1
|
Fu C, Ye K, Qiu Z, Ma G, Chen S, Xiao H. In vitro digestion and fermentation characteristics of Agrocybe cylindracea polysaccharides and their interaction with the gut microbiota. Food Res Int 2025; 211:116424. [PMID: 40356114 DOI: 10.1016/j.foodres.2025.116424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 03/11/2025] [Accepted: 04/15/2025] [Indexed: 05/15/2025]
Abstract
Agrocybe cylindracea polysaccharides (ACP) are bioactive macromolecules with potential prebiotic properties, yet their digestive stability and microbiota-modulating mechanisms remain unclear. This study aimed to systematically evaluate the in vitro digestion and fermentation characteristics of ACP and its interaction with the gut microbiota. The average molecular weight of ACP was determined to be 2.39 × 105 Da, and its primary monosaccharides were glucose (53.93 ± 0.65 %) and galactose (27.36 ± 0.17 %), with a significant content of 1,3-Glc linkages. During colonic fermentation, ACP was selectively utilized by gut bacteria, leading to a significant pH reduction and increased production of short-chain fatty acids (SCFAs), particularly acetate, propionate, and butyrate (total SCFAs: 48.7 mM at 24 h). Furthermore, ACP modulated the composition of gut microbiota by enhancing the relative abundance of beneficial bacteria such as Paraprevotella (400-fold increase) and Bacteroides (3.6-fold increase), while suppressing opportunistic pathogens like Fusobacterium and Escherichia. The correlation analysis conducted between SCFAs and gut microbiota indicated the prebiotic potential of ACP, particularly in enriching SCFA-producing bacteria, including Clostridium_sensu_stricto, Gemmiger, Paraprevotella, and Bacteroides. These findings highlight ACP as a structurally stable polysaccharide capable of modulating gut microbiota composition and metabolic activity, supporting its application in functional foods targeting gut health.
Collapse
Affiliation(s)
- Chujing Fu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kai Ye
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Zhichang Qiu
- Department of Food Science, University of Massachusetts, Amherst 01003, United States
| | - Gaoxing Ma
- College of Food Science and Engineering, Nanjing University of Finance and Economics, Collaborative Innovation Center for Modern Grain Circulation and Safety, Nanjing 210023, China
| | - Shiguo Chen
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hang Xiao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Department of Food Science, University of Massachusetts, Amherst 01003, United States.
| |
Collapse
|
2
|
Xu L, Zakem E, Weissman JL. Improved maximum growth rate prediction from microbial genomes by integrating phylogenetic information. Nat Commun 2025; 16:4256. [PMID: 40335538 PMCID: PMC12059116 DOI: 10.1038/s41467-025-59558-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 04/23/2025] [Indexed: 05/09/2025] Open
Abstract
Microbial maximum growth rates vary widely across species and are key parameters for ecosystem modeling. Measuring these rates is challenging, but genomic features like codon usage statistics provide useful signals for predicting growth rates for as-yet uncultivated organisms. Here we present Phydon, a framework for genome-based maximum growth rate prediction that combines codon statistics and phylogenetic information to enhance the precision of maximum growth rate estimates, especially when a close relative with a known growth rate is available. We use Phydon to construct a large and taxonomically broad database of temperature-corrected growth rate estimates for 111,349 microbial species. The results reveal a bimodal distribution of maximum growth rates, resolving distinct groups of fast and slow growers. Our work provides insight into the predictive power of taxonomic information versus mechanistic, gene-based inference.
Collapse
Affiliation(s)
- Liang Xu
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA.
| | - Emily Zakem
- Department of Global Ecology, Carnegie Institution for Science, Stanford, CA, USA
| | - J L Weissman
- Institute for Advanced Computational Science, Stony Brook University, Stony Brook, NY, USA.
- Department of Ecology and Evolution, Stony Brook University, Stony Brook, NY, USA.
| |
Collapse
|
3
|
Leibovitzh H, Fliss Isakov N, Werner L, Thurm T, Hirsch A, Cohen NA, Maharshak N. A Mushroom Based Prebiotic Supplement Pilot Study Among Patients with Crohn's Disease. J Diet Suppl 2025:1-14. [PMID: 40313234 DOI: 10.1080/19390211.2025.2498127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Data on a mushroom based prebiotic supplementation in patients with Crohn's disease (CD) in western population is scarce. In this pilot trial, we aimed to assess the clinical efficacy and fecal microbial compositional and functional alterations associated with 'Mycodigest,' a commercial prebiotic supplement composed of three mushroom extracts. Patients with mild to moderate CD were recruited to a single center, randomized, double-blind, placebo-controlled pilot induction trial. Clinical efficacy using the Harvey-Bradshaw index and biochemical response using C-reactive protein and fecal calprotectin were assessed at week 8 post-intervention. Fecal samples were assessed by DNA shotgun metagenomic sequencing. A multivariable linear mixed effects model was used to assess alteration in fecal microbiome composition and function pre- and post-'Mycodigest' intervention. Clinical response was higher in the 'Mycodigest' intervention (N = 10) compared to the placebo (N = 6) group (80 vs. 16.7%, respectively, p = 0.035). There were no differences in terms of biochemical response within each group pre- and post-intervention. Post-'Mycodigest' intervention, 25 species were found to be differentially abundant compared to baseline, including increase in short chain fatty acid producing bacteria, such as Parabacteroides distasonis (Beta coefficient 0.92, 95% Confidence interval [CI] 0.36-1.47) and Faecalimonas umbilicata (Beta coefficient 0.57, 95% CI 0.23-0.90). Two microbial pathways related to the metabolism of isoprenoid compounds were increased post-'Mycodigest' intervention. Mushroom based prebiotic supplementation in subjects with CD resulted in clinical improvement which may be related to post-intervention favorable compositional and functional microbial alterations.
Collapse
Affiliation(s)
- Haim Leibovitzh
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Fliss Isakov
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Health, Faculty of Medicine, School of Public Health, Tel Aviv University, Tel Aviv, Israel
| | - Lael Werner
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Tamar Thurm
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ayal Hirsch
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nathaniel Aviv Cohen
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Nitsan Maharshak
- Department of Gastroenterology and Liver Diseases, IBD Center, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
4
|
Dai R, Zhang J, Liu F, Xu H, Qian JM, Cheskis S, Liu W, Wang B, Zhu H, Pronk LJU, Medema MH, de Jonge R, Pieterse CMJ, Levy A, Schlaeppi K, Bai Y. Crop root bacterial and viral genomes reveal unexplored species and microbiome patterns. Cell 2025; 188:2521-2539.e22. [PMID: 40081368 DOI: 10.1016/j.cell.2025.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 11/14/2024] [Accepted: 02/16/2025] [Indexed: 03/16/2025]
Abstract
Reference genomes of root microbes are essential for metagenomic analyses and mechanistic studies of crop root microbiomes. By combining high-throughput bacterial cultivation with metagenomic sequencing, we constructed comprehensive bacterial and viral genome collections from the roots of wheat, rice, maize, and Medicago. The crop root bacterial genome collection (CRBC) significantly expands the quantity and phylogenetic diversity of publicly available crop root bacterial genomes, with 6,699 bacterial genomes (68.9% from isolates) and 1,817 undefined species, expanding crop root bacterial diversity by 290.6%. The crop root viral genome collection (CRVC) contains 9,736 non-redundant viral genomes, with 1,572 previously unreported genus-level clusters in crop root microbiomes. From these, we identified conserved bacterial functions enriched in root microbiomes across soils and host species and uncovered previously unexplored bacteria-virus connections in crop root ecosystems. Together, the CRBC and CRVC serve as valuable resources for investigating microbial mechanisms and applications, supporting sustainable agriculture.
Collapse
Affiliation(s)
- Rui Dai
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua-NIBS Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jingying Zhang
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua-NIBS Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Fang Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Haoran Xu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Jing-Mei Qian
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Shani Cheskis
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Weidong Liu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Binglei Wang
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua-NIBS Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China
| | - Honghui Zhu
- State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, China
| | - Lotte J U Pronk
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University & Research, 6708 PB Wageningen, the Netherlands
| | - Ronnie de Jonge
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, 3584 CH Utrecht, the Netherlands; AI Technology for Life, Department of Information and Computing Sciences, Science for Life, Utrecht University, 3584 CC Utrecht, the Netherlands
| | - Corné M J Pieterse
- Plant-Microbe Interactions, Department of Biology, Science for Life, Utrecht University, 3584 CH Utrecht, the Netherlands
| | - Asaf Levy
- Department of Plant Pathology and Microbiology, Institute of Environmental Science, The Faculty of Agriculture, Food, and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Klaus Schlaeppi
- Department of Environmental Sciences, University of Basel, Basel 4056, Switzerland
| | - Yang Bai
- Peking-Tsinghua Center for Life Sciences, State Key Laboratory of Gene Function and Modulation Research, Peking-Tsinghua-NIBS Graduate Program, School of Life Sciences, Peking University, Beijing 100871, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
5
|
Doing G, Shanbhag P, Bell I, Cassidy S, Motakis E, Aiken E, Oh J, Adams MD. TEAL-Seq: targeted expression analysis sequencing. mSphere 2025:e0098424. [PMID: 40261045 DOI: 10.1128/msphere.00984-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/27/2025] [Indexed: 04/24/2025] Open
Abstract
Metagenome sequencing enables the genetic characterization of complex microbial communities. However, determining the activity of isolates within a community presents several challenges, including the wide range of organismal and gene expression abundances, the presence of host RNA, and low microbial biomass at many sites. To address these limitations, we developed "targeted expression analysis sequencing" or TEAL-seq, enabling sensitive species-specific analyses of gene expression using highly multiplexed custom probe pools. For proof of concept, we targeted about 1,700 core and accessory genes of Staphylococcus aureus and S. epidermidis, two key species of the skin microbiome. Two targeting methods were applied to laboratory cultures and human nasal swab specimens. Both methods showed a high degree of specificity, with >90% reads on target, even in the presence of complex microbial or human background DNA/RNA. Targeting using molecular inversion probes demonstrated excellent correlation in inferred expression levels with bulk RNA-seq. Furthermore, we show that a linear pre-amplification step to increase the number of nucleic acids for analysis yielded consistent and predictable results when applied to complex samples and enabled profiling of expression from as little as 1 ng of total RNA. TEAL-seq is much less expensive than bulk metatranscriptomic profiling, enables detection across a greater dynamic range, and uses a strategy that is readily configurable for determining the transcriptional status of organisms in any microbial community.IMPORTANCEThe gene expression patterns of bacteria in microbial communities reflect their activity and interactions with other community members. Measuring gene expression in complex microbiome contexts is challenging, however, due to the large dynamic range of microbial abundances and transcript levels. Here we describe an approach to assessing gene expression for specific species of interest using highly multiplexed pools of targeting probes. We show that an isothermal amplification step enables the profiling of low biomass samples. TEAL-seq should be widely adaptable to the study of microbial activity in natural environments.
Collapse
Affiliation(s)
- Georgia Doing
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Priya Shanbhag
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Isaac Bell
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Sara Cassidy
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Efthymios Motakis
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Elizabeth Aiken
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Julia Oh
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| | - Mark D Adams
- The Jackson Laboratory for Genomic Medicine Farmington, Farmington, Connecticut, USA
| |
Collapse
|
6
|
Abdeen SK, Mastandrea I, Stinchcombe N, Puschhof J, Elinav E. Diet-microbiome interactions in cancer. Cancer Cell 2025; 43:680-707. [PMID: 40185096 DOI: 10.1016/j.ccell.2025.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/07/2025]
Abstract
Diet impacts cancer in diverse manners. Multiple nutritional effects on tumors are mediated by dietary modulation of commensals, residing in mucosal surfaces and possibly also within the tumor microenvironment. Mechanistically understanding such diet-microbiome-host interactions may enable to develop precision nutritional interventions impacting cancer development, dissemination, and treatment responses. However, data-driven nutritional strategies integrating diet-microbiome interactions are infrequently incorporated into cancer prevention and treatment schemes. Herein, we discuss how dietary composition affects cancer-related processes through alterations exerted by specific nutrients and complex foods on the microbiome. We highlight how dietary timing, including time-restricted feeding, impacts microbial function in modulating cancer and its therapy. We review existing and experimental nutritional approaches aimed at enhancing microbiome-mediated cancer treatment responsiveness while minimizing adverse effects, and address challenges and prospects in integrating diet-microbiome interactions into precision oncology. Collectively, mechanistically understanding diet-microbiome-host interactomes may enable to achieve a personalized and microbiome-informed optimization of nutritional cancer interventions.
Collapse
Affiliation(s)
- Suhaib K Abdeen
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Nina Stinchcombe
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany
| | - Jens Puschhof
- Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Heidelberg, Germany; Junior Research Group Epithelium Microbiome Interactions, DKFZ, Heidelberg, Germany.
| | - Eran Elinav
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel; Division of Microbiome & Cancer, DKFZ, Heidelberg, Germany.
| |
Collapse
|
7
|
Tseng CH, Wong S, Yu J, Lee YY, Terauchi J, Lai HC, Luo JC, Kao CY, Yu SL, Liou JM, Wu DC, Hou MC, Wu MS, Wu JJ, Sung JJY, El-Omar EM, Wu CY. Development of live biotherapeutic products: a position statement of Asia-Pacific Microbiota Consortium. Gut 2025; 74:706-713. [PMID: 40011030 PMCID: PMC12013581 DOI: 10.1136/gutjnl-2024-334501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Accepted: 01/26/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVE Live biotherapeutic products (LBPs) are biological products composed of living micro-organisms, developed to prevent, treat, or cure diseases. Examples include cultured strains of Akkermansia muciniphila and Christensenella minuta, as well as treatments using purified Firmicutes spores for recurrent Clostridioides difficile infections. There is a need for guidelines over the increasing interest in developing LBPs. A panel of microbiome experts from Asia-Pacific countries articulates their perspectives on key considerations for LBP development. DESIGN Experts in microbiome research, microbiology, gastroenterology, internal medicine and biotherapeutics industry were invited to form a panel. During the 2023 Inauguration Conference of the Asia-Pacific Microbiota Consortium, an organised, iterative roundtable discussion was conducted to build expert consensus on critical issues surrounding the development of LBP. RESULTS The consensus statements were organised into three main aspects: (a) rationales of LBP development, (b) preclinical studies and (c) preparation for clinical studies. The panel strongly recommended to prioritise human-derived and food-sourced strains for development, with indications based on clinical need and efficacy shown in studies. Preclinical evaluation should involve thorough screening, genotyping and phenotyping, as well as comprehensive in vitro and animal studies to assess functional mechanisms and microbiological safety. Rigorous cell banking practices and genetic monitoring are essential to ensure product consistency and safety throughout the manufacturing process. Clinical trials, including postmarketing surveillance, must be carefully designed and closely monitored, with robust safety and risk management protocols in place. CONCLUSIONS The development of LBP should be approached with a strong emphasis on microbiological evaluation, clinical relevance, scientific mechanisms and safety at every stage. These measures are essential to ensure the safety, effectiveness and long-term success of the product.
Collapse
Affiliation(s)
| | - Sunny Wong
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Jun Yu
- Department of Medicine and Therapeutics, Institute of Digestive Disease, and The State Key Laboratory of Digestive Disease, The Chinese University of Hong Kong, Hong Kong, SAR, China
| | - Yeong Yeh Lee
- School of Medical Sciences, Universiti Sains Malaysia, Kota Bharu, Kelantan, Malaysia
| | - Jun Terauchi
- Japan Microbiome Consortium (JMBC), Osaka, Japan
| | - Hsin-Chih Lai
- Department of Medical Biotechnology and Laboratory Science, College of Medicine, Chang Gung University, Kwei-Shan, Taiwan
| | - Jiing-Chyuan Luo
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Cheng Yen Kao
- Institute of Microbiology and Immunology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Sung-Liang Yu
- Department of Clinical Laboratory Sciences and Medical Biotechnology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Jyh-Ming Liou
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Deng-Chyang Wu
- Division of Gastroenterology, Department of Internal Medicine, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan
| | - Ming-Chih Hou
- Division of Gastroenterology and Hepatology, Department of Medicine, Taipei Veterans General Hospital, Taipei, Taiwan
- Faculty of Medicine, National Yang Ming Chiao Tung University School of Medicine, Taipei, Taiwan
| | - Ming-Shiang Wu
- Department of Internal Medicine, National Taiwan University Hospital, Taipei, Taiwan
| | - Jiunn-Jong Wu
- Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan
| | - Joseph J Y Sung
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| | - Emad M El-Omar
- UNSW Microbiome Research Centre, University of New South Wales, Sydney, New South Wales, Australia
| | - Chun-Ying Wu
- Microbiota Research Center, Health Innovation Center, and Institute of Biomedical Informatics, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Division of Translational Research, Taipei Veterans General Hospital, Taipei, Taiwan
- College of Public Health, China Medical University, Taichung, Taiwan
| |
Collapse
|
8
|
He Q, Feng Y, Zhang Y, Lin M. Association between the dietary index for gut microbiota and female infertility: The mediation effects of lymphocyte count and red blood cell folate. J Reprod Immunol 2025; 169:104528. [PMID: 40203596 DOI: 10.1016/j.jri.2025.104528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/22/2025] [Accepted: 03/31/2025] [Indexed: 04/11/2025]
Abstract
Previous studies have revealed a the relationship between changes in the gut microbiota composition and female infertility. While the association between the dietary index for gut microbiota (DI-GM) and female infertility remains unstudied. The correlation was investigated with NHANES data from 2013 to 2018, with dietary recall data being used to calculate the DI-GM. Mediation analysis was performed to explore the role of lymphocyte count (LC) and red blood cell (RBC) folate in the DI-GM-induced risk of female infertility risk. Among the 1555 individuals included in our study, 311 were diagnosed with female infertility. According to the weighted binary logistic regression analyses, when all the covariates were adjusted, a negative association was observed between the DI-GM score and the risk of female infertility (OR: 0.80, 95 %CI: 0.74-0.88). After grouping participants by DI-GM score, compared with scores in the lowest quartile (Q1), the scores in Q3 and Q4 of DI-GM score were negatively associated with female infertility in crude and adjusted models, with ORs (95 %CI; P for trend) of 0.44 (0.27-0.70; <0.001); 0.43 (0.28-0.64; <0.001) and 0.43(0.26-0.71; <0.001); 0.41(0.27-0.60; <0.001). Additionally, restricted cubic splines logistic analysis uncovered a nonlinear association between the DI-GM score and the prevalence of female infertility. Mediation analysis indicated that LC and RBC folate mediated 4.64 % and 7.08 %, respectively of the association of the DI-GM scores with risk of female infertility. The nomogram exhibited good performance in this study (AUC 0.70, 95 % CI = 0.67-0.73). Our research revealed that the DI-GM score was negatively related to risk of female infertility. Mediation analyses demonstrated that LC and RBC folate levels significantly mediate the association between the DI-GM and the prevalence of female infertility.
Collapse
Affiliation(s)
- Qingwen He
- Department of Public Health, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Yangkun Feng
- Center of Reproductive Medicine, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Yun Zhang
- Center of Reproductive Medicine, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu 214002, China
| | - Mengyuan Lin
- Center of Reproductive Medicine, Affiliated Women's Hospital of Jiangnan University, Wuxi, Jiangsu 214002, China.
| |
Collapse
|
9
|
Best L, Dost T, Esser D, Flor S, Gamarra AM, Haase M, Kadibalban AS, Marinos G, Walker A, Zimmermann J, Simon R, Schmidt S, Taubenheim J, Künzel S, Häsler R, Franzenburg S, Groth M, Waschina S, Rosenstiel P, Sommer F, Witte OW, Schmitt-Kopplin P, Baines JF, Frahm C, Kaleta C. Metabolic modelling reveals the aging-associated decline of host-microbiome metabolic interactions in mice. Nat Microbiol 2025; 10:973-991. [PMID: 40140706 PMCID: PMC11964932 DOI: 10.1038/s41564-025-01959-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 02/14/2025] [Indexed: 03/28/2025]
Abstract
Aging is accompanied by considerable changes in the gut microbiome, yet the molecular mechanisms driving aging and the role of the microbiome remain unclear. Here we combined metagenomics, transcriptomics and metabolomics from aging mice with metabolic modelling to characterize host-microbiome interactions during aging. Reconstructing integrated metabolic models of host and 181 mouse gut microorganisms, we show a complex dependency of host metabolism on known and previously undescribed microbial interactions. We observed a pronounced reduction in metabolic activity within the aging microbiome accompanied by reduced beneficial interactions between bacterial species. These changes coincided with increased systemic inflammation and the downregulation of essential host pathways, particularly in nucleotide metabolism, predicted to rely on the microbiota and critical for preserving intestinal barrier function, cellular replication and homeostasis. Our results elucidate microbiome-host interactions that potentially influence host aging processes. These pathways could serve as future targets for the development of microbiome-based anti-aging therapies.
Collapse
Affiliation(s)
- Lena Best
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Thomas Dost
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Daniela Esser
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- Institute of Clinical Chemistry, University Hospital Schleswig-Holstein, Kiel/Lübeck, Germany
| | - Stefano Flor
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Andy Mercado Gamarra
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Madlen Haase
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - A Samer Kadibalban
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Georgios Marinos
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- CAU Innovation GmbH, Kiel University, Kiel, Germany
| | - Alesia Walker
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg, Germany
| | - Johannes Zimmermann
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- Evolutionary Ecology and Genetics, Zoological Institute, Kiel University, Kiel, Germany
- Antibiotic resistance group, Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Rowena Simon
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Silvio Schmidt
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Jan Taubenheim
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sven Künzel
- Max Planck Institute for Evolutionary Biology, Plön, Germany
| | - Robert Häsler
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
- Department of Dermatology and Allergy, University Hospital Schleswig-Holstein, Kiel, Germany
| | - Sören Franzenburg
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Marco Groth
- Core Facility Next-Generation Sequencing, Leibniz Institute on Aging-Fritz Lipmann Institute, Jena, Germany
| | - Silvio Waschina
- Nutriinformatics, Institute of Human Nutrition and Food Science, Kiel University, Kiel, Germany
| | - Philip Rosenstiel
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Felix Sommer
- Institute of Clinical Molecular Biology, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany
| | - Otto W Witte
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Philippe Schmitt-Kopplin
- Research Unit Analytical BioGeoChemistry, Helmholtz Munich, Neuherberg, Germany
- Institute of Analytical Food Chemistry, Technical University München, Freising, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany
- Section of Evolutionary Medicine, Institute of Experimental Medicine, Kiel University, Kiel, Germany
| | - Christiane Frahm
- Department of Neurology, Jena University Hospital, Jena, Germany
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Institute of Experimental Medicine, Kiel University and University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
10
|
Li S, Xie J, Xiang J, Yan R, Liu J, Fan Q, Lu L, Wu J, Liu J, Xue Y, Fu T, Li Z. Corneal Sensory Nerve Injury Disrupts Lacrimal Gland Function by Altering Circadian Rhythms in Mice. Invest Ophthalmol Vis Sci 2025; 66:40. [PMID: 40238116 PMCID: PMC12011127 DOI: 10.1167/iovs.66.4.40] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 03/17/2025] [Indexed: 04/18/2025] Open
Abstract
Purpose To investigate the impact of corneal sensory nerve injury on lacrimal gland function, focusing on mechanisms involving the superior salivatory nucleus (SSN), circadian rhythm disruption, immune microenvironment alterations, and the potential for neural regeneration. Methods A murine model of corneal sensory nerve injury was used to assess lacrimal gland function, with tear secretion measured using the phenol red thread test. Transcriptomic analysis of lacrimal glands examined circadian rhythm and immune-related gene expression. Basic fibroblast growth factor (bFGF) was used to promote corneal nerve regeneration, and its effects on tear secretion and nerve repair were evaluated. Results Corneal nerve injury resulted in a 35% reduction in tear secretion and significantly impaired SSN activity, as evidenced by a 31% decrease in c-FOS-positive neurons in choline acetyltransferase (ChAT)-expressing neurons. Transcriptomic analysis revealed significant downregulation of immune-related pathways, including Toll-like receptor (TLR), NOD-like receptor (NLR), and T-cell receptor signaling. Circadian rhythm gene expression exhibited phase shifts, with a 2.13-hour delay in peak expression and a substantial change in the number and types of rhythmic genes, which were enriched in different signaling pathways. The bFGF treatment restored tear secretion by 22% and promoted nerve regeneration, although nerve fiber density remained 74% lower than that of controls. Conclusions Corneal sensory nerve injury disrupts both central and peripheral circadian clock functions in the lacrimal gland, leading to reduced tear secretion and immune dysregulation. These findings highlight the novel role of circadian rhythms and neural-immune interactions in lacrimal gland dysfunction. Neural regeneration strategies, such as bFGF, offer therapeutic potential for dry eye syndrome, providing new directions for clinical intervention.
Collapse
Affiliation(s)
- Senmao Li
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Jingbin Xie
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Jiayan Xiang
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Ruyu Yan
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Jiangman Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Qiwei Fan
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Liyuan Lu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Jiaxin Wu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Jun Liu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Yunxia Xue
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Ting Fu
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| | - Zhijie Li
- Department of Ophthalmology, The First Affiliated Hospital of Jinan University, Guangzhou, China
- International Ocular Surface Research Center, Institute of Ophthalmology and Key Laboratory for Regenerative Medicine, Jinan University Medical School, Guangzhou, China
| |
Collapse
|
11
|
Szajewska H, Scott KP, de Meij T, Forslund-Startceva SK, Knight R, Koren O, Little P, Johnston BC, Łukasik J, Suez J, Tancredi DJ, Sanders ME. Antibiotic-perturbed microbiota and the role of probiotics. Nat Rev Gastroenterol Hepatol 2025; 22:155-172. [PMID: 39663462 DOI: 10.1038/s41575-024-01023-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/08/2024] [Indexed: 12/13/2024]
Abstract
The disruptive effect of antibiotics on the composition and function of the human microbiota is well established. However, the hypothesis that probiotics can help restore the antibiotic-disrupted microbiota has been advanced, with little consideration of the strength of evidence supporting it. Some clinical data suggest that probiotics can reduce antibiotic-related side effects, including Clostridioides difficile-associated diarrhoea, but there are no data that causally link these clinical effects to microbiota protection or recovery. Substantial challenges hinder attempts to address this hypothesis, including the absence of consensus on the composition of a 'normal' microbiota, non-standardized and evolving microbiome measurement methods, and substantial inter-individual microbiota variation. In this Review, we explore these complexities. First, we review the known benefits and risks of antibiotics, the effect of antibiotics on the human microbiota, the resilience and adaptability of the microbiota, and how microbiota restoration might be defined and measured. Subsequently, we explore the evidence for the efficacy of probiotics in preventing disruption or aiding microbiota recovery post-antibiotic treatment. Finally, we offer insights into the current state of research and suggest directions for future research.
Collapse
Affiliation(s)
- Hania Szajewska
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Karen P Scott
- Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Tim de Meij
- Department of Paediatric Gastroenterology, Emma Children's Hospital, Amsterdam UMC, Academic Medical Centre, Amsterdam, The Netherlands
| | - Sofia K Forslund-Startceva
- Experimental and Clinical Research Center, a joint cooperation of Max Delbruck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
- Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Max Delbruck Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Berlin, Germany
| | - Rob Knight
- Department of Pediatrics, University of California San Diego, San Diego, CA, USA
- Department of Computer Science & Engineering, University of California San Diego, San Diego, CA, USA
- Shu Chien - Gene Lay Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Halıcıoğlu Data Science Institute, University of California San Diego, San Diego, CA, USA
- Center for Microbiome Innovation, University of California San Diego, San Diego, CA, USA
| | - Omry Koren
- Azrieli Faculty of Medicine, Bar Ilan University, Safed, Israel
| | - Paul Little
- Primary Care Research Centre, University of Southampton, Southampton, UK
| | - Bradley C Johnston
- Department of Nutrition, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, USA
- Department of Epidemiology and Biostatistics, School of Public Health, Texas A&M University, College Station, TX, USA
| | - Jan Łukasik
- Department of Paediatrics, The Medical University of Warsaw, Warsaw, Poland
| | - Jotham Suez
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Daniel J Tancredi
- Department of Pediatrics, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Mary Ellen Sanders
- International Scientific Association for Probiotics and Prebiotics, Consulting Scientific Advisor, Centennial, CO, USA.
| |
Collapse
|
12
|
Ahmed MA, Campbell BJ. Genome-resolved adaptation strategies of Rhodobacterales to changing conditions in the Chesapeake and Delaware Bays. Appl Environ Microbiol 2025; 91:e0235724. [PMID: 39772877 PMCID: PMC11837527 DOI: 10.1128/aem.02357-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
The abundant and metabolically versatile aquatic bacterial order, Rhodobacterales, influences marine biogeochemical cycles. We assessed Rhodobacterales metagenome-assembled genome (MAG) abundance, estimated growth rates, and potential and expressed functions in the Chesapeake and Delaware Bays, two important US estuaries. Phylogenomics of draft and draft/closed Rhodobacterales genomes from this study and others placed 46 nearly complete MAGs from these bays into 11 genera, many were not well characterized. Their abundances varied between the bays and were influenced by temperature, salinity, and silicate and phosphate concentrations. Rhodobacterales genera possessed unique and shared genes for transporters, photoheterotrophy, complex carbon degradation, nitrogen, and sulfur metabolism reflecting their seasonal differences in abundance and activity. Planktomarina genomospecies were more ubiquitous than the more niche specialists, HIMB11, CPC320, LFER01, and MED-G52. Their estimated growth rates were correlated to various factors including phosphate and silicate concentrations, cell density, and light. Metatranscriptomic analysis of four abundant genomospecies commonly revealed that aerobic anoxygenic photoheterotrophy-associated transcripts were highly abundant at night. These Rhodobacterales also differentially expressed genes for CO oxidation and nutrient transport and use between different environmental conditions. Phosphate concentrations and light penetration in the Chesapeake Bay likely contributed to higher estimated growth rates of HIMB11 and LFER01, respectively, in summer where they maintained higher ribosome concentrations and prevented physiological gene expression constraints by downregulating transporter genes compared to the Delaware Bay. Our study highlights the spatial and temporal shifts in estuarine Rhodobacterales within and between these bays reflected through their abundance, unique metabolisms, estimated growth rates, and activity changes. IMPORTANCE In the complex web of global biogeochemical nutrient cycling, the Rhodobacterales emerge as key players, exerting a profound influence through their abundance and dynamic activity. While previous studies have primarily investigated these organisms within marine ecosystems, this study delves into their roles within estuarine environments using a combination of metagenomic and metatranscriptomic analyses. We uncovered a range of Rhodobacterales genera, from generalists to specialists, each exhibiting distinct abundance patterns and gene expression profiles. This diversity equips them with the capacity to thrive amidst the varying environmental conditions encountered within dynamic estuarine habitats. Crucially, our findings illuminate the adaptable nature of estuarine Rhodobacterales, revealing their various energy production pathways and diverse resource management, especially during phytoplankton or algal blooms. Whether adopting a free-living or particle-attached existence, these organisms demonstrate remarkable flexibility in their metabolic strategies, underscoring their pivotal role in driving ecosystem dynamics within estuarine ecosystems.
Collapse
Affiliation(s)
- Mir Alvee Ahmed
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| | - Barbara J. Campbell
- Department of Biological Sciences, Clemson University, Clemson, South Carolina, USA
| |
Collapse
|
13
|
Wu H, Forslund S, Wang Z, Zhao G. Human Gut Microbiome Researches Over the Last Decade: Current Challenges and Future Directions. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:1-7. [PMID: 40313604 PMCID: PMC12040780 DOI: 10.1007/s43657-023-00131-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Affiliation(s)
- Hao Wu
- Fudan Microbiome Center, Human Phenome Institute, and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 201203 China
- Department of Bariatric and Metabolic Surgery, Huashan Hospital, Fudan University, Shanghai, 201203 China
| | - Sofia Forslund
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, 13092 Germany
| | - Zeneng Wang
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, 9500 Euclid Ave, Cleveland, OH 44195 USA
| | - Guoping Zhao
- Fudan Microbiome Center, Human Phenome Institute, and State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, 201203 China
- Bio-Med Big Data Center, CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200032 China
| |
Collapse
|
14
|
Iqbal S, Begum F, Ullah I, Jalal N, Shaw P. Peeling off the layers from microbial dark matter (MDM): recent advances, future challenges, and opportunities. Crit Rev Microbiol 2025; 51:1-21. [PMID: 38385313 DOI: 10.1080/1040841x.2024.2319669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/13/2023] [Accepted: 02/10/2024] [Indexed: 02/23/2024]
Abstract
Microbes represent the most common organisms on Earth; however, less than 2% of microbial species in the environment can undergo cultivation for study under laboratory conditions, and the rest of the enigmatic, microbial world remains mysterious, constituting a kind of "microbial dark matter" (MDM). In the last two decades, remarkable progress has been made in culture-dependent and culture-independent techniques. More recently, studies of MDM have relied on culture-independent techniques to recover genetic material through either unicellular genomics or shotgun metagenomics to construct single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs), respectively, which provide information about evolution and metabolism. Despite the remarkable progress made in the past decades, the functional diversity of MDM still remains uncharacterized. This review comprehensively summarizes the recently developed culture-dependent and culture-independent techniques for characterizing MDM, discussing major challenges, opportunities, and potential applications. These activities contribute to expanding our knowledge of the microbial world and have implications for various fields including Biotechnology, Bioprospecting, Functional genomics, Medicine, Evolutionary and Planetary biology. Overall, this review aims to peel off the layers from MDM, shed light on recent advancements, identify future challenges, and illuminate the exciting opportunities that lie ahead in unraveling the secrets of this intriguing microbial realm.
Collapse
Affiliation(s)
- Sajid Iqbal
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Farida Begum
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, Pakistan
| | - Ihsan Ullah
- College of Chemical Engineering, Fuzhou University, Fuzhou, China
| | - Nasir Jalal
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
| | - Peter Shaw
- Oujiang Lab (Zhejiang Laboratory for Regenerative Medicine, Vision, and Brain Health), Wenzhou, China
| |
Collapse
|
15
|
Tang M, Zhang Z, Lin L, Niu J, Meng G, Wang W, Wang J, Wang Y. Comparative Analysis of Growth Dynamics and Relative Abundances of Gut Microbiota Influenced by Ketogenic Diet. PHENOMICS (CHAM, SWITZERLAND) 2025; 5:65-75. [PMID: 40313600 PMCID: PMC12040800 DOI: 10.1007/s43657-025-00228-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/02/2025] [Accepted: 01/15/2025] [Indexed: 05/03/2025]
Abstract
Although the compositional alterations of gut bacteria in ketogenic diet (KD) have been intensively investigated, the causal relationship between this extreme diet and the microbiota changes is not fully understood. Here, we studied the growth dynamics of intestinal bacteria in KD. We used the CoPTR method to calculate the peak-to-trough ratio (PTR) based on metagenomic sequencing data, serving as an indicator of bacterial growth rates. Notably, Akkermansia muciniphila, a bacterium strongly linked to the therapeutic benefits of KD, exhibited one of the highest growth rates, aligning with its markedly elevated abundance. Our findings also revealed discrepancies in the change patterns of CoPTR values and relative abundances for various bacteria across different diet groups, some of which might be attributed to the exceptionally high or low growth rates of specific species. For some of the species demonstrating obvious differences in growth rates between KD and standard diet, we conducted in vitro culture experiments, supplementing them with diverse nutritional sources to elucidate the underlying mechanisms. The integrative analysis of bacterial abundance and growth dynamics can help deepen our understanding of the gut microbiota changes caused by KD and the therapeutic effects of this special diet. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-025-00228-7.
Collapse
Affiliation(s)
- Mi Tang
- Department of Neurology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Zhidong Zhang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, 200438 China
| | - Liyuan Lin
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Junling Niu
- The Center for Microbes, Development, and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Guangxun Meng
- The Center for Microbes, Development, and Health, Key Laboratory of Immune Response and Immunotherapy, Shanghai Institute of Immunity and Infection, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Wei Wang
- State Key Laboratory of Genetic Engineering, Department of Microbiology, Fudan Microbiome Center, School of Life Sciences, Fudan University, Shanghai, 200438 China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Jiwen Wang
- Department of Neurology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yingyan Wang
- Department of Neurology, Shanghai Children’s Medical Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| |
Collapse
|
16
|
Beauchemin ET, Hunter C, Maurice CF. Dextran sodium sulfate-induced colitis alters the proportion and composition of replicating gut bacteria. mSphere 2025; 10:e0082524. [PMID: 39723822 PMCID: PMC11774032 DOI: 10.1128/msphere.00825-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 11/15/2024] [Indexed: 12/28/2024] Open
Abstract
The bacteria living in the human gut are essential for host health. Though the composition and metabolism of these bacteria are well described in both healthy hosts and those with intestinal disease, less is known about the metabolic activity of the gut bacteria prior to, and during, disease development-especially regarding gut bacterial replication. Here, we use a recently developed single-cell technique alongside existing metagenomics-based tools to identify, track, and quantify replicating gut bacteria both ex vivo and in situ in the dextran sodium sulfate (DSS) mouse model of colitis. We show that the proportion of replicating gut bacteria decreases when mice have the highest levels of inflammation and returns to baseline levels as mice begin recovering. In addition, we report significant alterations in the composition of the replicating gut bacterial community ex vivo during colitis development. On the taxa level, we observe significant changes in the abundance of taxa such as the mucus-degrading Akkermansia and the poorly described Erysipelatoclostridium genus. We further demonstrate that many taxa exhibit variable replication rates in situ during colitis, including Akkermansia muciniphila. Lastly, we show that colitis development is positively correlated with increases in the presence and abundance of bacteria in situ which are predicted to be fast replicators. This could suggest that taxa with the potential to replicate quickly may have an advantage during intestinal inflammation. These data support the need for additional research using activity-based approaches to further characterize the gut bacterial response to intestinal inflammation and its consequences for both the host and the gut microbial community.IMPORTANCEIt is well known that the bacteria living inside the gut are important for human health. Indeed, the type of bacteria that are present and their metabolism are different in healthy people versus those with intestinal disease. However, less is known about how these gut bacteria are replicating, especially as someone begins to develop intestinal disease. This is particularly important as it is thought that metabolically active gut bacteria may be more relevant to health. Here, we begin to address this gap using several complementary approaches to characterize the replicating gut bacteria in a mouse model of intestinal inflammation. We reveal which gut bacteria are replicating, and how quickly, as mice develop and recover from inflammation. This work can serve as a model for future research to identify how actively growing gut bacteria may be impacting health, or why these particular bacteria tend to thrive during intestinal inflammation.
Collapse
Affiliation(s)
- Eve T. Beauchemin
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
| | - Claire Hunter
- Department of Public Health and Primary Care, School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Corinne F. Maurice
- Department of Microbiology & Immunology, Faculty of Medicine and Health Sciences, McGill University, Montreal, Quebec, Canada
- McGill Centre for Microbiome Research, Montreal, Quebec, Canada
| |
Collapse
|
17
|
Olm MR, Spencer SP, Takeuchi T, Silva EL, Sonnenburg JL. Metagenomic immunoglobulin sequencing reveals IgA coating of microbial strains in the healthy human gut. Nat Microbiol 2025; 10:112-125. [PMID: 39747692 PMCID: PMC11849979 DOI: 10.1038/s41564-024-01887-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
IgA, the primary human antibody secreted from the gut mucosa, shapes the intestinal microbiota. Methodological limitations have hindered defining which microbial strains are targeted by IgA and the implications of binding. Here we develop a technique, metagenomic immunoglobulin sequencing (MIg-seq), that provides strain-level resolution of microbes coated by IgA and use it to determine IgA coating levels for 3,520 gut microbiome strains in healthy human faeces. We find that both health and disease-associated bacteria are targeted by IgA. Microbial genes are highly predictive of IgA binding levels; in particular, mucus degradation genes are correlated with high binding, and replication rates are significantly reduced for microbes bound by IgA. We demonstrate that IgA binding is more correlated with host immune status than traditional relative abundance measures of microbial community composition. This study introduces a powerful technique for assessing strain-level IgA binding in human stool, paving the way for deeper understanding of IgA-based host-microbe interactions.
Collapse
Affiliation(s)
- Matthew R Olm
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- University of Colorado, Boulder, CO, USA
| | - Sean P Spencer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, CA, USA
| | - Tadashi Takeuchi
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Evelyn Lemus Silva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin L Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
18
|
Knight CG, Nicolitch O, Griffiths RI, Goodall T, Jones B, Weser C, Langridge H, Davison J, Dellavalle A, Eisenhauer N, Gongalsky KB, Hector A, Jardine E, Kardol P, Maestre FT, Schädler M, Semchenko M, Stevens C, Tsiafouli MΑ, Vilhelmsson O, Wanek W, de Vries FT. Soil microbiomes show consistent and predictable responses to extreme events. Nature 2024; 636:690-696. [PMID: 39604724 PMCID: PMC11655354 DOI: 10.1038/s41586-024-08185-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 10/09/2024] [Indexed: 11/29/2024]
Abstract
Increasing extreme climatic events threaten the functioning of terrestrial ecosystems1,2. Because soil microbes govern key biogeochemical processes, understanding their response to climate extremes is crucial in predicting the consequences for ecosystem functioning3,4. Here we subjected soils from 30 grasslands across Europe to four contrasting extreme climatic events under common controlled conditions (drought, flood, freezing and heat), and compared the response of soil microbial communities and their functioning with those of undisturbed soils. Soil microbiomes exhibited a small, but highly consistent and phylogenetically conserved, response under the imposed extreme events. Heat treatment most strongly impacted soil microbiomes, enhancing dormancy and sporulation genes and decreasing metabolic versatility. Microbiome response to heat in particular could be predicted by local climatic conditions and soil properties, with soils that do not normally experience the extreme conditions being imposed being most vulnerable. Our results suggest that soil microbiomes from different climates share unified responses to extreme climatic events, but that predicting the extent of community change may require knowledge of the local microbiome. These findings advance our understanding of soil microbial responses to extreme events, and provide a first step for making general predictions about the impact of extreme climatic events on soil functioning.
Collapse
Affiliation(s)
| | - Océane Nicolitch
- Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Rob I Griffiths
- School of Natural Sciences, Bangor University, Bangor, UK.
- UK Centre for Ecology and Hydrology (UKCEH), Wallingford, UK.
| | - Tim Goodall
- UK Centre for Ecology and Hydrology (UKCEH), Wallingford, UK
| | - Briony Jones
- UK Centre for Ecology and Hydrology (UKCEH), Bangor, UK
| | - Carolin Weser
- Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Holly Langridge
- Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Ariane Dellavalle
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
- Faculty of Natural Sciences, Imperial College London, London, UK
| | - Nico Eisenhauer
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Institute of Biology, Leipzig University, Leipzig, Germany
| | - Konstantin B Gongalsky
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| | - Andrew Hector
- Department of Biology, University of Oxford, Oxford, UK
| | - Emma Jardine
- Department of Biology, University of Oxford, Oxford, UK
- Animal and Plant Sciences Department, University of Sheffield, Sheffield, UK
| | - Paul Kardol
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Fernando T Maestre
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Martin Schädler
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
- Department of Community Ecology, Helmholtz Centre for Environmental Research, Leipzig-Halle, Germany
| | - Marina Semchenko
- Faculty of Science and Engineering, University of Manchester, Manchester, UK
- Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia
| | - Carly Stevens
- Lancaster Environment Centre, Lancaster University, Lancaster, UK
| | - Maria Α Tsiafouli
- Department of Ecology, School of Biology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Oddur Vilhelmsson
- Natural Resource Sciences, University of Akureyri, Akureyri, Iceland
- BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Wolfgang Wanek
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Franciska T de Vries
- Faculty of Science and Engineering, University of Manchester, Manchester, UK.
- Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
19
|
Paudel S, Severin GB, Pirani A, Snitkin ES, Mobley HLT. Multiplexed PCR to measure in situ growth rates of uropathogenic E. coli during experimental urinary tract infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624689. [PMID: 39605434 PMCID: PMC11601645 DOI: 10.1101/2024.11.21.624689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Measuring bacterial growth rates in vitro is routine, however, determining growth rates during infection in host has been more challenging. Peak-to-trough ratio (PTR) is a technique for studying microbial growth dynamics, calculated using the ratio of replication origin (ori) copies to that of the terminus (ter), as originally defined by whole genome sequencing (WGS). WGS presents significant challenges in terms of expense and data analysis complexity due to the presence of host DNA in the samples. Here, we used multiplexed PCR with fluorescent probes to estimate bacterial growth rates based on the abundance of ori- and ter-adjacent loci, without the need for WGS. We establish the utility of this approach by comparing growth rates of the uropathogenic Escherichia coli (UPEC) strain HM86 by WGS (PTR) and qPCR to measure the equivalent ori:ter (O:TPCR ). We found that PTR and O:TPCR were highly correlated and that O:TPCR reliably predicted growth rates calculated by conventional methods. O:TPCR was then used to calculate the in situ E. coli growth rates in urine, bladder, and kidneys collected over the course of a week from a murine model of urinary tract infection (UTI). These analyses revealed that growth rate of UPEC strains gradually increased during the early stages of infection (0-6h), followed by a slow decrease in growth rates during later time points (1-7 days). This rapid and convenient method provides valuable insights into bacterial growth dynamics during infection and can be applied to other bacterial species in both animal models and clinical infections.
Collapse
Affiliation(s)
- Santosh Paudel
- Department of Microbiology and Immunology, and University of Michigan Medical School, Ann Arbor, USA
| | - Geoffrey B Severin
- Department of Microbiology and Immunology, and University of Michigan Medical School, Ann Arbor, USA
| | - Ali Pirani
- Department of Microbiology and Immunology, and University of Michigan Medical School, Ann Arbor, USA
| | - Evan S Snitkin
- Department of Microbiology and Immunology, and University of Michigan Medical School, Ann Arbor, USA
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, USA
| | - Harry L T Mobley
- Department of Microbiology and Immunology, and University of Michigan Medical School, Ann Arbor, USA
| |
Collapse
|
20
|
Wang X, Xie Z, Yuan J, Jin E, Lian W, Chang S, Sun G, Feng Z, Xu H, Du C, Yang X, Xia A, Qiu J, Zhang Q, Lin F, Liu J, Li L, Du X, Xiao Z, Yi Z, Luo Z, Ge C, Li R, Zheng M, Jiang Y, Wang T, Zhang J, Guo Q, Geng M. Sodium oligomannate disrupts the adherence of Rib high bacteria to gut epithelia to block SAA-triggered Th1 inflammation in 5XFAD transgenic mice. Cell Discov 2024; 10:115. [PMID: 39557828 PMCID: PMC11573985 DOI: 10.1038/s41421-024-00725-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 08/10/2024] [Indexed: 11/20/2024] Open
Abstract
Sodium oligomannate (GV-971), an oligosaccharide drug approved in China for treating mild-to-moderate Alzheimer's disease (AD), was previously found to recondition the gut microbiota and limit altered peripheral Th1 immunity in AD transgenic mice. As a follow-up study, we here made advances by pinpointing a Lactobacillus murinus (L.m.) strain that highly expressed a gene encoding a putative adhesin containing Rib repeats (Ribhigh-L.m.) particularly enriched in 5XFAD transgenic mice. Mechanistically, Ribhigh-L.m. adherence to the gut epithelia upregulated fecal metabolites, among which lactate ranked as the top candidate. Excess lactate stimulated the epithelial production of serum amyloid A (SAA) in the gut via the GPR81-NFκB axis, contributing to peripheral Th1 activation. Moreover, GV-971 disrupted the adherence of Ribhigh-L.m. to gut epithelia via direct binding to Rib, which corrected the excess lactate, reduced SAA, and alleviated Th1-skewed inflammation. Together, we gained further insights into the molecular link between gut bacteria and AD progression and the mechanism of GV-971 in treating AD.
Collapse
Affiliation(s)
- Xinyi Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jie Yuan
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Enjing Jin
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Wen Lian
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | | | - Guangqiang Sun
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Zhengnan Feng
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Chen Du
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Xinying Yang
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Aihua Xia
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Ji Qiu
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Qingli Zhang
- Institutional Technology Service Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Feifei Lin
- Institutional Technology Service Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Jia Liu
- Institutional Technology Service Centre, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Liang Li
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Xiaoguang Du
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Zhongping Xiao
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Zhou Yi
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Zhiyu Luo
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Changrong Ge
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Rui Li
- School of Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Mingyue Zheng
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yi Jiang
- Lingang Laboratory, Shanghai, China
| | - Tao Wang
- Department of Psychiatry and Affective Disorder Center, Ruijin Hospital Affiliated to Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Jing Zhang
- Shanghai Green Valley Pharmaceutical Co. Ltd, Shanghai, China
| | - Qihao Guo
- Department of Gerontology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Meiyu Geng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong, China.
| |
Collapse
|
21
|
Leibovitzh H, Sarbagili Shabat C, Hirsch A, Zittan E, Mentella MC, Petito V, Cohen NA, Ron Y, Fliss Isakov N, Pfeffer J, Yaakov M, Fanali C, Turchini L, Masucci L, Quaranta G, Kolonimos N, Godneva A, Weinberger A, Scaldaferri F, Maharshak N. Faecal Transplantation for Ulcerative Colitis From Diet Conditioned Donors Followed by Dietary Intervention Results in Favourable Gut Microbial Profile Compared to Faecal Transplantation Alone. J Crohns Colitis 2024; 18:1606-1614. [PMID: 38720628 DOI: 10.1093/ecco-jcc/jjae062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/17/2024] [Accepted: 05/08/2024] [Indexed: 10/17/2024]
Abstract
BACKGROUND AND AIMS Several faecal microbial transplantation [FMT] approaches for ulcerative colitis [UC] have been investigated with conflicting results. We have recently published the clinical outcomes from the CRAFT UC Trial using FMT with the UC Exclusion Diet [UCED], compared with FMT alone. Here we aimed to compare the two FMT strategies in terms of microbial profile and function. METHODS Subjects recruited to the CRAFT UC study with available pre- and post-intervention faecal samples were included. Donors received diet conditioning for 14 days based on the UCED principles. Group 1 received single FMT by colonoscopy [Day 1] and enemas [Days 2 and 14] without donors' dietary conditioning [N = 11]. Group 2 received FMT but with donors' dietary pre-conditioning and UCED for the patients [N = 10]. Faecal samples were assessed by DNA shotgun metagenomic sequencing. RESULTS Following diet conditioning, donors showed depletion in metabolic pathways involved in biosynthesis of sulphur-containing amino acids. Only Group 2 showed significant shifts towards the donors' microbial composition [ADONIS: R2 = 0.15, p = 0.008] and significantly increased Eubacterium_sp_AF228LB post-intervention [β-coefficient 2.66, 95% confidence interval 2.1-3.3, q < 0.05] which was inversely correlated with faecal calprotectin [rho = -0.52, p = 0.035]. Moreover, pathways involved in gut inflammation and barrier function including branched chain amino acids were enriched post-intervention in Group 2 and were significantly inversely correlated with faecal calprotectin. CONCLUSION FMT from diet conditioned donors followed by the UCED led to microbial alterations associated with favourable microbial profiles which correlated with decreased faecal calprotectin. Our findings support further exploration of the additive benefit of dietary intervention for both donors and patients undergoing FMT as a potential treatment of UC.
Collapse
Affiliation(s)
- Haim Leibovitzh
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Chen Sarbagili Shabat
- Pediatric Gastroenterology Unit, PIBD Research Center, Wolfson Medical Center, Holon, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ayal Hirsch
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Eran Zittan
- Gastroenterology Institute, IBD Unit, Haemek Medical Center, Afula, Israel
| | - Maria Chiara Mentella
- UOC di Nutrizione Clinica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Valentina Petito
- Cemad [CENTER for Digestive Disease], UOC Medicina Internae Gastroenterologia, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
| | - Nathaniel Aviv Cohen
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Yulia Ron
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Naomi Fliss Isakov
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Department of Health, School of Public Health, Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jorge Pfeffer
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
| | - Michal Yaakov
- Pediatric Gastroenterology Unit, PIBD Research Center, Wolfson Medical Center, Holon, Israel
| | - Caterina Fanali
- Cemad [CENTER for Digestive Disease], UOC Medicina Internae Gastroenterologia, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
| | - Laura Turchini
- Cemad [CENTER for Digestive Disease], UOC Medicina Internae Gastroenterologia, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
| | - Luca Masucci
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore - Fondazione Policlinico 'A. Gemelli' IRCSS, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Gianluca Quaranta
- Istituto di Microbiologia, Università Cattolica del Sacro Cuore - Fondazione Policlinico 'A. Gemelli' IRCSS, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Nitzan Kolonimos
- Gastroenterology Institute, IBD Unit, Haemek Medical Center, Afula, Israel
| | - Anastasia Godneva
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Adina Weinberger
- Department of Computer Science and Applied Mathematics, Weizmann Institute of Science, Rehovot, Israel
| | - Franco Scaldaferri
- Cemad [CENTER for Digestive Disease], UOC Medicina Internae Gastroenterologia, Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore- Fondazione Policlinico 'A. Gemelli' IRCCS, Rome, Italy
| | - Nitsan Maharshak
- Department of Gastroenterology and Hepatology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
22
|
Sarathy JP. Molecular and microbiological methods for the identification of nonreplicating Mycobacterium tuberculosis. PLoS Pathog 2024; 20:e1012595. [PMID: 39383167 PMCID: PMC11463790 DOI: 10.1371/journal.ppat.1012595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/11/2024] Open
Abstract
Chronic tuberculosis (TB) disease, which requires months-long chemotherapy with multiple antibiotics, is defined by diverse pathological manifestations and bacterial phenotypes. Targeting drug-tolerant bacteria in the host is critical to achieving a faster and durable cure for TB. In order to facilitate this field of research, we need to consider the physiology of persistent MTB during infection, which is often associated with the nonreplicating (NR) state. However, the traditional approach to quantifying bacterial burden through colony enumeration alone only informs on the abundance of live bacilli at the time of sampling, and provides an incomplete picture of the replicative state of the pathogen and the extent to which bacterial replication is balanced by ongoing cell death. Modern approaches to profiling bacterial replication status provide a better understanding of inter- and intra-population dynamics under different culture conditions and in distinct host microenvironments. While some methods use molecular markers of DNA replication and cell division, other approaches take advantage of advances in the field of microfluidics and live-cell microscopy. Considerable effort has been made over the past few decades to develop preclinical in vivo models of TB infection and some are recognized for more closely recapitulating clinical disease pathology than others. Unique lesion compartments presenting different environmental conditions produce significant heterogeneity between Mycobacterium tuberculosis populations within the host. While cellular lesion compartments appear to be more permissive of ongoing bacterial replication, caseous foci are associated with the maintenance of M. tuberculosis in a state of static equilibrium. The accurate identification of nonreplicators and where they hide within the host have significant implications for the way novel chemotherapeutic agents and regimens are designed for persistent infections.
Collapse
Affiliation(s)
- Jansy Passiflora Sarathy
- Center for Discovery and Innovation, Hackensack Meridian Health, Nutley, New Jersey, United States of America
- Hackensack Meridian School of Medicine, Department of Medical Sciences, Nutley, New Jersey, United States of America
| |
Collapse
|
23
|
Torrillo PA, Lieberman TD. Reversions mask the contribution of adaptive evolution in microbiomes. eLife 2024; 13:e93146. [PMID: 39240756 PMCID: PMC11379459 DOI: 10.7554/elife.93146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 07/30/2024] [Indexed: 09/08/2024] Open
Abstract
When examining bacterial genomes for evidence of past selection, the results depend heavily on the mutational distance between chosen genomes. Even within a bacterial species, genomes separated by larger mutational distances exhibit stronger evidence of purifying selection as assessed by dN/dS, the normalized ratio of nonsynonymous to synonymous mutations. Here, we show that the classical interpretation of this scale dependence, weak purifying selection, leads to problematic mutation accumulation when applied to available gut microbiome data. We propose an alternative, adaptive reversion model with opposite implications for dynamical intuition and applications of dN/dS. Reversions that occur and sweep within-host populations are nearly guaranteed in microbiomes due to large population sizes, short generation times, and variable environments. Using analytical and simulation approaches, we show that adaptive reversion can explain the dN/dS decay given only dozens of locally fluctuating selective pressures, which is realistic in the context of Bacteroides genomes. The success of the adaptive reversion model argues for interpreting low values of dN/dS obtained from long timescales with caution as they may emerge even when adaptive sweeps are frequent. Our work thus inverts the interpretation of an old observation in bacterial evolution, illustrates the potential of mutational reversions to shape genomic landscapes over time, and highlights the importance of studying bacterial genomic evolution on short timescales.
Collapse
Affiliation(s)
- Paul A Torrillo
- Institute for Medical Engineering and Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
| | - Tami D Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of TechnologyCambridgeUnited States
- Department of Civil and Environmental Engineering, Massachusetts Institute of TechnologyCambridgeUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Ragon Institute of MGH, MIT and HarvardCambridgeUnited States
| |
Collapse
|
24
|
Chen X, Yin X, Shi X, Yan W, Yang Y, Liu L, Zhang T. Melon: metagenomic long-read-based taxonomic identification and quantification using marker genes. Genome Biol 2024; 25:226. [PMID: 39160564 PMCID: PMC11331721 DOI: 10.1186/s13059-024-03363-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 07/30/2024] [Indexed: 08/21/2024] Open
Abstract
Long-read sequencing holds great potential for characterizing complex microbial communities, yet taxonomic profiling tools designed specifically for long reads remain lacking. We introduce Melon, a novel marker-based taxonomic profiler that capitalizes on the unique attributes of long reads. Melon employs a two-stage classification scheme to reduce computational time and is equipped with an expectation-maximization-based post-correction module to handle ambiguous reads. Melon achieves superior performance compared to existing tools in both mock and simulated samples. Using wastewater metagenomic samples, we demonstrate the applicability of Melon by showing it provides reliable estimates of overall genome copies, and species-level taxonomic profiles.
Collapse
Affiliation(s)
- Xi Chen
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xiaole Yin
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Xianghui Shi
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Weifu Yan
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yu Yang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Lei Liu
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Tong Zhang
- Environmental Microbiome Engineering and Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, China.
| |
Collapse
|
25
|
McCain JSP, Britten GL, Hackett SR, Follows MJ, Li GW. Microbial reaction rate estimation using proteins and proteomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.13.607198. [PMID: 39185172 PMCID: PMC11343155 DOI: 10.1101/2024.08.13.607198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Microbes transform their environments using diverse enzymatic reactions. However, it remains challenging to measure microbial reaction rates in natural environments. Despite advances in global quantification of enzyme abundances, the individual relationships between enzyme abundances and their reaction rates have not been systematically examined. Using matched proteomic and reaction rate data from microbial cultures, we show that enzyme abundance is often insufficient to predict its corresponding reaction rate. However, we discovered that global proteomic measurements can be used to make accurate rate predictions of individual reaction rates (median R 2 = 0.78). Accurate rate predictions required only a small number of proteins and they did not need explicit prior mechanistic knowledge or environmental context. These results indicate that proteomes are encoders of cellular reaction rates, potentially enabling proteomic measurements in situ to estimate the rates of microbially mediated reactions in natural systems.
Collapse
Affiliation(s)
- J. Scott P. McCain
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gregory L. Britten
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, MA, USA
| | | | - Michael J. Follows
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Gene-Wei Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Duru IC, Lecomte A, Shishido TK, Laine P, Suppula J, Paulin L, Scheperjans F, Pereira PAB, Auvinen P. Metagenome-assembled microbial genomes from Parkinson's disease fecal samples. Sci Rep 2024; 14:18906. [PMID: 39143178 PMCID: PMC11324757 DOI: 10.1038/s41598-024-69742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 08/08/2024] [Indexed: 08/16/2024] Open
Abstract
The human gut microbiome composition has been linked to Parkinson's disease (PD). However, knowledge of the gut microbiota on the genome level is still limited. Here we performed deep metagenomic sequencing and binning to build metagenome-assembled genomes (MAGs) from 136 human fecal microbiomes (68 PD samples and 68 control samples). We constructed 952 non-redundant high-quality MAGs and compared them between PD and control groups. Among these MAGs, there were 22 different genomes of Collinsella and Prevotella, indicating high variability of those genera in the human gut environment. Microdiversity analysis indicated that Ruminococcus bromii was statistically significantly (p < 0.002) more diverse on the strain level in the control samples compared to the PD samples. In addition, by clustering all genes and performing presence-absence analysis between groups, we identified several control-specific (p < 0.05) related genes, such as speF and Fe-S oxidoreductase. We also report detailed annotation of MAGs, including Clusters of Orthologous Genes (COG), Cas operon type, antiviral gene, prophage, and secondary metabolites biosynthetic gene clusters, which can be useful for providing a reference for future studies.
Collapse
Affiliation(s)
- Ilhan Cem Duru
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
| | - Alexandre Lecomte
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | | | - Pia Laine
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Joni Suppula
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Filip Scheperjans
- Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland
| | - Pedro A B Pereira
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland.
- Department of Neurology, Helsinki University Hospital and Clinicum, University of Helsinki, Helsinki, Finland.
| | - Petri Auvinen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
27
|
D'Afonseca V, Muñoz EV, Leal AL, Soto PMAS, Parra-Cid C. Implications of the microbiome and metabolic intermediaries produced by bacteria in breast cancer. Genet Mol Biol 2024; 47Suppl 1:e20230316. [PMID: 39037373 PMCID: PMC11262001 DOI: 10.1590/1678-4685-gmb-2023-0316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 05/10/2024] [Indexed: 07/23/2024] Open
Abstract
The breast microbiome presents a diverse microbial community that could affects health and disease states, in the context of breast cancer. Sequencing technologies have allowed describing the diversity and abundance of microbial communities among individuals. The complex tumoral microenvironment that includes the microbial composition could influence tumor growth. The imbalance of diversity and abundance inside the microbial community, known as dysbiosis plays a crucial role in this context. One the most prevalent bacterial genera described in breast invasive carcinoma are Bacillus, Pseudomonas, Brevibacillus, Mycobacterium, Thermoviga, Acinetobacter, Corynebacterium, Paenibacillus, Ensifer, and Bacteroides. Paenibacills genus shows a relation with patient survival. When the Paenibacills genus increases its abundance in patients with breast cancer, the survival probability decreases. Within this dysbiotic environment, various bacterial metabolites could play a pivotal role in the progression and modulation of breast cancer. Key bacterial metabolites, such as cadaverine, lipopolysaccharides (LPS), and trimethylamine N-oxide (TMAO), have been found to exhibit potential interactions within breast tissue microenvironments. Understanding the intricate relationships between dysbiosis and these metabolites in breast cancer may open new avenues for diagnostic biomarkers and therapeutic targets. Further research is essential to unravel the specific roles and mechanisms of these microbial metabolites in breast cancer progression.
Collapse
Affiliation(s)
- Vívian D'Afonseca
- Universidad Católica del Maule, Facultad de Medicina, Departamento de Ciencias Preclinicas, Laboratorio de Microbiología y Parasitología, Talca, Chile
| | - Elizabeth Valdés Muñoz
- Universidad Católica del Maule, Centro de Biotecnología de los Recursos Naturales (CENBIO), Programa de Doctorado en Biotecnología Traslacional, Talca, Chile
| | - Alan López Leal
- Universidad Católica del Maule, Centro de Biotecnología de los Recursos Naturales (CENBIO), Talca, Chile
| | | | - Cristóbal Parra-Cid
- Universitat de Barcelona, Facultad de Farmacia y Ciencias de la Alimentación, Programa de Máster en Biotecnología Molecular, Barcelona, España
| |
Collapse
|
28
|
Yan Z, Yeo J. Competing mechanisms in bacterial invasion of human colon mucus probed with agent-based modeling. Biophys J 2024; 123:1838-1845. [PMID: 38824388 PMCID: PMC11630638 DOI: 10.1016/j.bpj.2024.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024] Open
Abstract
The gastrointestinal tract is inhabited by a vast community of microorganisms, termed the gut microbiota. Large colonies can pose a health threat, but the gastrointestinal mucus system protects epithelial cells from microbiota invasion. The human colon features a bilayer of mucus lining. Due to imbalances in intestinal homeostasis, bacteria may successfully penetrate the inner mucus layer, which can lead to severe gut diseases. However, it is hard to tease apart the competing mechanisms that lead to this penetration. To probe the conditions that permit bacteria penetration into the inner mucus layer, we develop an agent-based model consisting of bacteria and an inner mucus layer subject to a constant flux of nutrient fields feeding the bacteria. We find that there are three important variables that determine bacterial invasion: the bacterial reproduction rate, the contact energy between bacteria and mucus, and the rate of bacteria degrading the mucus. Under healthy conditions, all bacteria are naturally eliminated by the constant removal of mucus. In diseased states, imbalances between the rates of bacterial degradation and mucus secretion lead to bacterial invasion at certain junctures. We conduct uncertainty quantification and sensitivity analysis to compare the relative impact between these parameters. The contact energy has the strongest influence on bacterial penetration, which, in combination with bacterial degradation rate and growth rate, greatly accelerates bacterial invasion of the human gut mucus lining. Our findings will serve as predictive indicators for the etiology of intestinal diseases and highlight important considerations when developing gut therapeutics.
Collapse
Affiliation(s)
- Zhongyu Yan
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York
| | - Jingjie Yeo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, New York.
| |
Collapse
|
29
|
Li K, Wang S, Qu W, Ahmed AA, Enneb W, Obeidat MD, Liu HY, Dessie T, Kim IH, Adam SY, Cai D. Natural products for Gut-X axis: pharmacology, toxicology and microbiology in mycotoxin-caused diseases. Front Pharmacol 2024; 15:1419844. [PMID: 38978980 PMCID: PMC11228701 DOI: 10.3389/fphar.2024.1419844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 05/29/2024] [Indexed: 07/10/2024] Open
Abstract
Introduction: The gastrointestinal tract is integral to defending against external contaminants, featuring a complex array of immunological, physical, chemical, and microbial barriers. Mycotoxins, which are toxic metabolites from fungi, are pervasive in both animal feed and human food, presenting substantial health risks. Methods: This review examines the pharmacological, toxicological, and microbiological impacts of natural products on mycotoxicosis, with a particular focus on the gut-x axis. The analysis synthesizes current understanding and explores the role of natural products rich in polysaccharides, polyphenols, flavonoids, and saponins. Results: The review highlights that mycotoxins can disrupt intestinal integrity, alter inflammatory responses, damage the mucus layer, and disturb the bacterial balance. The toxins' effects are extensive, potentially harming the immune system, liver, kidneys, and skin, and are associated with serious conditions such as cancer, hormonal changes, genetic mutations, bleeding, birth defects, and neurological issues. Natural products have shown potential anticancer, anti-tumor, antioxidant, immunomodulatory, and antitoxic properties. Discussion: The review underscores the emerging therapeutic strategy of targeting gut microbial modulation. It identifies knowledge gaps and suggests future research directions to deepen our understanding of natural products' role in gut-x axis health and to mitigate the global health impact of mycotoxin-induced diseases.
Collapse
Affiliation(s)
- Kaiqi Li
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Shiqi Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Wuyi Qu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Abdelkareem A. Ahmed
- Department of Veterinary Biomedical Sciences, Botswana University of Agriculture and Agriculture and Natural Resources, Gaborone, Botswana
| | - Wael Enneb
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Mohammad Diya’ Obeidat
- Department of Animal Production, Jordan University of Science and Technology, Irbid, Jordan
| | - Hao-Yu Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Tadelle Dessie
- International Livestock Research Institute, Addis Ababa, Ethiopia
| | - In Ho Kim
- Department of Animal Resource and Science, Dankook University, Cheonan, Republic of Korea
| | - Saber Y. Adam
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| | - Demin Cai
- College of Animal Science and Technology, Yangzhou University, Yangzhou, China
- Jiangsu Key Laboratory of Animal Genetic Breeding and Molecular Design, College of Animal Science and Technology, Yangzhou University, Yangzhou, China
| |
Collapse
|
30
|
Torrillo PA, Lieberman TD. Reversions mask the contribution of adaptive evolution in microbiomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.14.557751. [PMID: 37745437 PMCID: PMC10515931 DOI: 10.1101/2023.09.14.557751] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
When examining bacterial genomes for evidence of past selection, the results obtained depend heavily on the mutational distance between chosen genomes. Even within a bacterial species, genomes separated by larger mutational distances exhibit stronger evidence of purifying selection as assessed byd N / d S , the normalized ratio of nonsynonymous to synonymous mutations. Here, we show that the classical interpretation of this scale-dependence, weak purifying selection, leads to problematic mutation accumulation when applied to available gut microbiome data. We propose an alternative, adaptive reversion model with exactly opposite implications for dynamical intuition and applications ofd N / d S . Reversions that occur and sweep within-host populations are nearly guaranteed in microbiomes due to large population sizes, short generation times, and variable environments. Using analytical and simulation approaches, we show that adaptive reversion can explain thed N / d S decay given only dozens of locally-fluctuating selective pressures, which is realistic in the context of Bacteroides genomes. The success of the adaptive reversion model argues for interpreting low values ofd N / d S obtained from long-time scales with caution, as they may emerge even when adaptive sweeps are frequent. Our work thus inverts the interpretation of an old observation in bacterial evolution, illustrates the potential of mutational reversions to shape genomic landscapes over time, and highlights the importance of studying bacterial genomic evolution on short time scales.
Collapse
Affiliation(s)
- Paul A. Torrillo
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Tami D. Lieberman
- Institute for Medical Engineering and Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02139, USA
- Ragon Institute of MGH, MIT, and Harvard, Cambridge, MA 02139, USA
| |
Collapse
|
31
|
Dubois L, Valles-Colomer M, Ponsero A, Helve O, Andersson S, Kolho KL, Asnicar F, Korpela K, Salonen A, Segata N, de Vos WM. Paternal and induced gut microbiota seeding complement mother-to-infant transmission. Cell Host Microbe 2024; 32:1011-1024.e4. [PMID: 38870892 DOI: 10.1016/j.chom.2024.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/03/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024]
Abstract
Microbial colonization of the neonatal gut involves maternal seeding, which is partially disrupted in cesarean-born infants and after intrapartum antibiotic prophylaxis. However, other physically close individuals could complement such seeding. To assess the role of both parents and of induced seeding, we analyzed two longitudinal metagenomic datasets (health and early life microbiota [HELMi]: N = 74 infants, 398 samples, and SECFLOR: N = 7 infants, 35 samples) with cesarean-born infants who received maternal fecal microbiota transplantation (FMT). We found that the father constitutes a stable source of strains for the infant independently of the delivery mode, with the cumulative contribution becoming comparable to that of the mother after 1 year. Maternal FMT increased mother-infant strain sharing in cesarean-born infants, raising the average bacterial empirical growth rate while reducing pathogen colonization. Overall, our results indicate that maternal seeding is partly complemented by that of the father and support the potential of induced seeding to restore potential deviations in this process.
Collapse
Affiliation(s)
- Léonard Dubois
- Department CIBIO, University of Trento, 38123 Trento, Italy
| | - Mireia Valles-Colomer
- Department CIBIO, University of Trento, 38123 Trento, Italy; MELIS Department, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Alise Ponsero
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland
| | - Otto Helve
- Children's Hospital, Pediatric Research Center, University of Helsinki, and Helsinki University Hospital, 00014 Helsinki, Finland; Department of Health Security, Finnish Institute for Health and Welfare, 0014 Helsinki, Finland
| | - Sture Andersson
- Children's Hospital, Pediatric Research Center, University of Helsinki, and Helsinki University Hospital, 00014 Helsinki, Finland
| | - Kaija-Leena Kolho
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland
| | | | - Katri Korpela
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland
| | - Anne Salonen
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland
| | - Nicola Segata
- Department CIBIO, University of Trento, 38123 Trento, Italy; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, 20141 Milan, Italy.
| | - Willem M de Vos
- Human Microbiota Research Program, Faculty of Medicine, University of Helsinki, 0014 Helsinki, Finland; Laboratory of Microbiology, University of Wageningen, 6703 WE Wageningen, the Netherlands.
| |
Collapse
|
32
|
Zhu J, Sun C, Li M, Hu G, Zhao XM, Chen WH. Compared to histamine-2 receptor antagonist, proton pump inhibitor induces stronger oral-to-gut microbial transmission and gut microbiome alterations: a randomised controlled trial. Gut 2024; 73:1087-1097. [PMID: 38050061 PMCID: PMC11187400 DOI: 10.1136/gutjnl-2023-330168] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 11/06/2023] [Indexed: 12/06/2023]
Abstract
OBJECTIVE We aim to compare the effects of proton pump inhibitors (PPIs) and histamine-2 receptor antagonists (H2RAs) on the gut microbiota through longitudinal analysis. DESIGN Healthy volunteers were randomly assigned to receive either PPI (n=23) or H2RA (n=26) daily for seven consecutive days. We collected oral (saliva) and faecal samples before and after the intervention for metagenomic next-generation sequencing. We analysed intervention-induced alterations in the oral and gut microbiome including microbial abundance and growth rates, oral-to-gut transmissions, and compared differences between the PPI and H2RA groups. RESULTS Both interventions disrupted the gut microbiota, with PPIs demonstrating more pronounced effects. PPI usage led to a significantly higher extent of oral-to-gut transmission and promoted the growth of specific oral microbes in the gut. This led to a significant increase in both the number and total abundance of oral species present in the gut, including the identification of known disease-associated species like Fusobacterium nucleatum and Streptococcus anginosus. Overall, gut microbiome-based machine learning classifiers could accurately distinguish PPI from non-PPI users, achieving an area under the receiver operating characteristic curve (AUROC) of 0.924, in contrast to an AUROC of 0.509 for H2RA versus non-H2RA users. CONCLUSION Our study provides evidence that PPIs have a greater impact on the gut microbiome and oral-to-gut transmission than H2RAs, shedding light on the mechanism underlying the higher risk of certain diseases associated with prolonged PPI use. TRIAL REGISTRATION NUMBER ChiCTR2300072310.
Collapse
Affiliation(s)
- Jiaying Zhu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Chuqing Sun
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Min Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Guoru Hu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Xing-Ming Zhao
- Department of Neurology, Zhongshan Hospital, Fudan University, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
- State Key Laboratory of Medical Neurobiology, Institutes of Brain Science, Fudan University, Shanghai, China
- MOE Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, and MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular-imaging, Center for Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Henan, China
- Medical Artificial Intelligence Research Institute, Binzhou Medical University, Yantai, China
| |
Collapse
|
33
|
Fernandez-Cantos MV, Babu AF, Hanhineva K, Kuipers OP. Identification of metabolites produced by six gut commensal Bacteroidales strains using non-targeted LC-MS/MS metabolite profiling. Microbiol Res 2024; 283:127700. [PMID: 38518452 DOI: 10.1016/j.micres.2024.127700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 03/05/2024] [Accepted: 03/18/2024] [Indexed: 03/24/2024]
Abstract
As the most abundant gram-negative bacterial order in the gastrointestinal tract, Bacteroidales bacteria have been extensively studied for their contribution to various aspects of gut health. These bacteria are renowned for their involvement in immunomodulation and their remarkable capacity to break down complex carbohydrates and fibers. However, the human gut microbiota is known to produce many metabolites that ultimately mediate important microbe-host and microbe-microbe interactions. To gain further insights into the metabolites produced by the gut commensal strains of this order, we examined the metabolite composition of their bacterial cell cultures in the stationary phase. Based on their abundance in the gastrointestinal tract and their relevance in health and disease, we selected a total of six bacterial strains from the relevant genera Bacteroides, Phocaeicola, Parabacteroides, and Segatella. We grew these strains in modified Gifu anaerobic medium (mGAM) supplemented with mucin, which resembles the gut microbiota's natural environment. Liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based metabolite profiling revealed 179 annotated metabolites that had significantly differential abundances between the studied bacterial strains and the control growth medium. Most of them belonged to classes such as amino acids and derivatives, organic acids, and nucleot(s)ides. Of particular interest, Segatella copri DSM 18205 (previously referred to as Prevotella copri) produced substantial quantities of the bioactive metabolites phenylethylamine, tyramine, tryptamine, and ornithine. Parabacteroides merdae CL03T12C32 stood out due to its ability to produce cadaverine, histamine, acetylputrescine, and deoxycarnitine. In addition, we found that strains of the genera Bacteroides, Phocaeicola, and Parabacteroides accumulated considerable amounts of proline-hydroxyproline, a collagen-derived bioactive dipeptide. Collectively, these findings offer a more detailed comprehension of the metabolic potential of these Bacteroidales strains, contributing to a better understanding of their role within the human gut microbiome in health and disease.
Collapse
Affiliation(s)
- Maria Victoria Fernandez-Cantos
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands
| | - Ambrin Farizah Babu
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, Kuopio 70210, Finland
| | - Kati Hanhineva
- School of Medicine, Institute of Public Health and Clinical Nutrition, University of Eastern Finland, 70211 Kuopio, Finland; Afekta Technologies Ltd., Microkatu 1, Kuopio 70210, Finland; Department of Life Technologies, Food Sciences Unit, University of Turku, Turku 20014, Finland
| | - Oscar P Kuipers
- Department of Molecular Genetics, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Groningen, Netherlands.
| |
Collapse
|
34
|
Wei X, Tsai MS, Liang L, Jiang L, Hung CJ, Jelliffe-Pawlowski L, Rand L, Snyder M, Jiang C. Vaginal microbiomes show ethnic evolutionary dynamics and positive selection of Lactobacillus adhesins driven by a long-term niche-specific process. Cell Rep 2024; 43:114078. [PMID: 38598334 DOI: 10.1016/j.celrep.2024.114078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/01/2024] [Accepted: 03/22/2024] [Indexed: 04/12/2024] Open
Abstract
The vaginal microbiome's composition varies among ethnicities. However, the evolutionary landscape of the vaginal microbiome in the multi-ethnic context remains understudied. We perform a systematic evolutionary analysis of 351 vaginal microbiome samples from 35 multi-ethnic pregnant women, in addition to two validation cohorts, totaling 462 samples from 90 women. Microbiome alpha diversity and community state dynamics show strong ethnic signatures. Lactobacillaceae have a higher ratio of non-synonymous to synonymous polymorphism and lower nucleotide diversity than non-Lactobacillaceae in all ethnicities, with a large repertoire of positively selected genes, including the mucin-binding and cell wall anchor genes. These evolutionary dynamics are driven by the long-term evolutionary process unique to the human vaginal niche. Finally, we propose an evolutionary model reflecting the environmental niches of microbes. Our study reveals the extensive ethnic signatures in vaginal microbial ecology and evolution, highlighting the importance of studying the host-microbiome ecosystem from an evolutionary perspective.
Collapse
Affiliation(s)
- Xin Wei
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Ming-Shian Tsai
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liang Liang
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Liuyiqi Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China
| | - Chia-Jui Hung
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biomedical Informatics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Laura Jelliffe-Pawlowski
- Department of Epidemiology and Biostatistics, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Larry Rand
- Department of Obstetrics, Gynecology & Reproductive Sciences, School of Medicine, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Michael Snyder
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Chao Jiang
- MOE Key Laboratory of Biosystems Homeostasis & Protection, and Zhejiang Provincial Key Laboratory of Cancer Molecular Cell Biology, Life Sciences Institute, Zhejiang University, Hangzhou, Zhejiang 310030, China; State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China.
| |
Collapse
|
35
|
Sullivan GJ, Barquist L, Cain AK. A method to correct for local alterations in DNA copy number that bias functional genomics assays applied to antibiotic-treated bacteria. mSystems 2024; 9:e0066523. [PMID: 38470252 PMCID: PMC11019837 DOI: 10.1128/msystems.00665-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/13/2024] [Indexed: 03/13/2024] Open
Abstract
Functional genomics techniques, such as transposon insertion sequencing and RNA-sequencing, are key to studying relative differences in bacterial mutant fitness or gene expression under selective conditions. However, certain stress conditions, mutations, or antibiotics can directly interfere with DNA synthesis, resulting in systematic changes in local DNA copy numbers along the chromosome. This can lead to artifacts in sequencing-based functional genomics data when comparing antibiotic treatment to an unstressed control. Further, relative differences in gene-wise read counts may result from alterations in chromosomal replication dynamics, rather than selection or direct gene regulation. We term this artifact "chromosomal location bias" and implement a principled statistical approach to correct it by calculating local normalization factors along the chromosome. These normalization factors are then directly incorporated into statistical analyses using standard RNA-sequencing analysis methods without modifying the read counts themselves, preserving important information about the mean-variance relationship in the data. We illustrate the utility of this approach by generating and analyzing a ciprofloxacin-treated transposon insertion sequencing data set in Escherichia coli as a case study. We show that ciprofloxacin treatment generates chromosomal location bias in the resulting data, and we further demonstrate that failing to correct for this bias leads to false predictions of mutant drug sensitivity as measured by minimum inhibitory concentrations. We have developed an R package and user-friendly graphical Shiny application, ChromoCorrect, that detects and corrects for chromosomal bias in read count data, enabling the application of functional genomics technologies to the study of antibiotic stress.IMPORTANCEAltered gene dosage due to changes in DNA replication has been observed under a variety of stresses with a variety of experimental techniques. However, the implications of changes in gene dosage for sequencing-based functional genomics assays are rarely considered. We present a statistically principled approach to correcting for the effect of changes in gene dosage, enabling testing for differences in the fitness effects or regulation of individual genes in the presence of confounding differences in DNA copy number. We show that failing to correct for these effects can lead to incorrect predictions of resistance phenotype when applying functional genomics assays to investigate antibiotic stress, and we provide a user-friendly application to detect and correct for changes in DNA copy number.
Collapse
Affiliation(s)
- Geraldine J. Sullivan
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Lars Barquist
- Faculty of Medicine, University of Würzburg, Würzburg, Germany
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Center for Infection Research (HZI), Würzburg, Germany
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Amy K. Cain
- ARC Centre of Excellence in Synthetic Biology, School of Natural Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
36
|
Liu M, Zhang Y, Liu J, Xiang C, Lu Q, Lu H, Yang T, Wang X, Zhang Q, Fan C, Feng C, Zou D, Li H, Tang W. Revisiting the Role of Valeric Acid in Manipulating Ulcerative Colitis. Inflamm Bowel Dis 2024; 30:617-628. [PMID: 38206334 DOI: 10.1093/ibd/izad187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Indexed: 01/12/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is characterized by a complicated interaction between mucosal inflammation, epithelial dysfunction, abnormal activation of innate immune responses, and gut microbiota dysbiosis. Though valeric acid (VA), one type of short-chain fatty acids (SCFAs), has been identified in other inflammatory disorders and cancer development, the pathological role of VA and underlying mechanism of VA in UC remain under further investigation. METHODS Studies of human clinical specimens and experimental colitis models were conducted to confirm the pathological manifestations of the level of SCFAs from human fecal samples and murine colonic homogenates. Valeric acid-intervened murine colitis and a macrophage adoptive transfer were applied to identify the underlying mechanisms. RESULTS In line with gut microbiota dysfunction in UC, alteration of SCFAs from gut microbes were identified in human UC patients and dextran sodium sulfate -induced murine colitis models. Notably, VA was consistently negatively related to the disease severity of UC, the population of monocytes, and the level of interluekin-6. Moreover, VA treatment showed direct suppressive effects on lipopolysaccharides (LPS)-activated human peripheral blood mononuclear cells and murine macrophages in the dependent manner of upregulation of GPR41 and GPR43. Therapeutically, replenishment of VA or adoptive transfer with VA-modulated macrophages showed resistance to dextran sodium sulfate-driven murine colitis though modulating the production of inflammatory cytokine interleukin-6. CONCLUSIONS In summary, the research uncovered the pathological role of VA in modulating the activation of macrophages in UC and suggested that VA might be a potential effective agent for UC patients.
Collapse
Affiliation(s)
- Moting Liu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yao Zhang
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jia Liu
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Caigui Xiang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiukai Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Lu
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Yang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaohan Wang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingli Zhang
- Institutional Technology Service Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Chen Fan
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunlan Feng
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Duowu Zou
- Department of Gastroenterology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Heng Li
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Wei Tang
- Laboratory of Anti-inflammation and Immunopharmacology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
37
|
Ali A, Wu L, Ali SS. Gut microbiota and acute kidney injury: immunological crosstalk link. Int Urol Nephrol 2024; 56:1345-1358. [PMID: 37749436 DOI: 10.1007/s11255-023-03760-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/14/2023] [Indexed: 09/27/2023]
Abstract
The gut microbiota, often called the "forgotten organ," plays a crucial role in bidirectional communication with the host for optimal physiological function. This communication helps regulate the host's immunity and metabolism positively and negatively. Many factors influence microbiota homeostasis and subsequently lead to an immune system imbalance. The correlation between an unbalanced immune system and acute diseases such as acute kidney injury is not fully understood, and the role of gut microbiota in disease pathogenesis is still yet uncovered. This review summarizes our understanding of gut microbiota, focusing on the interactions between the host's immune system and the microbiome and their impact on acute kidney injury.
Collapse
Affiliation(s)
- Asmaa Ali
- Department of Laboratory Medicine, School of Medicine, Jiangsu University, Zhenjiang, 212013, China.
- Department of Pulmonary Medicine, Abbassia Chest Hospital, MOH, Cairo, Egypt.
- Department of Respiratory Allergy, A Al-Rashed Allergy Center, Ministry of Health, Kuwait, Kuwait.
| | - Liang Wu
- Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng, 210008, China.
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013, China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| |
Collapse
|
38
|
González A, Fullaondo A, Odriozola A. Impact of evolution on lifestyle in microbiome. ADVANCES IN GENETICS 2024; 111:149-198. [PMID: 38908899 DOI: 10.1016/bs.adgen.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
This chapter analyses the interaction between microbiota and humans from an evolutionary point of view. Long-term interactions between gut microbiota and host have been generated as a result of dietary choices through coevolutionary processes, where mutuality of advantage is essential. Likewise, the characteristics of the intestinal environment have made it possible to describe different intrahost evolutionary mechanisms affecting microbiota. For its part, the intestinal microbiota has been of great importance in the evolution of mammals, allowing the diversification of dietary niches, phenotypic plasticity and the selection of host phenotypes. Although the origin of the human intestinal microbial community is still not known with certainty, mother-offspring transmission plays a key role, and it seems that transmissibility between individuals in adulthood also has important implications. Finally, it should be noted that certain aspects inherent to modern lifestyle, including refined diets, antibiotic intake, exposure to air pollutants, microplastics, and stress, could negatively affect the diversity and composition of our gut microbiota. This chapter aims to combine current knowledge to provide a comprehensive view of the interaction between microbiota and humans throughout evolution.
Collapse
Affiliation(s)
- Adriana González
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain.
| | - Asier Fullaondo
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Adrián Odriozola
- Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain
| |
Collapse
|
39
|
Johnson-Martínez JP, Diener C, Levine AE, Wilmanski T, Suskind DL, Ralevski A, Hadlock J, Magis AT, Hood L, Rappaport N, Gibbons SM. Generally-healthy individuals with aberrant bowel movement frequencies show enrichment for microbially-derived blood metabolites associated with reduced kidney function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.04.531100. [PMID: 36945445 PMCID: PMC10028848 DOI: 10.1101/2023.03.04.531100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Bowel movement frequency (BMF) has been linked to changes in the composition of the human gut microbiome and to many chronic conditions, like metabolic disorders, neurodegenerative diseases, chronic kidney disease (CKD), and other intestinal pathologies like irritable bowel syndrome and inflammatory bowel disease. Lower BMF (constipation) can lead to compromised intestinal barrier integrity and a switch from saccharolytic to proteolytic fermentation within the microbiota, giving rise to microbially-derived toxins that may make their way into circulation and cause damage to organ systems. However, the connections between BMF, gut microbial metabolism, and the early-stage development and progression of chronic disease remain underexplored. Here, we examined the phenotypic impact of BMF variation in a cohort of generally-healthy, community dwelling adults with detailed clinical, lifestyle, and multi-omic data. We showed significant differences in microbially-derived blood plasma metabolites, gut bacterial genera, clinical chemistries, and lifestyle factors across BMF groups that have been linked to inflammation, cardiometabolic health, liver function, and CKD severity and progression. We found that the higher plasma levels of 3-indoxyl sulfate (3-IS), a microbially-derived metabolite associated with constipation, was in turn negatively associated with estimated glomerular filtration rate (eGFR), a measure of kidney function. Causal mediation analysis revealed that the effect of BMF on eGFR was significantly mediated by 3-IS. Finally, we identify self-reported diet, lifestyle, and psychological factors associated with BMF variation, which indicate several common-sense strategies for mitigating constipation and diarrhea. Overall, we suggest that aberrant BMF is an underappreciated risk factor in the development of chronic diseases, even in otherwise healthy populations.
Collapse
Affiliation(s)
- Johannes P. Johnson-Martínez
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | | | - Anne E. Levine
- Institute for Systems Biology, Seattle, WA 98109, USA
- Seattle Children’s Hospital, Seattle, WA 98105, USA
| | | | | | | | | | | | - Leroy Hood
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Phenome Health, Seattle, WA 98109
- Department of Immunology, University of Washington, Seattle, WA 98195, USA
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Noa Rappaport
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - Sean M. Gibbons
- Institute for Systems Biology, Seattle, WA 98109, USA
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- eScience Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
40
|
Liu DS, Wang XS, Zhong XH, Cao H, Zhang F. Sexual dimorphism in the gut microbiota and sexual dimorphism in chronic diseases: Association or causation? J Steroid Biochem Mol Biol 2024; 237:106451. [PMID: 38154505 DOI: 10.1016/j.jsbmb.2023.106451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/31/2023] [Accepted: 12/24/2023] [Indexed: 12/30/2023]
Abstract
Understanding the sexual dimorphism in diseases is essential to investigate the pathogenesis of some chronic diseases (e.g., autoimmune diseases, etc). The gut microbiota has been found to show a notable impact on the pathology of several chronic diseases in recent years. Intriguingly, the composition of the gut microbiota varies between sexes. Here, we reviewed 'facts and fiction' regarding sexual dimorphism in chronic diseases and sexual dimorphism in the gut microbiota respectively. The association and causative relationship between them aiming to elucidate the pathological mechanisms of sexual dimorphism in chronic diseases were further explored. The development of gender-special food products based on the sexual dimorphism in the gut microbiota were recommended, which would be beneficial to facilitating the personalized treatment.
Collapse
Affiliation(s)
- Dong-Song Liu
- Affiliated Hospital of Jiangnan University, Wuxi, China; Nantong University, Nantong, China
| | - Xue-Song Wang
- Affiliated Hospital of Jiangnan University, Wuxi, China; Nantong University, Nantong, China; Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Xiao-Hui Zhong
- Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Hong Cao
- Affiliated Hospital of Jiangnan University, Wuxi, China; Nantong University, Nantong, China; Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| | - Feng Zhang
- Affiliated Hospital of Jiangnan University, Wuxi, China; Wuxi School of Medicine, Jiangnan University, Wuxi, China.
| |
Collapse
|
41
|
Zhang M, Zhao B, Yan Y, Cheng Z, Li Z, Han L, Sun Y, Zheng Y, Xia Y. Comamonas-dominant microbial community in carbon poor aquitard sediments revealed by metagenomic-based growth rate investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169203. [PMID: 38086476 DOI: 10.1016/j.scitotenv.2023.169203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
The microbiological ecology of a low-nutrient shallow aquifer with high arsenic content in the Yinchuan Plain was investigated in this study. Amplicon sequencing data from five samples (depths: 1.5 m, 3.5 m, 11.2 m, 19.3 m, and 25.5 m) revealed diverse and adaptable microbial community. Among the microbial community, Comamonas was the most prominent, accounting for 10.52 % of the total. This genus displayed high growth rates, with a maximum growth rate of 12.06 d-1 and a corresponding doubling time of 1.38 days, as determined through an analysis of codon usage bias. Functional annotation of Metagenome-Assembled Genomes (MAGs) for samples at 1.5 m and 11.2 m depths revealed Comamonas' metabolic versatility, including various carbon pathways, assimilative sulfate reduction (ASR), and dissimilatory reduction to ammonium (DNRA). The TPM (Transcripts Per Kilobase of exon model per Million mapped reads) of MAGs at 11.2 m sample was 15.7 and 12.3. The presence of arsenic resistance genes in Comamonas aligns with sediment arsenic levels (65.8 mg/kg for 1.5 m depth, 32.8 mg/kg for 11.2 m depth). This study highlights the role of Comamonas as a 'generalist' bacteria in challenging oligotrophic sediments, emphasizing the significance of such organisms in community stability and ecological functions. ENVIRONMENTAL IMPLICATION: Low-biomass limits the microbial activity and biogeochemical study in oligotrophic environments, which is the typical condition for underground aquatic ecosystems. Facilitated by growth rate estimation, our research focuses on active functional microorganisms and their biogeochemical metabolic in oligotrophic aquifer sediments, revealing their impact on the environment and response to arsenic threats. Findings illuminate the metabolic advantage of a 'generalist life-style' in carbon-scarce environments and contribute to a broader understanding of bacterial ecosystems and environmental impacts in oligotrophic aquifer sediments worldwide.
Collapse
Affiliation(s)
- Miao Zhang
- School of Environment, Harbin Institute of Technology, Harbin 150001, China; School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bixi Zhao
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuxi Yan
- School of Environment, Harbin Institute of Technology, Harbin 150001, China; School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zhanwen Cheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Zengyi Li
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Long Han
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yuqin Sun
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zheng
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Yu Xia
- School of Environmental Science and Engineering, College of Engineering, Southern University of Science and Technology, Shenzhen 518055, China; State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China.
| |
Collapse
|
42
|
Cheng J, Hu H, Ju Y, Liu J, Wang M, Liu B, Zhang Y. Gut microbiota-derived short-chain fatty acids and depression: deep insight into biological mechanisms and potential applications. Gen Psychiatr 2024; 37:e101374. [PMID: 38390241 PMCID: PMC10882305 DOI: 10.1136/gpsych-2023-101374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/25/2023] [Indexed: 02/24/2024] Open
Abstract
The gut microbiota is a complex and dynamic ecosystem known as the 'second brain'. Composing the microbiota-gut-brain axis, the gut microbiota and its metabolites regulate the central nervous system through neural, endocrine and immune pathways to ensure the normal functioning of the organism, tuning individuals' health and disease status. Short-chain fatty acids (SCFAs), the main bioactive metabolites of the gut microbiota, are involved in several neuropsychiatric disorders, including depression. SCFAs have essential effects on each component of the microbiota-gut-brain axis in depression. In the present review, the roles of major SCFAs (acetate, propionate and butyrate) in the pathophysiology of depression are summarised with respect to chronic cerebral hypoperfusion, neuroinflammation, host epigenome and neuroendocrine alterations. Concluding remarks on the biological mechanisms related to gut microbiota will hopefully address the clinical value of microbiota-related treatments for depression.
Collapse
Affiliation(s)
- Junzhe Cheng
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hongkun Hu
- Clinical Medicine Eight-Year Program, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yumeng Ju
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Jin Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Mi Wang
- Department of Mental Health Center, Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Bangshan Liu
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| | - Yan Zhang
- Department of Psychiatry, National Clinical Research Center for Mental Disorders, Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Mental Health Institute of Central South University, China National Technology Institute on Mental Disorders, Hunan Key Laboratory of Psychiatry and Mental Health, Hunan Medical Center for Mental Health, Changsha, Hunan, China
| |
Collapse
|
43
|
Shkoporov AN, O'Regan O, Smith L, Khokhlova EV, Draper LA, Ross RP, Hill C. Dynamic nature of viral and bacterial communities in human faeces. iScience 2024; 27:108778. [PMID: 38292428 PMCID: PMC10825054 DOI: 10.1016/j.isci.2023.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 11/20/2023] [Accepted: 12/22/2023] [Indexed: 02/01/2024] Open
Abstract
Bacteriophages are a major component of the gut microbiome and are believed to play a role in establishment and stabilization of microbial communities by influencing taxonomic and functional diversity. We show that the activity of lytic and temperate phages can also significantly affect bacterial community structure in a model of extended colonic retention. Intact fresh human feces were incubated anaerobically at 37°C without homogenization and subjected to metagenomic sequencing. We observed subject-specific blooms and collapses of selected bacteriophage and bacterial populations within some individuals. Most notable were striking collapses of Prevotella populations accompanied by increases in specific bacteriophages. In a number of cases, we even observed a shift from one bacterial "enterotype" to another within 48 h. These results confirm that intact feces represents a highly dynamic ecological system and suggests that colonic retention time could have a profound effect on microbiome composition, including a significant impact by bacteriophages.
Collapse
Affiliation(s)
- Andrey N. Shkoporov
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
- Department of Medicine, University College Cork, Cork, Ireland
| | - Orla O'Regan
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Linda Smith
- APC Microbiome Ireland, University College Cork, Cork, Ireland
| | | | | | - R. Paul Ross
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| | - Colin Hill
- APC Microbiome Ireland, University College Cork, Cork, Ireland
- School of Microbiology, University College Cork, Cork, Ireland
| |
Collapse
|
44
|
Abstract
Biogeography is the study of species distribution and diversity within an ecosystem and is at the core of how we understand ecosystem dynamics and interactions at the macroscale. In gut microbial communities, a historical reliance on bulk sequencing to probe community composition and dynamics has overlooked critical processes whereby microscale interactions affect systems-level microbiota function and the relationship with the host. In recent years, higher-resolution sequencing and novel single-cell level data have uncovered an incredible heterogeneity in microbial composition and have enabled a more nuanced spatial understanding of the gut microbiota. In an era when spatial transcriptomics and single-cell imaging and analysis have become key tools in mammalian cell and tissue biology, many of these techniques are now being applied to the microbiota. This fresh approach to intestinal biogeography has given important insights that span temporal and spatial scales, from the discovery of mucus encapsulation of the microbiota to the quantification of bacterial species throughout the gut. In this Review, we highlight emerging knowledge surrounding gut biogeography enabled by the observation and quantification of heterogeneity across multiple scales.
Collapse
Affiliation(s)
- Giselle McCallum
- Department of Biology, Concordia University, Montreal, Quebec, Canada
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Carolina Tropini
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, Canada.
- School of Biomedical Engineering, University of British Columbia, Vancouver, British Columbia, Canada.
- Humans and the Microbiome Program, Canadian Institute for Advanced Research (CIFAR), Toronto, Ontario, Canada.
| |
Collapse
|
45
|
Tripathi S, Voogdt CGP, Bassler SO, Anderson M, Huang PH, Sakenova N, Capraz T, Jain S, Koumoutsi A, Bravo AM, Trotter V, Zimmerman M, Sonnenburg JL, Buie C, Typas A, Deutschbauer AM, Shiver AL, Huang KC. Randomly barcoded transposon mutant libraries for gut commensals I: Strategies for efficient library construction. Cell Rep 2024; 43:113517. [PMID: 38142397 DOI: 10.1016/j.celrep.2023.113517] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 12/26/2023] Open
Abstract
Randomly barcoded transposon mutant libraries are powerful tools for studying gene function and organization, assessing gene essentiality and pathways, discovering potential therapeutic targets, and understanding the physiology of gut bacteria and their interactions with the host. However, construction of high-quality libraries with uniform representation can be challenging. In this review, we survey various strategies for barcoded library construction, including transposition systems, methods of transposon delivery, optimal library size, and transconjugant selection schemes. We discuss the advantages and limitations of each approach, as well as factors to consider when selecting a strategy. In addition, we highlight experimental and computational advances in arraying condensed libraries from mutant pools. We focus on examples of successful library construction in gut bacteria and their application to gene function studies and drug discovery. Given the need for understanding gene function and organization in gut bacteria, we provide a comprehensive guide for researchers to construct randomly barcoded transposon mutant libraries.
Collapse
Affiliation(s)
- Surya Tripathi
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carlos Geert Pieter Voogdt
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Stefan Oliver Bassler
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Faculty of Biosciences, Heidelberg University, Grabengasse 1, 69117 Heidelberg, Germany
| | - Mary Anderson
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Po-Hsun Huang
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nazgul Sakenova
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Tümay Capraz
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Sunit Jain
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA
| | - Alexandra Koumoutsi
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Afonso Martins Bravo
- Department of Fundamental Microbiology, University of Lausanne, 1015 Lausanne, Switzerland
| | - Valentine Trotter
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Michael Zimmerman
- Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Justin L Sonnenburg
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Cullen Buie
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Athanasios Typas
- Genome Biology Unit, EMBL Heidelberg, Meyerhofstraße 1, 69117 Heidelberg, Germany; Structural and Computational Biology Unit, EMBL Meyerhofstraße 1, 69117 Heidelberg, Germany.
| | - Adam M Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | - Anthony L Shiver
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| | - Kerwyn Casey Huang
- Chan Zuckerberg Biohub, San Francisco, CA 94158, USA; Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Bioengineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
46
|
Moraïs S, Mazor M, Tovar-Herrera O, Zehavi T, Zorea A, Ifrach M, Bogumil D, Brandis A, Walter J, Elia N, Gur E, Mizrahi I. Plasmid-encoded toxin defence mediates mutualistic microbial interactions. Nat Microbiol 2024; 9:108-119. [PMID: 38151647 PMCID: PMC10769881 DOI: 10.1038/s41564-023-01521-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/11/2023] [Indexed: 12/29/2023]
Abstract
Gut environments harbour dense microbial ecosystems in which plasmids are widely distributed. Plasmids facilitate the exchange of genetic material among microorganisms while enabling the transfer of a diverse array of accessory functions. However, their precise impact on microbial community composition and function remains largely unexplored. Here we identify a prevalent bacterial toxin and a plasmid-encoded resistance mechanism that mediates the interaction between Lactobacilli and Enterococci. This plasmid is widespread across ecosystems, including the rumen and human gut microbiota. Biochemical characterization of the plasmid revealed a defence mechanism against reuterin, a toxin produced by various gut microbes, such as Limosilactobacillus reuteri. Using a targeted metabolomic approach, we find reuterin to be prevalent across rumen ecosystems with impacts on microbial community structure. Enterococcus strains carrying the protective plasmid were isolated and their interactions with L. reuteri, the toxin producer, were studied in vitro. Interestingly, we found that by conferring resistance against reuterin, the plasmid mediates metabolic exchange between the defending and the attacking microbial species, resulting in a beneficial relationship or mutualism. Hence, we reveal here an ecological role for a plasmid-coded defence system in mediating a beneficial interaction.
Collapse
Affiliation(s)
- Sarah Moraïs
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Michael Mazor
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Omar Tovar-Herrera
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Tamar Zehavi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Alvah Zorea
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Morya Ifrach
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - David Bogumil
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Alexander Brandis
- Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | - Jens Walter
- Department of Medicine, University College Cork, Cork, Ireland
| | - Natalie Elia
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Eyal Gur
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Itzhak Mizrahi
- National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- Department of Life Sciences, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
- The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben-Gurion University of the Negev, Be'er Sheva, Israel.
| |
Collapse
|
47
|
Ontai-Brenning A, Hamchand R, Crawford JM, Goodman AL. Gut microbes modulate (p)ppGpp during a time-restricted feeding regimen. mBio 2023; 14:e0190723. [PMID: 37971266 PMCID: PMC10746209 DOI: 10.1128/mbio.01907-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 10/09/2023] [Indexed: 11/19/2023] Open
Abstract
IMPORTANCE Mammals do not eat continuously, instead concentrating their feeding to a restricted portion of the day. This behavior presents the mammalian gut microbiota with a fluctuating environment with consequences for host-microbiome interaction, infection risk, immune response, drug metabolism, and other aspects of health. We demonstrate that in mice, gut microbes elevate levels of an intracellular signaling molecule, (p)ppGpp, during the fasting phase of a time-restricted feeding regimen. Disabling this response in a representative human gut commensal species significantly reduces colonization during this host-fasting phase. This response appears to be general across species and conserved across mammalian gut communities, highlighting a pathway that allows healthy gut microbiomes to maintain stability in an unstable environment.
Collapse
Affiliation(s)
- Amy Ontai-Brenning
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Randy Hamchand
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Jason M. Crawford
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
- Department of Chemistry, Yale University, New Haven, Connecticut, USA
- Institute of Biomolecular Design & Discovery, Yale University, West Haven, Connecticut, USA
| | - Andrew L. Goodman
- Microbial Sciences Institute, Yale University, West Haven, Connecticut, USA
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
48
|
Baig Y, Ma HR, Xu H, You L. Autoencoder neural networks enable low dimensional structure analyses of microbial growth dynamics. Nat Commun 2023; 14:7937. [PMID: 38049401 PMCID: PMC10696002 DOI: 10.1038/s41467-023-43455-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 11/09/2023] [Indexed: 12/06/2023] Open
Abstract
The ability to effectively represent microbiome dynamics is a crucial challenge in their quantitative analysis and engineering. By using autoencoder neural networks, we show that microbial growth dynamics can be compressed into low-dimensional representations and reconstructed with high fidelity. These low-dimensional embeddings are just as effective, if not better, than raw data for tasks such as identifying bacterial strains, predicting traits like antibiotic resistance, and predicting community dynamics. Additionally, we demonstrate that essential dynamical information of these systems can be captured using far fewer variables than traditional mechanistic models. Our work suggests that machine learning can enable the creation of concise representations of high-dimensional microbiome dynamics to facilitate data analysis and gain new biological insights.
Collapse
Affiliation(s)
- Yasa Baig
- Department of Physics, Duke University, Durham, NC, USA
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Helena R Ma
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA
| | - Helen Xu
- Department of Computer Science, Duke University, Durham, NC, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
- Center for Quantitative Biodesign, Duke University, Durham, NC, USA.
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine, Durham, NC, USA.
| |
Collapse
|
49
|
Olm MR, Spencer SP, Silva EL, Sonnenburg JL. Metagenomic Immunoglobulin Sequencing (MIG-Seq) Exposes Patterns of IgA Antibody Binding in the Healthy Human Gut Microbiome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.21.568153. [PMID: 38045399 PMCID: PMC10690254 DOI: 10.1101/2023.11.21.568153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
IgA, the most highly produced human antibody, is continually secreted into the gut to shape the intestinal microbiota. Methodological limitations have critically hindered defining which microbial strains are targeted by IgA and why. Here, we develop a new technique, Metagenomic Immunoglobulin Sequencing (MIG-Seq), and use it to determine IgA coating levels for thousands of gut microbiome strains in healthy humans. We find that microbes associated with both health and disease have higher levels of coating, and that microbial genes are highly predictive of IgA binding levels, with mucus degradation genes especially correlated with high binding. We find a significant reduction in replication rates among microbes bound by IgA, and demonstrate that IgA binding is more correlated with host immune status than traditional microbial abundance measures. This study introduces a powerful technique for assessing strain-level IgA binding in human stool, paving the way for deeper understanding of IgA-based host microbe interactions.
Collapse
Affiliation(s)
- Matthew R. Olm
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sean P. Spencer
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Division of Gastroenterology and Hepatology, Stanford School of Medicine, Stanford, CA, 94305, USA
| | - Evelyn Lemus Silva
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Justin L. Sonnenburg
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Center for Human Microbiome Studies, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
50
|
Feng Y, Xu D. Short-chain fatty acids are potential goalkeepers of atherosclerosis. Front Pharmacol 2023; 14:1271001. [PMID: 38027009 PMCID: PMC10679725 DOI: 10.3389/fphar.2023.1271001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/31/2023] [Indexed: 12/01/2023] Open
Abstract
Short-chain fatty acids (SCFAs) are metabolites produced by gut bacteria and play a crucial role in various inflammatory diseases. Increasing evidence suggests that SCFAs can improve the occurrence and progression of atherosclerosis. However, the molecular mechanisms through which SCFAs regulate the development of atherosclerosis have not been fully elucidated. This review provides an overview of the research progress on SCFAs regarding their impact on the risk factors and pathogenesis associated with atherosclerosis, with a specific focus on their interactions with the endothelium and immune cells. These interactions encompass the inflammation and oxidative stress of endothelial cells, the migration of monocytes/macrophages, the lipid metabolism of macrophages, the proliferation and migration of smooth muscle cells, and the proliferation and differentiation of Treg cells. Nevertheless, the current body of research is insufficient to comprehensively understand the full spectrum of SCFAs' mechanisms of action. Therefore, further in-depth investigations are imperative to establish a solid theoretical foundation for the development of clinical therapeutics in this context.
Collapse
Affiliation(s)
| | - Danyan Xu
- Department of Cardiovascular Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|