1
|
Endo R, Ueda T, Nagaoki T, Sato Y, Maishi N, Hida K, Harashima H, Nakamura T. Selective vascular disrupting therapy by lipid nanoparticle-mediated Fas ligand silencing and stimulation of STING. Biomaterials 2025; 321:123297. [PMID: 40158445 DOI: 10.1016/j.biomaterials.2025.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/02/2025]
Abstract
Although recent therapeutic developments have greatly improved the outcomes of patients with cancer, it remains on ongoing problem, particularly in relation to acquired drug resistance. Vascular disrupting agents (VDAs) directly damage tumor blood vessels, thus promoting drug efficacy and reducing the development of drug resistance; however, their low molecular weight and resulting lack of selectivity for tumor endothelial cells (TECs) lead to side effects that can hinder their practical use. Here, we report a novel tumor vascular disrupting therapy using nucleic acid-loaded lipid nanoparticles (LNPs). We prepared two LNPs: a small interfering RNA (siRNA) against Fas ligand (FasL)-loaded cyclic RGD modified LNP (cRGD-LNP) to knock down FasL in TECs and a stimulator of interferon genes (STING) agonist-loaded LNP to induce systemic type I interferon (IFN) production. The combination therapy disrupted the tumor vasculature and induced broad tumor cell apoptosis within 48 h, leading to rapid and strong therapeutic effects in various tumor models. T cells were not involved in these antitumor effects. Furthermore, the combination therapy demonstrated a significantly superior therapeutic efficacy compared with conventional anti-angiogenic agents and VDAs. RNA sequencing analysis suggested that reduced collagen levels may have been responsible for TEC apoptosis. These findings demonstrated a potential therapeutic method for targeting the tumor vasculature, which may contribute to the development of a new class of anti-cancer drugs.
Collapse
Affiliation(s)
- Rikito Endo
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Tomoki Ueda
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Takumi Nagaoki
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Yusuke Sato
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan
| | - Nako Maishi
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, 060-8586, Japan
| | - Kyoko Hida
- Vascular Biology and Molecular Pathology, Hokkaido University Faculty of Dental Medicine, Sapporo, 060-8586, Japan
| | - Hideyoshi Harashima
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan.
| | - Takashi Nakamura
- Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo, 060-0812, Japan; Institute of Medical, Pharmaceutical and Health Sciences, Kanazawa University, Kakuma-machi, Kanazawa, 920-1192, Japan.
| |
Collapse
|
2
|
Li Y, Chen Y, Tang Y, Yang T, Zhou P, Miao L, Chen H, Deng Y. Breaking the barriers in effective and safe Toll-like receptor stimulation via nano-immunomodulators for potent cancer immunotherapy. J Control Release 2025; 382:113667. [PMID: 40157608 DOI: 10.1016/j.jconrel.2025.113667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 02/20/2025] [Accepted: 03/26/2025] [Indexed: 04/01/2025]
Abstract
Immunotherapy is an emerging strategy that awakens the intrinsic immune system for cancer treatment. Generally, successful immunotherapy of malignant tumours relies on the effective production of tumour-associated antigens and their lymph node delivery, antigen processing and presentation for T-cell activation, and the dismantling of the immunosuppressive tumour microenvironment. Toll-like receptor (TLR) agonists are potent stimulants in cancer immunotherapy, which can directly activate antigen-presenting cells (APCs) and further induce T cell activation for antitumour immune response and convert immunosuppressive tumour microenvironment to an immunogenic one for cooperative tumour ablation. However, TLR agonists for effective cancer immunotherapy have encountered essential challenges, such as insufficient immune activation and systemic side effects. In recent years, nano-immunomodulators with TLR agonists have been employed for tumour- and/or lymph node-targeted immune activation to improve the antitumour immune response and alleviate their systemic toxicities, providing a promising strategy for enhanced cancer immunotherapy. Herein, we introduce the recent progress in developing various TLR nano-immunomodulators for cancer immunotherapy via APC activation and tumour microenvironment remodelling. Upon elucidating the rational design principles of nano-immunomodulators, we elucidate the advancement of TLR nanoagonists to break the barriers in effective and safe Toll-like receptor stimulation for potent cancer immunotherapy.
Collapse
Affiliation(s)
- Yaoqi Li
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yitian Chen
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Yong'an Tang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Tao Yang
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ping Zhou
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China
| | - Liyan Miao
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Institute for Interdisciplinary Drug Research and Translational Sciences, Soochow University, Suzhou 215006, China.
| | - Huabing Chen
- Department of Pharmacy, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou 215006, China; Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China.
| | - Yibin Deng
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, and College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China; Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, Suzhou 215123, China; State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200438, China.
| |
Collapse
|
3
|
Ma L, Mao JH, Barcellos-Hoff MH. Systemic inflammation in response to radiation drives the genesis of an immunosuppressed tumor microenvironment. Neoplasia 2025; 64:101164. [PMID: 40184664 PMCID: PMC11999686 DOI: 10.1016/j.neo.2025.101164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/24/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
The composition of the tumor immune microenvironment has become a major determinant of response to therapy, particularly immunotherapy. Clinically, a tumor microenvironment lacking lymphocytes, so-called "cold" tumors, are considered poor candidates for immune checkpoint inhibition. In this review, we describe the diversity of the tumor immune microenvironment in breast cancer and how radiation exposure alters carcinogenesis. We review the development and use of a radiation-genetic mammary chimera model to clarify the mechanism by which radiation acts. Using the chimera model, we demonstrate that systemic inflammation elicited by a low dose of radiation is key to the construction of an immunosuppressive tumor microenvironment, resulting in aggressive, rapidly growing tumors lacking lymphocytes. Our experimental studies inform the non-mutagenic mechanisms by which radiation affects cancer and provide insight into the genesis of cold tumors.
Collapse
Affiliation(s)
- Lin Ma
- Department of Stomatology, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, China
| | - Jian-Hua Mao
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Mary Helen Barcellos-Hoff
- Department of Radiation Oncology, School of Medicine, Helen Diller Comprehensive Cancer Center, University of California, San Francisco, CA 94143 USA.
| |
Collapse
|
4
|
Kong F, Chen Y, Liu D, Gao H, Yi Q, Zhang M, Li D. Marvelon suppresses MC38 tumor growth and promotes anti-tumor immunity. Mol Immunol 2025; 182:20-29. [PMID: 40158361 DOI: 10.1016/j.molimm.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/15/2025] [Accepted: 03/16/2025] [Indexed: 04/02/2025]
Abstract
Colorectal cancer is a prevalent and deadly malignancy globally, posing an important challenge due to its heterogeneity and treatment resistance. Although oral contraceptives have been shown to reduce the incidence of colorectal cancer, their impact on the anti-tumor effect of CD8+ T cells remains unclear. Here we show that the contraceptive Marvelon plays an important role in anti-MC38 tumor immunity. The contraceptive Marvelon significantly inhibits MC38 tumor growth in vivo. Marvelon treatment promotes IFN-γ expression in CD8+ tumor infiltrating lymphocytes, but shows dispensable impact on their exhausted profile. By further investigating the effects of Marvelon's primary components, Ethinylestradiol and Desogestrel, we reveal that Ethinylestradiol enhances IFN-γ production in Type 1 Cytotoxic T (Tc1) cells and significantly inhibits the viability of MC38 tumor cells, whereas Desogestrel exhibits minimal effects. This study not only redefines the role of oral contraceptives but also provides valuable insights for the development of novel immunotherapeutic strategies.
Collapse
Affiliation(s)
- Fandi Kong
- Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Yongyan Chen
- Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Dantong Liu
- Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Hongying Gao
- Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Qiaoru Yi
- Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China
| | - Mengjuan Zhang
- Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | - Dan Li
- Tianjin Union Medical Center, The First Affiliated Hospital of Nankai University, College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| |
Collapse
|
5
|
Ling F, Feng H, Wu S, Zhu D, Chen Y, Zhou J, Lai J, Huang X, Hou T, Li Y. Role of m7G modification regulators as biomarkers in gastric cancer subtyping and precision immunotherapy. Int Immunopharmacol 2025; 154:114594. [PMID: 40194456 DOI: 10.1016/j.intimp.2025.114594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/17/2025] [Accepted: 03/28/2025] [Indexed: 04/09/2025]
Abstract
This study investigated the role of N7-methylguanosine (m7G) modification regulators as biomarkers in subtyping and precision immunotherapy of gastric cancer (GC). Through multi-omics analyses, including RNA sequencing, proteomics, and single-cell measurement, the study revealed heterogeneity in the m7G regulatory landscape among GC patients. Three m7G subtypes were identified, each with distinct pathways and phenotypes. Patients with low m7Gscores, based on an established scoring system, showed better survival outcomes and increased antitumor immune cell infiltration, as well as higher tumor mutation loads and lower PD-L1 expression. The predictive value of m7Gscore was confirmed in two immunotherapy cohorts. These findings highlight the potential of m7G modification in shaping the tumor microenvironment and provide new insights for immunotherapeutic strategies in GC patients.
Collapse
Affiliation(s)
- Fa Ling
- Department of gastrointestinal surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Huolun Feng
- Department of gastrointestinal surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Sifan Wu
- School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China; Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Dandan Zhu
- Guangdong Center for Clinical Laboratory, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Yinfeng Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China
| | - Jianlong Zhou
- Department of gastrointestinal surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China
| | - Jiayi Lai
- School of Medical Information Engineering, Gannan Medical University, Ganzhou, Jiangxi, 341000, China
| | - Xing Huang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China; MOE Joint International Research Laboratory of Pancreatic Diseases, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310003, China.
| | - Tieying Hou
- Medical Experimental Center, Shenzhen Nanshan People's Hospital, Shenzhen, Guangdong, 518052, China; Shenzhen University Medical School, Shenzhen, Guangdong, 518073, China.
| | - Yong Li
- Department of gastrointestinal surgery, Department of General Surgery, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, Guangdong, 510080, China; School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China; Department of Gastrointestinal Surgery, Ganzhou Municipal Hospital, Ganzhou, Jiangxi, China; State Key Laboratory of Neurology and Oncology Drug Development, Nanjing, Jiangsu, 210000, China.
| |
Collapse
|
6
|
Alwithenani A, Hengswat P, Chiocca EA. Oncolytic viruses as cancer therapeutics: From mechanistic insights to clinical translation. Mol Ther 2025; 33:2217-2228. [PMID: 40143547 DOI: 10.1016/j.ymthe.2025.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/16/2025] [Accepted: 03/21/2025] [Indexed: 03/28/2025] Open
Abstract
Oncolytic virotherapy is a therapeutic approach that leverages genetically engineered or naturally occurring viruses to selectively target and destroy cancer cells while sparing normal tissues. This review provides an overview of the mechanisms of action by oncolytic viruses (OVs), including direct oncolysis, immune activation, and tumor microenvironment (TME) modulation. Despite significant progress, challenges such as immune resistance, tumor evasion mechanisms, and delivery barriers continue to limit the efficacy of OVs. To address these obstacles, recent advances in OV engineering have focused on arming viruses with immunomodulatory molecules, utilizing tumor-specific promoters, and employing CRISPR-based genome editing. Emerging strategies, such as dual-targeting OVs and viral enhancer drugs, have demonstrated promising potential in preclinical and clinical settings. This review also highlights findings from recent clinical trials, underscoring the translational challenges in scaling OVs for widespread therapeutic application. By exploring these innovations and their implications, we aim to shed light on the future directions of oncolytic virotherapy and its transformative potential in cancer treatment.
Collapse
Affiliation(s)
- Akram Alwithenani
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - Pranaidej Hengswat
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA
| | - E Antonio Chiocca
- Harvey Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Mass General Brigham, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
7
|
Neophytou C, Stylianopoulos T, Mpekris F. The synergistic potential of mechanotherapy and sonopermeation to enhance cancer treatment effectiveness. NPJ BIOLOGICAL PHYSICS AND MECHANICS 2025; 2:13. [PMID: 40337117 PMCID: PMC12052595 DOI: 10.1038/s44341-025-00017-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 03/04/2025] [Indexed: 05/09/2025]
Abstract
Inefficient drug delivery in tumors, especially in desmoplastic cancers, arises from blood vessel collapse due to tumor stiffening and mechanical compression. Vessel collapse also leads to hypoxia, immune evasion, and metastasis, reducing treatment efficacy. Mechanotherapeutics and ultrasound sonopermeation, which address tumor stiffness and enhance vessel permeability, respectively, show promise in restoring tumor microenvironment abnormalities and improving drug delivery. This perspective highlights their independent and combined potential to optimize cancer therapy.
Collapse
Affiliation(s)
- Constantina Neophytou
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Triantafyllos Stylianopoulos
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
8
|
Jünemann W, Bley I, Rekowski L, Klokow M, Herppich S, Müller I, Cornils K. GD2-CAR NK-92 cell activity against neuroblastoma cells is insusceptible to TIGIT knockout. Cancer Immunol Immunother 2025; 74:191. [PMID: 40317320 PMCID: PMC12049354 DOI: 10.1007/s00262-025-04010-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/03/2025] [Indexed: 05/07/2025]
Abstract
Immunotherapy by inhibition of immune checkpoint (IC) molecules has emerged as an important cancer therapy. Among these lC, the poliovirus receptor/poliovirus receptor-like 2 protein (PVR/PVRL2)-TIGIT axis was discovered as potential target for various cancers. For neuroblastoma (NB), the most common extracranial solid cancer in children, no effective IC therapy has been established yet. To investigate the PVR/PVRL2-TIGIT IC axis as a new target for the treatment of NB, we analysed whether PVR and PVRL2 influence the survival of patients and verified the expression of the receptors on NB cell lines. To disrupt the checkpoint axis, we performed single and double knockouts of these receptors on NB cell lines and subsequently removed TIGIT, an inhibitory receptor on immune effector cells, from NK-92 cells. Finally, we combined checkpoint inhibition with GD2-CAR NK-92 cells and investigated changes in cytotoxicity. Using RNA-Seq data we showed that the expression of PVR and PVRL2 on NB cells correlates to a lower event-free survival of patients. CRISPR/Cas9 knockouts of PVR and PVRL2 showed no improved cytotoxic activity of NK-92 cells. We observed enhanced lysis of NB cells using TIGIT-deficient NK-92 cells. However, the cytotoxicity of GD2-CAR NK-92 was not significantly enhanced. In summary, we have shown that in addition to the interaction of PVR/PVRL2 and TIGIT on engineered immune effector cells against NB, pleiotropic ligands appear to be relevant. Deletion of TIGIT from immune effector cells is a promising approach to protect these cells from tumour-associated inhibitory signals but cannot enhance the effect of GD2-CAR-NK-92 cells.
Collapse
MESH Headings
- Humans
- Neuroblastoma/immunology
- Neuroblastoma/therapy
- Neuroblastoma/pathology
- Receptors, Immunologic/genetics
- Receptors, Immunologic/metabolism
- Receptors, Immunologic/immunology
- Killer Cells, Natural/immunology
- Killer Cells, Natural/metabolism
- Gangliosides/immunology
- Cell Line, Tumor
- Immunotherapy, Adoptive/methods
- Gene Knockout Techniques
- Receptors, Chimeric Antigen/immunology
- Receptors, Chimeric Antigen/genetics
- Receptors, Virus/genetics
Collapse
Affiliation(s)
- Wiebke Jünemann
- Children's Cancer Centre Research Institute Hamburg, Hamburg, Germany
- Division of Paediatric Stem Cell Transplantation and Immunology, Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Isabelle Bley
- Children's Cancer Centre Research Institute Hamburg, Hamburg, Germany
- Division of Paediatric Stem Cell Transplantation and Immunology, Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Laura Rekowski
- Children's Cancer Centre Research Institute Hamburg, Hamburg, Germany
- Division of Paediatric Stem Cell Transplantation and Immunology, Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Marianne Klokow
- Children's Cancer Centre Research Institute Hamburg, Hamburg, Germany
- Division of Paediatric Stem Cell Transplantation and Immunology, Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Susanne Herppich
- Children's Cancer Centre Research Institute Hamburg, Hamburg, Germany
- Division of Paediatric Stem Cell Transplantation and Immunology, Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Ingo Müller
- Children's Cancer Centre Research Institute Hamburg, Hamburg, Germany
- Division of Paediatric Stem Cell Transplantation and Immunology, Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany
| | - Kerstin Cornils
- Children's Cancer Centre Research Institute Hamburg, Hamburg, Germany.
- Division of Paediatric Stem Cell Transplantation and Immunology, Department of Paediatric Haematology and Oncology, University Medical Centre Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
9
|
Mavuluri J, Dhungana Y, Jones LL, Bhatara S, Shi H, Yang X, Lim SE, Reyes N, Chi H, Yu J, Geiger TL. GPR65 Inactivation in Tumor Cells Drives Antigen-Independent CAR T-cell Resistance via Macrophage Remodeling. Cancer Discov 2025; 15:1018-1036. [PMID: 39998425 PMCID: PMC12046320 DOI: 10.1158/2159-8290.cd-24-0841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/28/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
SIGNIFICANCE The study identifies GPR65 as an important determinant of B-cell acute lymphoblastic leukemia response to CAR T-cell therapy. Notably, GPR65 absence signals CAR T resistance. By emphasizing the therapeutic potential of targeting VEGFA or host macrophages, our study identifies routes to optimize CAR T-cell therapy outcomes in hematologic malignancies via tumor microenvironment manipulation.
Collapse
Affiliation(s)
- Jayadev Mavuluri
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yogesh Dhungana
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lindsay L. Jones
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sheetal Bhatara
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Xu Yang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Song-Eun Lim
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Noemi Reyes
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hongbo Chi
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Terrence L. Geiger
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
10
|
Zhang K, Zhao T, Riaz F, Li Y, Wei P, Fang X, Zhou Z, Kou W, Pan F. Neuritin-specific antibody impedes the Treg-mediated suppression of anti-tumor immunity and enhances response to anti-PD1. Mol Immunol 2025; 181:148-159. [PMID: 40153952 DOI: 10.1016/j.molimm.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/08/2025] [Accepted: 03/19/2025] [Indexed: 04/01/2025]
Abstract
Regulatory T cells (Tregs) and effector T cells play critical roles in tumor immunity, with Tregs suppressing immune responses and contributing to an immunosuppressive tumor microenvironment (TME). Neuritin-1 (Nrn), a neuropeptide, has been identified to enhance Treg expansion. However, its role in T cell biology and tumor development remains unclear. We demonstrated that Nrn is highly expressed in the in-vitro-induced Tregs (iTregs). Functionally, Nrn promoted iTreg differentiation in a dose-dependent manner, while Nrn deletion or anti-Nrn antibody treatment significantly inhibited iTreg differentiation. Additionally, Nrn suppressed IL-2 transcription and secretion in T cells, impairing T cell activation and pro-inflammatory cytokine production. Treg-specific Nrn knockout mice exhibited reduced B16 melanoma tumor growth, decreased Treg infiltration, and increased effector T cell infiltration. Conversely, overexpression of Nrn accelerated B16 melanoma tumor progression by enhancing Treg-mediated suppression. Importantly, we developed the first anti-Nrn antibody, which effectively reduced tumour growth, decreased Treg infiltration, and enhanced effector T-cell activity. Importantly, anti-Nrn synergistically worked with anti-PD1 and improved the anti-PD1 response by reducing Tregs and increasing effector function in tumor-infiltrated T cells, resulting in enhanced tumor regression. Our findings identify Nrn as a critical regulator of Treg differentiation and effector T cell suppression, contributing to tumor progression. Targeting Nrn alone or combined with anti-PD1 therapy represents a promising strategy to enhance anti-tumor immunity.
Collapse
Affiliation(s)
- Kaimin Zhang
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Taowen Zhao
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Fraooq Riaz
- Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology (SUAT), China
| | - Yikui Li
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Ping Wei
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China; Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, 1416, Section 1, Chenglong Avenue, Chengdu 610066, China
| | - Xiang Fang
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Zhiyi Zhou
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China
| | - Wei Kou
- Department of Pediatric Otolaryngology Head and Neck Surgery, West China Second University Hospital, Sichuan University, 1416, Section 1, Chenglong Avenue, Chengdu 610066, China.
| | - Fan Pan
- Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), 1068 Xueyuan Avenue, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Faculty of Pharmaceutical Sciences, Shenzhen University of Advanced Technology (SUAT), China.
| |
Collapse
|
11
|
Roerden M, Spranger S. Cancer immune evasion, immunoediting and intratumour heterogeneity. Nat Rev Immunol 2025; 25:353-369. [PMID: 39748116 DOI: 10.1038/s41577-024-01111-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Cancers can avoid immune-mediated elimination by acquiring traits that disrupt antitumour immunity. These mechanisms of immune evasion are selected and reinforced during tumour evolution under immune pressure. Some immunogenic subclones are effectively eliminated by antitumour T cell responses (a process known as immunoediting), which results in a clonally selected tumour. Other cancer cells arise to resist immunoediting, which leads to a tumour that includes several distinct cancer cell populations (referred to as intratumour heterogeneity (ITH)). Tumours with high ITH are associated with poor patient outcomes and a lack of responsiveness to immune checkpoint blockade therapy. In this Review, we discuss the different ways that cancer cells evade the immune system and how these mechanisms impact immunoediting and tumour evolution. We also describe how subclonal antigen presentation in tumours with high ITH can result in immune evasion.
Collapse
Affiliation(s)
- Malte Roerden
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA, USA
| | - Stefani Spranger
- Koch Institute for Integrative Cancer Research, Massachusetts Institute for Technology, Cambridge, MA, USA.
- Department of Biology, Massachusetts Institute for Technology, Cambridge, MA, USA.
- Ragon Institute of Mass General Hospital, Massachusetts Institute for Technology and Harvard, Cambridge, MA, USA.
| |
Collapse
|
12
|
He Y, Liu Q, Luo Z, Hu Q, Wang L, Guo Z. Role of Tumor-Associated Macrophages in Breast Cancer Immunotherapy. FRONT BIOSCI-LANDMRK 2025; 30:26995. [PMID: 40302326 DOI: 10.31083/fbl26995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/04/2024] [Accepted: 12/11/2024] [Indexed: 05/02/2025]
Abstract
Breast cancer (BC) is the second leading cause of death among women worldwide. Immunotherapy has become an effective treatment for BC patients due to the rapid development of medical technology. Considerable breakthroughs have been made in research, marking the beginning of a new era in cancer treatment. Among them, various cancer immunotherapies such as immune checkpoint inhibitors (ICIs), cancer vaccines, and adoptive cell transfer are effective and have good prospects. The tumor microenvironment (TME) plays a crucial role in determining the outcomes of tumor immunotherapy. Tumor-associated macrophages (TAMs) are a key component of the TME, with an immunomodulatory effect closely related to the immune evasion of tumor cells, thereby affecting malignant progression. TAMs also significantly affect the therapeutic effect of ICIs (such as programmed death 1/programmed death ligand 1 (PD-1/PD-L1) inhibitors). TAMs are composed of multiple heterogeneous subpopulations, including M1 phenotypes macrophages (M1) and M2 phenotypes macrophages (M2). Furthermore, they mainly play an M2-like role and moderate a variety of harmful consequences such as angiogenesis, immunosuppression, and metastasis. Therefore, TAMs have become a key area of focus in the development of tumor therapies. However, several tumor immunotherapy studies demonstrated that ICIs are effective only in a small number of solid cancers, and tumor immunotherapy still faces relevant challenges in the treatment of solid tumors. This review explores the role of TAMs in BC immunotherapy, summarizing their involvement in BC development. It also explains the classification and functions of TAMs, outlines current tumor immunotherapy approaches and combination therapies, and discusses the challenges and potential strategies for TAMs in immuno-oncology treatments.
Collapse
Affiliation(s)
- Yan He
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Quan Liu
- Department of Laboratory Medicine, Huazhong University of Science and Technology Union Shenzhen Hospital (Nanshan Hospital), Shenzhen University, 518052 Shenzhen, Guangdong, China
| | - Zhihao Luo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Qian Hu
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Li Wang
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| | - Zifen Guo
- Institute of Pharmacy and Pharmacology, School of Pharmaceutical Science, Hengyang Medical School, University of South China, 421001 Hengyang, Hunan, China
| |
Collapse
|
13
|
Cao L, Leclercq-Cohen G, Klein C, Sorrentino A, Bacac M. Mechanistic insights into resistance mechanisms to T cell engagers. Front Immunol 2025; 16:1583044. [PMID: 40330489 PMCID: PMC12053166 DOI: 10.3389/fimmu.2025.1583044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 03/31/2025] [Indexed: 05/08/2025] Open
Abstract
T cell engagers (TCEs) represent a groundbreaking advancement in the treatment of B and plasma cell malignancies and are emerging as a promising therapeutic approach for the treatment of solid tumors. These molecules harness T cells to bind to and eliminate cancer cells, effectively bypassing the need for antigen-specific T cell recognition. Despite their established clinical efficacy, a subset of patients is either refractory to TCE treatment (e.g. primary resistance) or develops resistance during the course of TCE therapy (e.g. acquired or treatment-induced resistance). In this review we comprehensively describe the resistance mechanisms to TCEs, occurring in both preclinical models and clinical trials with a particular emphasis on cellular and molecular pathways underlying the resistance process. We classify these mechanisms into tumor intrinsic and tumor extrinsic ones. Tumor intrinsic mechanisms encompass changes within tumor cells that impact the T cell-mediated cytotoxicity, including tumor antigen loss, the expression of immune checkpoint inhibitory ligands and intracellular pathways that render tumor cells resistant to killing. Tumor extrinsic mechanisms involve factors external to tumor cells, including the presence of an immunosuppressive tumor microenvironment (TME) and reduced T cell functionality. We further propose actionable strategies to overcome resistance offering potential avenues for enhancing TCE efficacy in the clinic.
Collapse
Affiliation(s)
- Linlin Cao
- Roche Innovation Center, Zürich, Switzerland
| | | | | | | | | |
Collapse
|
14
|
Na W, Zeng W, Song K, Wang Y, Wang L, Zhao Z, Jin L, Zhu P, Liang W. PKM2, the "K+ sink" in the tumor interstitial fluid. Protein Cell 2025; 16:303-308. [PMID: 38912824 PMCID: PMC12053478 DOI: 10.1093/procel/pwae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/13/2024] [Accepted: 06/02/2024] [Indexed: 06/25/2024] Open
Affiliation(s)
- Wenjing Na
- Key Laboratory of Biomacromolecules (CAS), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100864, China
| | - Wenfeng Zeng
- Key Laboratory of Biomacromolecules (CAS), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100864, China
| | - Kai Song
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100864, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Youwang Wang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100864, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Luoyang Wang
- School of Basic Medicine, Qingdao University, Qingdao 266071, China
| | - Ziran Zhao
- Thoracic Surgery Department, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Lingtao Jin
- Department of Molecular Medicine, University of Texas Health Science Center at San Antonio, TX 78229, USA
| | - Ping Zhu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100864, China
- Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Wei Liang
- Key Laboratory of Biomacromolecules (CAS), Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100864, China
| |
Collapse
|
15
|
Zhou J, Yang K, Lu M, Fu P, Chen Y, Chen L. Higher density of compact B cell clusters in invasive front may contribute to better prognosis in pancreatic ductal adenocarcinoma. Discov Oncol 2025; 16:555. [PMID: 40246809 PMCID: PMC12006623 DOI: 10.1007/s12672-025-02260-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/28/2025] [Indexed: 04/19/2025] Open
Abstract
While the correlation between T cells and patient survival was widely investigated, the clinical significance of CD20+ B cells in pancreatic ductal adenocarcinoma (PDAC) is less clear. We hypothesized that the spatial pattern of B cells within tumor microenvironment (TME) are more informative, which may reveal the prognostic significance for PDAC patients. Therefore, we developed a computer-based workflow to analyze CD20+ B cells in whole slide images (WSI) from 45 cases of PDAC patients. Depending on this workflow, annotations of each case which were created by pathologists were subdivided for three regions, including invasive front (IF), cancer center (CT) and cancer island (CI) to explore the association between the spatial pattern of CD20+ B cells and patient prognosis outcomes. After that, occupancy rate (as area under curve, occupancy AUC), fractal dimension differences (ΔFD), cluster density and coverage ratio were used to quantify the spatial pattern of B cells in TME. We observed B cells were distributed across different regions, manifesting in both clustered and dispersed patterns. Compared to features of B cells spatial distribution in CT region, B cells in IF region exhibited higher occupancy AUC (p = 0.00004), cluster density (p = 0.000002) and coverage ratio (p = 0.000884). Patients with longer survivals had smaller ΔFD (p = 0.05), higher B-cell cluster density (p = 0.003) and lower coverage ratio (p = 0.02) in IF region. Our study indicated the spatial distribution of B cells in IF and CT was different and the higher density of compact B-cell clusters in IF region may be associated with better prognosis in PDAC.
Collapse
Affiliation(s)
- Junwen Zhou
- Department of Land Surveying and Geo-Informatics, The Hong Kong Polytechnic University, Hung Hom, HK, China
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Kunping Yang
- College of Photonic and Electronic Engineering, Fujian Normal University, Fuzhou, China
| | - Mei Lu
- Fuqing City Hospital Affiliated to Fujian Medical University, Fuqing, Fujian, China
| | - Peiling Fu
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Yupeng Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China
| | - Linying Chen
- Department of Pathology, the First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, Fujian, China.
| |
Collapse
|
16
|
Philips S, Lu P, Fausel C, Wagner T, Jiang G, Shen F, Cantor E, Tran M, Roland LM, Schneider BP. Association of heightened host and tumor immunity with prolonged duration of response to checkpoint inhibition across solid tumors. Sci Rep 2025; 15:13195. [PMID: 40240402 PMCID: PMC12003766 DOI: 10.1038/s41598-025-96925-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 04/01/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer immunotherapy is a beneficial therapy for many cancer types, but predictive pan-tumor biomarkers for clinical benefit are suboptimal. Our study, employing DNA and RNA based analysis, investigated the role of predicted neoantigens in the benefits of immunotherapy within a cohort of 88 patients of European descent with advanced solid tumors. Patients who had a prolonged (> 12 months) duration of immunotherapy exhibited heightened immune responses, characterized by increased levels of predicted neoantigens with strong HLA binding potential, elevated cytotoxic marker levels, and enhanced T cell activity. Furthermore, our analysis revealed associations between prolonged duration of therapy and rare variants, notably within the EPHA8 gene. These variants, exclusive to patients with a prolonged (> 12 months) duration of immunotherapy, suggest potential implications for immunotherapy response. In addition, the evolutionary conservation of these variants across vertebrate species underscores their functional importance in tumor biology and ultimately, treatment outcomes. Despite limitations in sample size and patient homogeneity, our findings emphasize the potential utility of understanding the molecular and immunological mechanisms underlying immunotherapy responses to further refine personalized treatment strategies.
Collapse
Affiliation(s)
- Santosh Philips
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Pei Lu
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Chris Fausel
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Thomas Wagner
- College of Pharmacy and Health Sciences, Butler University, Indianapolis, IN, USA
| | - Guanglong Jiang
- Division of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fei Shen
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Erica Cantor
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Mya Tran
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Lauren M Roland
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Bryan P Schneider
- Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA.
- Division of Hematology/Oncology, Department of Medicine, Indiana University, 535 Barnhill Drive, RT 473, Indianapolis, IN, 46202, USA.
| |
Collapse
|
17
|
Wei W, Li H, Tian S, Zhang C, Liu J, Tao W, Cai T, Dong Y, Wang C, Lu D, Ai Y, Zhang W, Wang H, Liu K, Fan Y, Gao Y, Huang Q, Ma X, Wang B, Zhang X, Huang Y. Asparagine drives immune evasion in bladder cancer via RIG-I stability and type I IFN signaling. J Clin Invest 2025; 135:e186648. [PMID: 39964752 PMCID: PMC11996873 DOI: 10.1172/jci186648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 02/07/2025] [Indexed: 02/20/2025] Open
Abstract
Tumor cells often employ many ways to restrain type I IFN signaling to evade immune surveillance. However, whether cellular amino acid metabolism regulates this process remains unclear, and its effects on antitumor immunity are relatively unexplored. Here, we found that asparagine inhibited IFN-I signaling and promoted immune escape in bladder cancer. Depletion of asparagine synthetase (ASNS) strongly limited in vivo tumor growth in a CD8+ T cell-dependent manner and boosted immunotherapy efficacy. Moreover, clinically approved L-asparaginase (ASNase),synergized with anti-PD-1 therapy in suppressing tumor growth. Mechanistically, asparagine can directly bind to RIG-I and facilitate CBL-mediated RIG-I degradation, thereby suppressing IFN signaling and antitumor immune responses. Clinically, tumors with higher ASNS expression show decreased responsiveness to immune checkpoint inhibitor therapy. Together, our findings uncover asparagine as a natural metabolite to modulate RIG-I-mediated IFN-I signaling, providing the basis for developing the combinatorial use of ASNase and anti-PD-1 for bladder cancer.
Collapse
Affiliation(s)
- Wenjie Wei
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Hongzhao Li
- Department of Urology, The Third Medical Center and
| | - Shuo Tian
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Chi Zhang
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Junxiao Liu
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Wen Tao
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Tianwei Cai
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Yuhao Dong
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Chuang Wang
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Dingyi Lu
- State Key Laboratory of Proteomics, Institute of Basic Medical Sciences, National Center of Biomedical Analysis, Beijing, China
| | - Yakun Ai
- Department of Pathology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Wanlin Zhang
- Department of Pathology, The Third Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Hanfeng Wang
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
- Medical School of PLA, Beijing, China
| | - Kan Liu
- Department of Urology, The Third Medical Center and
| | - Yang Fan
- Department of Urology, The Third Medical Center and
| | - Yu Gao
- Department of Urology, The Third Medical Center and
| | - Qingbo Huang
- Department of Urology, The Third Medical Center and
| | - Xin Ma
- Department of Urology, The Third Medical Center and
| | - Baojun Wang
- Department of Urology, The Third Medical Center and
| | - Xu Zhang
- Department of Urology, The Third Medical Center and
| | - Yan Huang
- Department of Urology, The Third Medical Center and
- Department of Urology Laboratory, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
18
|
Wang SL, Chan TA. Navigating established and emerging biomarkers for immune checkpoint inhibitor therapy. Cancer Cell 2025; 43:641-664. [PMID: 40154483 DOI: 10.1016/j.ccell.2025.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/19/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Immune checkpoint inhibitors (ICIs) have improved outcomes of patients with many different cancers. These antibodies target molecules such as programmed cell death 1 (PD-1) or cytotoxic T lymphocyte associated protein 4 (CTLA-4) which normally function to limit immune activity. Treatment with ICIs reactivates T cells to destroy tumor cells in a highly specific manner, which in some patients, results in dramatic remissions and durable disease control. Over the last decade, much effort has been directed at characterizing factors that drive efficacy and resistance to ICI therapy. Food and Drug Administration (FDA)-approved biomarkers for ICI therapy have facilitated more judicious treatment of cancer patients and transformed the field of precision oncology. Yet, adaptive immunity against cancers is complex, and newer data have revealed the potential utility of other biomarkers. In this review, we discuss the utility of currently approved biomarkers and highlight how emerging biomarkers can further improve the identification of patients who benefit from ICIs.
Collapse
Affiliation(s)
- Stephen L Wang
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; Medical Scientist Training Program, Case Western Reserve University School of Medicine, Cleveland, OH, USA; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, OH, USA
| | - Timothy A Chan
- Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA; National Center for Regenerative Medicine, Cleveland, OH, USA.
| |
Collapse
|
19
|
Li C, Wei Y, Lei J. Quantitative cancer-immunity cycle modeling for predicting disease progression in advanced metastatic colorectal cancer. NPJ Syst Biol Appl 2025; 11:33. [PMID: 40221414 PMCID: PMC11993626 DOI: 10.1038/s41540-025-00513-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 03/28/2025] [Indexed: 04/14/2025] Open
Abstract
Patients with advanced metastatic colorectal cancer (mCRC) typically exhibit significant interindividual differences in treatment responses and face poor survival outcomes. To systematically analyze the heterogeneous tumor progression and recurrence observed in advanced mCRC patients, we developed a quantitative cancer-immunity cycle (QCIC) model. The QCIC model employs differential equations to capture the biological mechanisms underlying the cancer-immunity cycle and predicts tumor evolution dynamics under various treatment strategies through stochastic computational methods. We introduce the treatment response index (TRI) to quantify disease progression in virtual clinical trials and the death probability function (DPF) to estimate overall survival. Additionally, we investigate the impact of predictive biomarkers on survival prognosis in advanced mCRC patients, identifying tumor-infiltrating CD8+ cytotoxic T lymphocytes (CTLs) as key predictors of disease progression and the tumor-infiltrating CD4+ Th1/Treg ratio as a significant determinant of survival outcomes. This study presents an approach that bridges the gap between diverse clinical data sources and the generation of virtual patient cohorts, providing valuable insights into interindividual treatment variability and survival forecasting in mCRC patients.
Collapse
Affiliation(s)
- Chenghang Li
- School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China
| | - Yongchang Wei
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430072, China.
| | - Jinzhi Lei
- School of Mathematical Sciences, Tiangong University, Tianjin, 300387, China.
- Center for Applied Mathematics, Tiangong University, Tianjin, 300387, China.
| |
Collapse
|
20
|
Pîrlog LM, Pătrășcanu AA, Ona MD, Cătană A, Rotar IC. HOXA10 and HOXA11 in Human Endometrial Benign Disorders: Unraveling Molecular Pathways and Their Impact on Reproduction. Biomolecules 2025; 15:563. [PMID: 40305321 PMCID: PMC12024888 DOI: 10.3390/biom15040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2025] [Revised: 04/03/2025] [Accepted: 04/07/2025] [Indexed: 05/02/2025] Open
Abstract
HOX genes, a family of conserved transcription factors, are critical for reproductive tract development and endometrial functionality. This review highlights the molecular underpinnings of HOXA10/HOXA11 in reproductive health and their dysregulation in benign pathologies associated with infertility, such as endometriosis, adenomyosis, and endometrial polyps. These genes are dynamically regulated by estrogen and progesterone, with peak expression during the secretory phase of the menstrual cycle when implantation takes place. The molecular mechanisms underlying their action include the modulation of extracellular matrix (ECM) remodeling via metalloproteinases, cytokines like leukemia inhibitory factor, and cell adhesion molecules such as β3-integrin, all of which are essential for the differentiation of epithelial and stromal cells, as well as for trophoblast invasion. Aberrant HOX gene expression, driven by DNA hypermethylation or altered histone acetylation, compromises endometrial receptivity and implantation. For instance, reduced HOXA10 expression in endometriosis stems from hypermethylation and chronic inflammation, disrupting immune modulation and cytokine signaling. Similarly, adenomyosis alters HOXA11-regulated ECM remodeling and β3-integrin expression, impairing embryo attachment. Furthermore, regulatory pathways involving vitamin D and retinoic acid offer promising therapeutic avenues pathways, as they enhance HOXA10/HOXA11 expression and endometrial receptivity. This review underscores the critical molecular roles of HOXA10/HOXA11 genes as biomarkers and therapeutic targets to optimize fertility outcomes and address reproductive pathologies.
Collapse
Affiliation(s)
- Lorin-Manuel Pîrlog
- Department of Molecular Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania; (L.-M.P.); (M.-D.O.)
| | - Andrada-Adelaida Pătrășcanu
- Department of Molecular Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania; (L.-M.P.); (M.-D.O.)
| | - Mara-Diana Ona
- Department of Molecular Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania; (L.-M.P.); (M.-D.O.)
| | - Andreea Cătană
- Department of Molecular Sciences, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400012 Cluj-Napoca, Romania; (L.-M.P.); (M.-D.O.)
- Regional Laboratory Cluj-Napoca, Department of Medical Genetics, Regina Maria Health Network, 400363 Cluj-Napoca, Romania
- Department of Oncogenetics, “Prof. Dr. I. Chiricuță” Institute of Oncology, 400015 Cluj-Napoca, Romania
| | - Ioana Cristina Rotar
- 1st Department of Obstetrics and Gynecology, Faculty of Medicine, University of Medicine and Pharmacy “Iuliu Hațieganu”, 400006 Cluj-Napoca, Romania;
| |
Collapse
|
21
|
Xu Y, Ge M, Xu Y, Yin K. Ferroptosis: a novel perspective on tumor immunotherapy. Front Immunol 2025; 16:1524711. [PMID: 40260246 PMCID: PMC12009862 DOI: 10.3389/fimmu.2025.1524711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/11/2025] [Indexed: 04/23/2025] Open
Abstract
Ferroptosis is a novel form of programmed cell death characterized by iron-dependent accumulation of reactive oxygen species (ROS) and lipid peroxidation. The execution of ferroptosis is intricately linked to both iron and lipid metabolism. Intriguingly, iron and lipid metabolism are also pivotal for maintaining the physiological function of immune cells. Research has revealed that ferroptosis can potentiate the immunogenicity of tumor cells and engage in intricate interactions with immune cells. Certain ferroptosis inducers have the capacity to augment the efficacy of immunotherapy by modulating the tumor immune microenvironment. Ferroptosis holds immense potential in cancer immunotherapy and is anticipated to emerge as a novel therapeutic target in the future landscape of cancer treatment. In this review, we primarily delineate the ferroptosis signaling pathways and metabolic processes pertinent to immune cells, and further summarize the roles of ferroptosis in tumor-infiltrating immune cells. Ultimately, we anticipate further elucidation of the mechanisms of ferroptosis in immunotherapy and envision that strategies targeting ferroptosis and immunotherapy will be expeditiously applied in clinical oncology practice.
Collapse
Affiliation(s)
| | | | | | - Kai Yin
- Changhai Hospital, Second Military Medical University, Shanghai, China
| |
Collapse
|
22
|
Wang S, Fang Z, Xiao W, Xie Y, Zhang Y, Liu Z. Causal role of immune cells in thyroid cancer: a two-sample Mendelian randomization study. Discov Oncol 2025; 16:481. [PMID: 40192951 PMCID: PMC11977059 DOI: 10.1007/s12672-025-02249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 03/26/2025] [Indexed: 04/10/2025] Open
Abstract
BACKGROUND Immune cells play a crucial role in the progression of thyroid cancer. However, previous research on the link between immune cells and thyroid cancer has produced conflicting results. METHODS Based on the public available genome-wide association studies summary statistics, we performed a two-sample Mendelian randomization (MR) to evaluate the causal association between 731 immune phenotypes (including median fluorescence intensities, absolute cell counts, relative cell counts, and morphological parameters) and thyroid cancer. The inverse variance weighting method was employed to investigate the causal relationship between exposure and outcome. Moreover, multiple sensitivity analyses, such as MR-Egger, weighted median, and MR-PRESSO, were simultaneously applied to reinforce the final results. RESULTS After false discovery rate correction, four immunophenotypes were found to be significantly associated with a decreased risk of thyroid cancer. And six immunophenotypes were significantly associated with an increased risk of thyroid cancer. CONCLUSIONS Our study has demonstrated the close connection between immune cells and thyroid cancer by genetic means, thus providing guidance for future clinical research.
Collapse
Affiliation(s)
- Shurong Wang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China
| | - Zhouyu Fang
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China
| | - Wenjin Xiao
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China
| | - Ying Xie
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China
| | - Yueyue Zhang
- Department of Medical Imaging, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, People's Republic of China
| | - Zhihua Liu
- Department of Endocrinology, The Second Affiliated Hospital of Soochow University, No. 1055, Sanxiang Road, Suzhou, Jiangsu, People's Republic of China.
| |
Collapse
|
23
|
Lai N, Farman A, Byrne HM. The Impact of T-cell Exhaustion Dynamics on Tumour-Immune Interactions and Tumour Growth. Bull Math Biol 2025; 87:61. [PMID: 40172752 PMCID: PMC11965189 DOI: 10.1007/s11538-025-01433-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 03/03/2025] [Indexed: 04/04/2025]
Abstract
Tumours evade immune surveillance through a number of different immunosuppressive mechanisms. One such mechanism causes cytotoxic T-cells, a major driving force of the immune system, to differentiate to a state of 'exhaustion', rendering them less effective at killing tumour cells. We present a structured mathematical model that focuses on T-cell exhaustion and its effect on tumour growth. We compartmentalise cytotoxic T-cells into discrete subgroups based on their exhaustion level, which affects their ability to kill tumour cells. We show that the model reduces to a simpler system of ordinary differential equations (ODEs) that describes the time evolution of the total number of T-cells, their mean exhaustion level and the total number of tumour cells. Numerical simulations of the model equations reveal how the exhaustion distribution of T-cells changes over time and how it influences the tumour's growth dynamics. Complementary bifurcation analysis shows how altering key parameters significantly reduces the tumour burden, highlighting exhaustion as a promising target for immunotherapy. Finally, we derive a continuum approximation of the discrete ODE model, which admits analytical solutions that provide complementary insight into T-cell exhaustion dynamics and their effect on tumour growth.
Collapse
Affiliation(s)
- Nicholas Lai
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK.
| | - Alexis Farman
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
- Department of Mathematics, University College London, London, WC1E 6BT, UK
| | - Helen M Byrne
- Wolfson Centre for Mathematical Biology, Mathematical Institute, University of Oxford, Oxford, OX2 6GG, UK
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, OX3 7DQ, UK
| |
Collapse
|
24
|
Beltzung F, Le VL, Molnar I, Boutault E, Darcha C, Le Loarer F, Kossai M, Saut O, Biau J, Penault-Llorca F, Chautard E. Leveraging Deep Learning for Immune Cell Quantification and Prognostic Evaluation in Radiotherapy-Treated Oropharyngeal Squamous Cell Carcinomas. J Transl Med 2025; 105:104094. [PMID: 39826685 DOI: 10.1016/j.labinv.2025.104094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 12/24/2024] [Accepted: 01/09/2025] [Indexed: 01/22/2025] Open
Abstract
The tumor microenvironment plays a critical role in cancer progression and therapeutic responsiveness, with the tumor immune microenvironment (TIME) being a key modulator. In head and neck squamous cell carcinomas (HNSCCs), immune cell infiltration significantly influences the response to radiotherapy (RT). A better understanding of the TIME in HNSCCs could help identify patients most likely to benefit from combining RT with immunotherapy. Standardized, cost-effective methods for studying TIME in HNSCCs are currently lacking. This study aims to leverage deep learning (DL) to quantify immune cell densities using immunohistochemistry in untreated oropharyngeal squamous cell carcinoma (OPSCC) biopsies of patients scheduled for curative RT and assess their prognostic value. We analyzed 84 pretreatment formalin-fixed paraffin-embedded tumor biopsies from OPSCC patients. Immunohistochemistry was performed for CD3, CD8, CD20, CD163, and FOXP3, and whole slide images were digitized for analysis using a U-Net-based DL model. Two quantification approaches were applied: a cell-counting method and an area-based method. These methods were applied to stained regions. The DL model achieved high accuracy in detecting stained cells across all biomarkers. Strong correlations were found between our DL pipeline, the HALO Image Analysis Platform, and the open-source QuPath software for estimating immune cell densities. Our DL pipeline provided an accurate and reproducible approach for quantifying immune cells in OPSCC. The area-based method demonstrated superior prognostic value for recurrence-free survival, when compared with the cell-counting method. Elevated densities of CD3, CD8, CD20, and FOXP3 were associated with improved recurrence-free survival, whereas CD163 showed no significant prognostic association. These results highlight the potential of DL in digital pathology for assessing TIME and predicting patient outcomes.
Collapse
Affiliation(s)
- Fanny Beltzung
- Department of Molecular Imaging & Theragnostic Strategies (IMOST), University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France; Department of Pathology, Hôpital Haut-Lévêque, CHU de Bordeaux, Pessac, France.
| | - Van-Linh Le
- MONC team, Center INRIA at University of Bordeaux, Talence, France; Bordeaux Mathematics Institute (IMB), UMR CNRS 5251, University of Bordeaux, Talence, France; Department of Data and Digital Health, Bergonié Institute, Bordeaux, France
| | - Ioana Molnar
- Department of Molecular Imaging & Theragnostic Strategies (IMOST), University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France; Clinical Research Division, Clinical Research & Innovation Division, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Erwan Boutault
- Department of Molecular Imaging & Theragnostic Strategies (IMOST), University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France
| | - Claude Darcha
- Department of Pathology, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - François Le Loarer
- Department of Pathology, Bergonié Institute, Bordeaux, France; Bordeaux Institute of Oncology (BRIC U1312), INSERM, Université de Bordeaux, Institut Bergonié, Bordeaux, France
| | - Myriam Kossai
- Department of Molecular Imaging & Theragnostic Strategies (IMOST), University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France; Department of Pathology, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Olivier Saut
- MONC team, Center INRIA at University of Bordeaux, Talence, France; Bordeaux Mathematics Institute (IMB), UMR CNRS 5251, University of Bordeaux, Talence, France
| | - Julian Biau
- Department of Molecular Imaging & Theragnostic Strategies (IMOST), University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France; Department of Radiation Therapy, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Frédérique Penault-Llorca
- Department of Molecular Imaging & Theragnostic Strategies (IMOST), University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France; Department of Pathology, Centre Jean PERRIN, Clermont-Ferrand, France
| | - Emmanuel Chautard
- Department of Molecular Imaging & Theragnostic Strategies (IMOST), University Clermont Auvergne, INSERM U1240, Clermont-Ferrand, France; Department of Pathology, Centre Jean PERRIN, Clermont-Ferrand, France
| |
Collapse
|
25
|
Mikulak J, Terzoli S, Marzano P, Cazzetta V, Martiniello G, Piazza R, Viano ME, Vitobello D, Portuesi R, Grizzi F, Hegazi MAAA, Fiamengo B, Basso G, Parachini L, Mannarino L, D'Incalci M, Marchini S, Mavilio D. Immune evasion mechanisms in early-stage I high-grade serous ovarian carcinoma: insights into regulatory T cell dynamics. Cell Death Dis 2025; 16:229. [PMID: 40164596 PMCID: PMC11958665 DOI: 10.1038/s41419-025-07557-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/24/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
The mechanisms driving immune evasion in early-stage I high-grade serous ovarian carcinoma (HGSOC) remain poorly understood. To investigate this, we performed single-cell RNA-sequencing analysis. Our findings revealed a highly immunosuppressive HGSOC microenvironment, characterized by abundant infiltration of regulatory T cells (Tregs). Trajectory analysis uncovered differentiation pathways of naïve Tregs, which underwent either activation and proliferation or transcriptional instability. The predicted Treg-cell interaction network, including crosstalk within tumor cells, facilitates Treg mobility and maturation while reinforcing their immunosuppressive function and persistence in the tumor. Moreover, their interactions with immune cells likely inhibit CD8 T cells and antigen-presenting cells, supporting tumor immune escape. Additionally, more immunogenic tumor conditions, marked by IFNγ production, may contribute to Treg destabilization. Our findings underscore the pivotal role of Tregs in early immune evasion of HGSOC and provide insights into potential therapeutic strategies targeting their activity and differentiation fate.
Collapse
Affiliation(s)
- Joanna Mikulak
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
| | - Sara Terzoli
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Paolo Marzano
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Valentina Cazzetta
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Giampaolo Martiniello
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Rocco Piazza
- Department of Medicine and Surgery, University of Milan-Bicocca, Monza, Italy
| | - Maria Estefania Viano
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Domenico Vitobello
- Unit of Gynecology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Rosalba Portuesi
- Unit of Gynecology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Fabio Grizzi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Mohamed A A A Hegazi
- Department of Immunology and Inflammation, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Barbara Fiamengo
- Unit of Pathological Anatomy, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Gianluca Basso
- Humanitas Genomic Facility, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lara Parachini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Laura Mannarino
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Maurizio D'Incalci
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Sergio Marchini
- Laboratory of Cancer Pharmacology, IRCCS Humanitas Research Hospital, Rozzano, Milano, Italy
| | - Domenico Mavilio
- Laboratory of Clinical and Experimental Immunology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy.
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy.
| |
Collapse
|
26
|
Hu K, Zhao X, Zhang N, Ma J, Zhang R, Lu Z, Wu W, Ji Y, Li X. Effect of tumor microenvironment in pancreatic cancer on the loss of β-cell mass: implications for type 3c diabetes. J Gastroenterol 2025; 60:512-525. [PMID: 39760782 DOI: 10.1007/s00535-024-02204-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND To explore the complex interactions between the tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) and the loss of β-cell mass, further elucidating the mechanisms of type 3c diabetes mellitus (T3cDM) onset. METHODS Single-cell RNA sequencing was employed to analyze the PDAC TME, identifying cell interactions and gene expression changes of endocrine cells. Pathological changes and paraneoplastic islets were assessed in the proximal paratumor (PP) and distal paratumor (DP). Fractional β-cell area and islet density were compared among normal pancreas from donors and paraneoplastic tissues from non-diabetes mellitus (NDM) and T3cDM patients. TUNEL staining, RT-qPCR and CCK8 assay were applied to demonstrate the β-cell apoptosis. RESULTS Tumor cells, immune cells and fibroblasts could interact with endocrine cells, and apoptotic pathways were activated in endocrine cells of the PP. The PDAC TME was characterized by marked inflammation, sever fibrosis and atrophy. The islets in the PP had lower fractional β-cell area (0.68 ± 0.65% vs. 0.86 ± 1.02%, P = 0.037) and islet density (0.54 ± 0.42 counts/mm2 vs. 0.83 ± 0.90 counts/mm2, P = 0.001) compared to those in the DP. The PDAC TME in T3cDM exerted a more significant impact on the paraneoplastic islets compared to NDM. Moreover, β-cell apoptosis was markedly increased in the PP compared to the DP in PDAC patients without diabetes, particularly in smaller islets. Apoptosis-related genes were highly expressed in INS-1E cells exposed to PANC-1 medium. CONCLUSION Our research revealed that the PDAC TME is usually accompanied by some pathological changes, including inflammation, fibrosis, and atrophy. These pathological changes are related to a reduction in β-cell mass and trigger the development of T3cDM.
Collapse
Affiliation(s)
- Ke Hu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Xuelian Zhao
- Department of Pathology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Na Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Jing Ma
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Ruonan Zhang
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China
| | - Zhiqiang Lu
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Wenchuan Wu
- Department of Pancreatic Surgery, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| | - Xiaomu Li
- Department of Endocrinology and Metabolism, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai, 200032, People's Republic of China.
| |
Collapse
|
27
|
Zhang T, Tang D, Wu P, Jiang S, Zhang Y, Naeem A, Li Y, Li C, Hu B, Guo S, Sun C, Xiao H, Yan R, Weng Y, Huang Y. NIR-II photo-accelerated polymer nanoparticles boost tumor immunotherapy via PD-L1 silencing and immunogenic cell death. Bioact Mater 2025; 46:285-300. [PMID: 39811466 PMCID: PMC11732249 DOI: 10.1016/j.bioactmat.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 01/16/2025] Open
Abstract
Immune checkpoint blockade (ICB) therapy is a widely favored anti-tumor treatment, but it shows limited response to non-immunogenic "cold" tumors and suffers from drug resistance. Photodynamic therapy (PDT), as a powerful localized treatment approach, can convert a "cold tumor" into a "hot tumor" by inducing immunogenic cell death (ICD) in tumor cells, thereby enhancing tumor immunogenicity and promoting tumor immunotherapy. However, the effectiveness of PDT is largely hindered by the limited penetration depth into tumor tissues. To address these issues, we proposed an all-in-one drug system with NIR-II photo-accelerated PDT effects, efficient immune checkpoint gene silencing, and a facile manufacturing process. The so-called all-in-one drug system comprises a multi-modal designed polymer PPNP and siRNA. PPNP is an amphipathic polymer that includes the near infrared-II (NIR-II) photosensitizer Aza-boron-dipyrromethene (Aza-BODIPY), a glutathione (GSH)-cleavable linker, and a cationic monomer derived from cholesterol. PPNP can self-assemble and efficiently load siRNA. Under laser irradiation, PPNP triggers a potent ICD cascade, causing the on-demand release of siPD-L1, reshaping the tumor's immunosuppressive microenvironment, effectively inhibiting the growth of various tumors, and stimulating the immune memory. This study represents a generalized platform for PDT and gene silencing, designed to modulate immune-related signaling pathways for improved anticancer therapy.
Collapse
Affiliation(s)
- Tian Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Dongsheng Tang
- Beijing National Laboratory for Molecular Science Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Science Beijing 100190, China
| | - Pengfei Wu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shaoping Jiang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yuquan Zhang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Abid Naeem
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Yong Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Chunhui Li
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Bo Hu
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shuai Guo
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Caixia Sun
- School of Chemistry, Chemical Engineering & Biotechnology, Nanyang Technological University, 637371, Singapore
| | - Haihua Xiao
- Beijing National Laboratory for Molecular Science Laboratory of Polymer Physics and Chemistry Institute of Chemistry Chinese Academy of Science Beijing 100190, China
| | - Ran Yan
- Key Laboratory of Biomedical Functional Materials, School of Science, China Pharmaceutical University, Nanjing, 211198, China
| | - Yuhua Weng
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Zhuhai 519088, China
- Advanced Technology Research Institute, Beijing Institute of Technology (BIT), Jinan 250101, China
| | - Yuanyu Huang
- School of Life Science, Advanced Research Institute of Multidisciplinary Science, Aerospace Center Hospital, Key Laboratory of Molecular Medicine and Biotherapy, Key Laboratory of Medical Molecule Science and Pharmaceutics Engineering, Beijing Institute of Technology, Beijing, 100081, China
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology (BIT), Zhuhai 519088, China
- Advanced Technology Research Institute, Beijing Institute of Technology (BIT), Jinan 250101, China
| |
Collapse
|
28
|
Yang S, Fang Y, Ma Y, Wang F, Wang Y, Jia J, Yang Y, Sun W, Zhou Q, Li Z. Angiogenesis and targeted therapy in the tumour microenvironment: From basic to clinical practice. Clin Transl Med 2025; 15:e70313. [PMID: 40268524 PMCID: PMC12017902 DOI: 10.1002/ctm2.70313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 04/02/2025] [Accepted: 04/09/2025] [Indexed: 04/25/2025] Open
Abstract
Angiogenesis, as a core marker of cancer survival and growth, is integral to the processes of tumour growth, invasion and metastasis. In recent years, targeted angiogenesis treatment strategies have gradually become an important direction in cancer treatment. Single-cell sequencing technology can provide new insights into targeted angiogenesis by providing a deeper understanding of the heterogeneity of tumour endothelial cells and exploring the interactions between endothelial cells and surrounding cells in the tumour microenvironment. Here, we systematically review the research progress in endothelial cell pathophysiology and its endothelial‒mesenchymal transition and illustrate the heterogeneity of endothelial cells from a single-cell perspective. Finally, we examine the contributions of different cell types within the tumour microenvironment in relation to tumour angiogenesis, as well as the latest progress and strategies in targeted angiogenesis therapy, hoping to provide useful insights into the clinical application of antiangiogenic treatment. Furthermore, a summary of the present progress in the development of potential angiogenesis inhibitors and the ongoing clinical trials for combination therapies is provided. KEY POINTS: Angiogenesis plays a key role in tumour progression, invasion and metastasis, so strategies targeting angiogenesis are gradually becoming an important direction in cancer therapy. Interactions between endothelial cells and stromal cells and immune cells in the tumour microenvironment are significant in angiogenesis. The application of antiangiogenic immunotherapy and nanotechnology in antiangiogenic therapy provides a vital strategy for prolonging the survival of cancer patients.
Collapse
Affiliation(s)
- Shuaixi Yang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yingshuai Fang
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Yangcheng Ma
- Department of OrthopedicsThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Fuqi Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Yuhang Wang
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Jiachi Jia
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Yabing Yang
- The First Clinical School of MedicineZhengzhou UniversityZhengzhouChina
| | - Weipeng Sun
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Quanbo Zhou
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| | - Zhen Li
- Department of Colorectal SurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouChina
| |
Collapse
|
29
|
Shi Z, Hu C, Li Q, Sun C. Cancer-Associated Fibroblasts as the "Architect" of the Lung Cancer Immune Microenvironment: Multidimensional Roles and Synergistic Regulation with Radiotherapy. Int J Mol Sci 2025; 26:3234. [PMID: 40244052 PMCID: PMC11989671 DOI: 10.3390/ijms26073234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/20/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-associated fibroblasts (CAFs), as the "architect" of the immune microenvironment in lung cancer, play a multidimensional role in tumor progression and immune regulation. In this review, we summarize the heterogeneity of the origin and the molecular phenotype of CAFs in lung cancer, and explore the complex interactions between CAFs and multiple components of the tumor microenvironment, including the regulatory relationships with innate immune cells (e.g., tumor-associated macrophages, tumor-associated neutrophils), adaptive immune cells (e.g., T cells), and extracellular matrix (ECM). CAFs significantly influence tumor progression and immunomodulation through the secretion of cytokines, remodeling of the ECM, and the regulation of immune cell function significantly affects the immune escape and treatment resistance of tumors. In addition, this review also deeply explored the synergistic regulatory relationship between CAF and radiotherapy, revealing the key role of CAF in radiotherapy-induced remodeling of the immune microenvironment, which provides a new perspective for optimizing the comprehensive treatment strategy of lung cancer. By comprehensively analyzing the multidimensional roles of CAF and its interaction with radiotherapy, this review aims to provide a theoretical basis for the precise regulation of the immune microenvironment and clinical treatment of lung cancer.
Collapse
Affiliation(s)
- Zheng Shi
- School of Biopharmaceutical and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Cuilan Hu
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| | - Chao Sun
- Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China; (C.H.); (Q.L.); (C.S.)
- University of Chinese Academy of Sciences, Beijing 101408, China
| |
Collapse
|
30
|
Hu J, Jia X, Li M, Duan G, Man K, Dai H, Wen L, Geng H. Enhanced Delivery of Photothermal Gelatin Nanoparticle for Redox Balanced Nanocatalytic Tumor Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2411018. [PMID: 40159797 DOI: 10.1002/smll.202411018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 02/13/2025] [Indexed: 04/02/2025]
Abstract
Nanocatalytic platforms are promising in cancer therapeutics via combining multiple treatments, which can be leveraged through the metabolic dysfunction in cancer progression. However, the lack of effective tumor delivery platforms hampers this approach. Here, a gelatin-based platform is designed that is preloaded with gold nanoparticles and photothermal polypyrrole (GNPs@AuNPs-PPy) with an acid-induced doping enhancement. Benefiting from the tumor associated overexpression of H2O2, peroxidase-like Au nanoparticles induce a burst of oxidative reactive oxygen species in the local tumor microenvironment (TME). Subsequent orchestration of redox surroundings recruits immune cells, showcasing an effective antineoplastic pathway. Under near infrared light (NIR) irradiation, nanohybrids exhibit dual pH/NIR enhanced drug release within the TME, while allowing for multimodal imaging-guided theranostics. Leveraging this modality, GNPs@AuNPs-PPy delivers quercetin (a natural antitumor mediator) in TME, boosting anti-tumor therapy. The gelatin-mediated nanomedicine provides an alternative platform for combinatorial dynamic antitumor treatment.
Collapse
Affiliation(s)
- Jiayi Hu
- Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Key Laboratory of Active Proteins and Peptides Green Biomanufacturing of Guangdong Higher Education Institutes, Tsinghua University, Shenzhen, Guangdong, 518055, China
| | - Xiaoyu Jia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Manlin Li
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Medical Centre of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Guangxin Duan
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Medical Centre of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Kwan Man
- Department of Surgery, HKU-SZH & Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu, 212003, China
| | - Ling Wen
- Department of Radiology, The Fourth Affiliated Hospital of Soochow University, Medical Centre of Soochow University, Suzhou, Jiangsu, 215000, China
| | - Hongya Geng
- Institute of Biomedical and Health Engineering, Shenzhen International Graduate School, Key Laboratory of Active Proteins and Peptides Green Biomanufacturing of Guangdong Higher Education Institutes, Tsinghua University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
31
|
Cen L, Wu Y, He M, Huang J, Ren W, Liu B, Meng L, Huang L, Gu H, Xu Y, Zhu Q, Zou Y. Discovery and Optimization of Novel Apo-IDO1 Inhibitors by a Pharmacophore-Based Structural Simplification Strategy. J Med Chem 2025; 68:6633-6655. [PMID: 40042617 DOI: 10.1021/acs.jmedchem.5c00034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Indoleamine 2,3-dioxygenase-1 (IDO1) plays a crucial role in tumor immune escape. However, the limited clinical efficacy of traditional IDO1 inhibitors has impeded their further development. Recently, apo-IDO1 inhibitors that displace the heme to target IDO1 have been discovered, which exhibits a slow dissociation rate reminiscent of irreversible inhibitors. This characteristic suggests sustained target engagement, offering a pharmacodynamic advantage. Therefore, the development of apo-IDO1 inhibitors emerges as a promising strategy in the field of IDO1-related studies. Here, we present the identification of the thienopyrimidine derivative XW-001 through structure-based virtual screening, followed by an iterative optimization process that led to the development of XW-032. XW-032 exhibited remarkable in vitro inhibitory activity against apo-IDO1 (IC50 = 21 ± 5 nM) through a pharmacophore-guided structural simplification approach. Notably, XW-032 (TGI = 63%) exhibited potent in vivo antitumor efficacy in the CT26 syngeneic mouse model, highlighting the benefits of apo-IDO1 inhibitors for tumor immunotherapy.
Collapse
Affiliation(s)
- Lifang Cen
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yunze Wu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Mingchao He
- School of Public Health, Rutgers University, 683 Hoes Lane West, Piscataway, New Jersey 08854, United States
| | - Jingling Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Weijie Ren
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Beibei Liu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Liuqiong Meng
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Lei Huang
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hongfeng Gu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yungen Xu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Qihua Zhu
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yi Zou
- Jiangsu Key Laboratory of Drug Design and Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
32
|
Wang Y, Zhou H, Ju S, Dong X, Zheng C. The solid tumor microenvironment and related targeting strategies: a concise review. Front Immunol 2025; 16:1563858. [PMID: 40207238 PMCID: PMC11979131 DOI: 10.3389/fimmu.2025.1563858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 03/12/2025] [Indexed: 04/11/2025] Open
Abstract
The malignant tumor is a serious disease threatening human life. Increasing studies have confirmed that the tumor microenvironment (TME) is composed of a variety of complex components that precisely regulate the interaction of tumor cells with other components, allowing tumor cells to continue to proliferate, resist apoptosis, evade immune surveillance and clearance, and metastasis. However, the characteristics of each component and their interrelationships remain to be deeply understood. To target TME, it is necessary to deeply understand the role of various components of TME in tumor growth and search for potential therapeutic targets. Herein, we innovatively classify the TME into physical microenvironment (such as oxygen, pH, etc.), mechanical microenvironment (such as extracellular matrix, blood vessels, etc.), metabolic microenvironment (such as glucose, lipids, etc.), inflammatory microenvironment and immune microenvironment. We introduce a concise but comprehensive classification of the TME; depict the characteristics of each component in TME; summarize the existing methods for detecting each component in TME; highlight the current strategies and potential therapeutic targets for TME; discuss current challenges in presenting TME and its clinical applications; and provide our prospect on the future research direction and clinical benefits of TME.
Collapse
Affiliation(s)
- Yingliang Wang
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Huimin Zhou
- Department of Nuclear Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shuguang Ju
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Xiangjun Dong
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| | - Chuansheng Zheng
- Department of Radiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Key Laboratory of Molecular Imaging, Wuhan, China
- Hubei Provincial Clinical Research Center for Precision Radiology & Interventional Medicine, Wuhan, China
| |
Collapse
|
33
|
Ren W, Zhang H, Li Y, Sun W, Peng H, Guo H, Hou T, Wang M, Hu Z, Wu T, Liu B. Efficacy and safety of PD-1/PD-L1 inhibitors as first-line treatment for esophageal squamous cell carcinoma: a systematic review and meta-analysis. Front Immunol 2025; 16:1563300. [PMID: 40207226 PMCID: PMC11979238 DOI: 10.3389/fimmu.2025.1563300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 03/07/2025] [Indexed: 04/11/2025] Open
Abstract
Purpose This study aims to investigate the efficacy and safety of PD-1/PD-L1 inhibitors in the first-line treatment of esophageal squamous cell carcinoma (ESCC) and identify factors influencing efficacy through a meta-analysis of multiple phase 3 randomized controlled trials (RCTs). Methods A systematic literature search was conducted in Cochrane, PubMed, and Embase databases. Two researchers independently extracted trial data, including efficacy-related outcomes such as overall survival (OS), progression-free survival (PFS), objective response rate (ORR), and duration of response (DoR), along with their subgroup data and safety-related indicators. The overall hazard ratio (HR) and 95% confidence interval (CI) were calculated for OS and PFS, while the overall odds ratio (OR) and 95% CI were computed for ORR to compare the classification and predictive abilities of combined positive score (CPS) and tumor proportion score (TPS) for PD-L1 status. Additionally, survival outcomes across different subgroups were evaluated to explore the potential influencing factors for the efficacy of PD-1/PD-L1 inhibitors in ESCC. Results This meta-analysis included eight phase 3 RCTs encompassing 4,479 participants. PD-1/PD-L1 inhibitors combined with chemotherapy significantly improved OS (HR: 0.68, 95% CI: 0.63-0.74) and PFS (HR: 0.62, 95% CI: 0.58-0.67) in ESCC patients compared to non-combination therapy. Patients with higher PD-L1 expression (CPS>1 or TPS>1) demonstrated superior responses to PD-1/PD-L1 inhibitions, with CPS identified as a stronger predictor of therapeutic benefit, particularly at a threshold of CPS =10. Subgroup analysis revealed that male, Asian, smoking, and liver metastasis patients exhibited a greater trend toward improved disease control with PD-1/PD-L1 inhibitors. However, there was no significant difference in treatment efficacy between immune therapy combined with TP (taxol [paclitaxel] + cisplatin) and FP (5-fluorouracil [5-FU] + cisplatin) regimens (POS =0.51, PPFS =0.11). Finally, PD-1/PD-L1 inhibition was associated with a higher incidence of grade ≥3 adverse events compared to chemotherapy alone (HR: 1.21, 95% CI: 1.07-1.37). Conclusions This study confirms that the combination of PD-1/PD-L1 inhibitors and chemotherapy provides significant clinical benefits in ESCC. CPS =10 serves as a key threshold for predicting treatment response. There is a trend suggesting that male, Asian, smoking, and liver metastasis patients may experience better survival benefits, while no significant difference was observed between TP- and FP-based regimens. Systematic Review Registration https://www.crd.york.ac.uk/prospero, identifier CRD42024536221.
Collapse
Affiliation(s)
- Wei Ren
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Hanyu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Yixin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Wu Sun
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Hexiang Peng
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Huangda Guo
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Tianjiao Hou
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
| | - Mengying Wang
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
- Department of Nutrition and Food Hygiene, School of Public Health, Peking University, Beijing, China
| | - Zhendong Hu
- Department of Esophageal Surgery, Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China
| | - Tao Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing, China
- Key Laboratory of Epidemiology of Major Diseases (Peking University), Ministry of Education, Beijing, China
| | - Baorui Liu
- The Comprehensive Cancer Center of Drum Tower Hospital, Medical School of Nanjing University and Clinical Cancer Institute of Nanjing University, Nanjing, China
| |
Collapse
|
34
|
Zheng A, Wang X, Wu Y, Lan J, Wu M, Zhang D, Zhang F, Liu X, Zeng Y. Highly Efficient Bifunctional Peptides for Tumor Immunotherapy by Simultaneously Activating T Cells and Blocking PD-L1 Immune Checkpoint. ACS APPLIED MATERIALS & INTERFACES 2025; 17:18194-18205. [PMID: 40088153 DOI: 10.1021/acsami.5c03021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Immune checkpoint inhibitors represented by PD-1/PD-L1 monoclonal antibodies have shown great success in tumor immunotherapy. However, the response rate of immune checkpoint blockade (ICB) therapy alone is far from satisfactory due to insufficient and exhausted tumor-infiltrating T cells. Meanwhile, antibody-based drugs have some drawbacks such as high cost and complicated preparation, which require further development of nonantibody immune checkpoint inhibitors and more rational strategies for improving the effectiveness of tumor treatment. Here, a highly efficient bifunctional peptide (Bi-pep) was constructed for tumor treatment by simultaneously activating T cells and blocking the PD-L1 immune checkpoint. This peptide not only can block the PD-1/PD-L1 immunosuppressive pathway but also directly and efficiently promote the activation and proliferation of T cells, thereby showing a significant effect on promoting T cell killing of tumor cells. The Bi-pep-induced antitumor effect was verified on both subcutaneous and orthotopic tumor models, which can significantly inhibit tumor growth and thus prolong the survival of tumor-bearing mice, holding great potential for biomedical applications.
Collapse
Affiliation(s)
- Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
| | - Xiaorong Wang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Yaning Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Jing Lan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
- College of Biological Science and Engineering, Fuzhou University, Fuzhou 350116, P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
| | - Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
| | - Fangrong Zhang
- Key Laboratory of Gastrointestinal Cancer, Ministry of Education, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
| | - Yongyi Zeng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou 350007, P. R. China
| |
Collapse
|
35
|
Gao Q, Wu H, Li Z, Yang Z, Li L, Sun X, Wu Q, Sui X. Synergistic Strategies for Lung Cancer Immunotherapy: Combining Phytochemicals and Immune-Checkpoint Inhibitors. Phytother Res 2025. [PMID: 40122686 DOI: 10.1002/ptr.8482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 09/27/2024] [Accepted: 10/14/2024] [Indexed: 03/25/2025]
Abstract
Lung cancer remains one of the most widespread and deadliest malignant tumors globally, with a particularly high mortality rate among all cancers. Recently, immunotherapy, particularly immune checkpoint inhibitors (ICIs), has emerged as a crucial treatment strategy for lung cancer patients, following surgical intervention, radiotherapy, chemotherapy, and targeted drug therapies. However, the therapeutic limitations are caused owing to their low response rate and undesirable side effects such as immune-related pneumonitis. Therefore, developing new strategies to improve the efficacy of ICIs while minimizing immune-related adverse events will be crucial for cancer immunotherapy. The tumor immune microenvironment plays a significant role in the success of lung cancer immunotherapy, and the immunosuppressive characteristics of the immune microenvironment are one of the major obstacles to the poor immunotherapeutic effect. Phytochemicals, naturally occurring compounds in plants, have shown promise in enhancing cancer immunotherapy by remodeling the immunosuppressive microenvironment, offering the potential to increase the efficacy of ICIs. Therefore, this review summarizes the associated mechanisms of phytochemicals remodeling the immunosuppressive microenvironment in lung cancer. Additionally, the review will focus on the synergistic effects of combining phytochemicals with ICIs, aiming to improve anticancer efficacy and reduce side effects, which may hopefully offer novel strategies to overcome current limitations in immunotherapy.
Collapse
Affiliation(s)
- Quan Gao
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Hao Wu
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Zhengjun Li
- College of Health Economics Management, Nanjing University of Chinese Medicine, Nanjing, China
- Jiangsu Provincial Engineering Center of TCM External Medication Development and Application, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zijing Yang
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Lin Li
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Xueni Sun
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| | - Qibiao Wu
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
| | - Xinbing Sui
- Faculty of Medicine and Faculty of Chinese Medicine, School of Pharmacy, Macau University of Science and Technology, Macau SAR, China
- Department of Medical Oncology and School of Pharmacy, The Affiliated Hospital of Hangzhou Normal University, Hangzhou Normal University, Zhejiang, China
| |
Collapse
|
36
|
Zhang T, Zhou H. Machine Learning and Weighted Gene Coexpression Network-Based Identification of Biomarkers Predicting Immune Profiling and Drug Resistance in Lung Adenocarcinoma. Int J Genomics 2025; 2025:9923294. [PMID: 40161493 PMCID: PMC11955064 DOI: 10.1155/ijog/9923294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/27/2025] [Indexed: 04/02/2025] Open
Abstract
Background: The prognosis for lung adenocarcinoma (LUAD) is poor, and the recurrence rate is high. Thus, to evaluate patients' prognoses and direct therapy choices, new prognostic markers are desperately needed. Methods: First, gene modules associated with LUAD were identified by weighted gene coexpression network analysis (WGCNA) analysis. The expression profiles obtained were intersected with the differential expressed genes taken between LUAD samples and paracancerous samples. Afterward, stepwise regression analysis and the LASSO were used to compress the genes further, and a risk model was created. Furthermore, a nomogram based on risk scores and clinical features was created to validate the model. After that, the distinctions between the pertinent biological processes and signaling pathways among the various subgroups were investigated. Additionally, drug sensitivity testing, immunotherapy, immune infiltration analysis, and enrichment analysis were carried out. Finally, the biological role of ANLN in LUAD was explored by qPCR, cell scratch assay, and transwell. Results: A total of 257 intersected genes were obtained by taking the intersection of the differential genes between 2866 LUAD samples and paraneoplastic samples with the module genes after we screened two particular modules that had the strongest link with LUAD by WGCNA. ANLN, CASS4, and NMUR1 were found to be distinctive genes for the development of risk models after the intersecting genes were screened to find 176 genes linked to the prognosis for LUAD. Based on risk assessments, high- and low-risk groups of LUAD patients were divided. Low-risk patients exhibited a significantly higher overall survival (OS) than those in the high-risk group. Expression of model genes correlates with infiltration of the vast majority of immune cells. Significant differences in the biological pathways, immune microenvironment, and abundance of immune cell infiltration were found between the two groups. The drug sensitivity study showed that patients in the high-risk group had higher IC50 values for BMS-754807_2171 and Doramapimod_10424. Finally, in vitro experiments demonstrated that knocking down ANLN noticeably inhibited the viability, migration, and invasion of A549 cells. Conclusion: This study may provide a theoretical reference for future exploration of potential diagnostic and prognostic biomarkers for LUAD.
Collapse
Affiliation(s)
- Tian Zhang
- Pharmacy Department, Xiangxi Autonomous Prefecture People's Hospital, Jishou, China
| | - Han Zhou
- Pharmacy Department, Xiangxi Autonomous Prefecture People's Hospital, Jishou, China
| |
Collapse
|
37
|
Wen N, Lu Y, Zhuo Y, Fu B, Wang H, He Y, Wu H, Wang Z, Tan W, Qiu L. Enhancing T-Cell Infiltration and Immunity in Solid Tumors via DNA Nanolinker-Mediated Monocyte Hitchhiking. J Am Chem Soc 2025; 147:9800-9809. [PMID: 40042588 DOI: 10.1021/jacs.4c18455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Cytotoxic CD8+ T cells are one of the most powerful effectors in the antitumor immune response. However, their insufficient tumor infiltration severely limits the clinical success of immunotherapy in solid tumors. In this work, by using amphiphilic aptamer-incorporated DNA tetrahedra (aptTDN) as the intercellular nanolinker, we developed a monocyte-hitchhiked T-cell delivery strategy to actively promote the intratumoral infiltration of effector CD8+ T cells. Our results demonstrated that membrane-anchoring of aptTDN enabled the specific and stable ligation of T cells with Ly6c+ monocytes, without compromising the migratory behavior of monocytes and the antitumor activity of T cells. By leveraging the intrinsic tumor-homing capability of monocytes, the ligated T cells efficiently accumulated within tumor-associated vasculature and then deeply infiltrated the tumor bed. Additionally, the enhanced intratumoral presence of adoptively transferred effector CD8+ T cells facilitated the establishment of an immunosupportive microenvironment, that further recruited endogenous T cells and ultimately bolstered antitumor immunity. Moreover, our monocyte-hitchhiked T-cell tumor infiltration system could significantly improve the efficacy of immune checkpoint blockade therapy. Collectively, by utilizing chemically synthetic nanolinkers to modulate cellular interactions and develop a delivery system of therapeutic cells, our work presents a new paradigm for the advancement of immunotherapy against solid tumors.
Collapse
Affiliation(s)
- Nachuan Wen
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yao Lu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Yuting Zhuo
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Bo Fu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Haiyuan Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Yao He
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Hui Wu
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Zhimin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Weihong Tan
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Liping Qiu
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
38
|
Angeli S, Neophytou C, Kalli M, Stylianopoulos T, Mpekris F. The mechanopathology of the tumor microenvironment: detection techniques, molecular mechanisms and therapeutic opportunities. Front Cell Dev Biol 2025; 13:1564626. [PMID: 40171226 PMCID: PMC11958720 DOI: 10.3389/fcell.2025.1564626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
The mechanical properties of the tumor microenvironment (TME) undergo significant changes during tumor growth, primarily driven by alterations in extracellular (ECM) stiffness and tumor viscoelasticity. These mechanical changes not only promote tumor progression but also hinder therapeutic efficacy by impairing drug delivery and activating mechanotransduction pathways that regulate crucial cellular processes such as migration, proliferation, and resistance to therapy. In this review, we examine the mechanisms through which tumor cells sense and transmit mechanical signals to maintain homeostasis in the biomechanically altered TME. We explore current computational modelling strategies for mechanotransduction pathways, highlighting the need for developing models that incorporate additional components of the mechanosignaling machinery. Furthermore, we review available methods for measuring the mechanical properties of tumors in clinical settings and strategies aiming at restoring the TME and blocking deregulated mechanotransduction pathways. Finally, we propose that proper characterization and a deeper understanding of the mechanical landscape of the TME, both at the tissue and cellular levels, are essential for developing therapeutic strategies that account for the influence of mechanical forces on treatment efficacy.
Collapse
Affiliation(s)
| | | | | | | | - Fotios Mpekris
- Cancer Biophysics Laboratory, Department of Mechanical and Manufacturing Engineering, University of Cyprus, Nicosia, Cyprus
| |
Collapse
|
39
|
Zhang L, Feng Q, Zheng C, Li Y, Ge X, Jin T, Hu G, Tan Z, Wang J, Xu J, Jiang L, Wang D, Ying Z, Zhao X, Cheng K, Li Q, Ge M. Antigen-Targeting Inserted Nanomicelles Guide Pre-Existing Immunity to Kill Head and Neck Cancer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410629. [PMID: 40091501 DOI: 10.1002/advs.202410629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 03/02/2025] [Indexed: 03/19/2025]
Abstract
A significant challenge in cancer therapy is the identification of suitable targets that are specifically and uniformly expressed across heterogeneous tumors. The efficacy of pre-existing antiviral immunity in tumor treatment is limited by the absence of corresponding targets. This study develops a novel platform of antigen-targeted inserted nanomicelles, preS1 (an antigen of hepatitis B virus)-pHLIP nanomicelles, in which tumor-targeting nanomicelles release antigens that label tumor tissue for pre-existing immunity-mediated lysis in situ. In animal models of head and neck cancers, including head and neck squamous cell carcinoma and anaplastic thyroid cancer, preS1-pHLIP nanomicelles effectively inhibited tumor growth, recurrence, and metastasis in animals pre-immunized with preS1. This therapeutic effect is associated with an increase in the proportion of preS1-specific B cells and activated tumor-specific T cells within the tumor microenvironment. Overall, this work has engineered a nanomicelle that can disguise tumor cells as viruses and achieve tumor killing through the pre-existing antiviral immune response. This strategy presents a novel approach for treating tumors with ambiguous therapeutic target profiles.
Collapse
Affiliation(s)
- Lizhuo Zhang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, 310014, China
| | - Qingqing Feng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, Hangzhou, 310006, China
| | - Chuanming Zheng
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, 310014, China
| | - Yuanqiang Li
- Zhejiang Cancer Hospital, Hangzhou, 310005, China
| | - Xinyang Ge
- Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Tiefeng Jin
- Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, SAR, 999078, China
| | - Gaofeng Hu
- Zhejiang Cancer Hospital, Hangzhou, 310005, China
| | - Zhuo Tan
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, 310014, China
| | - Jiafeng Wang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, 310014, China
- Department of Thyroid and Breast Surgery, Zhejiang Provincial People's Hospital Bijie Hospital, Bijie, 551700, China
| | - Jiajie Xu
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, 310014, China
| | - Liehao Jiang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, 310014, China
| | - Dan Wang
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
| | | | - Xiao Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Keman Cheng
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Qinglin Li
- Zhejiang Cancer Hospital, Hangzhou, 310005, China
| | - Minghua Ge
- Otolaryngology & Head and Neck Center, Cancer Center, Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, China
- Zhejiang Provincial Clinical Research Center for Head & Neck Cancer, Hangzhou, 310014, China
- Zhejiang Key Laboratory of Precision Medicine Research on Head & Neck Cancer, Hangzhou, 310014, China
| |
Collapse
|
40
|
Trailin A, Ali E, Ye W, Pavlov S, Červenková L, Vyčítal O, Ambrozkiewicz F, Hošek P, Daum O, Liška V, Hemminki K. Prognostic assessment of T-cells in primary colorectal cancer and paired synchronous or metachronous liver metastasis. Int J Cancer 2025; 156:1282-1292. [PMID: 39508720 PMCID: PMC11736993 DOI: 10.1002/ijc.35252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Prognostic value of T-cells between primary colorectal cancer (pCRC) and its paired synchronous and metachronous liver metastasis (LM) is underinvestigated and is the subject of the present study. We enrolled into this retrospective cohort study patients, who underwent resection of both pCRC and synchronous LM (N = 55) or metachronous LM (N = 44). After immunohistochemical staining for CD3+, CD8+, and CD45R0+ whole slides were scanned and T-cell densities were quantified using QuPath software in tumor center (TC), inner margin (IM), outer margin (OM), and peritumor zone (PT) of pCRC and LM. High densities of CD8+ T-cells in TC, OM and PT of synchronous LM were associated with longer disease-free survival (DFS). Greater densities of CD3+ T-cells in IM and PT and CD8+ T-cells in IM, OM and PT in synchronous LM over pCRC were associated with longer DFS. Greater densities of CD8+ T-cells in the TC and IM and CD3+ T-cells in the IM of pCRC were found in the metachronous over synchronous group. The first novel finding demonstrated that high density of CD8+ T cells in synchronous LM were associated with favorable outcome. The second finding of high CD8+ cell density in pCRC in metachronous over synchronous CRC may provide a mechanistic basis for the delay of metastatic spread. Both findings could be applied clinically with own reference values.
Collapse
Affiliation(s)
- Andriy Trailin
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Esraa Ali
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Wenjing Ye
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Sergii Pavlov
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Lenka Červenková
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Ondřej Vyčítal
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Filip Ambrozkiewicz
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Petr Hošek
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Ondřej Daum
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Václav Liška
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| | - Kari Hemminki
- Laboratory of Translational Cancer Genomics, Biomedical Center, Faculty of Medicine in PilsenCharles UniversityPilsenCzech Republic
| |
Collapse
|
41
|
Bardales KL, Jiang L, Radaelli E, Assenmacher CA, Lenz JA, Atherton MJ. Intertumoral heterogeneity of the immune microenvironment in high grade canine mast cell tumors. VETERINARY ONCOLOGY (LONDON, ENGLAND) 2025; 2:7. [PMID: 40093350 PMCID: PMC11906493 DOI: 10.1186/s44356-025-00020-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/26/2025] [Indexed: 03/19/2025]
Abstract
Background Canine cutaneous mast cell tumors (MCTs) are a common, yet clinically challenging tumor type given their variable biological behavior. Although patients with low grade MCTs can often be effectively managed with surgery alone, most dogs with high grade MCTs succumb to their disease despite multimodal therapy. An improved understanding of the immune tumor microenvironment (TME) may help identify novel prognostic and therapeutic targets. Methods In this study, we interrogated the immune transcriptional profiles of the TME in low and high grade MCTs, and quantified intratumoral T cells. Twelve client-owned dogs with MCTs (6 Kiupel low grade with clinically benign behavior and 6 Kiupel high grade with clinically aggressive behavior) that underwent curative-intent surgery were selected. Tumor grade was confirmed by a single veterinary pathologist. RNA was extracted from all tumors followed by immune transcriptional profiling utilizing the NanoString Canine IO panel and analysis using the ROSALIND platform. T cell density was determined by immunohistochemical staining for CD3 and quantified using ImageScope software (Leica Biosystems) following digital slide capture. Lymphocytic infiltrate was further characterized in the TME of one high grade MCT using co-immunofluorescence. Results Immune transcriptional profiling identified 9 differentially expressed genes between low and high grade MCTs (p-adj < 0.05). Programmed cell death protein 1 (PDCD1) and inducible T-cell costimulator ligand (ICOSLG) gene expression were significantly higher in a subset of high grade MCTs. ICOSLG expression positively correlated with T cell score (rs = 0.6434, p = 0.0278). Although the T cell density was not significantly different between low (mean of 76.42 CD3 + /mm2, SD 12 CD3 + /mm2) and high grade MCTs (mean of 129.1 CD3 + /mm2, SD 96.06 CD3 + /mm2), greater variation of T cell densities was observed across high grade MCTs compared to low grade (p = 0.0059). Immunofluorescence of one high grade MCT with marked T cell infiltration revealed organized aggregates of T and B cells consistent with tertiary lymphoid structures (TLS). Conclusions Our data revealed significant differences in the immune TME of low and high grade MCTs and provides rationale to further investigate potential prognostic and therapeutic roles of immune checkpoints in canine MCTs. Supplementary Information The online version contains supplementary material available at 10.1186/s44356-025-00020-9.
Collapse
Affiliation(s)
- K. L. Bardales
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - L. Jiang
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - E. Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - C. A. Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - J. A. Lenz
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| | - M. J. Atherton
- Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA USA
| |
Collapse
|
42
|
Li N, Zhang C, Li X, Liu S, Xu Y, Yang X. Targeting B7-H3 in solid tumors: Development and evaluation of novel CAR-T Cell therapy. Immunobiology 2025; 230:152888. [PMID: 40121824 DOI: 10.1016/j.imbio.2025.152888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/25/2025]
Abstract
Ovarian and gastric cancers, representative of many solid tumors, remain among the most challenging malignancies to treat due to limited therapeutic options and poor outcomes at advanced stages. Although immunotherapies have revolutionized cancer treatment, their efficacy in solid tumors has been hindered by issues such as antigen heterogeneity and the immunosuppressive tumor microenvironment. This study presents the development and evaluation of third-generation chimeric antigen receptor T (CAR-T) cells targeting B7-H3, an immune checkpoint molecule widely overexpressed in solid tumors. The B7-H3 CAR-T cells exhibited robust and selective cytotoxicity against B7-H3-positive tumor cells, sparing normal tissues. In preclinical animal models, these cells significantly inhibited tumor growth, demonstrating higher targeting specificity and preferential accumulation in tumor sites. These results highlight B7-H3-targeted CAR-T cells as a potential breakthrough in immunotherapy for solid tumors, offering a foundation for future clinical trials to refine their safety and efficacy.
Collapse
Affiliation(s)
- Ning Li
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macao
| | - Chunhua Zhang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macao; The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210000, China
| | - Xiaoyu Li
- College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400030, China
| | - Shufen Liu
- Surgical Intervention Departments, Hengshui People's Hospital, Hebei 053000, China
| | - Youhua Xu
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macao.
| | - Xifei Yang
- Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa 999078, Macao; Key Laboratory of Modern Toxicology of Shenzhen, Shenzhen Center for Disease Control and Prevention, No. 8, Longyuan Road, Nanshan District, Shenzhen 518055, China..
| |
Collapse
|
43
|
Qu G, Liu K, Xu W, Li D. Integrated analysis and experimental validation reveal the prognostic and immunological features associated with coagulation in hepatocellular carcinoma. Sci Rep 2025; 15:8626. [PMID: 40074769 PMCID: PMC11904193 DOI: 10.1038/s41598-025-85491-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 01/03/2025] [Indexed: 03/14/2025] Open
Abstract
Coagulation is intensively related to various tumors, which affects their progression and prognosis. However, research on the impact of coagulation-associated genes (CAGs) on hepatocellular carcinoma (HCC) occurrence, prognosis, and immune microenvironment is limited. Consequently, our research aims to uncover how CAGs affect the prognosis and immune microenvironments of HCC. We integrated gene expression data and clinical information from three datasets (GSE14520, GSE76427, and TCGA-LIHC). 281 CAGs were obtained from the coagulation-related pathway (hsa04610). We obtained three CAG patterns through a consensus clustering algorithm. Afterward, differential analyses of prognosis, biological processes, immune infiltration, and functional and pathway enrichment were conducted on the three CAG patterns. We intersected CAGs with differentially expressed genes in GSE76427 and then conducted Cox regression analysis to obtain the prognostic genes in HCC. Glycerol-3-phosphate dehydrogenase 2 (GPD2) was selected for further analyses. TCGA-LIHC samples with different GPD2 expression levels were analyzed for prognosis, DNA methylation, immune infiltration, and drug sensitivity. The expression level of GPD2 was verified through quantitative real-time PCR (qPCR) and immunohistochemistry. The wound-healing and Transwell assays were used to analyze the tumor cell migration and the Matrigel invasion and apoptosis assays were performed to determine cell invasion and apoptosis. Three CAG patterns were obtained through an unsupervised consensus clustering algorithm. CAGclusterA held the best prognosis compared to the other two clusters. The CAGclusterC was characterized by poor prognosis and abundant immune cell infiltration. The TCGA-LIHC dataset, as an internal validation, also yielded similar subtype classifications. Afterward, we identified the GPD2 gene, which significantly affected the prognosis of HCC and was positively correlated with the tumor progression. The upregulation of GPD2 expression was closely related to tumorigenic signatures and immune escape. The qPCR confirmed the upregulation of GPD2 expression in HCC tumor cell lines, compared to normal liver cell lines. Immunohistochemical staining confirmed the high expression of GPD2 in HCC tumor tissues compared to normal tissues. Regulating the expression level of GPD2 can inhibit the proliferation, migration, invasion, and induce apoptosis of HCC cells. Our study comprehensively elucidated the coagulation characteristics in HCC and identified a promising oncogenic gene GPD2. Exploring targeted strategies based on coagulation-related characteristics and biomarkers may shed light on HCC treatment.
Collapse
Affiliation(s)
- Guangzhen Qu
- Department of Interventional Radiology, Beijing Chao-Yang Hospital Affiliated with Capital Medical University, Beijing, 100020, China
| | - Kun Liu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Weiyu Xu
- Department of General Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, 100050, China
| | - Dongming Li
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
44
|
Cui R, Luo Z, Zhang X, Yu X, Yuan G, Li X, Xie F, Jiang O. Targeting PI3K Signaling to Overcome Tumor Immunosuppression: Synergistic Strategies to Enhance Cancer Vaccine Efficacy. Vaccines (Basel) 2025; 13:292. [PMID: 40266213 PMCID: PMC11946485 DOI: 10.3390/vaccines13030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Revised: 03/01/2025] [Accepted: 03/06/2025] [Indexed: 04/24/2025] Open
Abstract
Phosphoinositide 3-kinases (PI3Ks), members of the lipid kinase family, play a significant role in modulating immune cell functions, including activation, proliferation, and differentiation. Recent studies have identified the PI3K signaling pathway as a key regulator in tumor biology and the immune microenvironment. This pathway enhances the activity of regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs), contributing to an immunosuppressive tumor microenvironment that impairs the effectiveness of cancer vaccines and immunotherapies. The present study explores PI3K isoforms, particularly p110γ and p110δ, and their associated signaling pathways. The therapeutic potential of selective PI3K inhibitors and their capacity to act synergistically with immunization strategies are analyzed. Targeting the PI3K signaling pathway represents a promising approach to counteract tumor-induced immune suppression and improve the efficacy of immune checkpoint inhibitors and vaccines, ultimately leading to better clinical outcomes.
Collapse
Affiliation(s)
- Ran Cui
- Department of Oncology, The First People’s Hospital of Neijiang, Neijiang 641000, China; (R.C.); (X.L.); (F.X.)
- Department of Oncology, Southwest Medical University, Luzhou 646000, China; (Z.L.); (X.Z.)
| | - Zhongxiang Luo
- Department of Oncology, Southwest Medical University, Luzhou 646000, China; (Z.L.); (X.Z.)
| | - Xialin Zhang
- Department of Oncology, Southwest Medical University, Luzhou 646000, China; (Z.L.); (X.Z.)
| | - Xinlin Yu
- Department of Oncology, Affiliated Hospital of Chengdu University, Chengdu 610000, China;
| | - Gang Yuan
- Department of Interventional & Vascular, Affiliated Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou 646000, China;
| | - Xingming Li
- Department of Oncology, The First People’s Hospital of Neijiang, Neijiang 641000, China; (R.C.); (X.L.); (F.X.)
| | - Fei Xie
- Department of Oncology, The First People’s Hospital of Neijiang, Neijiang 641000, China; (R.C.); (X.L.); (F.X.)
| | - Ou Jiang
- Department of Oncology, The First People’s Hospital of Neijiang, Neijiang 641000, China; (R.C.); (X.L.); (F.X.)
- Department of Oncology, Southwest Medical University, Luzhou 646000, China; (Z.L.); (X.Z.)
| |
Collapse
|
45
|
Wang W, Li T, Wu K. Cell death in tumor microenvironment: an insight for exploiting novel therapeutic approaches. Cell Death Discov 2025; 11:93. [PMID: 40064873 PMCID: PMC11894105 DOI: 10.1038/s41420-025-02376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 02/07/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Cell death is critical in tumor biology. The common cancer therapies can cause cell death and alleviate tumor, while the cancer cells can develop a resistance to cell death and survive from the therapies. Thus, not only observing the alternative mechanisms of tumor cells resistant to cell death, but also understanding the intricate dynamics of cell death processes within the tumor microenvironment (TME), are essential for tailoring effective therapeutic strategies. High-throughput sequencing technologies have revolutionized cancer research by enabling comprehensive molecular profiling. Recent advances in single cell sequencing have unraveled the heterogeneity of TME components, shedding light on their complex interactions. In this review, we explored the interplay between cell death signaling and the TME, summarised the potential drugs inducing cell death in pre-clinical stage, reviewed some studies applying next-generation sequencing technologies in cancer death research, and discussed the future utilization of updated sequencing platforms in screening novel treatment methods targeted cell death. In conclusion, leveraging multi-omics technologies to dissect cell death signaling in the context of the TME holds great promise for advancing cancer research and therapy development.
Collapse
Affiliation(s)
- Wenxin Wang
- BGI Genomics, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China
| | - Tong Li
- BGI Genomics, Shenzhen, 518083, China
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China
| | - Kui Wu
- BGI Genomics, Shenzhen, 518083, China.
- Guangdong Provincial Key Laboratory of Human Disease Genomics, Shenzhen Key Laboratory of Genomics, BGI Research, Shenzhen, 518083, China.
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences (CAS), BGI Research, Hangzhou, 310030, China.
| |
Collapse
|
46
|
Fan Y, Ji X, Yuan K, Wu Q, Lou M. HDAC1 Mediates Immunosuppression of the Tumor Microenvironment in Non-Small Cell Lung Cancer. J Inflamm Res 2025; 18:3333-3347. [PMID: 40078575 PMCID: PMC11900795 DOI: 10.2147/jir.s509316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Background Studies have demonstrated that histone deacetylase 1 (HDAC1) enables cancer cells to evade killing mediated by cytotoxic T lymphocytes. However, there are no studies on the immunological aspects of HDAC1 in non-small cell lung cancer (NSCLC). Methods In this research, we used the Cancer Genome Atlas (TCGA) public database combined with tissue microarray (TMA) to investigate HDAC1 expression and prognosis in NSCLC. According to the median value of HDAC1 expression in the TCGA dataset, samples of patients with NSCLC were classified into high- and low-expression cohorts. Subsequently, the biological characteristics of HDAC1 in high- and low-expression cohorts in terms of signaling pathways, immune cell infiltration, immune cell function, and genomic stability were investigated to better understand the effect of HDAC1 in the tumor microenvironment (TME) of NSCLC. Additionally, we selected tissue samples with HDAC1 overexpression in TMA2 and performed immunohistochemical staining of CD8+ T cells to observe the distribution of CD8+ T cells in the tumor. Results The findings revealed that overexpression of HDAC1 in NSCLC was associated with poor prognosis. Analysis of signaling pathway enrichment indicated that HDAC1 downregulated immune-related signaling pathways in NSCLC. Immune cell infiltration, immune cell function, and genomic stability analyses suggested that the TME alteration mediated by HDAC1 in the high-expression cohort was consistent with the "immune desert" phenotype. Furthermore, CD8+ T immunohistochemical staining experiments of tissue samples with HDAC1 overexpression in NSCLC revealed few CD8+ T cells distributed in the tumor parenchyma and interstitium. Conclusion Conclusively, our findings from several biological analyses revealed that HDAC1 is overexpressed in NSCLC and induces TME immunosuppression.
Collapse
Affiliation(s)
- Yongfei Fan
- Department of Thoracic Surgery, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
- Heart and Lung Disease Laboratory, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| | - Xiang Ji
- Department of Thoracic Surgery, The First Affiliated Hospital of Bengbu Medical University, Bengbu, 233000, People’s Republic of China
| | - Kai Yuan
- Department of Thoracic Surgery, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
- Heart and Lung Disease Laboratory, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| | - Qiyong Wu
- Department of Thoracic Surgery, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
- Heart and Lung Disease Laboratory, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| | - Ming Lou
- Department of Thoracic Surgery, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
- Heart and Lung Disease Laboratory, The second People’s Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, 213164, People’s Republic of China
| |
Collapse
|
47
|
Almawash S. Revolutionary Cancer Therapy for Personalization and Improved Efficacy: Strategies to Overcome Resistance to Immune Checkpoint Inhibitor Therapy. Cancers (Basel) 2025; 17:880. [PMID: 40075727 PMCID: PMC11899125 DOI: 10.3390/cancers17050880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/09/2025] [Accepted: 02/12/2025] [Indexed: 03/14/2025] Open
Abstract
Cancer remains a significant public health issue worldwide, standing as a primary contributor to global mortality, accounting for approximately 10 million fatalities in 2020 [...].
Collapse
Affiliation(s)
- Saud Almawash
- Department of Pharmaceutics, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia
| |
Collapse
|
48
|
Zi R, Shen K, Zheng P, Su X, Yang Y, Chen Y, Dai H, Mao C, Lu Y, Wang L, Ma H, Wang W, Li Q, Lu W, Li C, Zheng S, Shi H, Liu X, Chen Z, Liang H, Ou J. NPC1L1 on pancreatic adenocarcinoma cell functions as a two-pronged checkpoint against antitumor activity. Innovation (N Y) 2025; 6:100783. [PMID: 40098667 PMCID: PMC11910884 DOI: 10.1016/j.xinn.2024.100783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 12/30/2024] [Indexed: 03/19/2025] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is a highly lethal malignancy with an immunosuppressive microenvironment and a limited immunotherapy response. Cholesterol is necessary for rapid growth of cancer cells, and cholesterol metabolism reprogramming is a hallmark of PAAD. How PAAD cells initiate cholesterol reprogramming to sustain their growth demand and suppressive immunomicroenvironment remains elusive. In this study, we for the first time revealed that PAAD cells overcome cholesterol shortage and immune surveillance via ectopically overexpressing NPC1L1, a cholesterol transporter, but function as a two-pronged checkpoint, which not only directly suppresses TCR activation of CD8+T cells but also hijacks the intracellular cholesterol from CD8+T cells. In vivo, we showed that ezetimibe, an NPC1L1 inhibitor usually for hypercholesterolemia, efficiently prevented PAAD cells from depriving cholesterol of CD8+T cells, and improved the anti-tumor immunity of PAAD to synergize with PD-1 blockade, suggesting NPC1L1 as a promising target to rescue the anti-tumor activity in PAAD.
Collapse
Affiliation(s)
- Ruiyang Zi
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Kaicheng Shen
- Department of Oncology, Fuling Hospital of Chongqing University, Chongqing 408000, China
| | - Pengfei Zheng
- College of Pharmacy, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Xingxing Su
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yishi Yang
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Yanrong Chen
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Haisu Dai
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Chengyi Mao
- Department of Pathology, Daping Hospital, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Yongling Lu
- Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Liting Wang
- Biomedical Analysis Center, Third Military Medical University (Army Medical University), Chongqing 400042, China
| | - Hongbo Ma
- Department of Oncology, Fuling Hospital of Chongqing University, Chongqing 408000, China
| | - Wei Wang
- Department of Oncology, Fuling Hospital of Chongqing University, Chongqing 408000, China
| | - Qingyun Li
- Genecast Biotechnology Co., Wuxi 214104, China
| | - Wei Lu
- Galixir Technologies, Beijing 100086, China
| | | | | | - Hui Shi
- Department of Gastroenterology, The Second Medical Center & National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing 100853, China
| | - Xiaohong Liu
- National University of Singapore (Chongqing) Research Institute, Chongqing 401123, China
| | - Zhiyu Chen
- Department of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Houjie Liang
- Department of Oncology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038, China
| | - Juanjuan Ou
- Yu-Yue Pathology Scientific Research Center, Chongqing 401329, China
- Center for Translational Research in Cancer, Sichuan Cancer Hospital & Institute, University of Electronic Science and Technology of China, Chengdu 610042, China
| |
Collapse
|
49
|
Xue F, Liu YK, Chen XY, Chen SS, Yu XR, Li HW, Lu LG, Chen MH. Targeting cGAS-STING: modulating the immune landscape of hepatic diseases. Front Immunol 2025; 16:1498323. [PMID: 40098962 PMCID: PMC11911377 DOI: 10.3389/fimmu.2025.1498323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 02/11/2025] [Indexed: 03/19/2025] Open
Abstract
Liver diseases, including viral hepatitis, alcoholic liver disease (ALD), metabolic dysfunction-associated steatotic liver disease (MASLD), and hepatocellular carcinoma (HCC), represent a significant threat to global health due to their high mortality rates. The cGAS-STING pathway, a critical part of the innate immune system, plays a crucial role in detecting cytoplasmic DNA and initiating immune responses, including autoimmune inflammation and antitumor immunity. Genomic instability during cancer progression can trigger this pathway by releasing DNA into the cytoplasm. Emerging research indicates that cGAS-STING signaling is intricately involved in maintaining liver homeostasis and contributes to the pathogenesis of various liver diseases. This review outlines the cGAS-STING pathway, with a particular focus on its activation mechanism and its roles in several notable liver conditions. Specifically, we explore the complex interplay of cGAS-STING signaling in viral hepatitis, ALD, MASLD, and HCC, and discuss its potential as a therapeutic target. For example, in HCC, strategies targeting cGAS-STING include using nanomaterials to deliver STING agonists, combining radiofrequency ablation (RFA) with cGAS-STING activation, and leveraging radiotherapy to enhance pathway activation. Furthermore, modulating cGAS-STING activity may offer therapeutic avenues for viral hepatitis and chronic liver diseases like MASLD and ALD, either by boosting antiviral responses or mitigating inflammation. This review highlights the complex role of cGAS-STING signaling in these specific liver diseases and underscores the need for further research to fully realize its therapeutic potential.
Collapse
Affiliation(s)
- Feng Xue
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai, Guangdong, China
| | - Yong-Kang Liu
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Xiao-Ying Chen
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Shan-Shan Chen
- Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Xiang-Rong Yu
- Department of Radiology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Hua-Wen Li
- Department of Gynecology, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| | - Li-Gong Lu
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai, Guangdong, China
- Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, China
| | - Mu-He Chen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai Institute of Translational Medicine, Zhuhai, Guangdong, China
- Institute of Translational Medicine, Zhuhai Clinical Medical College of Jinan University (Zhuhai People's Hospital, The Affiliated Hospital of Beijing Institute of Technology), Zhuhai, Guangdong, China
| |
Collapse
|
50
|
Tang N, Cheng L, Hao J, Xu B, Pan X, Wei X, Wu H, Wang H. Development of CAR-T cell therapy for NF1/SWN-related nerve sheath tumor treatment. Acta Neuropathol Commun 2025; 13:45. [PMID: 40025578 PMCID: PMC11871713 DOI: 10.1186/s40478-025-01965-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Accepted: 02/18/2025] [Indexed: 03/04/2025] Open
Abstract
Neurofibromatosis type 1 (NF1) and schwannomatosis (SWN) are rare genetic disorders with distinct genetic etiologies. Both syndromes are predominantly characterized by the development of multiple benign nerve sheath tumors, which typically arise from cranial/peripheral nerves. The management of NF1/SWN-associated benign nerve sheath tumors pose a substantial clinical challenge. In recent years, immunotherapy has demonstrated significant efficacy in treating various tumors, but its application to NF1/SWN has not been explored. In this study, we first evaluated the feasibility of chimeric antigen receptor (CAR)-T cell therapy for the treatment of benign NF1/SWN-related nerve sheath tumor by analyzing the expression of multiple antigens in 85 tumor samples. Our findings revealed that epidermal growth factor receptor (EGFR/HER1) was highly expressed in most samples, indicating its potential as an ideal target for CAR-T cell therapy. Additionally, TGFβ1 and PDL1, key inhibitory regulators of T cell function within solid tumor microenvironment (TME), were universally overexpressed in these samples, highlighting the immunosuppressive nature of NF1/SWN tumors. To target HER1, we constructed CARs using three distinct scFvs (806, E2 and NEC). All three types of CAR-T cells demonstrated significant tumor-eliminating capability against NF1/SWN tumor cell lines, with 806 CAR-T cells showing the highest efficacy. Considering the immunosuppressive TME, we knocked out TGFBR2 and/or PDCD1 in 806 CAR-T cells using CRISPR/Cas9. Their anti-tumor efficacy was further evaluated using a 3D tumor spheroid model, and the gene-edited 806 CAR-T cells exhibited superior anti-tumor efficacy. In conclusion, we identified HER1 as a target for CAR-T cell therapy in NF1/SWN-related nerve sheath tumors, and developed anti-HER1 CAR-T cells that effectively eliminated NF1/SWN tumor cells, providing a promising therapeutic strategy for patients with these conditions.
Collapse
Affiliation(s)
- Na Tang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Lei Cheng
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Jiawei Hao
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beilei Xu
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xi Pan
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaofei Wei
- Beijing Cord Blood Bank, Beijing, 100176, China
| | - Hao Wu
- Department of Neurosurgery, Xuanwu Hospital, China International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
| | - Haoyi Wang
- State Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|