range of aryl bromides, iodides and triflates, demonstrating excellent functional group tolerance. Mechanistic studies reveal that magnesium plays a crucial role in the challenging reductive elimination from Ni(II) intermediates.
Collapse
Affiliation(s)
- Tian-Yu Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Muhammad Bilal
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Tian-Zhang Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Chao-Peng Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| | - Yu-Feng Liang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China.
| |
Collapse
|
14
|
Su X, Li G, He L, Chen S, Yang X, Wang G, Li S. Nickel-catalyzed, silyl-directed, ortho-borylation of arenes via an unusual Ni(II)/Ni(IV) catalytic cycle. Nat Commun 2024; 15:7549. [PMID: 39214987 PMCID: PMC11364840 DOI: 10.1038/s41467-024-51997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 08/21/2024] [Indexed: 09/04/2024] Open
Abstract
Nickel-catalyzed C-H bond functionalization reactions provide an impressive alternative to those with noble metal catalysts due to their unique reactivity and low cost. However, the regioselective C(sp2)-H borylation reaction of arenes accomplished by nickel catalyst remains limited. We herein disclose a silyl-directed ortho C(sp2)-H borylation of substituted arenes with a Ni(cod)2/PMe3/KHMDS catalyst system. Using readily available starting materials, this protocol provides easy access to ortho-borylated benzylic hydrosilanes bearing flexible substitution patterns. These products can serve as versatile building blocks for the synthesis of sila or sila/borine heterocycles under mild conditions. Control experiments and DFT calculations suggest that a catalytic amount of base prompts the formation of Ni(II)-Bpin-ate complex, likely related to the C(sp2)-H bond activation. This borylation reaction might follow an unusual Ni(II)/Ni(IV) catalytic cycle.
Collapse
Affiliation(s)
- Xiaoshi Su
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Guoao Li
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Linke He
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Shengda Chen
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China
| | - Xiaoliang Yang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, China
| | - Guoqiang Wang
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| | - Shuhua Li
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, P. R. China.
| |
Collapse
|
15
|
Qiao B, Lin FY, Fu D, Li SJ, Zhang T, Lan Y. Mechanistic insights into facilitating reductive elimination from Ni(II) species. Chem Commun (Camb) 2024; 60:8008-8019. [PMID: 39005163 DOI: 10.1039/d4cc02667e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Reductive elimination is a key step in Ni-catalysed cross-couplings, which is often considered to result in new covalent bonds. Due to the weak oxidizing ability of Ni(II) species, reductive eliminations from Ni(II) centers are challenging. A thorough mechanistic understanding of this process could inspire the rational design of Ni-catalysed coupling reactions. In this article, we give an overview of recent advances in the mechanistic study of reductive elimination from Ni(II) species achieved by our group. Three possible models for reductive elimination from Ni(II) species were investigated and discussed, including direct reductive elimination, electron density-controlled reductive elimination, and oxidation-induced reductive elimination. Notably, the direct reductive elimination from Ni(II) species often requires a high activation energy in some cases. In contrast, the electron density-controlled and oxidation-induced reductive elimination pathways can significantly enhance the driving force for reductive elimination, accelerating the formation of new covalent bonds. The intricate reaction mechanisms for each of these pathways are thoroughly discussed and systematically summarized in this paper. These computational studies showcase the characteristics of three models for reductive elimination from Ni(II) species, and we hope that it will spur the development of mechanistic studies of cross-coupling reactions.
Collapse
Affiliation(s)
- Bolin Qiao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Fa-You Lin
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Dongmin Fu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Shi-Jun Li
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
| | - Tao Zhang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan, 451162, P. R. China.
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, 401331, P. R. China.
- Pingyuan Laboratory, Xinxiang, Henan, 453007, China
| |
Collapse
|
16
|
Wallick R, Chakrabarti S, Burke JH, Gnewkow R, Chae JB, Rossi TC, Mantouvalou I, Kanngießer B, Fondell M, Eckert S, Dykstra C, Smith LE, Vura-Weis J, Mirica LM, van der Veen RM. Excited-State Identification of a Nickel-Bipyridine Photocatalyst by Time-Resolved X-ray Absorption Spectroscopy. J Phys Chem Lett 2024; 15:4976-4982. [PMID: 38691639 PMCID: PMC11089568 DOI: 10.1021/acs.jpclett.4c00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/18/2024] [Accepted: 04/16/2024] [Indexed: 05/03/2024]
Abstract
Photoassisted catalysis using Ni complexes is an emerging field for cross-coupling reactions in organic synthesis. However, the mechanism by which light enables and enhances the reactivity of these complexes often remains elusive. Although optical techniques have been widely used to study the ground and excited states of photocatalysts, they lack the specificity to interrogate the electronic and structural changes at specific atoms. Herein, we report metal-specific studies using transient Ni L- and K-edge X-ray absorption spectroscopy of a prototypical Ni photocatalyst, (dtbbpy)Ni(o-tol)Cl (dtb = 4,4'-di-tert-butyl, bpy = bipyridine, o-tol = ortho-tolyl), in solution. We unambiguously confirm via direct experimental evidence that the long-lived (∼5 ns) excited state is a tetrahedral metal-centered triplet state. These results demonstrate the power of ultrafast X-ray spectroscopies to unambiguously elucidate the nature of excited states in important transition-metal-based photocatalytic systems.
Collapse
Affiliation(s)
- Rachel
F. Wallick
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Sagnik Chakrabarti
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois 61801, United States
| | - John H. Burke
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Richard Gnewkow
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
- Institute
of Optics and Atomic Physics, Technische
Universität Berlin, Berlin 10623, Germany
| | - Ju Byeong Chae
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Thomas C. Rossi
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
| | - Ioanna Mantouvalou
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
- Institute
of Optics and Atomic Physics, Technische
Universität Berlin, Berlin 10623, Germany
| | - Birgit Kanngießer
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
- Institute
of Optics and Atomic Physics, Technische
Universität Berlin, Berlin 10623, Germany
| | - Mattis Fondell
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
| | - Sebastian Eckert
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
| | - Conner Dykstra
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Laura E. Smith
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Josh Vura-Weis
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Liviu M. Mirica
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois 61801, United States
| | - Renske M. van der Veen
- Department
of Chemistry, University of Illinois at
Urbana—Champaign, Urbana, Illinois 61801, United States
- Department
of Atomic-Scale Dynamics in Light-Energy Conversion, Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin 14109, Germany
- Institute
of Optics and Atomic Physics, Technische
Universität Berlin, Berlin 10623, Germany
| |
Collapse
|
17
|
Mosaferi M, Céolin D, Rueff JP, Selles P, Odelius M, Björneholm O, Öhrwall G, Carniato S. Fingerprint of Dipole Moment Orientation of Water Molecules in Cu 2+ Aqueous Solution Probed by X-ray Photoelectron Spectroscopy. J Am Chem Soc 2024; 146:9836-9850. [PMID: 38545903 DOI: 10.1021/jacs.3c14570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The electronic structure and geometrical organization of aqueous Cu2+ have been investigated by using X-ray photoelectron spectroscopy (XPS) at the Cu L-edge combined with state-of-the-art ab initio molecular dynamics and a quantum molecular approach designed to simulate the Cu 2p X-ray photoelectron spectrum. The calculations offer a comprehensive insight into the origin of the main peak and satellite features. It is illustrated how the energy drop of the Cu 3d levels (≈7 eV) following the creation of the Cu 2p core hole switches the nature of the highest singly occupied molecular orbitals (MOs) from the dominant metal to the dominant MO nature of water. It is particularly revealed how the repositioning of the Cu 3d levels induces the formation of new bonding (B) and antibonding (AB) orbitals, from which shakeup mechanisms toward the relaxed H-SOMO operate. As highlighted in this study, the appearance of the shoulder near the main peak corresponds to the characteristic signature of shakeup intraligand (1a1 → H-SOMO(1b1)) excitations in water, providing insights into the average dipole moment distribution (≈36°) of the first-shell water molecules surrounding the metal ion and its direct impact on the broadening of the satellite. It is also revealed that the main satellite at 8 eV from the main peak corresponds to (metal/1b2 → H-SOMO(1b1) of water) excitations due to a bonding/antibonding (B/AB) interaction of Cu 3d levels with the deepest valence O2p/H1s 1b2 orbitals of water. This finding underscores the sensitivity of XPS to the electronic structure and orientation of the nearest water molecules around the central ion.
Collapse
Affiliation(s)
- Mohammadreza Mosaferi
- Laboratoire de Chimie Physique, Matière et Rayonnement, UMR 7614, Sorbonne Université, 4 Place Jussieu, 75231 Paris Cedex 05, France
| | - Denis Céolin
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, St Aubin, 91192 Gif sur Yvette, France
| | - Jean-Pascal Rueff
- Synchrotron SOLEIL, L'Orme des Merisiers, BP 48, St Aubin, 91192 Gif sur Yvette, France
| | - Patricia Selles
- Laboratoire de Chimie Physique, Matière et Rayonnement, UMR 7614, Sorbonne Université, 4 Place Jussieu, 75231 Paris Cedex 05, France
| | - Michael Odelius
- Department of Physics, Stockholm University, AlbaNova University Center, 106 91 Stockholm, Sweden
| | - Olle Björneholm
- Department of Physics and Astronomy, Uppsala University, Box 516, SE-75120 Uppsala, Sweden
| | - Gunnar Öhrwall
- MAX IV Laboratory, Lund University, Box 118, SE-22100 Lund, Sweden
| | - Stéphane Carniato
- Laboratoire de Chimie Physique, Matière et Rayonnement, UMR 7614, Sorbonne Université, 4 Place Jussieu, 75231 Paris Cedex 05, France
| |
Collapse
|
18
|
Pavun A, Niess R, Scheibel LA, Seidl M, Hohloch S. A mesoionic carbene stabilized nickel(II) hydroxide complex: a facile precursor for C-H activation chemistry. Dalton Trans 2024; 53:2749-2761. [PMID: 38226674 DOI: 10.1039/d3dt03746k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
We report the synthesis of a new nickel(II) hydroxide complex 2 supported by a rigid, tridentate triazolylidene-carbazolid ligand. The complex can be accessed in high yields following a simple and stepwise extraction protocol using dichloromethane and aqueous ammonium chloride followed by aqeous sodium hydroxide solution. We found that complex 2 is highly basic, undergoing various deprotonation/desilylation reactions with E-H and C-H acidic and silylated compounds. In this context we synthesized a variety of novel, functionalized nickel(II) complexes with trimethylsilylolate (3), trityl sulfide (4), tosyl amide (5), azido (6), pyridine (7), acetylide (8, 9), fluoroarene (10 & 11) and enolate (12) ligands. We furthermore found that 2 reacts with malonic acid dimethyl ester in a knoevennagel-type condensation reaction, giving access to a new enolate ligand in complex 13, consisting of two malonic acid units. Furthermore, complex 2 reacts with acetonitrile to form the cyanido complex 14. The formation of complexes 13 and 14 is particularly interesting, as they underline the potential of complex 2 in both C-C bond formation and cleavage reactions.
Collapse
Affiliation(s)
- Anna Pavun
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Raffael Niess
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Lucas A Scheibel
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Michael Seidl
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| | - Stephan Hohloch
- Universität Innsbruck, Department of General, Inorganic and Theoretical Chemistry, Innrain 80-82, 6020 Innsbruck, Austria.
| |
Collapse
|
19
|
Scott JS, Schneider JE, Tewelde EG, Gardner JG, Anferov SW, Filatov AS, Anderson JS. Combining Donor Strength and Oxidative Stability in Scorpionates: A Strongly Donating Fluorinated Mesoionic Tris(imidazol-5-ylidene)borate Ligand. Inorg Chem 2023; 62:21224-21232. [PMID: 38051936 DOI: 10.1021/acs.inorgchem.3c03251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Strongly donating scorpionate ligands support the study of high-valent transition metal chemistry; however, their use is frequently limited by oxidative degradation. To address this concern, we report the synthesis of a tris(imidazol-5-ylidene)borate ligand featuring trifluoromethyl groups surrounding its coordination pocket. This ligand represents the first example of a chelating poly(imidazol-5-ylidene) mesoionic carbene ligand, a scaffold that is expected to be extremely donating. The {NiNO}10 complex of this ligand, as well as that of a previously reported strongly donating tris(imidazol-2-ylidene)borate, has been synthesized and characterized. This new ligand's strong donor properties, as measured by the υNO of its {NiNO}10 complex and natural bonding orbital second-order perturbative energy analysis, are at par with those of the well-studied alkyl-substituted tris(imidazol-2-ylidene)borates, which are known to effectively stabilize high-valent intermediates. The good donor properties of this ligand, despite the electron-withdrawing trifluoromethyl substituents, arise from the strongly donating imidazol-5-ylidene mesoionic carbene arms. These donor properties, when combined with the robustness of trifluoromethyl groups toward oxidative decomposition, suggest this ligand scaffold will be a useful platform in the study of oxidizing high-valent transition-metal species.
Collapse
Affiliation(s)
- Joseph S Scott
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joseph E Schneider
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Eyob G Tewelde
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Joel G Gardner
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Sophie W Anferov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander S Filatov
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - John S Anderson
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
20
|
Rall JM, Lapersonne M, Schorpp M, Krossing I. Synthesis and Characterization of a Stable Nickelocenium Dication Salt. Angew Chem Int Ed Engl 2023; 62:e202312374. [PMID: 37799005 DOI: 10.1002/anie.202312374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
We report the synthesis and characterization of the nickelocenium cations [NiCp2 ]⋅+ and [NiCp2 ]2+ as their [F-{Al(ORF )3 }2 ]- (Cp = C5 H5 ; RF =C(CF3 )3 ) salts. Diamagnetic [NiCp2 ]2+ represents the first example for the isolation of an unsubstituted parent metallocene dication. Both salts were generated by reacting neutral NiCp2 with [NO]+ [F-{Al(ORF )3 }2 ]- in 1,2,3,4-tetrafluorobenzene (4FB). The salts were characterized by single crystal X-ray diffraction (XRD), indicating shorter metal-ligand bond lengths for the higher charged salt. Powder XRD shows the salts to be phase pure, cyclic voltammetry in 4FB gave quasi reversible redox waves at -0.44 (0→1) and +1.17 V (1→2) vs Fc/Fc+ . The 1 H NMR of [NiCp2 ]2+ is a singlet at 8.6 ppm, whereas paramagnetic [NiCp2 ]⋅+ is significantly shifted upfield to -103.1 ppm.
Collapse
Affiliation(s)
- Jan M Rall
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Max Lapersonne
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| | - Marcel Schorpp
- Institut für Anorganische Chemie, Uni Regensburg, Universitätsstraße 31, 93053, Regensburg, Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie und Freiburger Materialforschungszentrum (FMF), Albert-Ludwigs-Universität Freiburg, Albertstr. 21, 79104, Freiburg, Germany
| |
Collapse
|
21
|
Nguyen BX, VandeVen W, MacNeil GA, Zhou W, Paterson AR, Walsby CJ, Chiang L. High-Valent Ni and Cu Complexes of a Tetraanionic Bis(amidateanilido) Ligand. Inorg Chem 2023; 62:15180-15194. [PMID: 37676794 DOI: 10.1021/acs.inorgchem.3c02358] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
High-valent metal species are often invoked as intermediates during enzymatic and synthetic catalytic cycles. Anionic donors are often required to stabilize such high-valent states by forming strong bonds with the Lewis acidic metal centers while decreasing their oxidation potentials. In this report, we discuss the synthesis of two high-valent metal complexes [ML]+ in which the NiIII and CuIII centers are ligated by a new tetradentate, tetraanionic bis(amidateanilido) ligand. [ML]+, obtained via chemical oxidation of ML, exhibits UV-vis-NIR, EPR, and XANES spectra characteristic of square planar, high-valent MIII species, suggesting the locus of oxidation for both [ML]+ is predominantly metal-based. This is supported by theoretical analyses, which also support the observed visible transitions as ligand-to-metal charge transfer transitions characteristic of square planar, high-valent MIII species. Notably, [ML]+ can also be obtained via O2 oxidation of ML due to its remarkably negative oxidation potentials (CuL/[CuL]+: -1.16 V, NiL/[NiL]+: -1.01 V vs Fc/Fc+ in MeCN). This demonstrates the exceptionally strong donating nature of the tetraanionic bis(amidateanilido) ligation and its ability to stabilize high-valent metal centers..
Collapse
Affiliation(s)
- Bach X Nguyen
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Warren VandeVen
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Gregory A MacNeil
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Wen Zhou
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Alisa R Paterson
- Canadian Light Source, 44 Innovation Boulevard, Saskatoon, Saskatchewan S7N 2 V3, Canada
| | - Charles J Walsby
- Department of Chemistry, Simon Fraser University, Burnaby, British Columba V5A 1S6, Canada
| | - Linus Chiang
- Department of Chemistry, University of the Fraser Valley, Abbotsford, British Columbia V2S 7M8, Canada
| |
Collapse
|
22
|
McQuade J, Jäkle F. Tris(pyridyl)borates: an emergent class of versatile and robust polydentate ligands for catalysis and materials applications. Dalton Trans 2023; 52:10278-10285. [PMID: 37462446 DOI: 10.1039/d3dt01665j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Tridentate ligands that incorporate pyridyl rather than pyrazolyl groups are emerging as an attractive class of "scorpionate"-type ligands with enhanced electron donation, increased stability, and divergent geometry at the metal centre relative to tris(pyrazolyl)borates originally introduced by Trofimenko. Following our initial reports, the tris(pyridyl)borate (Tpyb) ligand architecture has been adopted by several research groups in pursuit of functional metal complexes that offer new opportunities in catalysis and materials science. While earlier work had been focused on symmetric octahedral complexes, ML2, which are advantageous as highly robust building blocks in materials sciences, recently introduced new ligand designs provide access to heteroleptic metal complexes with vacant sites that lend themselves to applications in catalysis. Signficant progress has also been made in the post-complexation functionalization of these ligands via electrophilic and nucleophilic substitution reactions at the boron centres, opening up new routes for integration of Tpyb complexes with diverse functional materials while also raising interesting mechanistic questions.
Collapse
Affiliation(s)
- James McQuade
- Department of Chemistry, Rutgers University Newark, 73 Warren Street, Newark, New Jersey 07102, USA.
| | - Frieder Jäkle
- Department of Chemistry, Rutgers University Newark, 73 Warren Street, Newark, New Jersey 07102, USA.
| |
Collapse
|
23
|
DiMucci IM, Titus CJ, Nordlund D, Bour JR, Chong E, Grigas DP, Hu CH, Kosobokov MD, Martin CD, Mirica LM, Nebra N, Vicic DA, Yorks LL, Yruegas S, MacMillan SN, Shearer J, Lancaster KM. Scrutinizing formally Ni IV centers through the lenses of core spectroscopy, molecular orbital theory, and valence bond theory. Chem Sci 2023; 14:6915-6929. [PMID: 37389249 PMCID: PMC10306094 DOI: 10.1039/d3sc02001k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/30/2023] [Indexed: 07/01/2023] Open
Abstract
Nickel K- and L2,3-edge X-ray absorption spectra (XAS) are discussed for 16 complexes and complex ions with nickel centers spanning a range of formal oxidation states from II to IV. K-edge XAS alone is shown to be an ambiguous metric of physical oxidation state for these Ni complexes. Meanwhile, L2,3-edge XAS reveals that the physical d-counts of the formally NiIV compounds measured lie well above the d6 count implied by the oxidation state formalism. The generality of this phenomenon is explored computationally by scrutinizing 8 additional complexes. The extreme case of NiF62- is considered using high-level molecular orbital approaches as well as advanced valence bond methods. The emergent electronic structure picture reveals that even highly electronegative F-donors are incapable of supporting a physical d6 NiIV center. The reactivity of NiIV complexes is then discussed, highlighting the dominant role of the ligands in this chemistry over that of the metal centers.
Collapse
Affiliation(s)
- Ida M DiMucci
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| | - Charles J Titus
- Department of Physics, Stanford University Stanford California 94305 USA
| | - Dennis Nordlund
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory Menlo Park California 94025 USA
| | - James R Bour
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Eugene Chong
- Department of Chemistry, University of Michigan Ann Arbor Michigan 48109 USA
| | - Dylan P Grigas
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| | - Chi-Herng Hu
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | | | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University Waco Texas 76798 USA
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign Urbana Illinois 61801 USA
| | - Noel Nebra
- Laboratoire Hétérochimie Fondamentale et Appliquée (LHFA), Université Paul Sabatier, CNRS 118 Route de Narbonne 31062 Toulouse France
| | - David A Vicic
- Department of Chemistry, Lehigh University Bethlehem Pennsylvania 18015 USA
| | - Lydia L Yorks
- Department of Chemistry, Lehigh University Bethlehem Pennsylvania 18015 USA
| | - Sam Yruegas
- Department of Chemistry and Biochemistry, Baylor University Waco Texas 76798 USA
| | - Samantha N MacMillan
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| | - Jason Shearer
- Department of Chemistry, Trinity University San Antonio Texas 78212-7200 USA
| | - Kyle M Lancaster
- Department of Chemistry and Chemical Biology, Cornell University, Baker Laboratory 162 Sciences Drive Ithaca NY 14853 USA
| |
Collapse
|
24
|
Sanosa N, Ruiz-Campos P, Ambrosi D, Sampedro D, Funes-Ardoiz I. Investigating the Mechanism of Ni-Catalyzed Coupling of Photoredox-Generated Alkyl Radicals and Aryl Bromides: A Computational Study. Int J Mol Sci 2023; 24:ijms24119145. [PMID: 37298098 DOI: 10.3390/ijms24119145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/12/2023] Open
Abstract
Photoredox catalysis has emerged as an alternative to classical cross-coupling reactions, promoting new reactivities. Recently, the use of widely abundant alcohols and aryl bromides as coupling reagents was demonstrated to promote efficient coupling through the Ir/Ni dual photoredox catalytic cycle. However, the mechanism underlying this transformation is still unexplored, and here we report a comprehensive computational study of the catalytic cycle. We have shown that nickel catalysts can promote this reactivity very efficiently through DFT calculations. Two different mechanistic scenarios were explored, suggesting that two catalytic cycles operate simultaneously depending on the concentration of the alkyl radical.
Collapse
Affiliation(s)
- Nil Sanosa
- Centro de Investigación en Síntesis Química (CISQ), Department of Chemistry, Universidad de la Rioja, Madre de Dios 53, 26004 Logroño, Spain
| | - Pedro Ruiz-Campos
- Centro de Investigación en Síntesis Química (CISQ), Department of Chemistry, Universidad de la Rioja, Madre de Dios 53, 26004 Logroño, Spain
| | - Diego Ambrosi
- Centro de Investigación en Síntesis Química (CISQ), Department of Chemistry, Universidad de la Rioja, Madre de Dios 53, 26004 Logroño, Spain
| | - Diego Sampedro
- Centro de Investigación en Síntesis Química (CISQ), Department of Chemistry, Universidad de la Rioja, Madre de Dios 53, 26004 Logroño, Spain
| | - Ignacio Funes-Ardoiz
- Centro de Investigación en Síntesis Química (CISQ), Department of Chemistry, Universidad de la Rioja, Madre de Dios 53, 26004 Logroño, Spain
| |
Collapse
|
25
|
Hu CH, Kim ST, Baik MH, Mirica LM. Nickel-Carbon Bond Oxygenation with Green Oxidants via High-Valent Nickel Species. J Am Chem Soc 2023; 145:11161-11172. [PMID: 37183827 DOI: 10.1021/jacs.3c01012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Described herein is the synthesis of the NiII complex (tBuMe2tacn)NiII(cycloneophyl) (tBuMe2tacn = 1-tert-butyl-4,7-dimethyl-1,4,7-triazacyclononane, cycloneophyl = -CH2CMe2-o-C6H4-) and its reactivity with dioxygen and peroxides. The new tBuMe2tacn ligand is designed to enhance the oxidatively induced bond-forming reactivity of high-valent Ni intermediates. Tunable chemoselectivity for Csp2-O vs Csp2-Csp3 bond formation was achieved by selecting the appropriate solvent and reaction conditions. Importantly, the use of cumene hydroperoxide and meta-chloroperbenzoic acid suggests a heterolytic O-O bond cleavage upon reaction with (tBuMe2tacn)NiII(cycloneophyl). Mechanistic studies using isotopically labeled H2O2 support the generation of a high-valent Ni-oxygen species via an inner-sphere mechanism and subsequent reductive elimination to form the Csp2-O bond. Kinetic studies of the exceptionally fast Csp2-O bond-forming reaction reveal a first-order dependence on both (tBuMe2tacn)NiII(cycloneophyl) and H2O2, and thus an overall second-order reaction. Eyring analysis further suggests that the oxidation of the NiII complex by H2O2 is the rate-determining step, which can be modulated by the presence of coordinating solvents. Moreover, computational studies fully support the conclusions drawn from experimental results. Overall, this study reveals for the first time the ability to control the oxidatively induced C-C vs C-O bond formation reactions at a Ni center. Importantly, the described system merges the known organometallic reactivity of Ni with the biomimetic oxidative transformations resembling oxygenases and peroxidases, and involving high-valent metal-oxygen intermediates, which is a novel approach that should lead to unprecedented oxidative catalytic transformations.
Collapse
Affiliation(s)
- Chi-Herng Hu
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Seoung-Tae Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Republic of Korea
| | - Liviu M Mirica
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
26
|
Green KA, Honeycutt AP, Ciccone SR, Grice KA, Baur A, Petersen JL, Hoover JM. A Redox Transmetalation Step in Nickel-Catalyzed C-C Coupling Reactions. ACS Catal 2023; 13:6375-6381. [PMID: 37180967 PMCID: PMC10167653 DOI: 10.1021/acscatal.2c06015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/11/2023] [Indexed: 05/16/2023]
Abstract
Ni-catalyzed C-H functionalization reactions are becoming efficient routes to access a variety of functionalized arenes, yet the mechanisms of these catalytic C-C coupling reactions are not well understood. Here, we report the catalytic and stoichiometric arylation reactions of a nickel(II) metallacycle. Treatment of this species with silver(I)-aryl complexes results in facile arylation, consistent with a redox transmetalation step. Additionally, treatment with electrophilic coupling partners generates C-C and C-S bonds. We anticipate that this redox transmetalation step may be relevant to other coupling reactions that employ silver salts as additives.
Collapse
Affiliation(s)
- Kerry-Ann Green
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Aaron P. Honeycutt
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Sierra R. Ciccone
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Kyle A. Grice
- Department
of Chemistry and Biochemistry, DePaul University, Chicago, Illinois 60614, United States
| | - Andreas Baur
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jeffrey L. Petersen
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| | - Jessica M. Hoover
- C.
Eugene Bennett Department of Chemistry, West Virginia University, Morgantown, West Virginia 26506, United States
| |
Collapse
|
27
|
Piszel PE, Orzolek BJ, Olszewski AK, Rotella ME, Spiewak AM, Kozlowski MC, Weix DJ. Protodemetalation of (Bipyridyl)Ni(II)-Aryl Complexes Shows Evidence for Five-, Six-, and Seven-Membered Cyclic Pathways. J Am Chem Soc 2023; 145:10.1021/jacs.3c00618. [PMID: 37026854 PMCID: PMC10558627 DOI: 10.1021/jacs.3c00618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Protonation of C-M bonds and its microscopic reverse, metalation of C-H bonds, are fundamental steps in a variety of metal-catalyzed processes. As such, studies on protonation of C-M bonds can shed light on C-H activation. We present here studies on the rate of protodemetalation (PDM) of a suite of arylnickel(II) complexes with various acids that provide evidence for a concerted, cyclic transition state for the PDM of C-Ni bonds and demonstrate that five-, six-, and seven-membered transition states are particularly favorable. Our data show that while the rate of protodemetalation of arylnickel(II) complexes scales with acidity for many acids, several are faster than predicted by pKa. For example, while acetic acid and acetohydroxamic acid are much less acidic than HCl, they both protodemetalate arylnickel(II) complexes significantly faster than HCl. Our data also show how in the case of acetohydroxamic acid, a seven-membered cyclic transition state (CH3C(O)NHOH) can be more favorable than a six-membered transition state (CH3C(O)NHOH). Similarly, five-membered transition states, such as for pyrazole, are highly favorable as well. Comparison of transition state polarization (from density functional theory) compares these new nickel transition states to better-studied precious-metal systems and demonstrates how the base can change the polarization of the transition state giving rise to opposing electronic preferences. Collectively, these studies suggest several new avenues for study in C-H activation as well as approaches to accelerate or slow protodemetalation in nickel catalysis.
Collapse
Affiliation(s)
- Paige E. Piszel
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Brandon J. Orzolek
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alyssa K. Olszewski
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Madeline E. Rotella
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Amanda M. Spiewak
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Marisa C. Kozlowski
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel J. Weix
- Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
28
|
Rabiei K, Mohammadkhani Z, Keypour H, Kouhdareh J. Palladium Schiff base complex-modified Cu(BDC-NH 2) metal-organic frameworks for C-N coupling. RSC Adv 2023; 13:8114-8129. [PMID: 36926010 PMCID: PMC10014173 DOI: 10.1039/d3ra01020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/18/2023] Open
Abstract
In this study, the synthesis of a novel functionalized metal-organic-framework (MOF) [Cu(BDC-NH2)@Schiff-base-Pd(ii)] catalyst via post-synthetic modification of Cu(BDC-NH2) is reported. The targeted complex was prepared by chemically attaching N,N'-bis(5-formylpyrrol-2-ylmethyl) homopiperazine via a Schiff base reaction followed by complexation with Pd ions. Afterwards, the synthesized solid was applied as a very effective multifunctional catalyst in C-N coupling reactions. The synthesized compounds were identified by suitable techniques including N2 isotherms, EDX spectroscopy, FT-IR spectroscopy, XRD, SEM, ICP-OES and TG-DTA. This nanocatalyst was used in C-N cross-coupling reactions, and it showed its usage in a diverse range of different functional groups with good efficiency. The reasons for introducing this catalyst system are its advantages such as considerably high selectivity, almost complete conversion of products, high yields, and convenient separation of catalysts and products. The results indicate that the highest efficiency of the product in the reaction was obtained in the shortest possible time with the use of [Cu(BDC-NH2)@Schiff-base-Pd(ii)] catalysts. Overall, the high catalytic activity of the [Cu(BDC-NH2)@Schiff-base-Pd(ii)] catalyst may be due to the obtained high surface area and the synergistic features created between Lewis acidic Cu nodes and Pd ions.
Collapse
Affiliation(s)
- Khadijeh Rabiei
- Department of Chemistry, Faculty of Science, Qom University of Technology Qom Iran
| | - Zahra Mohammadkhani
- Department of Chemistry, Faculty of Science, Qom University of Technology Qom Iran
| | - Hassan Keypour
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| | - Jamal Kouhdareh
- Department of Inorganic Chemistry, Faculty of Chemistry, Bu-Ali Sina University Hamedan 6517838683 Iran
| |
Collapse
|
29
|
Vil’ VA, Barsegyan YA, Kuhn L, Terent’ev AO, Alabugin IV. Creating, Preserving, and Directing Carboxylate Radicals in Ni-Catalyzed C(sp 3)–H Acyloxylation of Ethers, Ketones, and Alkanes with Diacyl Peroxides. Organometallics 2023. [DOI: 10.1021/acs.organomet.2c00663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Affiliation(s)
- Vera A. Vil’
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Yana A. Barsegyan
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Leah Kuhn
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| | - Alexander O. Terent’ev
- N. D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Prospect, Moscow 119991, Russian Federation
| | - Igor V. Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, Fl 32306, United States
| |
Collapse
|
30
|
Zhang T, Zhong K, Lin ZK, Niu L, Li ZQ, Bai R, Engle KM, Lan Y. Revised Mechanism of C(sp 3)-C(sp 3) Reductive Elimination from Ni(II) with the Assistance of a Z-Type Metalloligand. J Am Chem Soc 2023; 145:2207-2218. [PMID: 36689704 DOI: 10.1021/jacs.2c09739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Reductive elimination is a key step in Ni-catalyzed cross-couplings. Compared with processes that proceed from Ni(III) or Ni(IV) intermediates, C(sp3)-C(sp3) reductive eliminations from Ni(II) centers are challenging due to the weak oxidizing ability of Ni(II) species. In this report, we present computational evidence that supports a mechanism in which Zn coordination to the nickel center as a Z-type ligand accelerates reductive elimination. This Zn-assisted pathway is found to be lower in energy compared with direct reductive elimination from a σ-coordinated Ni(II) intermediate, providing new insights into the mechanism of Ni-catalyzed cross-coupling with organozinc nucleophiles. Mayer bond order, Hirshfield charge, Laplacian of the electron density, orbital, and interaction region indicator analyses were conducted to elucidate details of the reductive elimination process and characterize the key intermediates. Theoretical calculations indicate a significant Z-type Ni-Zn interaction that reduces the electron density around the Ni center and accelerates reductive elimination. This mechanistic study of reductive elimination in Ni(0)-catalyzed conjunctive cross-couplings of aryl iodides, organozinc reagents, and alkenes is an important case study of the involvement of Zn-assisted reductive elimination in Ni catalysis. We anticipate that the novel Zn-assisted reductive elimination mode may extend to other cross-coupling processes and explain the unique effectiveness of organozinc nucleophiles in many instances.
Collapse
Affiliation(s)
- Tao Zhang
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou450001, Henan, China.,ZhengZhou JiShu Institute of AI Science, Zhengzhou450000, Henan, China
| | - Kangbao Zhong
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing400030, China
| | - Zhi-Keng Lin
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore117543, Republic of Singapore
| | - Linbin Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou450001, Henan, China
| | - Zi-Qi Li
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California92037, United States
| | - Ruopeng Bai
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing400030, China
| | - Keary M Engle
- Department of Chemistry, The Scripps Research Institute, 10550 N. Torrey Pines Rd., La Jolla, California92037, United States
| | - Yu Lan
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou450001, Henan, China.,School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Chongqing400030, China
| |
Collapse
|
31
|
Sengmany S, Daili F, Kribii I, Léonel E. Electrogenerated Nickel Catalyst for C-N Cross-Coupling. J Org Chem 2023; 88:675-683. [PMID: 36516437 DOI: 10.1021/acs.joc.2c01964] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Arylamines represent a class of compounds widely found in natural products and pharmaceuticals. Among methodologies devoted to their synthesis, nickel-catalyzed amination of aryl halides constitutes one of the most employed conventional strategies. However, C-N cross-couplings often involve elaborated nickel complexes, which are expensive and/or air and moisture sensitive. To circumvent this issue, we herein report an electrochemical method based on a sacrificial anode process to in situ generate a catalytic amount of nickel salts allowing amination of aryl halides. The approach, simple to set up, proceeds under mild reaction conditions and enables access to a large panel of arylamines.
Collapse
Affiliation(s)
- Stéphane Sengmany
- Université Paris-Est Créteil, ICMPE (UMR 7182), CNRS, UPEC, 94320 Thiais, France
| | - Farah Daili
- Université Paris-Est Créteil, ICMPE (UMR 7182), CNRS, UPEC, 94320 Thiais, France
| | - Ibtihal Kribii
- Université Paris-Est Créteil, ICMPE (UMR 7182), CNRS, UPEC, 94320 Thiais, France
| | - Eric Léonel
- Université Paris-Est Créteil, ICMPE (UMR 7182), CNRS, UPEC, 94320 Thiais, France
| |
Collapse
|
32
|
The once-elusive Ni(IV) species is now a potent candidate for challenging organic transformations. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
33
|
Sheetal, Mehara P, Das P. Methanol as a greener C1 synthon under non-noble transition metal-catalyzed conditions. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
34
|
Recent Advances in Nickel-Catalyzed C-C Cross-Coupling. TOP ORGANOMETAL CHEM 2023. [DOI: 10.1007/3418_2023_85] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
|
35
|
Organic reaction mechanism classification using machine learning. Nature 2023; 613:689-695. [PMID: 36697863 DOI: 10.1038/s41586-022-05639-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 12/08/2022] [Indexed: 01/26/2023]
Abstract
A mechanistic understanding of catalytic organic reactions is crucial for the design of new catalysts, modes of reactivity and the development of greener and more sustainable chemical processes1-13. Kinetic analysis lies at the core of mechanistic elucidation by facilitating direct testing of mechanistic hypotheses from experimental data. Traditionally, kinetic analysis has relied on the use of initial rates14, logarithmic plots and, more recently, visual kinetic methods15-18, in combination with mathematical rate law derivations. However, the derivation of rate laws and their interpretation require numerous mathematical approximations and, as a result, they are prone to human error and are limited to reaction networks with only a few steps operating under steady state. Here we show that a deep neural network model can be trained to analyse ordinary kinetic data and automatically elucidate the corresponding mechanism class, without any additional user input. The model identifies a wide variety of classes of mechanism with outstanding accuracy, including mechanisms out of steady state such as those involving catalyst activation and deactivation steps, and performs excellently even when the kinetic data contain substantial error or only a few time points. Our results demonstrate that artificial-intelligence-guided mechanism classification is a powerful new tool that can streamline and automate mechanistic elucidation. We are making this model freely available to the community and we anticipate that this work will lead to further advances in the development of fully automated organic reaction discovery and development.
Collapse
|
36
|
Du B, Chan CM, Ouyang Y, Chan K, Lin Z, Yu WY. NiH-catalyzed anti-Markovnikov hydroamidation of unactivated alkenes with 1,4,2-dioxazol-5-ones for the direct synthesis of N-alkyl amides. Commun Chem 2022; 5:176. [PMID: 36697972 PMCID: PMC9814879 DOI: 10.1038/s42004-022-00791-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 12/07/2022] [Indexed: 12/24/2022] Open
Abstract
The addition of a nitrogen-based functional group to alkenes via a direct catalytic method is an attractive way of synthesizing value-added amides. The regioselective hydroamidation of unactivated alkenes is considered one of the easiest ways to achieve this goal. Herein, we report the NiH-catalyzed anti-Markovnikov intermolecular hydroamidation of unactivated alkenes enabled by using 2,9-dibutylphenathroline (diBuphen) as the ligand. This protocol provides a platform for the direct synthesis of over 90 structurally diverse N-alkyl amides using dioxazolones, which can be easily derived from abundant carboxylic acid feedstocks. This method succeeds for both terminal and internal unactivated alkenes and some natural products. Mechanistic studies including DFT calculations reveal an initial reversible insertion/elimination of the [NiH] to the alkene, followed by the irreversible amidation to furnish the N-alkyl amides. By crossover experiments and deuterium labeling studies, the observed anti-Markovnikov regioselectivities are suggested to be controlled by the sterical environment of the coupling reaction.
Collapse
Affiliation(s)
- Bingnan Du
- grid.16890.360000 0004 1764 6123State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Chun-Ming Chan
- grid.16890.360000 0004 1764 6123State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Yuxin Ouyang
- grid.16890.360000 0004 1764 6123State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| | - Kalok Chan
- grid.24515.370000 0004 1937 1450Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Zhenyang Lin
- grid.24515.370000 0004 1937 1450Department of Chemistry, The Hong Kong University of Science and Technology, Hong Kong, PR China
| | - Wing-Yiu Yu
- grid.16890.360000 0004 1764 6123State Key Laboratory of Chemical Biology and Drug Discovery, Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, PR China
| |
Collapse
|
37
|
Deolka S, Govindarajan R, Vasylevskyi S, Roy MC, Khusnutdinova JR, Khaskin E. Ligand-free nickel catalyzed perfluoroalkylation of arenes and heteroarenes. Chem Sci 2022; 13:12971-12979. [PMID: 36425484 PMCID: PMC9667918 DOI: 10.1039/d2sc03879j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/13/2022] [Indexed: 11/07/2023] Open
Abstract
We describe a "ligand-free" Ni-catalyzed perfluoroalkylation of heteroarenes to produce a diverse array of trfiluoromethyl, pentafluoroethyl and heptafluoropropyl adducts. Catalysis proceeds at room temperature via a radical pathway. The catalytic protocol is distinguished by its simplicity, and its wide scope demonstrates the potential in the late-stage functionalization of drug analogues and peptides.
Collapse
Affiliation(s)
- Shubham Deolka
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Ramadoss Govindarajan
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Serhii Vasylevskyi
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Michael C Roy
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Julia R Khusnutdinova
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| | - Eugene Khaskin
- Coordination Chemistry and Catalysis Unit, Okinawa Institute of Science and Technology Graduate University 1919-1 Tancha, Onna-son 904-0495 Okinawa Japan
| |
Collapse
|
38
|
Milbauer MW, Kampf JW, Sanford MS. Nickel(IV) Intermediates in Aminoquinoline-Directed C(sp 2)–C(sp 3) Coupling. J Am Chem Soc 2022; 144:21030-21034. [DOI: 10.1021/jacs.2c10778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Michael W. Milbauer
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Jeff W. Kampf
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Melanie S. Sanford
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
39
|
Whitehurst W, Kim J, Koenig SG, Chirik PJ. C-H Activation by Isolable Cationic Bis(phosphine) Cobalt(III) Metallacycles. J Am Chem Soc 2022; 144:19186-19195. [PMID: 36194198 PMCID: PMC9585578 DOI: 10.1021/jacs.2c08865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Indexed: 11/30/2022]
Abstract
Five- and six-coordinate cationic bis(phosphine) cobalt(III) metallacycle complexes were synthesized with the general structures, [(depe)Co(cycloneophyl)(L)(L')][BArF4] (depe = 1,2-bis(diethylphosphino)ethane; cycloneophyl = [κ-C:C-(CH2C(Me)2)C6H4]; L/L' = pyridine, pivalonitrile, or the vacant site, BAr4F = B[(3,5-(CF3)2)C6H3]4). Each of these compounds promoted facile directed C(sp2)-H activation with exclusive selectivity for ortho-alkylated products, consistent with the selectivity of reported cobalt-catalyzed arene-alkene-alkyne coupling reactions. The direct observation of C-H activation by cobalt(III) metallacycles provided experimental support for the intermediacy of these compounds in this class of catalytic C-H functionalization reaction. Deuterium labeling and kinetic studies provided insight into the nature of C-H bond cleavage and C-C bond reductive elimination from isolable cobalt(III) precursors.
Collapse
Affiliation(s)
- William
G. Whitehurst
- Department
of Chemistry, Frick Laboratory, Princeton
University, Princeton, New Jersey 08544, United States
| | - Junho Kim
- Department
of Chemistry, Frick Laboratory, Princeton
University, Princeton, New Jersey 08544, United States
| | - Stefan G. Koenig
- Small
Molecule Process Chemistry, Genentech Inc, 1 DNA Way, South San Francisco, California 94080, United States
| | - Paul J. Chirik
- Department
of Chemistry, Frick Laboratory, Princeton
University, Princeton, New Jersey 08544, United States
| |
Collapse
|
40
|
Dearomative Aminocarbonylation of Arenes via Bifunctional Coordination to Chromium. Angew Chem Int Ed Engl 2022; 61:e202210312. [DOI: 10.1002/anie.202210312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Indexed: 11/07/2022]
|
41
|
Wang L, Sa R, Wei Y, Ma X, Lu C, Huang H, Fron E, Liu M, Wang W, Huang S, Hofkens J, Roeffaers MBJ, Wang Y, Wang J, Long J, Fu X, Yuan R. Near‐Infrared Light‐Driven Photoredox Catalysis by Transition‐Metal‐Complex Nanodots. Angew Chem Int Ed Engl 2022; 61:e202204561. [DOI: 10.1002/anie.202204561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Lele Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Rongjian Sa
- Institute of Oceanography Ocean College Minjiang University Fuzhou 350108 P. R. China
| | - Yingcong Wei
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Xiongfeng Ma
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Chenggang Lu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Haowei Huang
- cMACS, Faculty of Bioscience Engineering KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Eduard Fron
- Department of Chemistry, Faculty of Sciences KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Ming Liu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Wei Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Shuping Huang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Johan Hofkens
- Department of Chemistry, Faculty of Sciences KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Maarten B. J. Roeffaers
- cMACS, Faculty of Bioscience Engineering KU Leuven Celestijnenlaan 200F 3001 Heverlee Belgium
| | - Yan‐jie Wang
- School of Environment & Civil Engineering Dongguan University of Technology Dongguan 523808 (P. R. China)
| | - Junhui Wang
- State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials (iChEM) Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian 116023 China
| | - Jinlin Long
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Xianzhi Fu
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| | - Rusheng Yuan
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350108 P. R. China
| |
Collapse
|
42
|
Kaur S, Bera M, Santra A, Munshi S, Sterbinsky GE, Wu T, Moonshiram D, Paria S. Effect of Redox-Inactive Metal Ion-Nickel(III) Interactions on the Redox Properties and Proton-Coupled Electron Transfer Reactivity. Inorg Chem 2022; 61:14252-14266. [PMID: 36041064 DOI: 10.1021/acs.inorgchem.2c01472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mononuclear nickel(II) and nickel(III) complexes of a bisamidate-bisalkoxide ligand, (NMe4)2[NiII(HMPAB)] (1) and (NMe4)[NiIII(HMPAB)] (2), respectively, have been synthesized and characterized by various spectroscopic techniques including X-ray crystallography. The reaction of redox-inactive metal ions (Mn+ = Ca2+, Mg2+, Zn2+, Y3+, and Sc3+) with 2 resulted in 2-Mn+ adducts, which was assessed by an array of spectroscopic techniques including X-ray absorption spectroscopy (XAS), electron paramagnetic resonance (EPR), and reactivity studies. The X-ray structure of Ca2+ coordinated to Ni(III) complexes, 2-Ca2+T, was determined and exhibited an average Ni-Ca distance of 3.1253 Å, close to the metal ions' covalent radius. XAS analysis of 2-Ca2+ and 2-Y3+ in solution further revealed an additional coordination to Ca and Y in the 2-Mn+ adducts with shortened Ni-M distances of 2.15 and 2.11 Å, respectively, implying direct bonding interactions between Ni and Lewis acids (LAs). Such a short interatomic distance between Ni(III) and M is unprecedented and was not observed before. EPR analysis of 2 and 2-Mn+ species, moreover, displayed rhombic signals with gav > 2.12 for all complexes, supporting the +III oxidation state of Ni. The NiIII/NiII redox potential of 2 and 2-Mn+ species was determined, and a plot of E1/2 of 2-Mn+ versus pKa of [M(H2O)n]m+ exhibited a linear relationship, implying that the NiIII/NiII potential of 2 can be tuned with different redox-inactive metal ions. Reactivity studies of 2 and 2-Mn+ with different 4-X-2,6-ditert-butylphenol (4-X-DTBP) and other phenol derivatives were performed, and based on kinetic studies, we propose the involvement of a proton-coupled electron transfer (PCET) pathway. Analysis of the reaction products after the reaction of 2 with 4-OMe-DTBP showed the formation of a Ni(II) complex (1a) where one of the alkoxide arms of the ligand is protonated. A pKa value of 24.2 was estimated for 1a. The reaction of 2-Mn+ species was examined with 4-OMe-DTBP, and it was observed that the k2 values of 2-Mn+ species increase by increasing the Lewis acidity of redox-inactive metal ions. However, the obtained k2 values for 2-Mn+ species are much lower compared to the k2 value for 2. Such a variation of PCET reactivity between 2 and 2-Mn+ species may be attributed to the interactions between Ni(III) and LAs. Our findings show the significance of the secondary coordination sphere effect on the PCET reactivity of Ni(III) complexes and furnish important insights into the reaction mechanism involving high-valent nickel species, which are frequently invoked as key intermediates in Ni-mediated enzymatic reactions, solar-fuel catalysis, and biomimetic/synthetic transformation reactions.
Collapse
Affiliation(s)
- Simarjeet Kaur
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Moumita Bera
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Aakash Santra
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sandip Munshi
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & 2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700032, India
| | - George E Sterbinsky
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Tianpin Wu
- X-ray Science Division, Argonne National Laboratory, 9700 South Cass Avenue, Lemont, Illinois 60439, United States
| | - Dooshaye Moonshiram
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior de Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid 28049, Spain
| | - Sayantan Paria
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
43
|
Tricoire M, Wang D, Rajeshkumar T, Maron L, Danoun G, Nocton G. Electron Shuttle in N-Heteroaromatic Ni Catalysts for Alkene Isomerization. JACS AU 2022; 2:1881-1888. [PMID: 36032537 PMCID: PMC9400170 DOI: 10.1021/jacsau.2c00251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Simple N-heteroaromatic Ni(II) precatalysts, (L)NiMe2 (L = bipy, bipym), were used for alkene isomerization. With an original reduction method using a simple borane (HB(Cat)), a low-valent Ni center was formed readily and showed good conversion when a reducing divalent lanthanide fragment, Cp*2Yb, was coordinated to the (bipym)NiMe2 complex, a performance not achieved by the monometallic (bipy)NiMe2 analogue. Experimental mechanistic investigations and computational studies revealed that the redox non-innocence of the L ligand triggered an electron shuttle process, allowing the elusive formation of Ni(I) species that were central to the isomerization process. Additionally, the reaction occurred with a preference for mono-isomerization rather than chain-walking isomerization. The presence of the low-valent ytterbium fragment, which contributed to the formation of the electron shuttle, strongly stabilized the catalysts, allowing catalytic loading as low as 0.5%. A series of alkenes with various architectures have been tested. The possibility to easily tune the various components of the heterobimetallic catalyst reported here, the ligand L and the divalent lanthanide fragment, opens perspectives for further applications in catalysis induced by Ni(I) species.
Collapse
Affiliation(s)
- Maxime Tricoire
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Ding Wang
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Thayalan Rajeshkumar
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077 Toulouse
cedex 4, France
| | - Laurent Maron
- LPCNO,
UMR 5215, Université de Toulouse-CNRS, INSA, UPS, 31077 Toulouse
cedex 4, France
| | - Grégory Danoun
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| | - Grégory Nocton
- LCM,
CNRS, Ecole polytechnique, Institut Polytechnique de Paris, Route
de Saclay, 91120 Palaiseau, France
| |
Collapse
|
44
|
Wang MY, Wu CJ, Zeng WL, Jiang X, Li W. Dearomative Aminocarbonylation of Arenes via Bifunctional Coordination to Chromium. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Ming-Yang Wang
- Zhejiang University Department of Chemistry 38 Zheda Road, Xihu District 310027 Hangzhou CHINA
| | - Cheng-Jie Wu
- Zhejiang University Department of Chemistry 38 Zheda Road, Xihu District 310027 Hangzhou CHINA
| | - Wei-Long Zeng
- Zhejiang University Department of Chemistry 38 Zheda Road, Xihu District 310027 Hangzhou CHINA
| | - Xu Jiang
- Zhejiang University Department of Chemistry 38 Zheda Road, Xihu District 310027 Hangzhou CHINA
| | - Wei Li
- Zhejiang University Department of Chemistry 38 Zheda Road, Xihu District 310027 Hangzhou CHINA
| |
Collapse
|
45
|
Wang L, Sa R, Wei Y, Ma X, Lu C, Huang H, Fron E, Liu M, Wang W, Huang S, Hofkens J, Roeffaers MBJ, Wang YJ, Wang J, Long J, Fu X, Yuan R. Near‐Infrared Light‐Driven Photoredox Catalysis by Transition‐Metal‐Complex Nanodots. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Lele Wang
- Fuzhou University College of Chemistry CHINA
| | | | | | | | | | - Haowei Huang
- KU Leuven: Katholieke Universiteit Leuven Faculty of Bioscience Engineering BELGIUM
| | - Eduard Fron
- KU Leuven: Katholieke Universiteit Leuven Faculty of Bioscience Engineering BELGIUM
| | - Ming Liu
- Fuzhou University College of Chemistry CHINA
| | - Wei Wang
- Fuzhou University College of Chemistry CHINA
| | | | - Johan Hofkens
- KU Leuven: Katholieke Universiteit Leuven Faculty of Bioscience Engineering BELGIUM
| | | | - Yan-jie Wang
- Dongguan University of Technology School of Environment & Civil Engineering CHINA
| | - Junhui Wang
- Dalian Institute of Chemical Physics State Key Laboratory of Catalysis State Key Laboratory of Molecular Reaction Dynamics and Collaborative Innovation Center of Chemistry for Energy Materials CHINA
| | - Jinlin Long
- Fuzhou University College of Chemistry CHINA
| | - Xianzhi Fu
- Fuzhou University College of Chemistry CHINA
| | - Rusheng Yuan
- Fuzhou University College of Chemistry 350002 Fuzhou CHINA
| |
Collapse
|
46
|
Mosaferi M, Selles P, Miteva T, Ferté A, Carniato S. Interpretation of Shakeup Mechanisms in Copper L-Shell Photoelectron Spectra. J Phys Chem A 2022; 126:4902-4914. [PMID: 35861575 DOI: 10.1021/acs.jpca.2c01870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report on an original full ab initio quantum molecular approach designed to simulate Cu 2p X-ray photoelectron spectra. The description includes electronic relaxation/correlation and spin-orbit coupling effects and is implemented within nonorthogonal sets of molecular orbitals for the initial and final states. The underlying mechanism structuring the Cu 2p photoelectron spectra is clarified thanks to a correlation diagram applied to the CuO4C6H6 paradigm. This diagram illustrates how the energy drop of the Cu 3d levels following the creation of the Cu 2p core hole switches the nature of the highest singly occupied molecular orbital (H-SOMO) from dominant metal to dominant ligand character. It also reveals how the repositioning of the Cu 3d levels induces the formation of new bonding and antibonding orbitals from which shakeup mechanisms toward the relaxed H-SOMO operate. The specific nature, ligand → ligand and metal → ligand, of these excitations building the satellite lines is exposed. Our approach finally applied to the real Cu(acac)2 system clearly demonstrates how a definite interpretation of the XPS spectra can be obtained when a correct evaluation of binding energies, intensities, and relative widths of the spectral lines is achieved.
Collapse
Affiliation(s)
- M Mosaferi
- Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR), UMR 7614, CNRS, Sorbonne Université, 75005 Paris, France
| | - P Selles
- Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR), UMR 7614, CNRS, Sorbonne Université, 75005 Paris, France
| | - T Miteva
- Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR), UMR 7614, CNRS, Sorbonne Université, 75005 Paris, France
| | - A Ferté
- Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR), UMR 7614, CNRS, Sorbonne Université, 75005 Paris, France
| | - S Carniato
- Laboratoire de Chimie Physique-Matière et Rayonnement (LCPMR), UMR 7614, CNRS, Sorbonne Université, 75005 Paris, France
| |
Collapse
|
47
|
Sandoval-Pauker C, Pinter B. Quasi-Restricted Orbital Description of the Copper(I) Photoredox Catalytic Cycle. J Chem Phys 2022; 157:074306. [DOI: 10.1063/5.0094380] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
In this computational study, the electronic structure changes along the oxidative and reductive quenching cycles of a homoleptic and a heteroleptic prototype Cu(I) photoredox catalyst, namely [Cu(dmp)2]+ (dmp = 2,9-dimethyl-1,10-phenanthroline) and [Cu(phen)(POP)]+ (POP = bis[2-(diphenylphosphino)phenyl]ether) are scrutinized and characterized using quasi-restricted orbitals (QRO), electron density differences and spin densities. After validating our density functional theory-based computational protocol, the equilibrium geometries and wavefunctions (using QROs and atom/fragment compositions) of the four states involved in photoredox cycle (S0, T1, Dox and Dred) are systematically and thoroughly described. The formal ground and excited state ligand- and metal-centered redox events are substantiated by the QRO description of the open-shell triplet 3MLCT (d9L-1), Dox (d9L0) and Dred (d10L-1) species and the corresponding structural changes, e.g., flattening distortion, shortening/elongation of Cu-N/Cu-P bonds, are rationalized in terms of the underlying electronic structure transformations. Amongst others, we reveal the molecular-scale delocalization of the ligand-centered radical in the a 3MLCT (d9L-1) and Dred (d9L-1) states of homoleptic [Cu(dmp)2]+ and its localization to the redox-active phenanthroline ligand in the case of heteroleptic [Cu(phen)(POP)]+.
Collapse
Affiliation(s)
- Christian Sandoval-Pauker
- The University of Texas at El Paso Department of Chemistry and Biochemistry, United States of America
| | - Balazs Pinter
- Department of Chemistry and Biochemistry, The University of Texas at El Paso Department of Chemistry and Biochemistry, United States of America
| |
Collapse
|
48
|
Lin X, Haimov E, Redko B, Vigalok A. Selective Stepwise Arylation of Unprotected Peptides by Pt IV Complexes. Angew Chem Int Ed Engl 2022; 61:e202205368. [PMID: 35536102 PMCID: PMC9400855 DOI: 10.1002/anie.202205368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 12/30/2022]
Abstract
LPtIV F(Aryl) complexes bearing a bulky bidentate 2-[bis(adamant-1-yl)phosphino]phenoxide ligand (L) demonstrate excellent reactivity and selectivity in the arylation of X-H (X=S, N) bonds of amino acid residues in unprotected peptides under mild, including aqueous, conditions. Stepwise addition of these complexes allowed a convenient one-pot introduction of different aromatic groups in the X-H bonds of Cys and N terminus. PtIV reagents can also be used to further arylate N-H bonds in Lys and Trp providing access to peptides bearing multiple aromatic groups.
Collapse
Affiliation(s)
- Xiaoxi Lin
- School of ChemistryThe Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv69978Israel
| | - Elvira Haimov
- Blavatnik Center for Drug DiscoveryTel Aviv UniversityTel Aviv69978Israel
| | - Boris Redko
- Blavatnik Center for Drug DiscoveryTel Aviv UniversityTel Aviv69978Israel
| | - Arkadi Vigalok
- School of ChemistryThe Sackler Faculty of Exact SciencesTel Aviv UniversityTel Aviv69978Israel
| |
Collapse
|
49
|
Qian J, Comito RJ. Site-Isolated Main-Group Tris(2-pyridyl)borate Complexes by Pyridine Substitution and Their Ring-Opening Polymerization Catalysis. Inorg Chem 2022; 61:10852-10862. [PMID: 35776081 DOI: 10.1021/acs.inorgchem.2c01289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Tris(2-pyridyl)borates are an emerging class of scorpionate ligands, distinguished as exceptionally robust and electron-donating. However, the rapid formation of inert homoleptic complexes with divalent metals has so far limited their catalytic utility. We report site-isolating tris(2-pyridyl)borate ligands, bearing isopropyl, tert-butyl, and mesityl substituents at the pyridine 6-position to suppress the formation of inert homoleptic complexes. These ligands form the first 1:1 complexes between tris(2-pyridyl)borates and Mg2+, Zn2+, or Ca2+, with isopropyl-substituted TpyiPrH showing the most generality. Single-crystal X-ray diffraction analysis of the resulting complexes and comparison to density functional theory (DFT) models showed geometric distortions driven by steric repulsion between the pyridine 6-substituents and the hexamethyldisilazide (HMDS-, -N(SiMe3)2) anion. We show that this steric profile is a feature of the six-membered pyridine ring and contrasts with more established tris(pyrazolyl)borate and tris(imidazoline)borate scorpionate complexes. TpyiPrMg(HMDS) (1) and its zinc analogue are moderately active for the controlled polymerization of l-lactide, ε-caprolactone, and trimethylene carbonate. Furthermore, 1 gives controlled polymerization under more demanding melt-phase polymerization conditions at 100 °C, and block copolymerization of ε-caprolactone and trimethylene carbonate. These results will enable useful catalysis and coordination chemistry studies with tris(2-pyridyl)borates, and characterizes their structural complementarity to more familiar scorpionate ligands.
Collapse
Affiliation(s)
- Jin Qian
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Robert J Comito
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
50
|
Kwon YM, Lee Y, Schmautz AK, Jackson TA, Wang D. C-H Bond Activation by a Mononuclear Nickel(IV)-Nitrate Complex. J Am Chem Soc 2022; 144:12072-12080. [PMID: 35767834 DOI: 10.1021/jacs.2c02454] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The recent focus on developing high-valent non-oxo-metal complexes for late transition metals has proven to be an effective strategy to study the rich chemistry of these high-valent species while bypassing the synthetic challenges of obtaining the oxo-metal counterparts. In our continuing work of exploring late transition metal complexes of unusually high oxidation states, we have obtained in the present study a formal mononuclear Ni(IV)-nitrate complex (2) upon 1-e- oxidation of its Ni(III) derivatives (1-OH and 1-NO3). Characterization of these Ni complexes by combined spectroscopic and computational approaches enables deep understanding of their geometric and electronic structures, bonding interactions, and spectroscopic properties, showing that all of them are square planar complexes and exhibit strong π-covalency with the amido N-donors of the N3 ligand. Furthermore, results obtained from X-ray absorption spectroscopy and density functional theory calculations provide strong support for the assignment of the Ni(IV) oxidation state of complex 2, albeit with strong ligand-to-metal charge donation. Notably, 2 is able to oxidize hydrocarbons with C-H bond strength in the range of 76-92 kcal/mol, representing a rare example of high-valent late transition metal complexes capable of activating strong sp3 C-H bonds.
Collapse
Affiliation(s)
- Yubin M Kwon
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Yuri Lee
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Anna K Schmautz
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| | - Timothy A Jackson
- Department of Chemistry and Center for Environmentally Beneficial Catalysis, The University of Kansas, Lawrence, Kansas 66045, United States
| | - Dong Wang
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Dynamics, University of Montana, Missoula, Montana 59812, United States
| |
Collapse
|