1
|
Huang S, Wu J, Yang Y, Zhu M, Chen L, Zhang S, Yang Y, Sun X, Xie Y. Investigate the Effect of ZFP64 on mRNA Expression of HBG Based on Bioinformatics and Experimental Validation. Cell Biochem Biophys 2025:10.1007/s12013-025-01776-5. [PMID: 40392482 DOI: 10.1007/s12013-025-01776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2025] [Indexed: 05/22/2025]
Abstract
γ-globin genes (HBG1 and HBG2) are usually expressed during fetal life, and almost no expression after birth. Therefore, the reactivation of HBG is a key target for the treatment of hemoglobinopathy. ZFP64 is a C2H2 type zinc finger transcription factor, which has been shown to play an important role in the maintenance of gene expression in mixed lineage leukemia, and other C2H2 type zinc finger transcription factors (such as ZFP410 and ZFP644) have been shown to regulate the expression of fetal hemoglobin (HbF) in thalassemia. This study aims to investigate the effect of ZFP64 on mRNA expression of HBG. We performed bioinformatics analyses using the Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) networks to identify genes and transcription factors associated with ZFP64. ZFP64 was knocked out in K562 and HUDEP-2 cell lines by CRISPR-Cas9 electroporation, and the transcription levels of ZFP64, HBB and HBG were analyzed. In undifferentiated and 7-day differentiated HUDEP-2 cells, knocking down ZFP64 resulted in a 1.5-fold and 2.5-fold increase in HBG mRNA expression, respectively (p < 0.05). These findings suggest that ZFP64 is a potential regulator of HBG expression and warrants further investigation as a therapeutic target in hemoglobinopathies.
Collapse
Affiliation(s)
- Siqi Huang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Jianfeng Wu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yinghong Yang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Mingming Zhu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Lihao Chen
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Shunhan Zhang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Yi Yang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaofang Sun
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| | - Yingjun Xie
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
2
|
Xiang X, Mao J, Tang D, Huang H, Tang H. The ZBTB family in cardiac development and diseases. Biochem Biophys Res Commun 2025; 771:152026. [PMID: 40398093 DOI: 10.1016/j.bbrc.2025.152026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 04/17/2025] [Accepted: 05/14/2025] [Indexed: 05/23/2025]
Abstract
ZBTB (zinc finger and BTB domain) proteins are a class of evolutionarily conserved transcriptional factors (TFs) with zinc finger (ZF) and BTB (Broad-complex, Tram-track, and Bric-à-brac) domains. The ZBTB protein family has a wide range of functions in numerous biological processes, including cell cycle regulation, DNA repair, organ development, and haematopoietic stem cell fate determination. The ZBTB proteins regulate gene expression through interactions with transcriptional regulators, influencing processes such as myocardial contractility, inflammation, fibrosis, and cellular metabolism. Given the critical role of the ZBTB family in cardiac biology, the present review endeavours to comprehensively summarize the regulatory roles of seven ZBTB family members (HIC2, BCL6, PLZF, ZBTB17, ZBTB20, ZBTB7a, and ZBTB11) in cardiac development and diseases, along with their potential molecular mechanisms. Elucidating the molecular mechanisms of ZBTB proteins opens avenues for developing targeted therapies for cardiovascular diseases, including hypertrophy, fibrosis, and inflammation. This review provides a comprehensive summary of recent research on the role of ZBTB proteins in regulating cardiac transcription. Particular emphasis is placed on elucidating their functions in both cardiac development and the pathogenesis of cardiac diseases.
Collapse
Affiliation(s)
- Xing Xiang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China; Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, China; Institute of Cardiovascular Disease, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Jie Mao
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, China; Institute of Cardiovascular Disease, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China; School of Pharmacy, Hengyang Medical College, University of South China, 28 Western Changsheng Road, Hengyang, Hunan, 421001, China
| | - Dan Tang
- Department of Clinical Laboratory Medicine, Institution of Microbiology and Infectious Diseases, Hunan Province Clinical Research Center for Accurate Diagnosis and Treatment of High-incidence Sexually Transmitted Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hunan, China; Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, China; Institute of Cardiovascular Disease, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Hong Huang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, China; Institute of Cardiovascular Disease, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| | - Huifang Tang
- Hunan Provincial Key Laboratory of Multi-omics and Artificial Intelligence of Cardiovascular Diseases, University of South China, Hengyang, Hunan, China; Clinical Research Center for Myocardial Injury in Hunan Province, Hengyang, Hunan, China; Institute of Cardiovascular Disease, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China; Department of Cardiology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
3
|
Ala C, Ramalingam S, Kondapalli Venkata Gowri CS, Sankaranarayanan M. A critique review of fetal hemoglobin modulators through targeting epigenetic regulators for the treatment of sickle cell disease. Life Sci 2025; 369:123536. [PMID: 40057227 DOI: 10.1016/j.lfs.2025.123536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/02/2025] [Accepted: 03/03/2025] [Indexed: 03/30/2025]
Abstract
Sickle cell disease (SCD) is one of the most prevalent hereditary blood disorders characterized by aberrant hemoglobin synthesis that causes red blood cells (RBCs) to sickle and result in vaso-occlusion. The complex pathophysiological mechanisms that underlie SCD are explored in this study, including hemoglobin polymerization, the formation of fetal hemoglobin (HbF), and hemoglobin switching regulation. Notably, pharmaceutical approaches like hydroxyurea, l-glutamine, voxelotor, and crizanlizumab, in addition to therapeutic techniques like gene therapies like Casgevy and Lyfgenia, signify noteworthy advancements in the management of issues connected to SCD. Furthermore, the deciphering of the molecular mechanisms that dictate hemoglobin switching has revealed several potentially therapeutic targets, including key transcriptional repressors such as β-cell lymphoma/leukemia 11A (BCL11A), Zinc finger and BTB domain-containing 7A (ZBTB7A), Nuclear Factor IX (NFIX), and Nuclear Factor IA (NFIA), which play crucial roles in γ-globin silencing. Additionally, transcriptional activators such as Nuclear Factor Y (NF-Y), and Hypoxia-inducible factor 1α (HIF1α) have emerged as promising regulators that can disrupt repression and enhance HbF synthesis. Other epigenetic regulators, such as lysine-specific histone demethylase 1 (LSD1), euchromatic histone methyltransferases 1/2 (EHMT1/2), histone deacetylases (HDACs), DNA methyltransferases (DNMTs), and protein arginine methyltransferases (PRMTs). It has been demonstrated that inhibiting these targets can prevent the silencing of the gene encoding for the formation of γ-chains and, in turn, increase the synthesis of HbF, providing a possible treatment option for SCD symptoms. These approaches could pave the way for innovative, mechanism-driven therapies that address the unmet medical needs of SCD patients.
Collapse
Affiliation(s)
- Chandu Ala
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India.
| | - Sivaprakash Ramalingam
- Department of Biological Sciences and Bioengineering, Mehta Family Centre for Engineering in Medicine, Indian Institute of Technology, Kanpur, Uttar Pradesh, India.
| | - Chandra Sekhar Kondapalli Venkata Gowri
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Jawahar Nagar, Kapra Mandal, Hyderabad 500078, Telangana, India.
| | - Murugesan Sankaranarayanan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani, Pilani Campus, Pilani 333031, Rajasthan, India.
| |
Collapse
|
4
|
Takezaki M, Li B, Xu H, Patel N, Lucas R, Cerbone RE, Koti S, Hendrick CL, Junker LH, Pace BS. The histone deacetylase inhibitor CT-101 flips the switch to fetal hemoglobin expression in sickle cell disease mice. PLoS One 2025; 20:e0323550. [PMID: 40359410 PMCID: PMC12074596 DOI: 10.1371/journal.pone.0323550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 04/09/2025] [Indexed: 05/15/2025] Open
Abstract
The most common hemoglobin disorder worldwide is sickle cell disease (SCD) caused by a point mutation in the adult β-globin gene. As a result, hemoglobin S production occurs leading to clinical symptoms including vaso-occlusive pain, organ damage, and a shortened lifespan. Hydroxyurea is the only FDA-approved fetal hemoglobin (HbF) inducer in the United States that ameliorates the clinical severity of SCD. Due to challenges with hydroxyurea, our study aimed to address the unmet need for the development of non-chemotherapeutic HbF inducers. We investigated the ability of CT-101, a Class 1 histone deacetylase inhibitor, to flip the γ-globin to β-globin switch in a humanized SCD mouse model. Pharmacokinetic parameters were assessed in CD-1 and Townes SCD mice after a single intraperitoneal drug dose. Similar drug uptake and half-life were observed in both animals. Subsequent studies in β-YAC mice expressing human γ-globin and β-globin genes established the optimal dose of CT-101 that induces HbF without peripheral blood toxicity. Subsequent confirmatory studies were conducted in the SCD mouse treated with intraperitoneal CT-101, demonstrating increases in F-cells, HbF, and γ-globin gene mRNA levels. Hydroxyurea combined with CT-101 significantly decreased spleen size and hemorrhagic infarcts and improved splenic extramedullary hematopoiesis. Our novel agent, CT-101, flipped the switch by activating γ-globin gene transcription and HbF protein synthesis in the preclinical SCD mouse model without significant toxicity in the peripheral blood. These findings support the development of an oral CT-101 formulation for clinical testing in SCD.
Collapse
Affiliation(s)
- Mayuko Takezaki
- Department of Pediatrics, Georgia Cancer Center, Augusta University, Augusta, Georgia,
| | - Biaoru Li
- Department of Pediatrics, Georgia Cancer Center, Augusta University, Augusta, Georgia,
| | - Hongyan Xu
- Department of Biostatistics, Data Science and Epidemiology, Augusta University, Augusta, Georgia,
| | - Nikhil Patel
- Department of Pathology and Laboratory Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia,
| | - Rudolf Lucas
- Vascular Biology Center, Department of Pharmacology and Toxicology, Division of Pulmonary and Critical Care Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia,
| | - Ryan E. Cerbone
- Cetya Therapeutics, Fort Collins, Colorado,
- Colorado State University, Department of Chemistry, Fort Collins, Colorado
| | | | | | | | - Betty S. Pace
- Department of Pediatrics, Georgia Cancer Center, Augusta University, Augusta, Georgia,
| |
Collapse
|
5
|
Horton JR, Yu M, Zhou J, Tran M, Anakal RR, Lu Y, Blumenthal RM, Zhang X, Huang Y, Zhang X, Cheng X. Multimeric transcription factor BCL11A utilizes two zinc-finger tandem arrays to bind clustered short sequence motifs. Nat Commun 2025; 16:3672. [PMID: 40246927 PMCID: PMC12006351 DOI: 10.1038/s41467-025-58998-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/08/2025] [Indexed: 04/19/2025] Open
Abstract
BCL11A, a transcription factor, is vital for hematopoiesis, including B and T cell maturation and the fetal-to-adult hemoglobin switch. Mutations in BCL11A are linked to neurodevelopmental disorders. BCL11A contains two DNA-binding zinc-finger arrays, low-affinity ZF2-3 and high-affinity ZF4-6, separated by a 300-amino-acid linker. ZF2-3 and ZF4-5 share 73% identity, including five out of six DNA base-interacting residues. These arrays bind similar short sequence motifs in clusters, with the linker enabling a broader binding span. Crystallographic structures of ZF4-6, in complex with oligonucleotides from the β-globin locus region, reveal DNA sequence recognition by residues Asn756 (ZF4), Lys784 and Arg787 (ZF5). A Lys784-to-Thr mutation, linked to a neurodevelopmental disorder with persistent fetal globin expression, reduces DNA binding over 10-fold but gains interaction with a variable base pair. BCL11A isoforms may form oligomers, enhancing chromatin occupancy and repressor functions by allowing multiple copies of both low- and high-affinity ZF arrays to bind DNA. These distinctive properties, apparently conserved among vertebrates, provide essential functional flexibility to this crucial regulator.
Collapse
Affiliation(s)
- John R Horton
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Meigen Yu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Jujun Zhou
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Melody Tran
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rithvi R Anakal
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yue Lu
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX, 77030, USA
| | - Yun Huang
- Center for Epigenetics and Disease Prevention, Institute of Biosciences and Technology, College of Medicine, Texas A&M University, Houston, TX, 77030, USA
| | - Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Myers G, Friedman A, Yu L, Pourmandi N, Kerpet C, Ito MA, Saba R, Tang V, Ozel AB, Bergin IL, Johnson CN, Ku CJ, Wang Y, Balbin-Cuesta G, Lim KC, Lin Z, Drysdale C, McGee B, Kurita R, Nakamura Y, Liu X, Siemieniak D, Singh SA, Lyssiotis CA, Maillard I, Weisman LS, Engel JD, Khoriaty R. A genome-wide screen identifies genes required for erythroid differentiation. Nat Commun 2025; 16:3488. [PMID: 40221460 PMCID: PMC11993733 DOI: 10.1038/s41467-025-58739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 04/01/2025] [Indexed: 04/14/2025] Open
Abstract
The complete array of genes required for terminal erythroid differentiation remains unknown. To address this knowledge gap, we perform a genome-scale CRISPR knock-out screen in the human erythroid progenitor cell line HUDEP-2 and validate candidate regulators of erythroid differentiation in a custom secondary screen. Comparison of sgRNA abundance in the CRISPR library, proerythroblasts, and orthochromatic erythroblasts, resulted in the identification of genes that are essential for proerythroblast survival and genes that are required for terminal erythroid differentiation. Among the top genes identified are known regulators of erythropoiesis, underscoring the validity of this screen. Notably, using a Log2 fold change of <-1 and false discovery rate of <0.01, the screen identified 277 genes that are required for terminal erythroid differentiation, including multiple genes not previously nominated through GWAS. NHLRC2, which was previously implicated in hemolytic anemia, was a highly ranked gene. We suggest that anemia due to NHLRC2 mutation results at least in part from a defect in erythroid differentiation. Another highly ranked gene in the screen is VAC14, which we validated for its requirement in erythropoiesis in vitro and in vivo. Thus, data from this CRISPR screen may help classify the underlying mechanisms that contribute to erythroid disorders.
Collapse
Affiliation(s)
- Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ann Friedman
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Lei Yu
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Narges Pourmandi
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Claire Kerpet
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Masaki A Ito
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Rilie Saba
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Vi Tang
- Department of Genetics, Harvard Medical School, Boston, MA, USA
| | - Ayse Bilge Ozel
- Department of Human Genetics, University of Michigan, Ann Arbor, MI, USA
| | - Ingrid L Bergin
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Craig N Johnson
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Chia-Jui Ku
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Yu Wang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Ginette Balbin-Cuesta
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- Medical Scientist Training Program, University of Michigan, Ann Arbor, MI, USA
| | - Kim-Chew Lim
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Zesen Lin
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Claire Drysdale
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Unit for Laboratory Animal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Beth McGee
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Blood Service Headquarters, Japanese Red Cross Society, Tokyo, Japan
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Research Center, Ibaraki, Japan
| | - Xiaofang Liu
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - David Siemieniak
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - Sharon A Singh
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Costas A Lyssiotis
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Ivan Maillard
- Division of Hematologic Malignancies, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lois S Weisman
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, USA
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA
| | - Rami Khoriaty
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA.
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, MI, USA.
- University of Michigan Rogel Cancer Center, Ann Arbor, MI, USA.
| |
Collapse
|
7
|
Ilboudo Y, Brosseau N, Lo KS, Belhaj H, Moutereau S, Marshall K, Reid M, Kutlar A, Ashley-Koch AE, Telen MJ, Joly P, Galactéros F, Bartolucci P, Lettre G. A replication study of novel fetal hemoglobin-associated genetic variants in sickle cell disease-only cohorts. Hum Mol Genet 2025; 34:699-710. [PMID: 39886999 PMCID: PMC11973897 DOI: 10.1093/hmg/ddaf015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/18/2024] [Accepted: 01/23/2024] [Indexed: 02/01/2025] Open
Abstract
Sickle cell disease (SCD) is the most common monogenic disease in the world and is caused by mutations in the β-globin gene (HBB). Notably, SCD is characterized by extreme clinical heterogeneity. Inter-individual variation in fetal hemoglobin (HbF) levels strongly contributes to this patient-to-patient variability, with high HbF levels associated with decreased morbidity and mortality. Genetic association studies have identified and replicated HbF levels-associated variants at three loci: BCL11A, HBS1L-MYB, and HBB. In SCD patients, genetic variation at these three loci accounts for ~ 50% of HbF heritability. Genome-wide association studies (GWAS) in non-anemic and SCD patients of multiple ancestries have identified 20 new HbF-associated variants. However, these genetic associations have yet to be replicated in independent SCD cohorts. Here, we validated the association between HbF levels and variants at five of these new loci (ASB3, BACH2, PFAS, ZBTB7A, and KLF1) in up to 3740 SCD patients. By combining CRISPR inhibition and single-cell transcriptomics, we also showed that sequences near non-coding genetic variants at BACH2 (rs4707609) and KLF1 (rs2242514, rs10404876) can control the production of the β-globin genes in erythroid HUDEP-2 cells. Finally, we analyzed whole-exome sequence data from 1354 SCD patients but could not identify rare genetic variants of large effect on HbF levels. Together, our results confirm five new HbF-associated loci that can be functionally studied to develop new strategies to induce HbF expression in SCD patients.
Collapse
Affiliation(s)
- Yann Ilboudo
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec, H1T 1C8, Canada
- Department of Medicine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Nicolas Brosseau
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec, H1T 1C8, Canada
- Department of Medicine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Ken Sin Lo
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec, H1T 1C8, Canada
- Department of Medicine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Hicham Belhaj
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec, H1T 1C8, Canada
- Department of Medicine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| | - Stéphane Moutereau
- Red Blood Cell Laboratory, Department of Biochemistry-Pharmacology, Hôpital Universitaire Henri Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Est, IMRB - U955 - Équipe no 2, Créteil, France
| | - Kwesi Marshall
- Tropical Metabolism Research Unit (TMRU), Caribbean Institute for Health Research (CAIHR), University of the West Indies, Mona, Kingston 7, Jamaica
| | - Marvin Reid
- Graduate Studies and Research, University of the West Indies, Mona, Kingston 7, Jamaica
| | - Abdullah Kutlar
- Center for Blood Disorders, Augusta University, Augusta, Georgia 30912, USA
| | - Allison E Ashley-Koch
- Department of Medicine, Duke University Medical Center, Durham, NC 27707, USA
- Duke Molecular Physiology Institute, Duke University Medical Center, 300 North Duke Street, Durham, NC 27701, USA
| | - Marilyn J Telen
- Duke Comprehensive Sickle Cell Center and Division of Hematology, Department of Medicine, Duke University, Durham, NC 27710, USA
| | - Philippe Joly
- Unité Fonctionnelle 34445 ‘Biochimie des Pathologies Érythrocytaires’, Laboratoire de Biochimie et Biologie Moléculaire Grand-Est, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Laboratoire Inter-Universitaire de Biologie de la Motricité (LIBM) EA7424, Equipe ‘Biologie Vasculaire et du Globule Rouge’, Université Claude Bernard Lyon 1, Comité d’Universités et d’Établissements (COMUE), Lyon, France
| | - Frédéric Galactéros
- Red Cell Genetic Disease Unit, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Est, IMRB - U955 - Équipe no 2, Créteil, France
| | - Pablo Bartolucci
- Red Cell Genetic Disease Unit, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris (AP-HP), Université Paris Est, IMRB - U955 - Équipe no 2, Créteil, France
| | - Guillaume Lettre
- Montreal Heart Institute, 5000 Bélanger Street, Montréal, Québec, H1T 1C8, Canada
- Department of Medicine, Université de Montréal, 2900 Boul. Édouard-Montpetit, Montréal, Québec, H3T 1J4, Canada
| |
Collapse
|
8
|
Chen L, Liu D, Hong W, Xu L, Cheng L, Luo Y, Xu H, Liang J, Fang J, Li X. Creating New Cis-Regulatory Elements of HBD to Reactivate Delta-Globin. Hum Gene Ther 2025; 36:765-773. [PMID: 40114594 DOI: 10.1089/hum.2024.186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2025] Open
Abstract
β-thalassemia and sickle cell disease (SCD) are global monogenic blood system disorders, and reactivated δ-globin is expected to replace missing or abnormal β-globin. With the development of gene editing technology, activating γ-globin for treating β-thalassemia and SCD has been highly successful. However, δ-globin, as another important potential therapeutic target, has few related studies. Gene editing technology introduced cis-acting elements, including NF-Y, KLF1, GATA1, and TAL1, into the regulatory region of HBD, successfully activating the expression of δ-globin. It was confirmed that the activation effect of δ-globin was closely related to the location of the introduced cis-acting elements. In this study, the mutation creates a de novo binding site for KLF1 at -85∼93 bp upstream of the transcription start site of the HBD gene, as well as the site for TAL1 and GATA1 cobinding motifs at -59 to ∼-78 bp, which could effectively activate δ-globin.
Collapse
Affiliation(s)
- Lini Chen
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Diandian Liu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Weicong Hong
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Luhong Xu
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Lin Cheng
- Reforgene Medicine, Guangzhou, People's Republic of China
| | - Ying Luo
- Reforgene Medicine, Guangzhou, People's Republic of China
| | - Hui Xu
- Reforgene Medicine, Guangzhou, People's Republic of China
| | - Junbin Liang
- Reforgene Medicine, Guangzhou, People's Republic of China
| | - Jianpei Fang
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Xinyu Li
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, People's Republic of China
| |
Collapse
|
9
|
Bao X, Gao Y, Chen X, Wang Z, Feng X, Wang L, Du J, Ye Y, Chen F, Du L, Yin A, Xu X. A one-base therapeutic insertion in the HBG2 distal promoter reactivates γ-globin expression. Exp Hematol Oncol 2025; 14:47. [PMID: 40156013 PMCID: PMC11951516 DOI: 10.1186/s40164-025-00626-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Accepted: 02/25/2025] [Indexed: 04/01/2025] Open
Abstract
BACKGROUND The reactivation of developmental silenced γ-globin genes (HBG1/2) has shown promise as a therapeutic strategy for improving symptoms of β-hemoglobinopathies. Currently, the focus of therapeutic targets is primarily on the major fetal hemoglobin suppressors, such as BCL11A and ZBTB7A and of their binding sites on the proximal HBG promoter. However, the role of the distal HBG promoter in regulating gene expression remains to be explored. METHODS We used CRISPR/Cas9 system to edit the distal HBG promoter. In vitro and in vivo assays, as well as engrafted NCG-Kit-V831M mice, were used for functional validation and mechanistic studies. RESULTS We discovered an insertion of nucleotide A (insA) between - 1368 and - 1369 bp upstream of the TSS in HBG2 resulting in remarkable increase in γ-globin expression in HUDEP-2 cells. We also observed elevated γ-globin expression in human CD34+ erythroid progenitor cells from healthy individuals and those with β-thalassemia when introducing insA mutation. Similarly, engrafted NCG-Kit-V831M mice showed increased γ-globin expression. Importantly, neither did insA have any off-target effects nor did it affect the maturation of erythroid cells. Furthermore, we found that the insA mutation created a binding site for the transcription activator FOXO3, which was activated by AMPK. Additionally, introducing insA specifically demethylated the - 162 CpG site on HBG promoter by reducing the enrichment of DNA methyltransferase 3 A (DNMT3A). At the same time, it activated histone modifications and RNA polymerase II (Pol II) in both distal and proximal HBG promoter and might inhibit the binding of BCL11A and ZBTB7A on -115 and - 200 sites on the HBG promoter respectively. In addition, combination of insA and the - 115 or -200 editing targets resulted in an amplify effect in reactivating γ-globin genes expression. CONCLUSIONS Overall, we presented the preclinical data to support the role of insA on regulating γ-globin expression using CD34+ HSPC cells derived from healthy donors or patients with β-thalassemia, and subsequently engrafted mice. Our study suggests that introducing insA mutation leads to significantly boosted fetal globin levels and uncovers new safe therapeutic target or strategy for β-hemoglobinopathies.
Collapse
Affiliation(s)
- Xiuqin Bao
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China.
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.
- Thalassemia Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.
| | - Yuanyi Gao
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaoyi Chen
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Guangzhou Medical University, Guangzhuo, Guangdong, China
| | - Zhongju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Xiaoqin Feng
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Liren Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Jing Du
- Department of Pediatrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Yuhua Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
| | - Feijing Chen
- Department of Hematology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Li Du
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
- Thalassemia Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China
| | - Aihua Yin
- Medical Genetics Center, Guangdong Women and Children Hospital, Xingnan Road 521, Guangzhou, 510010, Guangdong, China.
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.
- Thalassemia Diagnosis Center, Guangdong Women and Children Hospital, Guangzhou, 510010, Guangdong, China.
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
10
|
Han Y, Gudmundsdottir B, Gudmundsson KO, Roy KR, Tisdale J, Du Y. MLL1 complex is a critical regulator of fetal hemoglobin repression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645036. [PMID: 40196665 PMCID: PMC11974897 DOI: 10.1101/2025.03.24.645036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Increasing fetal-type hemoglobin (HbF) expression in adult erythroid cells holds promise in the treatment of sickle cell disease (SCD) and β-thalassemia. We have identified MLL1 complex as a critical regulator of fetal and embryonic hemoglobin repression. Knockdowns of MEN1 and KMT2A, encoding essential components of the complex, caused a significant downregulation of BCL11A expression and a substantial increase in γ- and ε-globin mRNA levels in HUDEP-2 cells. Significant binding of MEN1 and KMT2A were readily detected at the promoter and a critical enhancer of BCL11A in HUDEP-2 cells, suggesting that BCL11A is a direct transcriptional target of MLL1 complex. Consistent with these results, MEN1 or KMT2A knockdown in normal human CD34 + hematopoietic stem and progenitor cells (HSPCs) induced to undergo erythroid differentiation also significantly decreased their BCL11A expression and increased their γ- and ε-globin expression and the production of F cells in the culture. Treatment of these cells with MENIN inhibitors yielded similar results and promoted erythroid differentiation with minimal effects on their growth. These findings underscore a critical role of MLL1 complex in regulating fetal and embryonic hemoglobin expression and suggest that MENIN inhibitors could offer a promising therapeutic approach for sickle cell disease and β-thalassemia.
Collapse
|
11
|
Deleuze V, Stephen T, Salma M, Orfeo C, Jorna R, Maas A, Barroca V, Arcangeli ML, Lecellier CH, Andrieu-Soler C, Grosveld F, Soler E. In vivo deletion of a GWAS-identified Myb distal enhancer acts on Myb expression, globin switching, and clinical erythroid parameters in β-thalassemia. Sci Rep 2025; 15:8996. [PMID: 40089598 PMCID: PMC11910609 DOI: 10.1038/s41598-025-94222-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025] Open
Abstract
Genome-wide association studies (GWAS) have identified numerous genetic variants linked to human diseases, mostly located in non-coding regions of the genome, particularly in putative enhancers. However, functional assessment of the non-coding GWAS variants has progressed at slow pace, since the functions of the vast majority of genomic enhancers have not been defined, impeding interpretation of disease-susceptibility variants. The HBS1L-MYB intergenic region harbors multiple SNPs associated with clinical erythroid parameters, including fetal hemoglobin levels, a feature impacting disease severity of beta-hemoglobinopathies such as sickle cell anemia and beta-thalassemia. HBS1L-MYB variants cluster in the vicinity of several MYB enhancers, altering MYB expression and globin switching. We and others have highlighted the conserved human MYB - 84kb enhancer, known as the - 81kb enhancer in the mouse, as likely candidate linked to these traits. We report here the generation of a Myb - 81kb enhancer knock-out mouse model, and shed light for the first time on its impact on steady state erythropoiesis and in beta-thalassemia in vivo.
Collapse
Affiliation(s)
| | | | - Mohammad Salma
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Univ. Montpellier, Institut Régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Cédric Orfeo
- IGMM, Univ Montpellier, CNRS, Montpellier, France
| | - Ruud Jorna
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
- Luminex Corporation, s-Hertogenbosch, The Netherlands
| | - Alex Maas
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | | | | | - Charles-Henri Lecellier
- IGMM, Univ Montpellier, CNRS, Montpellier, France
- LIRMM, Univ Montpellier, CNRS, Montpellier, France
| | - Charlotte Andrieu-Soler
- IGMM, Univ Montpellier, CNRS, INSERM, Montpellier, France
- Initiatives IdEx Globule Rouge d'Excellence (InIdex GR-Ex), Université Paris Cité, Paris, France
| | - Frank Grosveld
- Department of Cell Biology, Erasmus MC, Rotterdam, The Netherlands
| | - Eric Soler
- IGMM, Univ Montpellier, CNRS, INSERM, Montpellier, France.
- Initiatives IdEx Globule Rouge d'Excellence (InIdex GR-Ex), Université Paris Cité, Paris, France.
| |
Collapse
|
12
|
Li J, Chen M, Zhao W, Lv A, Lin S, Zheng Y, Cai M, Lin N, Xu L, Huang H. The role of miR-129-5p in regulating γ-globin expression and erythropoiesis in β-thalassemia. Hum Mol Genet 2025; 34:291-303. [PMID: 39657657 DOI: 10.1093/hmg/ddae180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 11/04/2024] [Accepted: 11/29/2024] [Indexed: 12/12/2024] Open
Abstract
The regulation of γ-globin expression is crucial due to its beneficial effects on diseases like β-thalassemia and sickle cell disease. B-cell lymphoma/leukemia 11A (BCL11A) is a significant suppressor of γ-globin, and microRNAs (miRNAs) targeting BCL11A have been shown to alleviate this suppression. In our previous high-throughput sequencing, we identified an 11.32-fold increase in miR-129-5p expression in β-thalassemia patients. However, the regulatory mechanisms of miR-129-5p in the context of erythroid differentiation remain to be elucidated. Our study aimed to elucidate the role of miR-129-5p in γ-globin regulation and erythropoiesis. We measured miR-129-5p levels in peripheral blood from β-thalassemia major and intermedia patients. Fluorescence in situ hybridization, dual-luciferase reporter assays, miRNA pull down assays and western blot analyses were conducted to examine the effects of miR-129-5p on γ-globin expression and BCL11A repression. Cell proliferation, apoptosis, and erythroid differentiation were assessed using cell counting kit-8, Wright-Giemsa, and benzidine staining, and flow cytometry assays. The expression levels of miR-129-5p were significantly elevated in β-thalassemia patients and positively correlated with γ-globin synthesis while negatively correlating with liver damage. miR-129- 5p enhanced γ-globin gene expression in K562 and HUDEP-2 cells by effectively repressing BCL11A. Overexpression of miR-129-5p inhibited cell proliferation, induced cell cycle arrest at the G1/G0 phase, promoted apoptosis and stimulated erythroid differentiation and maturation. Conversely, inhibition of miR-129-5p produced opposite cellular effects. miR-129-5p acts as a positive regulator of erythroid differentiation and γ-globin synthesis. It offers a promising miRNA target for activating the γ-globin gene and reducing ineffective erythropoiesis in β-thalassemia patients.
Collapse
Affiliation(s)
- Jingmin Li
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Meihuan Chen
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Wantong Zhao
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Aixiang Lv
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Siyang Lin
- The School of Medical Technology and Engineering, Fujian Medical University, 1 Xuefu North Road, Minhou District, Fuzhou 350108, China
| | - Yanping Zheng
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Meiying Cai
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Na Lin
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Liangpu Xu
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| | - Hailong Huang
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, 88 Jiaotong Road, Taijiang District, Fuzhou 350004, China
- Medical Genetic Diagnosis and Therapy Center of Fujian Maternity and Child Health Hospital, Fujian Key Laboratory for Prenatal Diagnosis and Birth Defect, 18 Daoshan Road, Gulou District, Fuzhou 350001, China
| |
Collapse
|
13
|
Almotiri A, Abogosh A, Abdelfattah A, Alowaisy D, Rodrigues NP. Treating genetic blood disorders in the era of CRISPR-mediated genome editing. Mol Ther 2025:S1525-0016(25)00035-8. [PMID: 39827371 DOI: 10.1016/j.ymthe.2025.01.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 12/15/2024] [Accepted: 01/14/2025] [Indexed: 01/22/2025] Open
Abstract
In the setting of monogenic disease, advances made in genome editing technologies can, in principle, be deployed as a therapeutic strategy to precisely correct a specific gene mutation in an affected cell type and restore functionality. Using the β-hemoglobinopathies and hemophilia as exemplars, we review recent experimental breakthroughs using CRISPR-derived genome editing technology that have translated to significant improvements in the management of inherited hematologic disorders. Yet there are also challenges facing the use of CRISPR-mediated genome editing in these patients; we discuss possible ways to obviate those issues for furtherance of clinical benefit.
Collapse
Affiliation(s)
- Alhomidi Almotiri
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Shaqra University, Shaqra 15526, Saudi Arabia; European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK.
| | - Ahmed Abogosh
- Department of Biological Sciences, Faculty of Science, National University of Singapore (NUS), Singapore 119077, Singapore
| | - Ali Abdelfattah
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan; European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK
| | - Dalya Alowaisy
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa 13133, Jordan
| | - Neil P Rodrigues
- European Cancer Stem Cell Research Institute, Cardiff University, School of Biosciences, Cardiff CF24 4HQ, UK.
| |
Collapse
|
14
|
Dong Z, Ye Y, Zhang W, Luo H, Li J, Zhang Q, Zhang X, Guo X, Xu X. MYB represses ζ-globin expression through upregulating ETO2. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 39757769 DOI: 10.3724/abbs.2024239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025] Open
Abstract
Reactivating the embryonic ζ-globin gene represents a potential therapeutic approach to ameliorate the severe clinical phenotype of α-thalassemia and sickle cell disease. The transcription factor MYB has been extensively proven to be a master regulator of the γ-globin gene, but its role in the regulation of ζ-globin remains incompletely understood. Here, we report a mechanistic study on the derepression of ζ-globin both in vivo and in vitro. We show that MYB depletion in mouse models and human hematopoietic stem cells leads to consistent and remarkable reactivation of ζ-globin. Furthermore, multiomics analysis and functional validation of MYB-knockout and wild-type cell lines reveal that ETO2 functions as a novel repressor of ζ-globin through coordination with NuRD nucleosome remodeling and the deacetylation complex to modulate histone deacetylation of ζ-globin. Additionally, we evaluate the clinical significance of these findings by knocking out ETO2 in primary CD34 + cells from nondeletional hemoglobin H patients, which results in a significant increase in ζ-globin expression. The RNA-seq data reveal that key erythroid genes are more co-regulated by Myb and Eto2 than by Myb and Klf1, highlighting a distinctly enhanced erythroid-specific transcriptional impact within the MYB-ETO2 regulatory axis. Compared with ETO2 knockout alone, codepletion of ETO2 and BCL11A did not significantly activate ζ-globin, suggesting that the MYB-ETO2 pathway primarily silences ζ-globin. Our study reveals a linear MYB-ETO2 signaling pathway crucial for ζ-globin repression and offers new targets for treating α-thalassemia and sickle cell disease.
Collapse
Affiliation(s)
- Zejun Dong
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yuhua Ye
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Wei Zhang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Hualei Luo
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jialong Li
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qianqian Zhang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xinhua Zhang
- Department of Hematology, 923rd Hospital of the People's Liberation Army, Nanning 530021, China
| | - Xiang Guo
- Institute of Blood Diseases, Department of Hematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu 610072, China
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou 510515, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
15
|
Wang Y, Myers G, Yu L, Deng K, Balbin-Cuesta G, Singh SA, Guan Y, Khoriaty R, Engel JD. TR4 and BCL11A repress γ-globin transcription via independent mechanisms. Blood 2024; 144:2762-2772. [PMID: 39393056 PMCID: PMC11862819 DOI: 10.1182/blood.2024024599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 08/05/2024] [Accepted: 08/05/2024] [Indexed: 10/13/2024] Open
Abstract
ABSTRACT Nuclear receptor TR4 (NR2C2) was previously shown to bind to the -117 position of the γ-globin gene promoters in vitro, which overlaps the more recently described BCL11 transcription factor A (BCL11A) binding site. The role of TR4 in human γ-globin gene repression has not been extensively characterized in vivo, whereas any relationship between TR4 and BCL11A regulation through the γ-globin promoters is unclear at present. We show here that TR4 and BCL11A competitively bind in vitro to distinct, overlapping sequences, including positions overlapping -117 of the γ-globin promoter. We found that TR4 represses γ-globin transcription and fetal hemoglobin accumulation in vivo in a BCL11A-independent manner. Finally, examination of the chromatin occupancy of TR4 within the β-globin locus, compared with BCL11A, shows that both bind avidly to the locus control region and other sites, but only BCL11A binds to the γ-globin promoters at statistically significant frequency. These data resolve an important discrepancy in the literature and, thus, clarify possible approaches to the treatment of sickle cell disease and β-thalassaemia.
Collapse
Affiliation(s)
- Yu Wang
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Greggory Myers
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Lei Yu
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Kaiwen Deng
- Department of Computational and Medical Bioinformatics, University of Michigan Medical School, Ann Arbor, MI
| | - Ginette Balbin-Cuesta
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - Sharon A. Singh
- Division of Hematology/Oncology, Department of Pediatrics, University of Michigan Medical School, Ann Arbor, MI
| | - Yuanfang Guan
- Department of Computational and Medical Bioinformatics, University of Michigan Medical School, Ann Arbor, MI
| | - Rami Khoriaty
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
- Division of Hematology/Oncology, Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI
| | - James Douglas Engel
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
16
|
Petrachkova T, Soldatkina O, Leduy L, Nepveu A. The BCL11A transcription factor stimulates the enzymatic activities of the OGG1 DNA glycosylase. Biol Chem 2024; 405:711-726. [PMID: 39272221 PMCID: PMC11712033 DOI: 10.1515/hsz-2024-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
The BCL11A transcription factor has previously been shown to interact with and stimulate the enzymatic activities of the NTHL1 DNA glycosylase and Pol β polymerase. Here we show that BCL11A and a smaller peptide encompassing amino acids 160 to 520 can interact with the 8-oxoguanine DNA glycosylase, OGG1, increase the binding of OGG1 to DNA that contains an 8-oxoguanine base and stimulate the glycosylase activity of OGG1. Following BCL11A knockdown, we observed an increase in oxidized purines in the genome using comet assays, while immunoassays reveal an increase in 8-oxoG bases. Structure-function analysis indicates that the stimulation of OGG1 by BCL11A requires the zinc fingers 1, 2 and 3 as well as the proline-rich region between the first and second zing finger, but a glutamate-rich region downstream of zinc finger 3 is dispensable. Ectopic expression of a small peptide that contains the three zinc fingers can rescue the increase in 8-oxoguanine caused by BCL11A knockdown. These findings, together with previous results showing that BCL11A stimulates the enzymatic activities of NTHL1 and the Pol β polymerase, suggest that high expression of BCL11A is important to protect cancer cells against oxidative DNA damage.
Collapse
Affiliation(s)
- Tetiana Petrachkova
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Olha Soldatkina
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Lam Leduy
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| | - Alain Nepveu
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Biochemistry, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Medicine, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
- Departments of Oncology, McGill University, 1160 Pine Avenue West, Montreal, QC, H3A 1A3, Canada
| |
Collapse
|
17
|
Li Q, Li X, He S, Li J. Hotspots and status of Fetal Alpha-Thalassemia from 2009 to 2023: a bibliometric analysis. Front Pediatr 2024; 12:1467760. [PMID: 39726529 PMCID: PMC11670076 DOI: 10.3389/fped.2024.1467760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Objective to evaluate the research status and development hotspots of fetal α-thalassemia by quantitatively analyzing the diagnostic status, key areas, related management measures and prospects of the disease by bibliometrics. Methods The global literature on fetal α-thalassemia and severe α-thalassemia from 2009-2023 in the Web of Science Core Collection (WOSCC) was visually analyzed by VOSviewer and CiteSpace. Results (1) The examination of the quantity of publications concerning fetal α-thalassemia indicates a rising tendency prior to 2018, followed by a decrease after 2018. (2)The United States, China, Italy, Thailand have published more papers, and the United States has more collaborating countries such as Italy and China. (3) Chiang Mai University and Harvard University are the top two institutions with the highest contribution. However, Chiang Mai University's H index (12) and citation frequency per article (8.05) are relatively low and the NC (6,342), H index (33) and citations per article (75.42) of Harvard University are higher than those of the other institutions. (4) Tongsong T, Gambari R and Fucharoen S are the top three prolific authors. Fucharoen S emerges as the most frequently cited author with 738 citations, excluding self-citations. (5) HEMOGLOBIN leading with 87 published papers (NC:601,IF: 0.82, H-index: 13), followed by BLOOD(58 papers, Nc: 3755, IF: 25.48, H-index: 40) and BLOOD CELLS MOLECULES AND DISEASES(39 papers, Nc: 729, IF: 2.37, H-index: 16). (6) The most cited article was published in science and the second and third cited articles were featured in the Proceedings of the National Academy of Sciences; the top 3 clusters of co-cited literature are "gene editing", "polymorphisms", "hydroxyurea". (7) Keywords analysis showe that the top two categories of keyword cluster focus on the prenatal diagnosis and the current treatment strategy of the disease, which remain the research hotspots. Conclusions Recent research on this topic has primarily focused on prenatal diagnosis and treatment strategies. A particular area of interest is the ongoing research on gene therapy.The advances in non-invasive diagnosis and therapeutic methods will change the current management approaches for fetal severe α-thalassemia in the future.
Collapse
Affiliation(s)
- Qiuying Li
- Department of Ultrasonography, Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, China
- Graduate School, Guangxi University of Chinese Medicine, Nanning, China
| | - Xinyan Li
- Department of Ultrasonography, Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng He
- Birth Defects Prevention and Control Institute of Guangxi Zhuang Autonomous Region, Nanning, China
- Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jiao Li
- Maternity and Child Health Care of Guangxi Zhuang Autonomous Region, Nanning, China
| |
Collapse
|
18
|
Strouboulis J, Shangaris P. Gene editing efficiencies and hematopoietic stem cell fitness in sickle cell disease: A balancing act. Mol Ther 2024; 32:4170-4171. [PMID: 39566507 PMCID: PMC11638869 DOI: 10.1016/j.ymthe.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/05/2024] [Accepted: 11/05/2024] [Indexed: 11/22/2024] Open
Affiliation(s)
- John Strouboulis
- Red Cell Haematology, Comprehensive Cancer Centre, School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK.
| | - Panicos Shangaris
- Department of Women and Children's Health, School of Life Course Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK; Harris Birthright Research Centre for Foetal Medicine, King's College Hospital, London SE5 8BB, UK; Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, Faculty of Life Sciences & Medicine, King's College London, London, UK
| |
Collapse
|
19
|
McManus M, Frangoul H, Steinberg MH. CRISPR-based gene therapy for the induction of fetal hemoglobin in sickle cell disease. Expert Rev Hematol 2024; 17:957-966. [PMID: 39535263 DOI: 10.1080/17474086.2024.2429605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/17/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Sickle cell disease is ameliorated and perhaps can be 'cured' if enough fetal hemoglobin is present in most erythrocytes. Hydroxyurea, which increases fetal hemoglobin levels, is widely available and effective, especially in children. Nevertheless, only cell-based gene therapy can achieve a 'curative' fetal hemoglobin threshold. AREAS COVERED We cover the path to modulating fetal hemoglobin gene expression and the use of CRISPR/Cas9 gene editing as a viable clinical modality for treating severe sickle cell disease relying on references obtained from PubMed. Mobilized autologous hematopoietic stem and progenitor cells are engineered with vectors that derepress genes that regulate fetal hemoglobin gene expression. Following myeloablative conditioning, gene-edited cells are reinfused, engrafted, and make large amounts of fetal hemoglobin. Within months, fetal hemoglobin forms more than 40% of the total hemoglobin and hemoglobin levels normalize; symptoms of sickle cell disease disappear. EXPERT OPINION Optimistically, these patients are 'cured,' but long term follow-up is needed. Although approved by regulatory agencies and highly efficacious, because of its technical imperatives and cost, this first gene editing therapeutic will be unavailable to most people with severe sickle cell disease. It is highly likely that improved methods of genomic editing will simplify gene therapy, reduce its costs, and lead to its wider applicability.
Collapse
Affiliation(s)
- Meghann McManus
- Sarah Cannon Pediatric Hematology/Oncology & Cellular Therapy @TriStar Centennial, Nashville, TN, USA
| | - Haydar Frangoul
- Sarah Cannon Pediatric Hematology/Oncology & Cellular Therapy @TriStar Centennial, Nashville, TN, USA
| | - Martin H Steinberg
- Department of Medicine, Division of Hematology and Medical Oncology, Center of Excellence for Sickle Cell Disease, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| |
Collapse
|
20
|
Zheng G, Yin M, Mehta S, Chu IT, Wang S, AlShaye A, Drainville K, Buyanbat A, Bienfait F, Tenglin K, Zhu Q, Orkin SH. A tetramer of BCL11A is required for stable protein production and fetal hemoglobin silencing. Science 2024; 386:1010-1018. [PMID: 39607926 DOI: 10.1126/science.adp3025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/08/2024] [Accepted: 10/21/2024] [Indexed: 11/30/2024]
Abstract
Down-regulation of BCL11A protein reverses the fetal (HbF, α2γ2) to adult (HbA, α2β2) hemoglobin switch and is exploited in gene-based therapy for hemoglobin disorders. Because of reliance on ex vivo cell manipulation and marrow transplant, such therapies cannot lessen disease burden. To develop new small-molecule approaches, we investigated the state of BCL11A protein in erythroid cells. We report that tetramer formation mediated by a single zinc finger (ZnF0) is required for production of steady-state protein. Beyond its role in protein stability, the tetramer state is necessary for γ-globin gene repression, because an engineered monomer fails to engage a critical co-repressor complex. These aspects of BCL11A protein production identify tetramer formation as a vulnerability for HbF silencing and provide opportunities for drug discovery.
Collapse
Affiliation(s)
- Ge Zheng
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Maolu Yin
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stuti Mehta
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - I-Te Chu
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stacy Wang
- Lester Sue Smith Breast Center, Department of Human Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Alia AlShaye
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Kirstin Drainville
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Altantsetseg Buyanbat
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Frédérique Bienfait
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Karin Tenglin
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Qian Zhu
- Lester Sue Smith Breast Center, Department of Human Molecular Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Hospital Cancer and Blood Disorder Center, Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Howard Hughes Medical Institute, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
21
|
Yang JP, Toughiri R, Gounder AP, Scheibe D, Petrus M, Fink SJ, Vallee S, Kenniston J, Papaioannou N, Langston S, Gavva NR, Horman SR. Identification of small molecule agonists of fetal hemoglobin expression for the treatment of sickle cell disease. PLoS One 2024; 19:e0307049. [PMID: 39504332 PMCID: PMC11540224 DOI: 10.1371/journal.pone.0307049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 10/03/2024] [Indexed: 11/08/2024] Open
Abstract
Induction of fetal hemoglobin (HbF) has been shown to be a viable therapeutic approach to treating sickle cell disease and potentially other β-hemoglobinopathies. To identify targets and target-modulating small molecules that enhance HbF expression, we engineered a human umbilical-derived erythroid progenitor reporter cell line (HUDEP2_HBG1_HiBiT) by genetically tagging a HiBiT peptide to the carboxyl (C)-terminus of the endogenous HBG1 gene locus, which codes for γ-globin protein, a component of HbF. Employing this reporter cell line, we performed a chemogenomic screen of approximately 5000 compounds annotated with known targets or mechanisms that have achieved clinical stage or approval by the US Food and Drug Administration (FDA). Among them, 10 compounds were confirmed for their ability to induce HbF in the HUDEP2 cell line. These include several known HbF inducers, such as pomalidomide, lenalidomide, decitabine, idoxuridine, and azacytidine, which validate the translational nature of this screening platform. We identified avadomide, autophinib, triciribine, and R574 as novel HbF inducers from these screens. We orthogonally confirmed HbF induction activities of the top hits in both parental HUDEP2 cells as well as in human primary CD34+ hematopoietic stem and progenitor cells (HSPCs). Further, we demonstrated that pomalidomide and avadomide, but not idoxuridine, induced HbF expression through downregulation of several transcriptional repressors such as BCL11A, ZBTB7A, and IKZF1. These studies demonstrate a robust phenotypic screening workflow that can be applied to large-scale small molecule profiling campaigns for the discovery of targets and pathways, as well as novel therapeutics for sickle cell disease and other β-hemoglobinopathies.
Collapse
Affiliation(s)
- Jian-Ping Yang
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Rachel Toughiri
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Anshu P. Gounder
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Dan Scheibe
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Matt Petrus
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Sarah J. Fink
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Sebastien Vallee
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Jon Kenniston
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Nikolaos Papaioannou
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Steve Langston
- Takeda Development Center Americas, Inc., Cambridge, Massachusetts, United States of America
| | - Narender R. Gavva
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| | - Shane R. Horman
- Takeda Development Center Americas, Inc., San Diego, California, United States of America
| |
Collapse
|
22
|
Diamantidis MD, Ikonomou G, Argyrakouli I, Pantelidou D, Delicou S. Genetic Modifiers of Hemoglobin Expression from a Clinical Perspective in Hemoglobinopathy Patients with Beta Thalassemia and Sickle Cell Disease. Int J Mol Sci 2024; 25:11886. [PMID: 39595957 PMCID: PMC11593634 DOI: 10.3390/ijms252211886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/30/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Hemoglobinopathies, namely β-thalassemia and sickle cell disease (SCD), are hereditary diseases, characterized by molecular genetic aberrations in the beta chains of hemoglobin. These defects affect the normal production of hemoglobin with severe anemia due to less or no amount of beta globins in patients with β-thalassemia (quantitative disorder), while SCD is a serious disease in which a mutated form of hemoglobin distorts the red blood cells into a crescent shape at low oxygen levels (qualitative disorder). Despite the revolutionary progress in recent years with the approval of gene therapy and gene editing for specific patients, there is an unmet need for highlighting the mechanisms influencing hemoglobin production and for the development of novel drugs and targeted therapies. The identification of the transcription factors and other genetic modifiers of hemoglobin expression is of utmost importance for discovering novel therapeutic approaches for patients with hemoglobinopathies. The aim of this review is to describe these complex molecular mechanisms and pathways affecting hemoglobin expression and to highlight the relevant investigational approaches or pharmaceutical interventions focusing on restoring the hemoglobin normal function by linking the molecular background of the disease with the clinical perspective. All the associated drugs increasing the hemoglobin expression in patients with hemoglobinopathies, along with gene therapy and gene editing, are also discussed.
Collapse
Affiliation(s)
- Michael D. Diamantidis
- Department of Hematology, Thalassemia and Sickle Cell Disease Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Georgia Ikonomou
- Thalassemia and Sickle Cell Disease Prevention Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Ioanna Argyrakouli
- Department of Hematology, Thalassemia and Sickle Cell Disease Unit, General Hospital of Larissa, 41221 Larissa, Greece;
| | - Despoina Pantelidou
- Thalassemia and Sickle Cell Disease Unit, AHEPA University General Hospital, 41221 Thessaloniki, Greece;
| | - Sophia Delicou
- Center of Expertise in Hemoglobinopathies and Their Complications, Thalassemia and Sickle Cell Disease Unit, Hippokration General Hospital, 41221 Athens, Greece;
| |
Collapse
|
23
|
Song X, Liu J, Chen T, Zheng T, Wang X, Guo X. Gene therapy and gene editing strategies in inherited blood disorders. J Genet Genomics 2024; 51:1162-1172. [PMID: 38986807 DOI: 10.1016/j.jgg.2024.07.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Gene therapy has shown significant potential in treating various diseases, particularly inherited blood disorders such as hemophilia, sickle cell disease, and thalassemia. Advances in understanding the regulatory network of disease-associated genes have led to the identification of additional therapeutic targets for treatment, especially for β-hemoglobinopathies. Erythroid regulatory factor BCL11A offers the most promising therapeutic target for β-hemoglobinopathies, and reduction of its expression using the commercialized gene therapy product Casgevy has been approved for use in the UK and USA in 2023. Notably, the emergence of innovative gene editing technologies has further broadened the gene therapy landscape, presenting possibilities for treatment. Intensive studies indicate that base editing and prime editing, built upon CRISPR technology, enable precise single-base modification in hematopoietic stem cells for addressing inherited blood disorders ex vivo and in vivo. In this review, we present an overview of the current landscape of gene therapies, focusing on clinical research and gene therapy products for inherited blood disorders, evaluation of potential gene targets, and the gene editing tools employed in current gene therapy practices, which provides an insight for the establishment of safer and more effective gene therapy methods for a wider range of diseases in the future.
Collapse
Affiliation(s)
- Xuemei Song
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - JinLei Liu
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Tangcong Chen
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Tingfeng Zheng
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Xiaolong Wang
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China
| | - Xiang Guo
- Institute of Blood Diseases, Department of Hematology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine of University of Electronic Science and Technology of China, Chengdu, Sichuan 610000, China.
| |
Collapse
|
24
|
Yang Y, Zhang S, Xu L, Pan Y, Xuan Y, Kai Y, Chen X. Structural insights into the recognition of purine-pyrimidine dinucleotide repeats by zinc finger protein ZBTB43. FEBS J 2024; 291:5002-5014. [PMID: 39344089 DOI: 10.1111/febs.17286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 10/01/2024]
Abstract
Purine-pyrimidine repeats (PPRs) can form left-handed Z-form DNA and induce DNA double-strand breaks (DSBs), posing a risk for genomic rearrangements and cancer. The zinc finger (ZF) and BTB domain-containing protein 43 (ZBTB43) is a transcription factor containing two Cys2-His2 (C2H2) and one C3H1 zinc fingers and plays a crucial role in maintaining genomic and epigenomic integrity by converting mutagenic Z-form PPRs to the B-form in prospermatogonia. Despite its importance, the molecular mechanism underlying the recognition of PPRs by ZBTB43 remains elusive. In this study, we determined the X-ray crystal structure of the ZBTB43 ZF1-3 in complex with the B-form DNA containing the CA repeats sequence. The structure reveals that ZF1 and ZF2 primarily recognize the CACA sequence through specific hydrogen-bonding and van der Waals contacts via a quadruple center involving Arg389, Met411, His413, and His414. These interactions were further validated by fluorescence-based DNA-binding assays using mutated ZBTB43 variants. Our structural investigation provides valuable insights into the recognition mechanism of PPRs by ZBTB43 and suggests a potential role for ZBTB43 in the transformation of Z-DNA to B-DNA, contributing to the maintenance of genomic stability.
Collapse
Affiliation(s)
- Yang Yang
- School of Life Sciences, Anhui University, Hefei, China
| | - Shuting Zhang
- School of Life Sciences, Anhui University, Hefei, China
| | - Li Xu
- Shenzhen Medical Academy of Research and Translation (SMART), Institute of Bio-Architecture and Bio-Interactions (IBABI), China
| | - Yan Pan
- School of Life Sciences, Anhui University, Hefei, China
| | - Yumi Xuan
- Faculty of Pharmaceutical Sciences, Center for Human Tissues and Organs Degeneration, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Yuanzhong Kai
- School of Life Sciences, Anhui University, Hefei, China
| | - Xuemin Chen
- School of Life Sciences, Anhui University, Hefei, China
| |
Collapse
|
25
|
Zha J, Chen Y, Cao F, Zhong J, Yu X, Wu H. Identification of novel BCL11A variant in a patient with developmental delay and behavioural differences. Int J Dev Neurosci 2024; 84:727-734. [PMID: 39187446 DOI: 10.1002/jdn.10371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/11/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024] Open
Abstract
BACKGROUND The BCL11A gene is involved in disorders including intellectual disability syndrome (IDS), encodes a zinc finger protein highly expressed in haematopoietic and brain and acts as a transcriptional repressor of foetal haemoglobin (HbF). De novo variants in BCL11A have been associated with IDS, which is characterized by developmental delays, autism spectrum disorder (ASD) and speech and language delays. The reports of BCL11A gene variants are still limited worldwide, and additional cases are needed to expand the variant and phenotype spectrums. METHODS The patient is a 5-year-old girl who was hospitalized due to developmental delays. After analysing her clinical and pathological characterizations, whole-exome sequencing (WES) was performed for pathogenic genetic variants of developmental delay and behavioural differences. Candidate variant in BCL11A gene was identified and further validated by Sanger sequencing. RESULTS A heterozygous variant, c.1442delA (p.Glu481Glyfs*25), was identified in exon 4 of the BCL11A gene through WES. This variant results in a truncated expression of the encoded protein. This de novo variant was confirmed by Sanger sequencing. The language delay and behavioural differences were prominent in our patient. CONCLUSION Our finding demonstrates that BCL11A variant may cause developmental delay and behavioural differences, expanding the genetic spectrum of the BCL11A gene.
Collapse
Affiliation(s)
- Jian Zha
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Yong Chen
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Fangfang Cao
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Jianmin Zhong
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Xiongying Yu
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| | - Huaping Wu
- Department of Neurology, Jiangxi Provincial Children's Hospital, Nanchang, People's Republic of China
| |
Collapse
|
26
|
Martyn GE, Doerfler PA, Yao Y, Quinlan KGR, Weiss MJ, Crossley M. Hydroxyurea reduces the levels of the fetal globin gene repressors ZBTB7A/LRF and BCL11A in erythroid cells in vitro. JOURNAL OF SICKLE CELL DISEASE 2024; 1:yoae008. [PMID: 40304012 PMCID: PMC12039817 DOI: 10.1093/jscdis/yoae008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 08/06/2024] [Accepted: 09/03/2024] [Indexed: 05/02/2025]
Abstract
Objectives Hydroxyurea (HU) is the most widely used therapy for adults and children with sickle cell disease (SCD). It is believed to act largely by inducing the transcription of fetal γ-globin genes to generate fetal hemoglobin (HbF), which inhibits the pathological polymerization of sickle hemoglobin (HbS). The mechanisms by which hydroxyurea elevates HbF are unclear. We explored the hypothesis that hydroxyurea induces HbF expression by inhibiting the expression of 2 γ-globin gene repressors, BCL11A and ZBTB7A (also known as LRF), which normally bind the γ-globin gene promoters to inhibit their expression after birth. Methods We treated immortalized murine erythroleukemia cells and normal human donor CD34+ hematopoietic stem and progenitor cell-derived erythroblasts with hydroxyurea and measured the effects on globin, BCL11A and ZBTB7A protein and mRNA expression. Results Treating murine erythroleukemia cells or human CD34+ hematopoietic stem and progenitor cell-derived erythroblasts with hydroxyurea reduced the protein levels of BCL11A and ZBTB7A compared to the vehicle-treated control. BCL11A mRNA levels were reduced in both cell types upon hydroxyurea treatment. However, ZBTB7A mRNA levels were only reduced in human CD34+ hematopoietic stem and progenitor cell-derived erythroblasts. Conclusions Hydroxyurea can act in erythroid cells to reduce the levels and activity of two direct fetal γ-globin transcriptional repressors with accompanying de-repression of the γ-globin genes and induction of HbF, which may explain the mechanism of action leading to amelioration of symptoms in SCD patients treated with this drug.
Collapse
Affiliation(s)
- Gabriella E Martyn
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Phillip A Doerfler
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, TN 38105-3678, United States
| | - Yu Yao
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, TN 38105-3678, United States
| | - Kate G R Quinlan
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| | - Mitchell J Weiss
- Department of Hematology, St Jude Children’s Research Hospital, Memphis, TN 38105-3678, United States
| | - Merlin Crossley
- School of Biotechnology and Biomolecular Sciences, University of New South Wales (UNSW) Sydney, Sydney, NSW 2052, Australia
| |
Collapse
|
27
|
Davé UP, Bungert J. Toward life without sickle cell disease. Mol Ther 2024; 32:3197-3198. [PMID: 39293432 PMCID: PMC11489554 DOI: 10.1016/j.ymthe.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Revised: 09/04/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Affiliation(s)
- Utpal P Davé
- Department of Medicine, Division of Hematology/Oncology, Indiana University School of Medicine, Roudebush VA Medical Center, and IU Simon Comprehensive Cancer Center, Indianapolis, IN, USA
| | - Jörg Bungert
- Department of Biochemistry and Molecular Biology, UF Health Cancer Center, Center for Epigenetics, Genetics Institute, Powell Gene Therapy Center, University of Florida, Gainesville, FL 32610, USA.
| |
Collapse
|
28
|
Katta V, O'Keefe K, Li Y, Mayuranathan T, Lazzarotto CR, Wood RK, Levine RM, Powers A, Mayberry K, Manquen G, Yao Y, Zhang J, Jang Y, Nimmagadda N, Dempsey EA, Lee G, Uchida N, Cheng Y, Fazio F, Lockey T, Meagher M, Sharma A, Tisdale JF, Zhou S, Yen JS, Weiss MJ, Tsai SQ. Development and IND-enabling studies of a novel Cas9 genome-edited autologous CD34 + cell therapy to induce fetal hemoglobin for sickle cell disease. Mol Ther 2024; 32:3433-3452. [PMID: 39086133 PMCID: PMC11489559 DOI: 10.1016/j.ymthe.2024.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 07/02/2024] [Accepted: 07/28/2024] [Indexed: 08/02/2024] Open
Abstract
Sickle cell disease (SCD) is a common, severe genetic blood disorder. Current pharmacotherapies are partially effective and allogeneic hematopoietic stem cell transplantation is associated with immune toxicities. Genome editing of patient hematopoietic stem cells (HSCs) to reactivate fetal hemoglobin (HbF) in erythroid progeny offers an alternative potentially curative approach to treat SCD. Although the FDA released guidelines for evaluating genome editing risks, it remains unclear how best to approach pre-clinical assessment of genome-edited cell products. Here, we describe rigorous pre-clinical development of a therapeutic γ-globin gene promoter editing strategy that supported an investigational new drug application cleared by the FDA. We compared γ-globin promoter and BCL11A enhancer targets, identified a potent HbF-inducing lead candidate, and tested our approach in mobilized CD34+ hematopoietic stem progenitor cells (HSPCs) from SCD patients. We observed efficient editing, HbF induction to predicted therapeutic levels, and reduced sickling. With single-cell analyses, we defined the heterogeneity of HbF induction and HBG1/HBG2 transcription. With CHANGE-seq for sensitive and unbiased off-target discovery followed by targeted sequencing, we did not detect off-target activity in edited HSPCs. Our study provides a blueprint for translating new ex vivo HSC genome editing strategies toward clinical trials for treating SCD and other blood disorders.
Collapse
Affiliation(s)
- Varun Katta
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kiera O'Keefe
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yichao Li
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Cicera R Lazzarotto
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rachael K Wood
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rachel M Levine
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Alicia Powers
- Children's GMP LLC, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kalin Mayberry
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Garret Manquen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jingjing Zhang
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yoonjeong Jang
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Nikitha Nimmagadda
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Erin A Dempsey
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - GaHyun Lee
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Naoya Uchida
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health Bethesda, Bethesda, MD, USA
| | - Yong Cheng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Frank Fazio
- Children's GMP LLC, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Tim Lockey
- Children's GMP LLC, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Mike Meagher
- Children's GMP LLC, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Akshay Sharma
- Department of Bone Marrow Transplantation & Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John F Tisdale
- Cellular and Molecular Therapeutics Branch, National Heart, Lung, and Blood Institute/National Institute of Diabetes and Digestive and Kidney Diseases, National Institute of Health Bethesda, Bethesda, MD, USA
| | - Sheng Zhou
- Experimental & Cellular Therapeutics Lab, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jonathan S Yen
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
29
|
Testa U, Leone G, Cappellini MD. Therapeutic Gene Editing for Hemoglobinopathies. Mediterr J Hematol Infect Dis 2024; 16:e2024068. [PMID: 39258178 PMCID: PMC11385271 DOI: 10.4084/mjhid.2024.068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/07/2024] [Indexed: 09/12/2024] Open
Abstract
In the last ten years, a consistent number of clinical studies have evaluated different gene approaches for the treatment of patients with sickle cell disease (SCD) and transfusion-dependent β-thalassemia (TDT). Initial studies of gene therapy for hemoglobinopathies involved the use of lentiviral vectors to add functional copies of the gene encoding β-globin in defective CD34 cells; more recently, gene editing techniques have been used involving either CRISPR-Cas9, transcription activation-like effector protein nuclease, zinc finger nuclease, and base editing to either induce fetal hemoglobin production at therapeutic levels or to genetically repair the underlying molecular defect causing the disease. Here, we review recent gene editing studies that have started the development of a new era in the treatment of hemoglobinopathies and, in general, monoallelic hereditary diseases.
Collapse
Affiliation(s)
- Ugo Testa
- Istituto Superiore Sanità, Roma, Italy
| | - Giuseppe Leone
- Department of Radiological and Hematological Sciences, Catholic University, Rome, Italy
| | - Maria Domenica Cappellini
- Department of Clinical Sciences and Community, University of Milan, IRCCS Ca' Granda Foundation Maggiore Policlinico Hospital, Milan, Italy
| |
Collapse
|
30
|
Khandros E, Blobel GA. Elevating fetal hemoglobin: recently discovered regulators and mechanisms. Blood 2024; 144:845-852. [PMID: 38728575 PMCID: PMC11830979 DOI: 10.1182/blood.2023022190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/30/2024] [Accepted: 04/30/2024] [Indexed: 05/12/2024] Open
Abstract
ABSTRACT It has been known for over half a century that throughout ontogeny, humans produce different forms of hemoglobin, a tetramer of α- and β-like hemoglobin chains. The switch from fetal to adult hemoglobin occurs around the time of birth when erythropoiesis shifts from the fetal liver to the bone marrow. Naturally, diseases caused by defective adult β-globin genes, such as sickle cell disease and β-thalassemia, manifest themselves as the production of fetal hemoglobin fades. Reversal of this developmental switch has been a major goal to treat these diseases and has been a driving force to understand its underlying molecular biology. Several review articles have illustrated the long and at times arduous paths that led to the discovery of the first transcriptional regulators involved in this process. Here, we survey recent developments spurred by the discovery of CRISPR tools that enabled for the first time high-throughput genetic screens for new molecules that impact the fetal-to-adult hemoglobin switch. Numerous opportunities for therapeutic intervention have thus come to light, offering hope for effective pharmacologic intervention for patients for whom gene therapy is out of reach.
Collapse
Affiliation(s)
- Eugene Khandros
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Gerd A. Blobel
- Division of Hematology, Children’s Hospital of Philadelphia, Philadelphia, PA
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
31
|
Sun Y, Benmhammed H, Al Abdullatif S, Habara A, Fu E, Brady J, Williams C, Ilinski A, Sharma A, Mahdaviani K, Alekseyev YO, Campbell JD, Steinberg MH, Cui S. PGC-1α agonism induces fetal hemoglobin and exerts antisickling effects in sickle cell disease. SCIENCE ADVANCES 2024; 10:eadn8750. [PMID: 39083598 PMCID: PMC11290485 DOI: 10.1126/sciadv.adn8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/26/2024] [Indexed: 08/02/2024]
Abstract
Sickle cell disease is a growing health burden afflicting millions around the world. Clinical observation and laboratory studies have shown that the severity of sickle cell disease is ameliorated in individuals who have elevated levels of fetal hemoglobin. Additional pharmacologic agents to induce sufficient fetal hemoglobin to diminish clinical severity is an unmet medical need. We recently found that up-regulation of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) can induce fetal hemoglobin synthesis in human primary erythroblasts. Here, we report that a small molecule, SR-18292, increases PGC-1α leading to enhanced fetal hemoglobin expression in human erythroid cells, β-globin yeast artificial chromosome mice, and sickle cell disease mice. In SR-18292-treated sickle mice, sickled red blood cells are significantly reduced, and disease complications are alleviated. SR-18292, or agents in its class, could be a promising additional therapeutic for sickle cell disease.
Collapse
Affiliation(s)
- Yanan Sun
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Hajar Benmhammed
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Salam Al Abdullatif
- Single Cell Sequencing Core Facility, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alawi Habara
- Imam Abdulrahman Bin Faisal University, Department of Clinical Biochemistry, Dammam, Saudi Arabia
| | - Eric Fu
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Jordan Brady
- Sargent College of Health and Rehabilitation Sciences, Boston University, Boston, MA, USA
| | - Christopher Williams
- Single Cell Sequencing Core Facility, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Adrian Ilinski
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Anusha Sharma
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Kiana Mahdaviani
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Yuriy O. Alekseyev
- Department of Pathology and Laboratory Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Joshua D. Campbell
- Division of Computational Biomedicine, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Martin H Steinberg
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Shuaiying Cui
- Section of Hematology-Medical Oncology, Department of Medicine, Boston Medical Center, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| |
Collapse
|
32
|
Bonchuk AN, Georgiev PG. C2H2 proteins: Evolutionary aspects of domain architecture and diversification. Bioessays 2024; 46:e2400052. [PMID: 38873893 DOI: 10.1002/bies.202400052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/15/2024]
Abstract
The largest group of transcription factors in higher eukaryotes are C2H2 proteins, which contain C2H2-type zinc finger domains that specifically bind to DNA. Few well-studied C2H2 proteins, however, demonstrate their key role in the control of gene expression and chromosome architecture. Here we review the features of the domain architecture of C2H2 proteins and the likely origin of C2H2 zinc fingers. A comprehensive investigation of proteomes for the presence of proteins with multiple clustered C2H2 domains has revealed a key difference between groups of organisms. Unlike plants, transcription factors in metazoans contain clusters of C2H2 domains typically separated by a linker with the TGEKP consensus sequence. The average size of C2H2 clusters varies substantially, even between genomes of higher metazoans, and with a tendency to increase in combination with SCAN, and especially KRAB domains, reflecting the increasing complexity of gene regulatory networks.
Collapse
Affiliation(s)
- Artem N Bonchuk
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russia
| | - Pavel G Georgiev
- Department of the Control of Genetic Processes, Institute of Gene Biology Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
33
|
Caria CA, Faà V, Porcu S, Marongiu MF, Poddie D, Perseu L, Meloni A, Vaccargiu S, Ristaldi MS. Post-GWAS Validation of Target Genes Associated with HbF and HbA 2 Levels. Cells 2024; 13:1185. [PMID: 39056767 PMCID: PMC11274989 DOI: 10.3390/cells13141185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/05/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Genome-Wide Association Studies (GWASs) have identified a huge number of variants associated with different traits. However, their validation through in vitro and in vivo studies often lags well behind their identification. For variants associated with traits or diseases of biomedical interest, this gap delays the development of possible therapies. This issue also impacts beta-hemoglobinopathies, such as beta-thalassemia and sickle cell disease (SCD). The definitive cures for these diseases are currently bone marrow transplantation and gene therapy. However, limitations regarding their effective use restrict their worldwide application. Great efforts have been made to identify whether modulators of fetal hemoglobin (HbF) and, to a lesser extent, hemoglobin A2 (HbA2) are possible therapeutic targets. Herein, we performed the post-GWAS in vivo validation of two genes, cyclin D3 (CCND3) and nuclear factor I X (NFIX), previously associated with HbF and HbA2 levels. The absence of Ccnd3 expression in vivo significantly increased g (HbF) and d (HbA2) globin gene expression. Our data suggest that CCND3 is a possible therapeutic target in sickle cell disease. We also confirmed the association of Nfix with γ-globin gene expression and present data suggesting a possible role for Nfix in regulating Kruppel-like transcription factor 1 (Klf1), a master regulator of hemoglobin switching. This study contributes to filling the gap between GWAS variant identification and target validation for beta-hemoglobinopathies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Maria Serafina Ristaldi
- Istituto di Ricerca Genetica e Biomedica, Cittadella Universitaria di Monserrato, SS 554, Bivio Sestu Km 4,500, 09042 Cagliari, Italy; (C.A.C.); (V.F.); (S.P.); (M.F.M.); (D.P.); (L.P.); (A.M.); (S.V.)
| |
Collapse
|
34
|
Higgs D, Kassouf M. Developing a pill to treat sickle cell disease. Science 2024; 385:27-28. [PMID: 38963861 DOI: 10.1126/science.adq3757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
A newly identified epigenetic modifier increases fetal hemoglobin in preclinical studies.
Collapse
Affiliation(s)
- Douglas Higgs
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, and Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| | - Mira Kassouf
- Laboratory of Gene Regulation, MRC Weatherall Institute of Molecular Medicine, and Chinese Academy of Medical Sciences Oxford Institute, University of Oxford, Oxford, UK
| |
Collapse
|
35
|
Alhaj Hussen K, Louis V, Canque B. A new model of human lymphopoiesis across development and aging. Trends Immunol 2024; 45:495-510. [PMID: 38908962 DOI: 10.1016/j.it.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 05/25/2024] [Accepted: 05/26/2024] [Indexed: 06/24/2024]
Abstract
Over the past decade our research has implemented a multimodal approach to human lymphopoiesis, combining clonal-scale mapping of lymphoid developmental architecture with the monitoring of dynamic changes in the pattern of lymphocyte generation across ontogeny. We propose that lymphopoiesis stems from founder populations of CD127/interleukin (IL)7R- or CD127/IL7R+ early lymphoid progenitors (ELPs) polarized respectively toward the T-natural killer (NK)/innate lymphoid cell (ILC) or B lineages, arising from newly characterized CD117lo multi-lymphoid progenitors (MLPs). Recent data on the lifelong lymphocyte dynamics of healthy donors suggest that, after birth, lymphopoiesis may become increasingly oriented toward the production of B lymphocytes. Stemming from this, we posit that there are three major developmental transitions, the first occurring during the neonatal period, the next at puberty, and the last during aging.
Collapse
Affiliation(s)
- Kutaiba Alhaj Hussen
- Service de Biochimie, Université de Paris Saclay, Hôpital Paul Brousse, AP-HP, Paris, France
| | - Valentine Louis
- INSERM 1151, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut Necker Enfants Malades (INEM), Paris, France
| | - Bruno Canque
- INSERM 1151, Université de Paris, École Pratique des Hautes Études/PSL Research University, Institut Necker Enfants Malades (INEM), Paris, France.
| |
Collapse
|
36
|
Chatzilygeroudi T, Chondrou V, Boers R, Siamoglou S, Athanasopoulou K, Verigou E, Gribnau J, Alexis S, Labropoulou V, Kourakli A, Patrinos GP, Sgourou A, Symeonidis A. Fetal hemoglobin induction in azacytidine responders enlightens methylation patterns related to blast clearance in higher-risk MDS and CMML. Clin Epigenetics 2024; 16:79. [PMID: 38879530 PMCID: PMC11180405 DOI: 10.1186/s13148-024-01687-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 05/27/2024] [Indexed: 06/19/2024] Open
Abstract
BACKGROUND As new treatment options for patients with higher-risk myelodysplastic syndromes are emerging, identification of prognostic markers for hypomethylating agent (HMA) treatment and understanding mechanisms of their delayed and short-term responses are essential. Early fetal hemoglobin (HbF) induction has been suggested as a prognostic indicator for decitabine-treated patients. Although epigenetic mechanisms are assumed, responding patients' epigenomes have not been thoroughly examined. We aimed to clarify HbF kinetics and prognostic value for azacytidine treated patients, as well as the epigenetic landscape that might influence HbF re-expression and its clinical relevance. RESULTS Serial HbF measurements by high-performance liquid chromatography (n = 20) showed induction of HbF only among responders (p = 0.030). Moreover, HbF increase immediately after the first azacytidine cycle demonstrated prognostic value for progression-free survival (PFS) (p = 0.032, HR = 0.19, CI 0.24-1.63). Changes in methylation patterns were revealed with methylated DNA genome-wide sequencing analysis (n = 7) for FOG-1, RCOR-1, ZBTB7A and genes of the NuRD-complex components. Targeted pyrosequencing methodology (n = 28) revealed a strong inverse correlation between the degree of γ-globin gene (HBG2) promoter methylation and baseline HbF levels (p = 0.003, rs = - 0.663). A potential epigenetic mechanism of HbF re-expression in azacytidine responders was enlightened by targeted methylation analysis, through hypomethylation of site -53 of HBG2 promoter (p = 0.039, rs = - 0.504), which corresponds to MBD2-NuRD binding site, and to hypermethylation of the CpG326 island of ZBTB7A (p = 0.05, rs = 0.482), a known HbF repressor. These changes were associated to blast cell clearance (pHBG2 = 0.011, rs = 0.480/pZBTB7A = 0.026, rs = 0.427) and showed prognostic value for PFS (pZBTB7A = 0.037, HR = 1.14, CI 0.34-3.8). CONCLUSIONS Early HbF induction is featured as an accessible prognostic indicator for HMA treatment and the proposed potential epigenetic mechanism of HbF re-expression in azacytidine responders includes hypomethylation of the γ-globin gene promoter region and hypermethylation of the CpG326 island of ZBTB7A. The association of these methylation patterns with blast clearance and their prognostic value for PFS paves the way to discuss in-depth azacytidine epigenetic mechanism of action.
Collapse
Affiliation(s)
- Theodora Chatzilygeroudi
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece
- Division of Hematological Malignancies, Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, MD, USA
| | - Vasiliki Chondrou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Ruben Boers
- Department of Developmental Biology, Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Stavroula Siamoglou
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rio, Patras, Greece
| | - Katerina Athanasopoulou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Evgenia Verigou
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece
| | - Joost Gribnau
- Department of Developmental Biology, Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Spyridon Alexis
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece
| | - Vassiliki Labropoulou
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece
| | - Alexandra Kourakli
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece
| | - George P Patrinos
- Department of Developmental Biology, Faculty of Medicine and Health Sciences, Erasmus University Medical Center, Rotterdam, The Netherlands
- Laboratory of Pharmacogenomics and Individualized Therapy, Department of Pharmacy, School of Health Sciences, University of Patras, University Campus, Rio, Patras, Greece
- Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Argyro Sgourou
- Biology Laboratory, School of Science and Technology, Hellenic Open University, Patras, Greece
| | - Argiris Symeonidis
- School of Health Sciences, Faculty of Medicine, Hematology Division, University of Patras, Patras, Greece.
| |
Collapse
|
37
|
Borg J, Loy C, Kim J, Buhagiar A, Chin C, Damle N, De Vlaminck I, Felice A, Liu T, Matei I, Meydan C, Muratani M, Mzava O, Overbey E, Ryon KA, Smith SM, Tierney BT, Trudel G, Zwart SR, Beheshti A, Mason CE, Borg J. Spatiotemporal expression and control of haemoglobin in space. Nat Commun 2024; 15:4927. [PMID: 38862545 PMCID: PMC11166948 DOI: 10.1038/s41467-024-49289-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/31/2024] [Indexed: 06/13/2024] Open
Abstract
It is now widely recognised that the environment in space activates a diverse set of genes involved in regulating fundamental cellular pathways. This includes the activation of genes associated with blood homoeostasis and erythropoiesis, with a particular emphasis on those involved in globin chain production. Haemoglobin biology provides an intriguing model for studying space omics, as it has been extensively explored at multiple -omic levels, spanning DNA, RNA, and protein analyses, in both experimental and clinical contexts. In this study, we examined the developmental expression of haemoglobin over time and space using a unique suite of multi-omic datasets available on NASA GeneLab, from the NASA Twins Study, the JAXA CFE study, and the Inspiration4 mission. Our findings reveal significant variations in globin gene expression corresponding to the distinct spatiotemporal characteristics of the collected samples. This study sheds light on the dynamic nature of globin gene regulation in response to the space environment and provides valuable insights into the broader implications of space omics research.
Collapse
Affiliation(s)
- Josef Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta
| | - Conor Loy
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - JangKeun Kim
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alfred Buhagiar
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta
| | - Christopher Chin
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Namita Damle
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Iwijn De Vlaminck
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Alex Felice
- Department of Surgery, Faculty of Medicine and Surgery, University of Malta, Msida, MSD2080, Malta
| | - Tammy Liu
- Ottawa Hospital Research Institute, Department of Medicine, Ottawa, Ontario, Canada
| | - Irina Matei
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Cem Meydan
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Masafumi Muratani
- Department of Genome Biology, Institute of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Omary Mzava
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Eliah Overbey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Krista A Ryon
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Scott M Smith
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
| | - Braden T Tierney
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Guy Trudel
- Ottawa Hospital Research Institute, Department of Medicine, Ottawa, Ontario, Canada
| | - Sara R Zwart
- Biomedical Research and Environmental Sciences Division, Human Health and Performance Directorate, NASA Johnson Space Center, Houston, TX, USA
- University of Texas Medical Branch, Galveston, TX, USA
| | - Afshin Beheshti
- Blue Marble Space Institute of Science, Space Biosciences Division, NASA Ames Research Center, Moffett Field, CA, USA.
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| | - Christopher E Mason
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA.
- The WorldQuant Initiative for Quantitative Prediction, Weill Cornell Medicine, New York, NY, 10065, USA.
| | - Joseph Borg
- Faculty of Health Sciences, University of Malta, Msida, MSD2080, Malta.
| |
Collapse
|
38
|
Bhatt S, Argueta DA, Gupta K, Kundu S. Red Blood Cells as Therapeutic Target to Treat Sickle Cell Disease. Antioxid Redox Signal 2024; 40:1025-1049. [PMID: 37975291 DOI: 10.1089/ars.2023.0348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Significance: Sickle cell disease (SCD) is the most common inherited diathesis affecting mostly underserved populations globally. SCD is characterized by chronic pain and fatigue, severe acute painful crises requiring hospitalization and opioids, strokes, multiorgan damage, and a shortened life span. Symptoms may appear shortly after birth, and, in less developed countries, most children with SCD die before attaining age 5. Hematopoietic stem cell transplant and gene therapy offer a curative therapeutic approach, but, due to many challenges, are limited in their availability and effectiveness for a majority of persons with SCD. A critical unmet need is to develop safe and effective novel targeted therapies. A wide array of drugs currently undergoing clinical investigation hold promise for an expanded pharmacological armamentarium against SCD. Recent Advances: Hydroxyurea, the most widely used intervention for SCD management, has improved the survival in the Western world and more recently, voxelotor (R-state-stabilizer), l-glutamine, and crizanlizumab (anti-P-selectin antibody) have been approved by the Food and Drug Administration (FDA) for use in SCD. The recent FDA approval emphasizes the need to revisit the advances in understanding the core pathophysiology of SCD to accelerate novel evidence-based strategies to treat SCD. The biomechanical breakdown of erythrocytesis, the core pathophysiology of SCD, is associated with intrinsic factors, including the composition of hemoglobin, membrane integrity, cellular volume, hydration, andoxidative stress. Critical Issues and Future Directions: In this context, this review focuses on advances in emerging nongenetic interventions directed toward the therapeutic targets intrinsic to sickle red blood cells (RBCs), which can prevent impaired rheology of RBCs to impede disease progression and reduce the sequelae of comorbidities, including pain, vasculopathy, and organ damage. In addition, given the intricate pathophysiology of the disease, it is unlikely that a single pharmacotherapeutic intervention will comprehensively ameliorate the multifaceted complications associated with SCD. However, the availability of multiple drug options affords the opportunity for individualized therapeutic regimens tailored to specific SCD-related complications. Furthermore, it opens avenues for combination drug therapy, capitalizing on distinct mechanisms of action and profiles of adverse effects.
Collapse
Affiliation(s)
- Shruti Bhatt
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
| | - Donovan A Argueta
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Kalpna Gupta
- Division of Hematology/Oncology, Department of Medicine, University of California, Irvine, Irvine, California, USA
| | - Suman Kundu
- Department of Biochemistry, University of Delhi South Campus, New Delhi, India
- Department of Biological Sciences, Birla Institute of Technology and Science Pilani, KK Birla Goa Campus, Goa, India
| |
Collapse
|
39
|
Alayoubi AM, Khawaji ZY, Mohammed MA, Mercier FE. CRISPR-Cas9 system: a novel and promising era of genotherapy for beta-hemoglobinopathies, hematological malignancy, and hemophilia. Ann Hematol 2024; 103:1805-1817. [PMID: 37736806 DOI: 10.1007/s00277-023-05457-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
Gene therapy represents a significant potential to revolutionize the field of hematology with applications in correcting genetic mutations, generating cell lines and animal models, and improving the feasibility and efficacy of cancer immunotherapy. Compared to different genetic engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR) CRISPR-associated protein 9 (Cas9) emerged as an effective and versatile genetic editor with the ability to precisely modify the genome. The applications of genetic engineering in various hematological disorders have shown encouraging results. Monogenic hematological disorders can conceivably be corrected with single gene modification. Through the use of CRISPR-CAS9, restoration of functional red blood cells and hemostasis factors were successfully attained in sickle cell anemia, beta-thalassemia, and hemophilia disorders. Our understanding of hemato-oncology has been advanced via CRIPSR-CAS9 technology. CRISPR-CAS9 aided to build a platform of mutated genes responsible for cell survival and proliferation in leukemia. Therapeutic application of CRISPR-CAS9 when combined with chimeric antigen receptor (CAR) T cell therapy in multiple myeloma and acute lymphoblastic leukemia was feasible with attenuation of CAR T cell therapy pitfalls. Our review outlines the latest literature on the utilization of CRISPR-Cas9 in the treatment of beta-hemoglobinopathies and hemophilia disorders. We present the strategies that were employed and the findings of preclinical and clinical trials. Also, the review will discuss gene engineering in the field of hemato-oncology as a proper tool to facilitate and overcome the drawbacks of chimeric antigen receptor T cell therapy (CAR-T).
Collapse
Affiliation(s)
- Abdulfatah M Alayoubi
- Department of Biochemistry and Molecular Medicine, College of Medicine, Taibah University, Madinah, Saudi Arabia
| | | | | | - François E Mercier
- Divisions of Experimental Medicine & Hematology, Department of Medicine, Faculty of Medicine, McGill University, Montreal, Quebec, Canada
| |
Collapse
|
40
|
Gibbons MD, Bungert J. GATA2: sense and (anti)sensibility. Blood 2024; 143:2224-2225. [PMID: 38814656 DOI: 10.1182/blood.2024024549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024] Open
|
41
|
Liu G, Kim J, Nguyen N, Zhou L, Dean A. Long noncoding RNA GATA2AS influences human erythropoiesis by transcription factor and chromatin landscape modulation. Blood 2024; 143:2300-2313. [PMID: 38447046 PMCID: PMC11181357 DOI: 10.1182/blood.2023021287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024] Open
Abstract
ABSTRACT Long noncoding RNAs (lncRNAs) are extensively expressed in eukaryotic cells and have been revealed to be important for regulating cell differentiation. Many lncRNAs have been found to regulate erythroid differentiation in the mouse. However, given the low sequence conservation of lncRNAs between mouse and human, our understanding of lncRNAs in human erythroid differentiation remains incomplete. lncRNAs are often transcribed opposite to protein coding genes and regulate their expression. Here, we characterized a human erythrocyte-expressed lncRNA, GATA2AS, which is transcribed opposite to erythroid transcription regulator GATA2. GATA2AS is a 2080-bp long, primarily nucleus-localized noncoding RNA that is expressed in erythroid progenitor cells and decreases during differentiation. Knockout of GATA2AS in human HUDEP2 erythroid progenitor cells using CRISPR-Cas9 genome editing to remove the transcription start site accelerated erythroid differentiation and dysregulated erythroblast gene expression. We identified GATA2AS as a novel GATA2 and HBG activator. Chromatin isolation by RNA purification showed that GATA2AS binds to thousands of genomic sites and colocalizes at a subset of sites with erythroid transcription factors including LRF and KLF1. RNA pulldown and RNA immunoprecipitation confirmed interaction between GATA2AS and LRF and KLF1. Chromatin immunoprecipitation sequencing (ChIP-seq) showed that knockout of GATA2AS reduces binding of these transcription factors genome wide. Assay for transposase-accessible chromatin sequencing (ATAC-seq) and H3K27ac ChIP-seq showed that GATA2AS is essential to maintain the chromatin regulatory landscape during erythroid differentiation. Knockdown of GATA2AS in human primary CD34+ cells mimicked results in HUDEP2 cells. Overall, our results implicate human-specific lncRNA GATA2AS as a regulator of erythroid differentiation by influencing erythroid transcription factor binding and the chromatin regulatory landscape.
Collapse
Affiliation(s)
- Guoyou Liu
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Juhyun Kim
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Nicole Nguyen
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Lecong Zhou
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| | - Ann Dean
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD
| |
Collapse
|
42
|
Xing K, Li H, Wang X, Sun Y, Zhang J. A Full-Length Transcriptome and Analysis of the NHL-1 Gene Family in Neocaridina denticulata sinensis. BIOLOGY 2024; 13:366. [PMID: 38927246 PMCID: PMC11200715 DOI: 10.3390/biology13060366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/18/2024] [Accepted: 05/21/2024] [Indexed: 06/28/2024]
Abstract
Neocaridina denticulata sinensis has emerged as a promising model organism for basic studies in Decapod. However, the current transcriptome information on this species is based on next-generation sequencing technologies, which are limited by a short read length. Therefore, the present study aimed to generate a full-length transcriptome assembly of N. denticulata sinensis utilizing the PacBio Sequel Ⅱ platform. The resulting transcriptome assembly comprised 5831 transcripts with an N50 value of 3697 bp. Remarkably, 90.5% of these transcripts represented novel isoforms of known genes. The transcripts were further searched against the NR, SwissProt, KEGG, KOG, GO, NT, and Pfam databases. A total of 24.8% of the transcripts can be annotated across all seven databases. Additionally, 1236 alternative splicing events, 344 transcription factors, and 124 long non-coding RNAs (LncRNAs) were predicted. Based on the alternative splicing annotation results, a RING finger protein NHL-1 gene from N. denticulata sinensis (NdNHL-1) was identified. There are 15 transcripts in NdNHL-1. The longest transcript is 4995 bp in length and encodes a putative protein of 1665 amino acids. A phylogenetic analysis showed its close relationship with NHL-1 from other crustacean species. This report represents the full-length transcriptome of N. denticulata sinensis and will facilitate research on functional genomics and environmental adaptation in this species.
Collapse
Affiliation(s)
- Kefan Xing
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
| | - Huimin Li
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
| | - Xiongfei Wang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
| | - Yuying Sun
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Jiquan Zhang
- School of Life Sciences/Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, China; (K.X.); (H.L.); (X.W.)
- Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| |
Collapse
|
43
|
Ferrer A, Duffy P, Olson RJ, Meiners MA, Schultz-Rogers L, Macke EL, Safgren S, Morales-Rosado JA, Cousin MA, Oliver GR, Rider D, Williams M, Pichurin PN, Deyle DR, Morava E, Gavrilova RH, Dhamija R, Wierenga KJ, Lanpher BC, Babovic-Vuksanovic D, Kaiwar C, Vitek CR, McAllister TM, Wick MJ, Schimmenti LA, Lazaridis KN, Vairo FPE, Klee EW. Semiautomated approach focused on new genomic information results in time and effort-efficient reannotation of negative exome data. Hum Genet 2024; 143:649-666. [PMID: 38538918 DOI: 10.1007/s00439-024-02664-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 02/25/2024] [Indexed: 05/18/2024]
Abstract
Most rare disease patients (75-50%) undergoing genomic sequencing remain unsolved, often due to lack of information about variants identified. Data review over time can leverage novel information regarding disease-causing variants and genes, increasing this diagnostic yield. However, time and resource constraints have limited reanalysis of genetic data in clinical laboratories setting. We developed RENEW, (REannotation of NEgative WES/WGS) an automated reannotation procedure that uses relevant new information in on-line genomic databases to enable rapid review of genomic findings. We tested RENEW in an unselected cohort of 1066 undiagnosed cases with a broad spectrum of phenotypes from the Mayo Clinic Center for Individualized Medicine using new information in ClinVar, HGMD and OMIM between the date of previous analysis/testing and April of 2022. 5741 variants prioritized by RENEW were rapidly reviewed by variant interpretation specialists. Mean analysis time was approximately 20 s per variant (32 h total time). Reviewed cases were classified as: 879 (93.0%) undiagnosed, 63 (6.6%) putatively diagnosed, and 4 (0.4%) definitively diagnosed. New strategies are needed to enable efficient review of genomic findings in unsolved cases. We report on a fast and practical approach to address this need and improve overall diagnostic success in patient testing through a recurrent reannotation process.
Collapse
Affiliation(s)
- Alejandro Ferrer
- Division of Hematology, Mayo Clinic, Rochester, MN, USA
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Patrick Duffy
- Bioinformatics Systems, Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Rory J Olson
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Michael A Meiners
- Bioinformatics Systems, Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Laura Schultz-Rogers
- Department of Pathology and Lab Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Erica L Macke
- The Institute of Genomic Medicine, Nationwide Children's Hospital, Columbus, OH, USA
| | | | - Joel A Morales-Rosado
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Margot A Cousin
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - Gavin R Oliver
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | - David Rider
- Bioinformatics Systems, Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Megan Williams
- Bioinformatics Systems, Information Technology, Mayo Clinic, Rochester, MN, USA
| | - Pavel N Pichurin
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - David R Deyle
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eva Morava
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | - Radhika Dhamija
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Klass J Wierenga
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Carolyn R Vitek
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
| | | | - Myra J Wick
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Lisa A Schimmenti
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
- Departments of Otorhinolaryngology, Head and Neck Surgery, Ophthalmology, and Biochemistry and Molecular Biology, Mayo Clinic, Rochester, MN, USA
| | - Konstantinos N Lazaridis
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - Filippo Pinto E Vairo
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA
| | - Eric W Klee
- Center for Individualized Medicine, Mayo Clinic, Rochester, MN, USA.
- Department of Clinical Genomics, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
44
|
Dimitrievska M, Bansal D, Vitale M, Strouboulis J, Miccio A, Nicolaides KH, El Hoss S, Shangaris P, Jacków-Malinowska J. Revolutionising healing: Gene Editing's breakthrough against sickle cell disease. Blood Rev 2024; 65:101185. [PMID: 38493007 DOI: 10.1016/j.blre.2024.101185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 03/01/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Recent advancements in gene editing illuminate new potential therapeutic approaches for Sickle Cell Disease (SCD), a debilitating monogenic disorder caused by a point mutation in the β-globin gene. Despite the availability of several FDA-approved medications for symptomatic relief, allogeneic hematopoietic stem cell transplantation (HSCT) remains the sole curative option, underscoring a persistent need for novel treatments. This review delves into the growing field of gene editing, particularly the extensive research focused on curing haemoglobinopathies like SCD. We examine the use of techniques such as CRISPR-Cas9 and homology-directed repair, base editing, and prime editing to either correct the pathogenic variant into a non-pathogenic or wild-type one or augment fetal haemoglobin (HbF) production. The article elucidates ways to optimize these tools for efficacious gene editing with minimal off-target effects and offers insights into their effective delivery into cells. Furthermore, we explore clinical trials involving alternative SCD treatment strategies, such as LentiGlobin therapy and autologous HSCT, distilling the current findings. This review consolidates vital information for the clinical translation of gene editing for SCD, providing strategic insights for investigators eager to further the development of gene editing for SCD.
Collapse
Affiliation(s)
- Marija Dimitrievska
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Dravie Bansal
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - Marta Vitale
- St John's Institute of Dermatology, King's College London, London SE1 9RT, UK
| | - John Strouboulis
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom
| | - Annarita Miccio
- Laboratory of Chromatin and Gene Regulation During Development, Imagine Institute, INSERM UMR1163, Paris 75015, France
| | - Kypros H Nicolaides
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom
| | - Sara El Hoss
- Red Cell Hematology Lab, Comprehensive Cancer Center, School of Cancer & Pharmaceutical Sciences, King's College London, United Kingdom.
| | - Panicos Shangaris
- Women and Children's Health, School of Life Course & Population Sciences, Kings College London, London, United Kingdom; Harris Birthright Research Centre for Fetal Medicine, King's College Hospital, London, United Kingdom; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, King's College London, London, United Kingdom.
| | | |
Collapse
|
45
|
Myers G, Sun Y, Wang Y, Benmhammed H, Cui S. Roles of Nuclear Orphan Receptors TR2 and TR4 during Hematopoiesis. Genes (Basel) 2024; 15:563. [PMID: 38790192 PMCID: PMC11121135 DOI: 10.3390/genes15050563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/26/2024] [Indexed: 05/26/2024] Open
Abstract
TR2 and TR4 (NR2C1 and NR2C2, respectively) are evolutionarily conserved nuclear orphan receptors capable of binding direct repeat sequences in a stage-specific manner. Like other nuclear receptors, TR2 and TR4 possess important roles in transcriptional activation or repression with developmental stage and tissue specificity. TR2 and TR4 bind DNA and possess the ability to complex with available cofactors mediating developmental stage-specific actions in primitive and definitive erythrocytes. In erythropoiesis, TR2 and TR4 are required for erythroid development, maturation, and key erythroid transcription factor regulation. TR2 and TR4 recruit and interact with transcriptional corepressors or coactivators to elicit developmental stage-specific gene regulation during hematopoiesis.
Collapse
Affiliation(s)
- Greggory Myers
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; (G.M.); (Y.W.)
| | - Yanan Sun
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; (Y.S.); (H.B.)
| | - Yu Wang
- Departments of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI 48105, USA; (G.M.); (Y.W.)
| | - Hajar Benmhammed
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; (Y.S.); (H.B.)
| | - Shuaiying Cui
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston Medical Center, Boston, MA 02118, USA; (Y.S.); (H.B.)
| |
Collapse
|
46
|
Zhang X, Xia F, Zhang X, Blumenthal RM, Cheng X. C2H2 Zinc Finger Transcription Factors Associated with Hemoglobinopathies. J Mol Biol 2024; 436:168343. [PMID: 37924864 PMCID: PMC11185177 DOI: 10.1016/j.jmb.2023.168343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/23/2023] [Accepted: 10/30/2023] [Indexed: 11/06/2023]
Abstract
In humans, specific aberrations in β-globin results in sickle cell disease and β-thalassemia, symptoms of which can be ameliorated by increased expression of fetal globin (HbF). Two recent CRISPR-Cas9 screens, centered on ∼1500 annotated sequence-specific DNA binding proteins and performed in a human erythroid cell line that expresses adult hemoglobin, uncovered four groups of candidate regulators of HbF gene expression. They are (1) members of the nucleosome remodeling and deacetylase (NuRD) complex proteins that are already known for HbF control; (2) seven C2H2 zinc finger (ZF) proteins, including some (ZBTB7A and BCL11A) already known for directly silencing the fetal γ-globin genes in adult human erythroid cells; (3) a few other transcription factors of different structural classes that might indirectly influence HbF gene expression; and (4) DNA methyltransferase 1 (DNMT1) that maintains the DNA methylation marks that attract the MBD2-associated NuRD complex to DNA as well as associated histone H3 lysine 9 methylation. Here we briefly discuss the effects of these regulators, particularly C2H2 ZFs, in inducing HbF expression for treating β-hemoglobin disorders, together with recent advances in developing safe and effective small-molecule therapeutics for the regulation of this well-conserved hemoglobin switch.
Collapse
Affiliation(s)
- Xing Zhang
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| | - Fangfang Xia
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaotian Zhang
- Department of Biochemistry and Molecular Biology, The University of Texas Health Science Center Houston, McGovern Medical School, Houston, TX 77030, USA
| | - Robert M Blumenthal
- Department of Medical Microbiology and Immunology, and Program in Bioinformatics, The University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Xiaodong Cheng
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA.
| |
Collapse
|
47
|
Pavani G, Klein JG, Nations CC, Sussman JH, Tan K, An HH, Abdulmalik O, Thom CS, Gearhart PA, Willett CM, Maguire JA, Chou ST, French DL, Gadue P. Modeling primitive and definitive erythropoiesis with induced pluripotent stem cells. Blood Adv 2024; 8:1449-1463. [PMID: 38290102 PMCID: PMC10955655 DOI: 10.1182/bloodadvances.2023011708] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/05/2024] [Accepted: 01/11/2024] [Indexed: 02/01/2024] Open
Abstract
ABSTRACT During development, erythroid cells are produced through at least 2 distinct hematopoietic waves (primitive and definitive), generating erythroblasts with different functional characteristics. Human induced pluripotent stem cells (iPSCs) can be used as a model platform to study the development of red blood cells (RBCs) with many of the differentiation protocols after the primitive wave of hematopoiesis. Recent advances have established that definitive hematopoietic progenitors can be generated from iPSCs, creating a unique situation for comparing primitive and definitive erythrocytes derived from cell sources of identical genetic background. We generated iPSCs from healthy fetal liver (FL) cells and produced isogenic primitive or definitive RBCs which were compared directly to the FL-derived RBCs. Functional assays confirmed differences between the 2 programs, with primitive RBCs showing a reduced proliferation potential, larger cell size, lack of Duffy RBC antigen expression, and higher expression of embryonic globins. Transcriptome profiling by scRNA-seq demonstrated high similarity between FL- and iPSC-derived definitive RBCs along with very different gene expression and regulatory network patterns for primitive RBCs. In addition, iPSC lines harboring a known pathogenic mutation in the erythroid master regulator KLF1 demonstrated phenotypic changes specific to definitive RBCs. Our studies provide new insights into differences between primitive and definitive erythropoiesis and highlight the importance of ontology when using iPSCs to model genetic hematologic diseases. Beyond disease modeling, the similarity between FL- and iPSC-derived definitive RBCs expands potential applications of definitive RBCs for diagnostic and transfusion products.
Collapse
Affiliation(s)
- Giulia Pavani
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Joshua G. Klein
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Catriana C. Nations
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Jonathan H. Sussman
- Department of Genomics and Computational Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Kai Tan
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Hyun Hyung An
- Department of Cell and Molecular Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Osheiza Abdulmalik
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Christopher S. Thom
- Division of Neonatology, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Peter A. Gearhart
- Department of Obstetrics and Gynecology, Pennsylvania Hospital, University of Pennsylvania Health System, Philadelphia, PA
| | - Camryn M. Willett
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Jean Ann Maguire
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Stella T. Chou
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA
| | - Deborah L. French
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| | - Paul Gadue
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, University of Pennsylvania Perelman School of Medicine and Children's Hospital of Philadelphia, Philadelphia, PA
| |
Collapse
|
48
|
Jiang Y, Ye Y, Zhang X, Yu Y, Huang L, Bao X, Xu X. Identification and characterization of CHD4-associated eRNA as a novel modulator of fetal hemoglobin levels in β-thalassemia. Biochem Biophys Res Commun 2024; 701:149555. [PMID: 38325179 DOI: 10.1016/j.bbrc.2024.149555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/18/2024] [Accepted: 01/18/2024] [Indexed: 02/09/2024]
Abstract
Fetal-to-adult hemoglobin switching is controlled by programmed silencing of γ-globin while the re-activation of fetal hemoglobin (HbF) is an effective strategy for ameliorating the clinical severity of β-thalassemia and sickle cell disease. The identification of enhancer RNAs (eRNAs) related to the fetal (α2γ2) to adult hemoglobin (α2β2) switching remains incomplete. In this study, the transcriptomes of GYPA+ cells from six β-thalassemia patients with extreme HbF levels were sequenced to identify differences in patterns of noncoding RNA expression. It is interesting that an enhancer upstream of CHD4, an HbF-related core subunit of the NuRD complex, was differentially transcribed. We found a significantly positive correlation of eRNA-CHD4 enhancer-gene interaction using the public database of FANTOM5. Specifically, the eRNA-CHD4 expression was found to be significantly higher in both CD34+ HSPCs and HUDEP-2 than those in K562 cells which commonly expressed high level of HbF, suggesting a correlation between eRNA and HbF expression. Furthermore, prediction of transcription binding sites of cis-eQTLs and the CHD4 genomic region revealed a putative interaction site between rs73264846 and ZNF410, a known transcription factor regulating HbF expression. Moreover, in-vitro validation showed that the inhibition of eRNA could reduce the expression of HBG expression in HUDEP-2 cells. Taken together, the findings of this study demonstrate that a distal enhancer contributes to stage-specific silencing of γ-globin genes through direct modulation of CHD4 expression and provide insights into the epigenetic mechanisms of NuRD-mediated hemoglobin switching.
Collapse
Affiliation(s)
- Yida Jiang
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Key Chip Laboratory, Guangzhou, Guangdong, China
| | - Yuhua Ye
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Key Chip Laboratory, Guangzhou, Guangdong, China
| | - Xinhua Zhang
- Department of Hematology, 923rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Yanping Yu
- Department of Pediatric, 923rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Liping Huang
- Department of Pediatric, 923rd Hospital of the People's Liberation Army, Nanning, Guangxi, China
| | - Xiuqin Bao
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, Guangdong, China
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China; Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, China; Guangdong Key Chip Laboratory, Guangzhou, Guangdong, China.
| |
Collapse
|
49
|
Bao X, Gao Y, Wang Z, Ye Y, Chen D, Zuo Y, Zhao C, Xu X. Activation of γ-globin expression by LncRNA-mediated ERF promoter hypermethylation in β-thalassemia. Clin Epigenetics 2024; 16:12. [PMID: 38218889 PMCID: PMC10787479 DOI: 10.1186/s13148-023-01614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/10/2023] [Indexed: 01/15/2024] Open
Abstract
The mechanism that drives the switch from fetal to adult hemoglobin (Hb) provides a therapeutic target for β-thalassemia. We have previously identified that hypermethylation of transcription factor ERF promoter reactivated γ-globin expression. To uncover the mechanism underlying the hypermethylation of ERF promoter, we performed RNA sequencing in β0/β0-thalassemia patients and identified an upregulated long noncoding RNA (RP11-196G18.23) associated with HbF production. RP11-196G18.23 bound to the ERF promoter and recruited DNA methyltransferase 3A to promote DNA hypermethylation-mediated ERF downregulation, thereby ameliorating ERF-induced γ-globin inactivation. The identification of RP11-196G18.23 provides an epigenetic mechanism for the reactivation of fetal γ-globin expression for β-hemoglobinopathies.
Collapse
Affiliation(s)
- Xiuqin Bao
- Medical Genetic Center, Guangdong Women and Children Hospital, Guangzhou, 514000, Guangdong, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Guangzhou, 510515, Guangdong, China
- Maternal and Children Metabolic-Genetic Key Laboratory, Guangdong Women and Children Hospital, Guangzhou, 514000, Guangdong, China
| | - Yuanyi Gao
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Guangzhou, 510515, Guangdong, China
| | - Zhongju Wang
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Guangzhou, 510515, Guangdong, China
| | - Yuhua Ye
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Guangzhou, 510515, Guangdong, China
| | - Diyu Chen
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Guangzhou, 510515, Guangdong, China
| | - Yangjin Zuo
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Guangzhou, 510515, Guangdong, China
| | - Cunyou Zhao
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Guangzhou, 510515, Guangdong, China.
- Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, and Guangdong Province Key Laboratory of Psychiatric Disorders, Southern Medical University, Guangzhou, China.
| | - Xiangmin Xu
- Innovation Center for Diagnostics and Treatment of Thalassemia, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Guangdong Engineering and Technology Research Center for Molecular Diagnostics of Human Genetic Diseases, Guangzhou, 510515, Guangdong, China.
| |
Collapse
|
50
|
Zheng G, Orkin SH. Transcriptional Repressor BCL11A in Erythroid Cells. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:199-215. [PMID: 39017845 DOI: 10.1007/978-3-031-62731-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BCL11A, a zinc finger repressor, is a stage-specific transcription factor that controls the switch from fetal (HbF, α2γ2) to adult (HbA, α2β2) hemoglobin in erythroid cells. While BCL11A was known as a factor critical for B-lymphoid cell development, its relationship to erythroid cells and HbF arose through genome-wide association studies (GWAS). Subsequent work validated its role as a silencer of γ-globin gene expression in cultured cells and mice. Erythroid-specific loss of BCL11A rescues the phenotype of engineered sickle cell disease (SCD) mice, thereby suggesting that downregulation of BCL11A expression might be beneficial in patients with SCD and β-thalassemia. Common genetic variation in GWAS resides in an erythroid-specific enhancer within the BCL11A gene that is required for its own expression. CRISPR/Cas9 gene editing of the enhancer revealed a GATA-binding site that confers a large portion of its regulatory function. Disruption of the GATA site leads to robust HbF reactivation. Advancement of a guide RNA targeting the GATA-binding site in clinical trials has recently led to approval of first-in-man use of ex vivo CRISPR editing of hematopoietic stem/progenitor cells (HSPCs) as therapy of SCD and β-thalassemia. Future challenges include expanding access and infrastructure for delivery of genetic therapy to eligible patients, reducing potential toxicity and costs, exploring prospects for in vivo targeting of hematopoietic stem cells (HSCs), and developing small molecule drugs that impair function of BCL11A protein as an alternative option.
Collapse
Affiliation(s)
- Ge Zheng
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- Harvard Medical School and HHMI, Boston, MA, USA
| | - Stuart H Orkin
- Dana-Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
- Harvard Medical School and HHMI, Boston, MA, USA.
| |
Collapse
|