1
|
Sánchez WN, Driessen AJM, Wilson CAM. Protein targeting to the ER membrane: multiple pathways and shared machinery. Crit Rev Biochem Mol Biol 2025:1-47. [PMID: 40377270 DOI: 10.1080/10409238.2025.2503746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
The endoplasmic reticulum (ER) serves as a central hub for protein production and sorting in eukaryotic cells, processing approximately one-third of the cellular proteome. Protein targeting to the ER occurs through multiple pathways that operate both during and independent of translation. The classical translation-dependent pathway, mediated by cytosolic factors like signal recognition particle, recognizes signal peptides or transmembrane helices in nascent proteins, while translation-independent mechanisms utilize RNA-based targeting through specific sequence elements and RNA-binding proteins. At the core of these processes lies the Sec61 complex, which undergoes dynamic conformational changes and coordinates with numerous accessory factors to facilitate protein translocation and membrane insertion across and into the endoplasmic reticulum membrane. This review focuses on the molecular mechanisms of protein targeting to the ER, from the initial recognition of targeting signals to the dynamics of the translocation machinery, highlighting recent discoveries that have revealed unprecedented complexity in these cellular trafficking pathways.
Collapse
Affiliation(s)
- Wendy N Sánchez
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Javanainen M, Šimek J, Tranter D, O'Keefe S, Karki S, Biriukov D, Šachl R, Paavilainen VO. Lipid Scrambling Pathways in the Sec61 Translocon Complex. J Am Chem Soc 2025; 147:15970-15984. [PMID: 40325981 DOI: 10.1021/jacs.4c11142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
Cellular homeostasis depends on the rapid, ATP-independent translocation of newly synthesized lipids across the endoplasmic reticulum (ER) membrane. Lipid translocation is facilitated by membrane proteins known as scramblases, a few of which have recently been identified in the ER. Our previous structure of the translocon-associated protein (TRAP) bound to the Sec61 translocation channel revealed local membrane thinning, suggesting that the Sec61/TRAP complex might be involved in lipid scrambling. Using complementary fluorescence spectroscopy assays, we detected nonselective scrambling by reconstituted translocon complexes. This activity was unaffected by Sec61 inhibitors that block its lateral gate, suggesting a second lipid scrambling pathway within the complex. Molecular dynamics simulations indicate that the trimeric TRAP subunit forms this alternative route, facilitating lipid translocation via a "credit card" mechanism, using a crevice lined with polar residues to shield lipid head groups from the hydrophobic membrane interior. Kinetic and thermodynamic analyses confirmed that local membrane thinning enhances scrambling efficiency and that both Sec61 and TRAP scramble phosphatidylcholine faster than phosphatidylethanolamine and phosphatidylserine, reflecting the intrinsic lipid flip-flop tendencies of these lipid species. As the Sec61 scrambling site lies in the lateral gate region, it is likely inaccessible during protein translocation, in line with our experiments on Sec61-inhibited samples. Hence, our findings suggest that the metazoan-specific trimeric TRAP bundle is a viable candidate for lipid scrambling activity that is insensitive to the functional state of the translocon.
Collapse
Affiliation(s)
- Matti Javanainen
- Unit of Physics, University of Tampere, FI-33720 Tampere, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00790 Helsinki, Finland
| | - Jan Šimek
- J. Heyrovský Institute of Physical Chemistry, CZ-18223 Prague 8, Czech Republic
- Department of Physical and Macromolecular Chemistry, Charles University, Hlavova 8, CZ-12800 Prague 2, Czech Republic
| | - Dale Tranter
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00790 Helsinki, Finland
| | - Sarah O'Keefe
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00790 Helsinki, Finland
| | - Sudeep Karki
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00790 Helsinki, Finland
- Onego Bio, Hämeentie 157, FI-00560 Helsinki, Finland
| | - Denys Biriukov
- Central European Institute of Technology, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Kamenice 5, CZ-62500 Brno, Czech Republic
| | - Radek Šachl
- J. Heyrovský Institute of Physical Chemistry, CZ-18223 Prague 8, Czech Republic
| | - Ville O Paavilainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, FI-00790 Helsinki, Finland
| |
Collapse
|
3
|
Ou X, Ma C, Sun D, Xu J, Wang Y, Wu X, Wang D, Yang S, Gao N, Song C, Li L. SecY translocon chaperones protein folding during membrane protein insertion. Cell 2025; 188:1912-1924.e13. [PMID: 39978345 DOI: 10.1016/j.cell.2025.01.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 09/16/2024] [Accepted: 01/27/2025] [Indexed: 02/22/2025]
Abstract
The Sec translocon is vital for guiding membrane protein insertion into lipid bilayers. The insertion and folding processes of membrane proteins are poorly understood. Here, we report cryo-electron microscopy structures of multi-spanning membrane proteins inserting through the SecY channel, the Sec translocon in prokaryotes. The high-resolution structures illustrate how bulky amino acids pass the narrow channel restriction. Comparison of different translocation states reveals that the cytoplasmic and extracellular cavities of the channel create distinct environments for promoting the unfolding and folding of transmembrane segments (TMs), respectively. Released substrate TMs are either flexible or stabilized by an unexpected hydrophilic groove between TM3 and TM4 of SecY. Disruption of the groove causes global defects in the folding of the membrane proteome. These findings demonstrate that beyond its role as a passive protein-conducting channel, the SecY translocon actively serves as a chaperone, employing multiple mechanisms to promote membrane protein insertion and folding.
Collapse
Affiliation(s)
- Xiaomin Ou
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Chengying Ma
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Dongjie Sun
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Jinkun Xu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Yang Wang
- Center for Quantitative Biology & Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Xiaofei Wu
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China
| | - Dali Wang
- Center for Quantitative Biology & Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Song Yang
- Center for Quantitative Biology & Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ning Gao
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China; National Biomedical Imaging Center, Beijing Advanced Center of RNA Biology (BEACON), Peking University, Beijing 100871, China.
| | - Chen Song
- Center for Quantitative Biology & Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.
| | - Long Li
- State Key Laboratory of Membrane Biology, Peking-Tsinghua Center for Life Sciences, School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
4
|
Thomasson LV, Witham CM, Steuart RFL, Dye DE, Mousley CJ. Defective gating of the Sec61 translocon results in reorganisation of the actin cytoskeleton and perturbed formation of the actomyosin contractile ring. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119932. [PMID: 40112953 DOI: 10.1016/j.bbamcr.2025.119932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
The Sec61 complex sits between the distinct environments of the cytosol and the ER lumen and it's appropriate gating is essential to prevent the deleterious flux of molecules and ions between them. Using the sss1-7 mutant we show that actin dynamics is grossly perturbed when translocon gating is defective. Importantly, normal actin morphology is restored when sss1-7 translocon gating defects are suppressed or when these cells are treated with cell-permeable Ca2+ chelators. Our findings underscore the importance of translocon gating, particularly in regulating Ca2+ homeostasis, in the overall regulation and functional distribution of the actin cytoskeleton.
Collapse
Affiliation(s)
- Lee V Thomasson
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Medical Research Institute, Curtin University, Bentley, WA 6102, Australia.
| | - Christopher M Witham
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Medical Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Robert F L Steuart
- Curtin Medical Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Danielle E Dye
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Medical Research Institute, Curtin University, Bentley, WA 6102, Australia
| | - Carl J Mousley
- Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Medical Research Institute, Curtin University, Bentley, WA 6102, Australia.
| |
Collapse
|
5
|
Lentzsch AM, Lee JH, Shan SO. Mechanistic Insights into Protein Biogenesis and Maturation on the Ribosome. J Mol Biol 2025:169056. [PMID: 40024436 DOI: 10.1016/j.jmb.2025.169056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
The ribosome is a major cellular machine that converts genetic information into biological function. Emerging data show that the ribosome is not only a protein synthesis machine, but also participates in the maturation of the nascent protein into properly folded and active molecules. The ribosome surface near the opening of the polypeptide exit tunnel can interact directly with the newly synthesized proteins and, more importantly, provides a platform where numerous protein biogenesis factors assemble, gain access to the nascent chain, and direct them into diverse biogenesis pathways. In this article, we review the current understanding of cotranslational protein maturation pathways, with an emphasis on systems in which biochemical studies provided a high-resolution molecular understanding and yielded generalizable mechanistic principles.
Collapse
Affiliation(s)
- Alfred M Lentzsch
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States
| | - Jae Ho Lee
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, NY 11794, United States
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, United States.
| |
Collapse
|
6
|
Grau B, Kormos R, Bañó-Polo M, Chen K, García-Murria MJ, Hajredini F, Sánchez del Pino MM, Jo H, Martínez-Gil L, von Heijne G, DeGrado WF, Mingarro I. Sequence-dependent scale for translocon-mediated insertion of interfacial helices in membranes. SCIENCE ADVANCES 2025; 11:eads6804. [PMID: 39970206 PMCID: PMC11837994 DOI: 10.1126/sciadv.ads6804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Biological membranes consist of a lipid bilayer studded with integral and peripheral membrane proteins. Most α-helical membrane proteins require protein-conducting insertases known as translocons to assist in their membrane insertion and folding. While the sequence-dependent propensities for a helix to either translocate through the translocon or insert into the membrane have been codified into numerical hydrophobicity scales, the corresponding propensity to partition into the membrane interface remains unrevealed. By engineering diagnostic glycosylation sites around test peptide sequences inserted into a host protein, we devised a system that can differentiate between water-soluble, surface-bound, and transmembrane (TM) states of the sequence based on its glycosylation pattern. Using this system, we determined the sequence-dependent propensities for transfer from the translocon to a TM, interfacial, or extramembrane space and compared these propensities with the corresponding probability distributions determined from the sequences and structures of experimentally determined proteins.
Collapse
Affiliation(s)
- Brayan Grau
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Rian Kormos
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Manuel Bañó-Polo
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Kehan Chen
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - María J. García-Murria
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Fatlum Hajredini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Manuel M. Sánchez del Pino
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Hyunil Jo
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Luis Martínez-Gil
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Gunnar von Heijne
- Science for Life Laboratory, Department of Biochemistry and Biophysics, Stockholm University, SE-10691 Stockholm, Sweden
| | - William F. DeGrado
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
| | - Ismael Mingarro
- Institute for Biotechnology and Biomedicine (BIOTECMED), Department of Biochemistry and Molecular Biology, University of Valencia, E-46100 Burjassot, Spain
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
7
|
Hsieh LTH, Hall BS, Newcombe J, Mendum TA, Varela SS, Umrania Y, Deery MJ, Shi WQ, Diaz-Delgado J, Salguero FJ, Simmonds RE. The Mycobacterium ulcerans toxin mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane to drive skin necrosis. eLife 2025; 12:RP86931. [PMID: 39913180 PMCID: PMC11801798 DOI: 10.7554/elife.86931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025] Open
Abstract
The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on human primary vascular endothelial cells in vitro. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo during M. ulcerans infection in the mouse model. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.
Collapse
Affiliation(s)
- Louise Tzung-Harn Hsieh
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Belinda S Hall
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Jane Newcombe
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Tom A Mendum
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Sonia Santana Varela
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, University of CambridgeCambridgeUnited Kingdom
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of CambridgeCambridgeUnited Kingdom
| | - Wei Q Shi
- Department of Chemistry, Ball State UniversityMuncieUnited States
| | - Josué Diaz-Delgado
- Texas A&M Veterinary Medical Diagnostic LaboratoryCollege StationUnited States
| | | | - Rachel E Simmonds
- Discipline of Microbes, Infection & Immunity, School of Biosciences, Faculty of Health and Medical Sciences, University of SurreyGuildfordUnited Kingdom
| |
Collapse
|
8
|
Sorout N, Helms V. Toward Understanding the Mechanism of Client-Selective Small Molecule Inhibitors of the Sec61 Translocon. J Mol Recognit 2025; 38:e3108. [PMID: 39394908 DOI: 10.1002/jmr.3108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/28/2024] [Accepted: 09/27/2024] [Indexed: 10/14/2024]
Abstract
The Sec61 translocon mediates the translocation of numerous, newly synthesized precursor proteins into the lumen of the endoplasmic reticulum or their integration into its membrane. Recently, structural biology revealed conformations of idle or substrate-engaged Sec61, and likewise its interactions with the accessory membrane proteins Sec62, Sec63, and TRAP, respectively. Several natural and synthetic small molecules have been shown to block Sec61-mediated protein translocation. Since this is a key step in protein biogenesis, broad inhibition is generally cytotoxic, which may be problematic for a putative drug target. Interestingly, several compounds exhibit client-selective modes of action, such that only translocation of certain precursor proteins was affected. Here, we discuss recent advances of structural biology, molecular modelling, and molecular screening that aim to use Sec61 as feasible drug target.
Collapse
Affiliation(s)
- Nidhi Sorout
- Center for Bioinformatics, Saarland University, Saarbrücken, Saarland, Germany
| | - Volkhard Helms
- Center for Bioinformatics, Saarland University, Saarbrücken, Saarland, Germany
| |
Collapse
|
9
|
Xu X, Bell TW, Le T, Zhao I, Walker E, Wang Y, Xu N, Soleimanpour SA, Russ HA, Qi L, Tsai B, Liu M, Arvan P. Role of Sec61α2 Translocon in Insulin Biosynthesis. Diabetes 2024; 73:2034-2044. [PMID: 39325584 PMCID: PMC11579409 DOI: 10.2337/db24-0115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024]
Abstract
Translocational regulation of proinsulin biosynthesis in pancreatic β-cells is unknown, although several studies have reported an important accessory role for the Translocon-Associated Protein complex to assist preproinsulin delivery into the endoplasmic reticulum via the heterotrimeric Sec61 translocon (comprising α, β, and γ subunits). The actual protein-conducting channel is the α-subunit encoded either by Sec61A1 or its paralog Sec61A2. Although the underlying channel selectivity for preproinsulin translocation is unknown, almost all studies of Sec61α to date have focused on Sec61α1. There is currently no evidence to suggest that this gene product plays a major role in proinsulin production, whereas genome-wide association studies indicate linkage of Sec61A2 with diabetes. Here, we report that evolutionary differences in mouse preproinsulin signal peptides affect proinsulin biosynthesis. Moreover, we find that, although some preproinsulin translocation can proceed through Sec61α1, Sec61α2 has a greater impact on proinsulin biosynthesis in pancreatic β-cells. Remarkably, Sec61α2 translocon deficiency exerts a significant inhibitory effect on the biosynthesis of preproinsulin itself, including a disproportionate increase of full-length nascent chain unreleased from ribosomes. This study not only reveals novel translocational regulation of proinsulin biosynthesis but also provides a rationale for genetic evidence suggesting an important role of Sec61α2 in maintaining blood glucose homeostasis. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xiaoxi Xu
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | | | - Truc Le
- Department of Chemistry, University of Nevada, Reno, NV
| | - Ivy Zhao
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Emily Walker
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Yiqing Wang
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Ning Xu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Scott A. Soleimanpour
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| | - Holger A. Russ
- Diabetes Institute, University of Florida College of Medicine, Gainesville, FL
| | - Ling Qi
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA
| | - Billy Tsai
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI
| | - Ming Liu
- Department of Endocrinology and Metabolism, Tianjin Medical University General Hospital, Tianjin, China
| | - Peter Arvan
- Division of Metabolism, Endocrinology & Diabetes, University of Michigan Medical School, Ann Arbor, MI
| |
Collapse
|
10
|
Ottens F, Efstathiou S, Hoppe T. Cutting through the stress: RNA decay pathways at the endoplasmic reticulum. Trends Cell Biol 2024; 34:1056-1068. [PMID: 38008608 DOI: 10.1016/j.tcb.2023.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/28/2023]
Abstract
The endoplasmic reticulum (ER) is central to the processing of luminal, transmembrane, and secretory proteins, and maintaining a functional ER is essential for organismal physiology and health. Increased protein-folding load on the ER causes ER stress, which activates quality control mechanisms to restore ER function and protein homeostasis. Beyond protein quality control, mRNA decay pathways have emerged as potent ER fidelity regulators, but their mechanistic roles in ER quality control and their interrelationships remain incompletely understood. Herein, we review ER-associated RNA decay pathways - including regulated inositol-requiring enzyme 1α (IRE1α)-dependent mRNA decay (RIDD), nonsense-mediated mRNA decay (NMD), and Argonaute-dependent RNA silencing - in ER homeostasis, and highlight the intricate coordination of ER-targeted RNA and protein decay mechanisms and their association with antiviral defense.
Collapse
Affiliation(s)
- Franziska Ottens
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Sotirios Efstathiou
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany
| | - Thorsten Hoppe
- Institute for Genetics, University of Cologne, Cologne, Germany; Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Center for Molecular Medicine Cologne (CMMC), Faculty of Medicine and University Hospital of Cologne, Cologne, Germany.
| |
Collapse
|
11
|
Wang H, Hegde RS. Identification of a factor that accelerates substrate release from the signal recognition particle. Science 2024; 386:996-1003. [PMID: 39607913 PMCID: PMC7617331 DOI: 10.1126/science.adp0787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 08/18/2024] [Accepted: 09/24/2024] [Indexed: 11/30/2024]
Abstract
The eukaryotic signal recognition particle (SRP) cotranslationally recognizes the first hydrophobic segment of nascent secretory and membrane proteins and delivers them to a receptor at the endoplasmic reticulum (ER). How substrates are released from SRP at the ER to subsequently access translocation factors is not well understood. We found that TMEM208 can engage the substrate binding domain of SRP to accelerate release of its bound cargo. Without TMEM208, slow cargo release resulted in excessive synthesis of downstream polypeptide before engaging translocation factors. Delayed access to translocation machinery caused progressive loss of insertion competence, particularly for multipass membrane proteins, resulting in their impaired biogenesis. Thus, TMEM208 facilitates prompt cargo handover from the targeting to translocation machinery to minimize biogenesis errors and maintain protein homeostasis.
Collapse
Affiliation(s)
- Huping Wang
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | |
Collapse
|
12
|
Kalinin IA, Peled-Zehavi H, Barshap ABD, Tamari SA, Weiss Y, Nevo R, Fluman N. Features of membrane protein sequence direct post-translational insertion. Nat Commun 2024; 15:10198. [PMID: 39587101 PMCID: PMC11589881 DOI: 10.1038/s41467-024-54575-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 11/13/2024] [Indexed: 11/27/2024] Open
Abstract
The proper folding of multispanning membrane proteins (MPs) hinges on the accurate insertion of their transmembrane helices (TMs) into the membrane. Predominantly, TMs are inserted during protein translation, via a conserved mechanism centered around the Sec translocon. Our study reveals that the C-terminal TMs (cTMs) of numerous MPs across various organisms bypass this cotranslational route, necessitating an alternative posttranslational insertion strategy. We demonstrate that evolution has refined the hydrophilicity and length of the C-terminal tails of these proteins to optimize cTM insertion. Alterations in the C-tail sequence disrupt cTM insertion in both E. coli and human, leading to protein defects, loss of function, and genetic diseases. In E. coli, we identify YidC, a member of the widespread Oxa1 family, as the insertase facilitating cTMs insertion, with C-tail mutations disrupting the productive interaction of cTMs with YidC. Thus, MP sequences are fine-tuned for effective collaboration with the cellular biogenesis machinery, ensuring proper membrane protein folding.
Collapse
Affiliation(s)
- Ilya A Kalinin
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Hadas Peled-Zehavi
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Alon B D Barshap
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shai A Tamari
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Yarden Weiss
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Reinat Nevo
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nir Fluman
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
13
|
Hooda Y, Sente A, Judy RM, Smalinskaitė L, Peak-Chew SY, Naydenova K, Malinauskas T, Hardwick SW, Chirgadze DY, Aricescu AR, Hegde RS. Mechanism of NACHO-mediated assembly of pentameric ligand-gated ion channels. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.28.620708. [PMID: 39553992 PMCID: PMC11565801 DOI: 10.1101/2024.10.28.620708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Pentameric ligand-gated ion channels (pLGICs) are cell surface receptors of crucial importance for animal physiology1-4. This diverse protein family mediates the ionotropic signals triggered by major neurotransmitters and includes γ-aminobutyric acid receptors (GABAARs) and acetylcholine receptors (nAChRs). Receptor function is fine-tuned by a myriad of endogenous and pharmacological modulators3. A functional pLGIC is built from five homologous, sometimes identical, subunits, each containing a β-scaffold extracellular domain (ECD), a four-helix transmembrane domain (TMD) and intracellular loops of variable length. Although considerable progress has been made in understanding pLGICs in structural and functional terms, the molecular mechanisms that enable their assembly at the endoplasmic reticulum (ER)5 in a vast range of potential subunit configurations6 remain unknown. Here, we identified candidate pLGICs assembly factors selectively associated with an unassembled GABAAR subunit. Focusing on one of the candidates, we determined the cryo-EM structure of an assembly intermediate containing two α1 subunits of GABAAR each bound to an ER-resident membrane protein NACHO. The structure showed how NACHO shields the principal (+) transmembrane interface of α1 subunits containing an immature extracellular conformation. Crosslinking and structure-prediction revealed an adjacent surface on NACHO for β2 subunit interactions to guide stepwise oligimerisation. Mutations of either subunit-interacting surface on NACHO also impaired the formation of homopentameric α7 nAChRs, pointing to a generic framework for pLGIC assembly. Our work provides the foundation for understanding the regulatory principles underlying pLGIC structural diversity.
Collapse
Affiliation(s)
- Yogesh Hooda
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Equal contribution
| | - Andrija Sente
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Equal contribution
| | - Ryan M. Judy
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
- Equal contribution
| | - Luka Smalinskaitė
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | - Sew-Yeu Peak-Chew
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | | | - Tomas Malinauskas
- Division of Structural Biology, Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, United Kingdom
| | - Steven W. Hardwick
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - Dimitri Y. Chirgadze
- Department of Biochemistry, University of Cambridge, Cambridge, CB2 1GA, United Kingdom
| | - A. Radu Aricescu
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, United Kingdom
| | | |
Collapse
|
14
|
Gemin O, Gluc M, Rosa H, Purdy M, Niemann M, Peskova Y, Mattei S, Jomaa A. Ribosomes hibernate on mitochondria during cellular stress. Nat Commun 2024; 15:8666. [PMID: 39379376 PMCID: PMC11461667 DOI: 10.1038/s41467-024-52911-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 09/23/2024] [Indexed: 10/10/2024] Open
Abstract
Cell survival under nutrient-deprived conditions relies on cells' ability to adapt their organelles and rewire their metabolic pathways. In yeast, glucose depletion induces a stress response mediated by mitochondrial fragmentation and sequestration of cytosolic ribosomes on mitochondria. This cellular adaptation promotes survival under harsh environmental conditions; however, the underlying mechanism of this response remains unknown. Here, we demonstrate that upon glucose depletion protein synthesis is halted. Cryo-electron microscopy structure of the ribosomes show that they are devoid of both tRNA and mRNA, and a subset of the particles depicted a conformational change in rRNA H69 that could prevent tRNA binding. Our in situ structural analyses reveal that the hibernating ribosomes tether to fragmented mitochondria and establish eukaryotic-specific, higher-order storage structures by assembling into oligomeric arrays on the mitochondrial surface. Notably, we show that hibernating ribosomes exclusively bind to the outer mitochondrial membrane via the small ribosomal subunit during cellular stress. We identify the ribosomal protein Cpc2/RACK1 as the molecule mediating ribosomal tethering to mitochondria. This study unveils the molecular mechanism connecting mitochondrial stress with the shutdown of protein synthesis and broadens our understanding of cellular responses to nutrient scarcity and cell quiescence.
Collapse
Affiliation(s)
- Olivier Gemin
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, Heidelberg, Germany
| | - Maciej Gluc
- Department of Molecular Physiology and Biological Physics and Center for Cell and Membrane Physiology, School of Medicine, University of Virginia, Charlottesville, USA
| | - Higor Rosa
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, Heidelberg, Germany
| | - Michael Purdy
- Department of Molecular Physiology and Biological Physics and Center for Cell and Membrane Physiology, School of Medicine, University of Virginia, Charlottesville, USA
| | - Moritz Niemann
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, Heidelberg, Germany
| | - Yelena Peskova
- Department of Molecular Physiology and Biological Physics and Center for Cell and Membrane Physiology, School of Medicine, University of Virginia, Charlottesville, USA
| | - Simone Mattei
- European Molecular Biology Laboratory, Structural and Computational Biology Unit, Meyerhofstraße 1, Heidelberg, Germany.
- European Molecular Biology Laboratory, Imaging Centre, Meyerhofstraße 1, Heidelberg, Germany.
| | - Ahmad Jomaa
- Department of Molecular Physiology and Biological Physics and Center for Cell and Membrane Physiology, School of Medicine, University of Virginia, Charlottesville, USA.
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Virginia, Charlottesville, USA.
| |
Collapse
|
15
|
Hsieh LTH, Hall BS, Newcombe J, Mendum TA, Santana-Varela S, Umrania Y, Deery MJ, Shi WQ, Diaz-Delgado J, Salguero FJ, Simmonds RE. Mycolactone causes destructive Sec61-dependent loss of the endothelial glycocalyx and vessel basement membrane: a new indirect mechanism driving tissue necrosis in Mycobacterium ulcerans infection. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.21.529382. [PMID: 36865118 PMCID: PMC9980099 DOI: 10.1101/2023.02.21.529382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The drivers of tissue necrosis in Mycobacterium ulcerans infection (Buruli ulcer disease) have historically been ascribed solely to the directly cytotoxic action of the diffusible exotoxin, mycolactone. However, its role in the clinically-evident vascular component of disease aetiology remains poorly explained. We have now dissected mycolactone's effects on primary vascular endothelial cells in vitro and in vivo. We show that mycolactone-induced changes in endothelial morphology, adhesion, migration, and permeability are dependent on its action at the Sec61 translocon. Unbiased quantitative proteomics identified a profound effect on proteoglycans, driven by rapid loss of type II transmembrane proteins of the Golgi, including enzymes required for glycosaminoglycan (GAG) synthesis, combined with a reduction in the core proteins themselves. Loss of the glycocalyx is likely to be of particular mechanistic importance, since knockdown of galactosyltransferase II (beta-1,3-galactotransferase 6; B3GALT6), the GAG linker-building enzyme, phenocopied the permeability and phenotypic changes induced by mycolactone. Additionally, mycolactone depleted many secreted basement membrane components and microvascular basement membranes were disrupted in vivo. Remarkably, exogenous addition of laminin-511 reduced endothelial cell rounding, restored cell attachment and reversed the defective migration caused by mycolactone. Hence supplementing mycolactone-depleted extracellular matrix may be a future therapeutic avenue, to improve wound healing rates.
Collapse
Affiliation(s)
| | - Belinda S Hall
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Jane Newcombe
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Tom A Mendum
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Sonia Santana-Varela
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| | - Yagnesh Umrania
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Michael J Deery
- Cambridge Centre for Proteomics, University of Cambridge, Cambridge, UK
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, IN 47306, USA
| | - Josué Diaz-Delgado
- Texas A&M Veterinary Medical Diagnostic Laboratory, College Station, Texas, USA
| | | | - Rachel E Simmonds
- Dept of Microbial Sciences, School of Bioscience and Medicine, University of Surrey
| |
Collapse
|
16
|
Page KR, Nguyen VN, Pleiner T, Tomaleri GP, Wang ML, Guna A, Hazu M, Wang TY, Chou TF, Voorhees RM. Role of a holo-insertase complex in the biogenesis of biophysically diverse ER membrane proteins. Mol Cell 2024; 84:3302-3319.e11. [PMID: 39173640 DOI: 10.1016/j.molcel.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 04/19/2024] [Accepted: 08/02/2024] [Indexed: 08/24/2024]
Abstract
Mammalian membrane proteins perform essential physiologic functions that rely on their accurate insertion and folding at the endoplasmic reticulum (ER). Using forward and arrayed genetic screens, we systematically studied the biogenesis of a panel of membrane proteins, including several G-protein-coupled receptors (GPCRs). We observed a central role for the insertase, the ER membrane protein complex (EMC), and developed a dual-guide approach to identify genetic modifiers of the EMC. We found that the back of Sec61 (BOS) complex, a component of the multipass translocon, was a physical and genetic interactor of the EMC. Functional and structural analysis of the EMC⋅BOS holocomplex showed that characteristics of a GPCR's soluble domain determine its biogenesis pathway. In contrast to prevailing models, no single insertase handles all substrates. We instead propose a unifying model for coordination between the EMC, the multipass translocon, and Sec61 for the biogenesis of diverse membrane proteins in human cells.
Collapse
Affiliation(s)
- Katharine R Page
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Vy N Nguyen
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Tino Pleiner
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Maxine L Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Alina Guna
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Ting-Yu Wang
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, 1200 E. California Ave., Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
17
|
Wenzell NA, Tuch BB, McMinn DL, Lyons MJ, Kirk CJ, Taunton J. Global signal peptide profiling reveals principles of selective Sec61 inhibition. Nat Chem Biol 2024; 20:1154-1163. [PMID: 38519575 DOI: 10.1038/s41589-024-01592-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Cotransins target the Sec61 translocon and inhibit the biogenesis of an undefined subset of secretory and membrane proteins. Remarkably, cotransin inhibition depends on the unique signal peptide (SP) of each Sec61 client, which is required for cotranslational translocation into the endoplasmic reticulum. It remains unknown how an SP's amino acid sequence and biophysical properties confer sensitivity to structurally distinct cotransins. Here we describe a fluorescence-based, pooled-cell screening platform to interrogate nearly all human SPs in parallel. We profiled two cotransins with distinct effects on cancer cells and discovered a small subset of SPs, including the oncoprotein human epidermal growth factor receptor 3 (HER3), with increased sensitivity to the more selective cotransin, KZR-9873. By comparing divergent mouse and human orthologs, we unveiled a position-dependent effect of arginine on SP sensitivity. Our multiplexed profiling platform reveals how cotransins can exploit subtle sequence differences to achieve SP discrimination.
Collapse
Affiliation(s)
- Nicole A Wenzell
- Chemistry and Chemical Biology Program, University of California, San Francisco, San Francisco, CA, USA
| | - Brian B Tuch
- Kezar Life Sciences, South San Francisco, CA, USA
| | | | - Matthew J Lyons
- Chemistry and Chemical Biology Program, University of California, San Francisco, San Francisco, CA, USA
| | | | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
18
|
Carilo I, Senju Y, Yokoyama T, Robinson RC. Intercompatibility of eukaryotic and Asgard archaea ribosome-translocon machineries. J Biol Chem 2024; 300:107673. [PMID: 39128722 PMCID: PMC11417166 DOI: 10.1016/j.jbc.2024.107673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 08/02/2024] [Indexed: 08/13/2024] Open
Abstract
In all domains of life, the ribosome-translocon complex inserts nascent transmembrane proteins into, and processes and transports signal peptide-containing proteins across, membranes. Eukaryotic translocons are anchored in the endoplasmic reticulum, while the prokaryotic complexes reside in cell membranes. Phylogenetic analyses indicate the inheritance of eukaryotic Sec61/oligosaccharyltransferase/translocon-associated protein translocon subunits from an Asgard archaea ancestor. However, the mechanism for translocon migration from a peripheral membrane to an internal cellular compartment (the proto-endoplasmic reticulum) during eukaryogenesis is unknown. Here we show compatibility between the eukaryotic ribosome-translocon complex and Asgard signal peptides and transmembrane proteins. We find that Asgard translocon proteins from Candidatus Prometheoarchaeum syntrophicum strain Candidatus Prometheoarchaeum syntrophicum strain MK-D1, a Lokiarchaeon confirmed to contain no internal cellular membranes, are targeted to the eukaryotic endoplasmic reticulum on ectopic expression. Furthermore, we show that the cytoplasmic domain of Candidatus Prometheoarchaeum syntrophicum strain MK-D1 oligosaccharyltransferase 1 (ribophorin I) can interact with eukaryotic ribosomes. Our data indicate that the location of existing ribosome-translocon complexes, at the protein level, determines the future placement of yet-to-be-translated translocon subunits. This principle predicts that during eukaryogenesis, under positive selection pressure, the relocation of a few translocon complexes to the proto-endoplasmic reticulum will have contributed to propagating the new translocon location, leading to their loss from the cell membrane.
Collapse
Affiliation(s)
- Isaac Carilo
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan
| | - Yosuke Senju
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan.
| | - Takeshi Yokoyama
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Robert C Robinson
- Research Institute for Interdisciplinary Science (RIIS), Okayama University, Okayama, Japan; School of Biomolecular Science and Engineering (BSE), Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand.
| |
Collapse
|
19
|
Gao J, Zhang YW. The Pathway of a Transmembrane Helix Insertion into the Membrane Assisted by Sec61α Channel. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16454-16462. [PMID: 39046853 DOI: 10.1021/acs.langmuir.4c01776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
The significant inconsistency between the experimental and simulation results of the free energy for the translocon-assisted insertion of the transmembrane helix (TMH) has not been reasonably explained. Understanding the mechanism of TMH insertion through the translocon is the key to solving this problem. In this study, we performed a series of coarse-grained molecular dynamics simulations and calculated the potential mean forces (PMFs) for three insertion processes of a hydrophobic TMH. The simulations reveal the pathway of the TMH insertion assisted by a translocon. The results indicate that the TMH contacts the top of the lateral gate first and then inserts down the lateral gate, which agrees with the sliding model. The TMH begins to transfer laterally to the bilayer when it is blocked by the plug and reaches the exit of the lateral gate, where there is a free energy minimum point. We also found that the connecting section between TM2 and TM3 of Sec61α prevented TMH from leaving the lateral gate and directly transitioning to the surface-bound state. These findings provide insight into the mechanism of the insertion of TMH through the translocon.
Collapse
Affiliation(s)
- Jian Gao
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, People's Republic of China
- Jiangsu Provincial Engineering Research Center of Grain Bioprocessing, Zhenjiang 212100, People's Republic of China
| | - Ye-Wang Zhang
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, People's Republic of China
| |
Collapse
|
20
|
Rapoport TA. A Life of Translocations. Annu Rev Biochem 2024; 93:1-20. [PMID: 38029368 DOI: 10.1146/annurev-biochem-030122-040444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
Writing a career retrospective for this prestigious series is a huge challenge. Is my story really of that much interest? One thing that is different about my life in science is the heavy influence of the turmoil of the past century. Born in the US, raised in East Germany, and returning to the US relatively late in life, I experienced research under both suboptimal and privileged conditions. My scientific story, like the political winds that blew me from one continent to the next, involved shifts into different fields. For advice to young scientists, I would suggest: Don't be afraid to start something new, it pays to be persistent, and science is a passion. In addition to telling my own story, this article also provides the opportunity to express my gratitude to my trainees and colleagues and to convey my conviction that we have the best job on earth.
Collapse
Affiliation(s)
- Tom A Rapoport
- Department of Cell Biology, Harvard Medical School, and Howard Hughes Medical Institute, Boston, Massachusetts, USA;
| |
Collapse
|
21
|
Onwunma J, Binsabaan S, Allen SP, Sankaran B, Wohlever ML. The structural and biophysical basis of substrate binding to the hydrophobic groove in Ubiquilin Sti1 domains. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.10.602902. [PMID: 39026758 PMCID: PMC11257586 DOI: 10.1101/2024.07.10.602902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Ubiquilins are a family of cytosolic proteins that ferry ubiquitinated substrates to the proteasome for degradation. Recent work has demonstrated that Ubiquilins can also act as molecular chaperones, utilizing internal Sti1 domains to directly bind to hydrophobic sequences. Ubiquilins are associated with several neurodegenerative diseases with point mutations in UBQLN2 causing dominant, X-linked Amyotrophic Lateral Sclerosis (ALS). The molecular basis of Ubiquilin chaperone activity and how ALS mutations in the Sti1 domains affect Ubiquilin activity are poorly understood. This study presents the first crystal structure of the Sti1 domain from a fungal Ubiquilin homolog bound to a transmembrane domain (TMD). The structure reveals that two Sti1 domains form a head-to-head dimer, creating a hydrophobic cavity that accommodates two TMDs. Mapping the UBQLN2 sequence onto the structure shows that several ALS mutations are predicted to disrupt the hydrophobic groove. Using a newly developed competitive binding assay, we show that Ubiquilins preferentially bind to hydrophobic substrates with low helical propensity, motifs that are enriched in both substrates and in Ubiquilins. This study provides insights into the molecular and structural basis for Ubiquilin substrate binding, with broad implications for the role of the Sti1 domain in phase separation and ALS.
Collapse
Affiliation(s)
- Joan Onwunma
- Previously at University of Toledo, Department of Chemistry & Biochemistry
| | | | - Shawn P Allen
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| | - Banumathi Sankaran
- Lawrence Berkley National Lab, Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging
| | - Matthew L Wohlever
- Previously at University of Toledo, Department of Chemistry & Biochemistry
- University of Pittsburgh, Department of Cell Biology
| |
Collapse
|
22
|
Hegde RS, Keenan RJ. A unifying model for membrane protein biogenesis. Nat Struct Mol Biol 2024; 31:1009-1017. [PMID: 38811793 PMCID: PMC7616256 DOI: 10.1038/s41594-024-01296-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/25/2024] [Indexed: 05/31/2024]
Abstract
α-Helical integral membrane proteins comprise approximately 25% of the proteome in all organisms. The membrane proteome is highly diverse, varying in the number, topology, spacing and properties of transmembrane domains. This diversity imposes different constraints on the insertion of different regions of a membrane protein into the lipid bilayer. Here, we present a cohesive framework to explain membrane protein biogenesis, in which different parts of a nascent substrate are triaged between Oxa1 and SecY family members for insertion. In this model, Oxa1 family proteins insert transmembrane domains flanked by short translocated segments, whereas the SecY channel is required for insertion of transmembrane domains flanked by long translocated segments. Our unifying model rationalizes evolutionary, genetic, biochemical and structural data across organisms and provides a foundation for future mechanistic studies of membrane protein biogenesis.
Collapse
Affiliation(s)
- Ramanujan S Hegde
- Cell Biology Division, MRC Laboratory of Molecular Biology, Cambridge, UK.
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
23
|
Lewis AJO, Zhong F, Keenan RJ, Hegde RS. Structural analysis of the dynamic ribosome-translocon complex. eLife 2024; 13:RP95814. [PMID: 38896445 PMCID: PMC11186639 DOI: 10.7554/elife.95814] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
The protein translocon at the endoplasmic reticulum comprises the Sec61 translocation channel and numerous accessory factors that collectively facilitate the biogenesis of secretory and membrane proteins. Here, we leveraged recent advances in cryo-electron microscopy (cryo-EM) and structure prediction to derive insights into several novel configurations of the ribosome-translocon complex. We show how a transmembrane domain (TMD) in a looped configuration passes through the Sec61 lateral gate during membrane insertion; how a nascent chain can bind and constrain the conformation of ribosomal protein uL22; and how the translocon-associated protein (TRAP) complex can adjust its position during different stages of protein biogenesis. Most unexpectedly, we find that a large proportion of translocon complexes contains RAMP4 intercalated into Sec61's lateral gate, widening Sec61's central pore and contributing to its hydrophilic interior. These structures lead to mechanistic hypotheses for translocon function and highlight a remarkably plastic machinery whose conformations and composition adjust dynamically to its diverse range of substrates.
Collapse
Affiliation(s)
- Aaron JO Lewis
- MRC Laboratory of Molecular BiologyCambridgeUnited Kingdom
| | - Frank Zhong
- Department of Molecular Genetics and Cell Biology, The University of ChicagoChicagoUnited States
| | - Robert J Keenan
- Department of Biochemistry and Molecular Biology, The University of ChicagoChicagoUnited States
| | | |
Collapse
|
24
|
Mattos D, Neves WD, Kitamura T, Pradhan R, Wan X, da Hora CC, Tranter D, Kazemi S, Yu X, Tripathy N, Paavilainen VO, McPhail KL, Oishi S, Badr CE, Ishmael JE. Diastereomers of Coibamide A Show Altered Sec61 Client Selectivity and Ligand-Dependent Activity against Patient-Derived Glioma Stem-like Cells. ACS Pharmacol Transl Sci 2024; 7:1823-1838. [PMID: 38898945 PMCID: PMC11184607 DOI: 10.1021/acsptsci.4c00049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 06/21/2024]
Abstract
Coibamide A (CbA) is a cyanobacterial lariat depsipeptide that selectively inhibits multiple secreted and integral membrane proteins from entering the endoplasmic reticulum secretory pathway through binding the alpha subunit of the Sec61 translocon. As a complex peptide-based macrocycle with 13 stereogenic centers, CbA is presumed to adopt a conformationally restricted orientation in the ligand-bound state, resulting in potent antitumor and antiangiogenic bioactivity. A stereochemical structure-activity relationship for CbA was previously defined based on cytotoxicity against established cancer cell lines. However, the ability of synthetic isomers to inhibit the biosynthesis of specific Sec61 substrates was unknown. Here, we report that two less toxic diastereomers of CbA, [L-Hiv2]-CbA and [L-Hiv2, L-MeAla11]-CbA, are pharmacologically active Sec61 inhibitors. Both compounds inhibited the expression of a secreted reporter (Gaussia luciferase), VEGF-A, and a Type 1 membrane protein (VCAM1), while [L-Hiv2]-CbA also decreased the expression of ICAM1 and BiP/GRP78. Analysis of 43 different chemokines in the secretome of SF-268 glioblastoma cells revealed different inhibitory profiles for the two diastereomers. When the cytotoxic potential of CbA compounds was compared against a panel of patient-derived glioblastoma stem-like cells (GSCs), Sec61 inhibitors were remarkably toxic to five of the six GSCs tested. Each ligand showed a distinct cytotoxic potency and selectivity pattern for CbA-sensitive GSCs, with IC50 values ranging from subnanomolar to low micromolar concentrations. Together, these findings highlight the extreme sensitivity of GSCs to Sec61 modulation and the importance of ligand stereochemistry in determining the spectrum of inhibited Sec61 client proteins.
Collapse
Affiliation(s)
- Daphne
R. Mattos
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Willian das Neves
- Department
of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Takashi Kitamura
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
| | - Richa Pradhan
- Department
of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Xuemei Wan
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cintia Carla da Hora
- Department
of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Dale Tranter
- Institute
of Biotechnology, University of Helsinki, Helsinki 00014, Finland
| | - Soheila Kazemi
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Xinhui Yu
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Nirmalya Tripathy
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | | | - Kerry L. McPhail
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| | - Shinya Oishi
- Graduate
School of Pharmaceutical Sciences, Kyoto
University, Sakyo-ku, Kyoto 606-8501, Japan
- Laboratory
of Medicinal Chemistry, Kyoto Pharmaceutical
University, Yamashina-ku, Kyoto 607-8412, Japan
| | - Christian E. Badr
- Department
of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02129, United States
| | - Jane E. Ishmael
- Department
of Pharmaceutical Sciences, College of Pharmacy, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
25
|
Robeson L, Casanova‐Morales N, Burgos‐Bravo F, Alfaro‐Valdés HM, Lesch R, Ramírez‐Álvarez C, Valdivia‐Delgado M, Vega M, Matute RA, Schekman R, Wilson CAM. Characterization of the interaction between the Sec61 translocon complex and ppαF using optical tweezers. Protein Sci 2024; 33:e4996. [PMID: 38747383 PMCID: PMC11094780 DOI: 10.1002/pro.4996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 04/03/2024] [Accepted: 04/05/2024] [Indexed: 05/19/2024]
Abstract
The Sec61 translocon allows the translocation of secretory preproteins from the cytosol to the endoplasmic reticulum lumen during polypeptide biosynthesis. These proteins possess an N-terminal signal peptide (SP) which docks at the translocon. SP mutations can abolish translocation and cause diseases, suggesting an essential role for this SP/Sec61 interaction. However, a detailed biophysical characterization of this binding is still missing. Here, optical tweezers force spectroscopy was used to characterize the kinetic parameters of the dissociation process between Sec61 and the SP of prepro-alpha-factor. The unbinding parameters including off-rate constant and distance to the transition state were obtained by fitting rupture force data to Dudko-Hummer-Szabo models. Interestingly, the translocation inhibitor mycolactone increases the off-rate and accelerates the SP/Sec61 dissociation, while also weakening the interaction. Whereas the translocation deficient mutant containing a single point mutation in the SP abolished the specificity of the SP/Sec61 binding, resulting in an unstable interaction. In conclusion, we characterize quantitatively the dissociation process between the signal peptide and the translocon, and how the unbinding parameters are modified by a translocation inhibitor.
Collapse
Affiliation(s)
- Luka Robeson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Nathalie Casanova‐Morales
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
- Facultad de Artes LiberalesUniversidad Adolfo IbáñezSantiagoChile
| | - Francesca Burgos‐Bravo
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
- California Institute for Quantitative Biosciences, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Hilda M. Alfaro‐Valdés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Robert Lesch
- Department of Molecular and Cellular Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Carolina Ramírez‐Álvarez
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Mauricio Valdivia‐Delgado
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Marcela Vega
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| | - Ricardo A. Matute
- Centro Integrativo de Biología y Química Aplicada (CIBQA)Universidad Bernardo O'HigginsSantiagoChile
- Division of Chemistry and Chemical EngineeringCalifornia Institute of TechnologyPasadenaCaliforniaUSA
| | - Randy Schekman
- Department of Molecular and Cellular Biology, Howard Hughes Medical InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Christian A. M. Wilson
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y FarmacéuticasUniversidad de ChileSantiagoChile
| |
Collapse
|
26
|
Ji J, Cui MK, Zou R, Wu MZ, Ge MX, Li J, Zhang ZR. An ATP13A1-assisted topogenesis pathway for folding multi-spanning membrane proteins. Mol Cell 2024; 84:1917-1931.e15. [PMID: 38723633 DOI: 10.1016/j.molcel.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/15/2024] [Accepted: 04/17/2024] [Indexed: 05/19/2024]
Abstract
Many multi-spanning membrane proteins contain poorly hydrophobic transmembrane domains (pTMDs) protected from phospholipid in mature structure. Nascent pTMDs are difficult for translocon to recognize and insert. How pTMDs are discerned and packed into mature, muti-spanning configuration remains unclear. Here, we report that pTMD elicits a post-translational topogenesis pathway for its recognition and integration. Using six-spanning protein adenosine triphosphate-binding cassette transporter G2 (ABCG2) and cultured human cells as models, we show that ABCG2's pTMD2 can pass through translocon into the endoplasmic reticulum (ER) lumen, yielding an intermediate with inserted yet mis-oriented downstream TMDs. After translation, the intermediate recruits P5A-ATPase ATP13A1, which facilitates TMD re-orientation, allowing further folding and the integration of the remaining lumen-exposed pTMD2. Depleting ATP13A1 or disrupting pTMD-characteristic residues arrests intermediates with mis-oriented and exposed TMDs. Our results explain how a "difficult" pTMD is co-translationally skipped for insertion and post-translationally buried into the final correct structure at the late folding stage to avoid excessive lipid exposure.
Collapse
Affiliation(s)
- Jia Ji
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Meng-Ke Cui
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Rong Zou
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Ming-Zhi Wu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Man-Xi Ge
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Jiqiang Li
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China
| | - Zai-Rong Zhang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 100 Haike Road, Shanghai 201210, China; University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing 100101, China.
| |
Collapse
|
27
|
Zhu Q, Zhu X, Zhang L. ER membrane complex (EMC): Structure, functions, and roles in diseases. FASEB J 2024; 38:e23539. [PMID: 38498340 DOI: 10.1096/fj.202302266r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/22/2024] [Accepted: 02/21/2024] [Indexed: 03/20/2024]
Abstract
The endoplasmic reticulum (ER) is the largest membrane system in eukaryotic cells and is the primary site for the biosynthesis of lipids and carbohydrates, as well as for the folding, assembly, modification, and transport of secreted and integrated membrane proteins. The ER membrane complex (EMC) on the ER membrane is an ER multiprotein complex that affects the quality control of membrane proteins, which is abundant and widely preserved. Its disruption has been found to affect a wide range of processes, including protein and lipid synthesis, organelle communication, endoplasmic reticulum stress, and viral maturation, and may lead to neurodevelopmental disorders and cancer. Therefore, EMC has attracted the attention of many scholars and become a hot field. In this paper, we summarized the main contributions of the research of EMC in the past nearly 15 years, and reviewed the structure and function of EMC as well as its related diseases. We hope this review will promote further progress of research on EMC.
Collapse
Affiliation(s)
- Qi Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Xianjun Zhu
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Lin Zhang
- The Sichuan Provincial Key Laboratory for Human Disease Gene Study and Department of Laboratory Medicine, Center for Medical Genetics, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Sciences, Xining, Qinghai, China
| |
Collapse
|
28
|
Yang Y, Hou J, Luan J. Resistance mechanisms of Saccharomyces cerevisiae against silver nanoparticles with different sizes and coatings. Food Chem Toxicol 2024; 186:114581. [PMID: 38460669 DOI: 10.1016/j.fct.2024.114581] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 03/11/2024]
Abstract
To investigate the underlying resistance mechanisms of Saccharomyces cerevisiae against Ag-NPs with different particle sizes and coatings, transcriptome sequencing (RNA-seq) technology was used to characterize the transcriptomes from S. cerevisiae exposed to 20-PVP-Ag, 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag, respectively. The steroid biosynthesis was found as a general pathway for Ag-NPs stress responding, in which ERG6 and ERG3 were inhibited and ERG11, ERG25 and ERG5 were significantly up-regulated to resist the stress by supporting the later mutation and resistance and modulate drug efflux indirectly. The resistance mechanism of S. cerevisiae to 20-PVP-Ag seems different from that of 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag. Under the 20-PVP-Ag, transmembrane transporter activity, transition metal ion homeostasis and oxidative phosphorylation pathway were main resistance pathways to enhance cell transport processes. While 100-PVP-Ag, 20-CIT-Ag and 100-CIT-Ag mainly impacted RNA binding, structural constituent of ribosome and ribosome pathway which can provide more energy to maintain the number and function of protein in cells. This study reveals the differences in resistance mechanisms of S. cerevisiae to Ag-NPs with different particle sizes and coatings, and explains several main regulatory mechanisms used to respond to silver stress. It will provide theoretical basis for the study of chemical risk assessment.
Collapse
Affiliation(s)
- Yue Yang
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, PR China.
| | - Jian Luan
- College of Life Sciences, Jilin Normal University, Jilin, 136000, PR China
| |
Collapse
|
29
|
Gamerdinger M, Deuerling E. Cotranslational sorting and processing of newly synthesized proteins in eukaryotes. Trends Biochem Sci 2024; 49:105-118. [PMID: 37919225 DOI: 10.1016/j.tibs.2023.10.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/04/2023]
Abstract
Ribosomes interact with a variety of different protein biogenesis factors that guide newly synthesized proteins to their native 3D shapes and cellular localization. Depending on the type of translated substrate, a distinct set of cotranslational factors must interact with the ribosome in a timely and coordinated manner to ensure proper protein biogenesis. While cytonuclear proteins require cotranslational maturation and folding factors, secretory proteins must be maintained in an unfolded state and processed cotranslationally by transport and membrane translocation factors. Here we explore the specific cotranslational processing steps for cytonuclear, secretory, and membrane proteins in eukaryotes and then discuss how the nascent polypeptide-associated complex (NAC) cotranslationally sorts these proteins into the correct protein biogenesis pathway.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| | - Elke Deuerling
- Department of Biology, Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
30
|
Botsch JJ, Junker R, Sorgenfrei M, Ogger PP, Stier L, von Gronau S, Murray PJ, Seeger MA, Schulman BA, Bräuning B. Doa10/MARCH6 architecture interconnects E3 ligase activity with lipid-binding transmembrane channel to regulate SQLE. Nat Commun 2024; 15:410. [PMID: 38195637 PMCID: PMC10776854 DOI: 10.1038/s41467-023-44670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024] Open
Abstract
Transmembrane E3 ligases play crucial roles in homeostasis. Much protein and organelle quality control, and metabolic regulation, are determined by ER-resident MARCH6 E3 ligases, including Doa10 in yeast. Here, we present Doa10/MARCH6 structural analysis by cryo-EM and AlphaFold predictions, and a structure-based mutagenesis campaign. The majority of Doa10/MARCH6 adopts a unique circular structure within the membrane. This channel is established by a lipid-binding scaffold, and gated by a flexible helical bundle. The ubiquitylation active site is positioned over the channel by connections between the cytosolic E3 ligase RING domain and the membrane-spanning scaffold and gate. Here, by assaying 95 MARCH6 variants for effects on stability of the well-characterized substrate SQLE, which regulates cholesterol levels, we reveal crucial roles of the gated channel and RING domain consistent with AlphaFold-models of substrate-engaged and ubiquitylation complexes. SQLE degradation further depends on connections between the channel and RING domain, and lipid binding sites, revealing how interconnected Doa10/MARCH6 elements could orchestrate metabolic signals, substrate binding, and E3 ligase activity.
Collapse
Affiliation(s)
- J Josephine Botsch
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Technical University of Munich, School of Natural Sciences, Munich, Germany
| | - Roswitha Junker
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Michèle Sorgenfrei
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland
| | - Patricia P Ogger
- Research Group of Immunoregulation, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Luca Stier
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
- Technical University of Munich, School of Natural Sciences, Munich, Germany
| | - Susanne von Gronau
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Peter J Murray
- Research Group of Immunoregulation, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany
| | - Markus A Seeger
- Institute of Medical Microbiology, University of Zurich, Gloriastrasse 28/30, 8006, Zurich, Switzerland
| | - Brenda A Schulman
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| | - Bastian Bräuning
- Department of Molecular Machines and Signaling, Max Planck Institute of Biochemistry, Am Klopferspitz 18, 82152, Martinsried, Germany.
| |
Collapse
|
31
|
Deniaud A, Kabasakal BV, Bufton JC, Schaffitzel C. Sample Preparation for Electron Cryo-Microscopy of Macromolecular Machines. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 3234:173-190. [PMID: 38507207 DOI: 10.1007/978-3-031-52193-5_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
High-resolution structure determination by electron cryo-microscopy underwent a step change in recent years. This now allows study of challenging samples which previously were inaccessible for structure determination, including membrane proteins. These developments shift the focus in the field to the next bottlenecks which are high-quality sample preparations. While the amounts of sample required for cryo-EM are relatively small, sample quality is the key challenge. Sample quality is influenced by the stability of complexes which depends on buffer composition, inherent flexibility of the sample, and the method of solubilization from the membrane for membrane proteins. It further depends on the choice of sample support, grid pre-treatment and cryo-grid freezing protocol. Here, we discuss various widely applicable approaches to improve sample quality for structural analysis by cryo-EM.
Collapse
Affiliation(s)
- Aurélien Deniaud
- Univ. Grenoble Alpes, CNRS, CEA, IRIG - Laboratoire de Chimie et Biologie des Métaux, Grenoble, France
| | - Burak V Kabasakal
- School of Biochemistry, University of Bristol, Bristol, UK
- Turkish Accelerator and Radiation Laboratory, Gölbaşı, Ankara, Türkiye
| | | | | |
Collapse
|
32
|
Wu H, Smalinskaitė L, Hegde RS. EMC rectifies the topology of multipass membrane proteins. Nat Struct Mol Biol 2024; 31:32-41. [PMID: 37957425 PMCID: PMC10803268 DOI: 10.1038/s41594-023-01120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 09/08/2023] [Indexed: 11/15/2023]
Abstract
Most eukaryotic multipass membrane proteins are inserted into the membrane of the endoplasmic reticulum. Their transmembrane domains (TMDs) are thought to be inserted co-translationally as they emerge from a membrane-bound ribosome. Here we find that TMDs near the carboxyl terminus of mammalian multipass proteins are inserted post-translationally by the endoplasmic reticulum membrane protein complex (EMC). Site-specific crosslinking shows that the EMC's cytosol-facing hydrophilic vestibule is adjacent to a pre-translocated C-terminal tail. EMC-mediated insertion is mostly agnostic to TMD hydrophobicity, favored for short uncharged C-tails and stimulated by a preceding unassembled TMD bundle. Thus, multipass membrane proteins can be released by the ribosome-translocon complex in an incompletely inserted state, requiring a separate EMC-mediated post-translational insertion step to rectify their topology, complete biogenesis and evade quality control. This sequential co-translational and post-translational mechanism may apply to ~250 diverse multipass proteins, including subunits of the pentameric ion channel family that are crucial for neurotransmission.
Collapse
Affiliation(s)
- Haoxi Wu
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | | | | |
Collapse
|
33
|
Karki S, Javanainen M, Rehan S, Tranter D, Kellosalo J, Huiskonen JT, Happonen L, Paavilainen V. Molecular view of ER membrane remodeling by the Sec61/TRAP translocon. EMBO Rep 2023; 24:e57910. [PMID: 37983950 DOI: 10.15252/embr.202357910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/27/2023] [Accepted: 11/01/2023] [Indexed: 11/22/2023] Open
Abstract
Protein translocation across the endoplasmic reticulum (ER) membrane is an essential step during protein entry into the secretory pathway. The conserved Sec61 protein-conducting channel facilitates polypeptide translocation and coordinates cotranslational polypeptide-processing events. In cells, the majority of Sec61 is stably associated with a heterotetrameric membrane protein complex, the translocon-associated protein complex (TRAP), yet the mechanism by which TRAP assists in polypeptide translocation remains unknown. Here, we present the structure of the core Sec61/TRAP complex bound to a mammalian ribosome by cryogenic electron microscopy (cryo-EM). Ribosome interactions anchor the Sec61/TRAP complex in a conformation that renders the ER membrane locally thinner by significantly curving its lumenal leaflet. We propose that TRAP stabilizes the ribosome exit tunnel to assist nascent polypeptide insertion through Sec61 and provides a ratcheting mechanism into the ER lumen mediated by direct polypeptide interactions.
Collapse
Affiliation(s)
- Sudeep Karki
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Matti Javanainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Shahid Rehan
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
- Protein Biochemistry and Structural Biology, Omass Therapeutics Ltd, Oxford, UK
| | - Dale Tranter
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Juho Kellosalo
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Juha T Huiskonen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| | - Lotta Happonen
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Ville Paavilainen
- Institute of Biotechnology, University of Helsinki, Helsinki, Finland
| |
Collapse
|
34
|
Page KR, Nguyen VN, Pleiner T, Tomaleri GP, Wang ML, Guna A, Wang TY, Chou TF, Voorhees RM. Role of a holo-insertase complex in the biogenesis of biophysically diverse ER membrane proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569054. [PMID: 38076791 PMCID: PMC10705394 DOI: 10.1101/2023.11.28.569054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Mammalian membrane proteins perform essential physiologic functions that rely on their accurate insertion and folding at the endoplasmic reticulum (ER). Using forward and arrayed genetic screens, we systematically studied the biogenesis of a panel of membrane proteins, including several G-protein coupled receptors (GPCRs). We observed a central role for the insertase, the ER membrane protein complex (EMC), and developed a dual-guide approach to identify genetic modifiers of the EMC. We found that the back of sec61 (BOS) complex, a component of the 'multipass translocon', was a physical and genetic interactor of the EMC. Functional and structural analysis of the EMC•BOS holocomplex showed that characteristics of a GPCR's soluble domain determine its biogenesis pathway. In contrast to prevailing models, no single insertase handles all substrates. We instead propose a unifying model for coordination between the EMC, multipass translocon, and Sec61 for biogenesis of diverse membrane proteins in human cells.
Collapse
|
35
|
Sogawa A, Komori R, Yanagitani K, Ohfurudono M, Tsuru A, Kadoi K, Kimata Y, Yoshida H, Kohno K. Signal sequence-triage is activated by translocon obstruction sensed by an ER stress sensor IRE1α. Cell Struct Funct 2023; 48:211-221. [PMID: 37766570 PMCID: PMC11496779 DOI: 10.1247/csf.23072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 09/24/2023] [Indexed: 09/29/2023] Open
Abstract
Secretory pathway proteins are cotranslationally translocated into the endoplasmic reticulum (ER) of metazoan cells through the protein channel, translocon. Given that there are far fewer translocons than ribosomes in a cell, it is essential that secretory protein-translating ribosomes only occupy translocons transiently. Therefore, if translocons are obstructed by ribosomes stalled or slowed in translational elongation, it possibly results in deleterious consequences to cellular function. Hence, we investigated how translocon clogging by stalled ribosomes affects mammalian cells. First, we constructed ER-destined translational arrest proteins (ER-TAP) as an artificial protein that clogged the translocon in the ER membrane. Here, we show that the translocon clogging by ER-TAP expression activates triage of signal sequences (SS) in which secretory pathway proteins harboring highly efficient SS are preferentially translocated into the ER lumen. Interestingly, the translocon obstructed status specifically activates inositol requiring enzyme 1α (IRE1α) but not protein kinase R-like ER kinase (PERK). Given that the IRE1α-XBP1 pathway mainly induces the translocon components, our discovery implies that lowered availability of translocon activates IRE1α, which induces translocon itself. This results in rebalance between protein influx into the ER and the cellular translocation capacity.Key words: endoplasmic reticulum, translocation capacity, translocon clogging, IRE1, signal sequence.
Collapse
Affiliation(s)
- Ashuei Sogawa
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Osaka International Cancer Institute (OICI), 3-1-69 Otemae, Chuo-ku, Osaka, Osaka 541-8567, Japan
| | - Ryota Komori
- Institute for Research Initiatives, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan
| | - Kota Yanagitani
- Institute for Research Initiatives, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Ubiquitin Biology Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miku Ohfurudono
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Institute for Research Initiatives, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Akio Tsuru
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Institute for Research Initiatives, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Koji Kadoi
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Yukio Kimata
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
| | - Hiderou Yoshida
- Department of Biochemistry and Molecular Biology, Graduate School of Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan
| | - Kenji Kohno
- Laboratory of Molecular and Cell Genetics, Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Institute for Research Initiatives, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), 8916-5 Takayama, Ikoma, Nara 630-0192, Japan
- Department of Biochemistry and Molecular Biology, Graduate School of Science, University of Hyogo, Harima Science Garden City, Hyogo 678-1297, Japan
| |
Collapse
|
36
|
Wang H, Zhang J, Toso D, Liao S, Sedighian F, Gunsalus R, Zhou ZH. Hierarchical organization and assembly of the archaeal cell sheath from an amyloid-like protein. Nat Commun 2023; 14:6720. [PMID: 37872154 PMCID: PMC10593813 DOI: 10.1038/s41467-023-42368-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 10/09/2023] [Indexed: 10/25/2023] Open
Abstract
Certain archaeal cells possess external proteinaceous sheath, whose structure and organization are both unknown. By cellular cryogenic electron tomography (cryoET), here we have determined sheath organization of the prototypical archaeon, Methanospirillum hungatei. Fitting of Alphafold-predicted model of the sheath protein (SH) monomer into the 7.9 Å-resolution structure reveals that the sheath cylinder consists of axially stacked β-hoops, each of which is comprised of two to six 400 nm-diameter rings of β-strand arches (β-rings). With both similarities to and differences from amyloid cross-β fibril architecture, each β-ring contains two giant β-sheets contributed by ~ 450 SH monomers that entirely encircle the outer circumference of the cell. Tomograms of immature cells suggest models of sheath biogenesis: oligomerization of SH monomers into β-ring precursors after their membrane-proximal cytoplasmic synthesis, followed by translocation through the unplugged end of a dividing cell, and insertion of nascent β-hoops into the immature sheath cylinder at the junction of two daughter cells.
Collapse
Affiliation(s)
- Hui Wang
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Jiayan Zhang
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Daniel Toso
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Shiqing Liao
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Farzaneh Sedighian
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
| | - Robert Gunsalus
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA
- The UCLA-DOE Institute, UCLA, Los Angeles, CA, 90095, USA
| | - Z Hong Zhou
- Department of Bioengineering, University of California, Los Angeles (UCLA), Los Angeles, CA, 90095, USA.
- California NanoSystems Institute, UCLA, Los Angeles, CA, 90095, USA.
- Department of Microbiology, Immunology, and Molecular Genetics, UCLA, Los Angeles, CA, 90095, USA.
| |
Collapse
|
37
|
Jung M, Zimmermann R. Quantitative Mass Spectrometry Characterizes Client Spectra of Components for Targeting of Membrane Proteins to and Their Insertion into the Membrane of the Human ER. Int J Mol Sci 2023; 24:14166. [PMID: 37762469 PMCID: PMC10532041 DOI: 10.3390/ijms241814166] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/07/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
To elucidate the redundancy in the components for the targeting of membrane proteins to the endoplasmic reticulum (ER) and/or their insertion into the ER membrane under physiological conditions, we previously analyzed different human cells by label-free quantitative mass spectrometry. The HeLa and HEK293 cells had been depleted of a certain component by siRNA or CRISPR/Cas9 treatment or were deficient patient fibroblasts and compared to the respective control cells by differential protein abundance analysis. In addition to clients of the SRP and Sec61 complex, we identified membrane protein clients of components of the TRC/GET, SND, and PEX3 pathways for ER targeting, and Sec62, Sec63, TRAM1, and TRAP as putative auxiliary components of the Sec61 complex. Here, a comprehensive evaluation of these previously described differential protein abundance analyses, as well as similar analyses on the Sec61-co-operating EMC and the characteristics of the topogenic sequences of the various membrane protein clients, i.e., the client spectra of the components, are reported. As expected, the analysis characterized membrane protein precursors with cleavable amino-terminal signal peptides or amino-terminal transmembrane helices as predominant clients of SRP, as well as the Sec61 complex, while precursors with more central or even carboxy-terminal ones were found to dominate the client spectra of the SND and TRC/GET pathways for membrane targeting. For membrane protein insertion, the auxiliary Sec61 channel components indeed share the client spectra of the Sec61 complex to a large extent. However, we also detected some unexpected differences, particularly related to EMC, TRAP, and TRAM1. The possible mechanistic implications for membrane protein biogenesis at the human ER are discussed and can be expected to eventually advance our understanding of the mechanisms that are involved in the so-called Sec61-channelopathies, resulting from deficient ER protein import.
Collapse
Affiliation(s)
| | - Richard Zimmermann
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany;
| |
Collapse
|
38
|
Rehan S, Tranter D, Sharp PP, Craven GB, Lowe E, Anderl JL, Muchamuel T, Abrishami V, Kuivanen S, Wenzell NA, Jennings A, Kalyanaraman C, Strandin T, Javanainen M, Vapalahti O, Jacobson MP, McMinn D, Kirk CJ, Huiskonen JT, Taunton J, Paavilainen VO. Signal peptide mimicry primes Sec61 for client-selective inhibition. Nat Chem Biol 2023; 19:1054-1062. [PMID: 37169961 PMCID: PMC10449633 DOI: 10.1038/s41589-023-01326-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/06/2023] [Indexed: 05/13/2023]
Abstract
Preventing the biogenesis of disease-relevant proteins is an attractive therapeutic strategy, but attempts to target essential protein biogenesis factors have been hampered by excessive toxicity. Here we describe KZR-8445, a cyclic depsipeptide that targets the Sec61 translocon and selectively disrupts secretory and membrane protein biogenesis in a signal peptide-dependent manner. KZR-8445 potently inhibits the secretion of pro-inflammatory cytokines in primary immune cells and is highly efficacious in a mouse model of rheumatoid arthritis. A cryogenic electron microscopy structure reveals that KZR-8445 occupies the fully opened Se61 lateral gate and blocks access to the lumenal plug domain. KZR-8445 binding stabilizes the lateral gate helices in a manner that traps select signal peptides in the Sec61 channel and prevents their movement into the lipid bilayer. Our results establish a framework for the structure-guided discovery of novel therapeutics that selectively modulate Sec61-mediated protein biogenesis.
Collapse
Affiliation(s)
- Shahid Rehan
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Dale Tranter
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Phillip P Sharp
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Gregory B Craven
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | - Eric Lowe
- Kezar Life Sciences, South San Francisco, CA, USA
| | | | | | - Vahid Abrishami
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Institute of Virology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Nicole A Wenzell
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA
| | | | - Chakrapani Kalyanaraman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of California, San Francisco, CA, USA
| | - Tomas Strandin
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matti Javanainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Olli Vapalahti
- Department of Virology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Matthew P Jacobson
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of California, San Francisco, CA, USA
| | | | | | - Juha T Huiskonen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland
| | - Jack Taunton
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, CA, USA.
| | - Ville O Paavilainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
39
|
Itskanov S, Wang L, Junne T, Sherriff R, Xiao L, Blanchard N, Shi WQ, Forsyth C, Hoepfner D, Spiess M, Park E. A common mechanism of Sec61 translocon inhibition by small molecules. Nat Chem Biol 2023; 19:1063-1071. [PMID: 37169959 PMCID: PMC11458068 DOI: 10.1038/s41589-023-01337-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 04/12/2023] [Indexed: 05/13/2023]
Abstract
The Sec61 complex forms a protein-conducting channel in the endoplasmic reticulum membrane that is required for secretion of soluble proteins and production of many membrane proteins. Several natural and synthetic small molecules specifically inhibit Sec61, generating cellular effects that are useful for therapeutic purposes, but their inhibitory mechanisms remain unclear. Here we present near-atomic-resolution structures of human Sec61 inhibited by a comprehensive panel of structurally distinct small molecules-cotransin, decatransin, apratoxin, ipomoeassin, mycolactone, cyclotriazadisulfonamide and eeyarestatin. All inhibitors bind to a common lipid-exposed pocket formed by the partially open lateral gate and plug domain of Sec61. Mutations conferring resistance to the inhibitors are clustered at this binding pocket. The structures indicate that Sec61 inhibitors stabilize the plug domain in a closed state, thereby preventing the protein-translocation pore from opening. Our study provides the atomic details of Sec61-inhibitor interactions and the structural framework for further pharmacological studies and drug design.
Collapse
Affiliation(s)
- Samuel Itskanov
- Biophysics Graduate Program, University of California, Berkeley, Berkeley, CA, USA
| | - Laurie Wang
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tina Junne
- Biozentrum, University of Basel, Basel, Switzerland
| | - Rumi Sherriff
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Li Xiao
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Nicolas Blanchard
- Université de Haute-Alsace, Université de Strasbourg, CNRS, LIMA, UMR 7042, Mulhouse, France
| | - Wei Q Shi
- Department of Chemistry, Ball State University, Muncie, IN, USA
| | - Craig Forsyth
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH, USA
| | - Dominic Hoepfner
- Novartis Institutes for BioMedical Research, Novartis Pharma AG, Forum 1 Novartis Campus, Basel, Switzerland
| | | | - Eunyong Park
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
40
|
Nguyen JDM, da Hora GCA, Swanson JMJ. Mycolactone A vs. B: Multiscale Simulations Reveal the Roles of Localization and Association in Isomer-Specific Toxicity. Toxins (Basel) 2023; 15:486. [PMID: 37624243 PMCID: PMC10467071 DOI: 10.3390/toxins15080486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023] Open
Abstract
Mycolactone is an exotoxin produced by Mycobacterium ulcerans that causes the neglected tropical skin disease Buruli ulcer. This toxin inhibits the Sec61 translocon in the endoplasmic reticulum (ER), preventing the host cell from producing several secretory and transmembrane proteins, resulting in cytotoxic and immunomodulatory effects. Interestingly, only one of the two dominant isoforms of mycolactone is cytotoxic. Here, we investigate the origin of this specificity by performing extensive molecular dynamics (MD) simulations with enhanced free energy sampling to query the association trends of the two isoforms with both the Sec61 translocon, using two distinct cryo-electron microscopy (cryo-EM) models as references, and the ER membrane, which serves as a toxin reservoir prior to association. Our results suggest that mycolactone B (the cytotoxic isoform) has a stronger association with the ER membrane than mycolactone A due to more favorable interactions with membrane lipids and water molecules. This could increase the reservoir of toxin proximal to the Sec61 translocon. In one model of Sec61 inhibited by mycolactone, we find that isomer B interacts more closely with residues thought to play a key role in signal peptide recognition and, thus, are essential for subsequent protein translocation. In the other model, we find that isomer B interacts more closely with the lumenal and lateral gates of the translocon, the dynamics of which are essential for protein translocation. These interactions induce a more closed conformation, which has been suggested to block signal peptide insertion and subsequent protein translocation. Collectively, these findings suggest that isomer B's unique cytotoxicity is a consequence of both increased localization to the ER membrane and channel-locking association with the Sec61 translocon, facets that could be targeted in the development of Buruli Ulcer diagnostics and Sec61-targeted therapeutics.
Collapse
Affiliation(s)
| | | | - Jessica M. J. Swanson
- Department of Chemistry, University of Utah, Salt Lake City, UT 84112, USA; (J.D.M.N.); (G.C.A.d.H.)
| |
Collapse
|
41
|
Abstract
Multipass membrane proteins contain two or more α-helical transmembrane domains (TMDs) that span the lipid bilayer. They are inserted cotranslationally into the prokaryotic plasma membrane or eukaryotic endoplasmic reticulum membrane. The Sec61 complex (SecY complex in prokaryotes) provides a ribosome docking site, houses a channel across the membrane, and contains a lateral gate that opens toward the lipid bilayer. Model multipass proteins can be stitched into the membrane by iteratively using Sec61's lateral gate for TMD insertion and its central pore for translocation of flanking domains. Native multipass proteins, with their diverse TMDs and complex topologies, often also rely on members of the Oxa1 family of translocation factors, the PAT complex chaperone, and other poorly understood factors. Here, we discuss the mechanisms of TMD insertion, highlight the limitations of an iterative insertion model, and propose a new hypothesis for multipass membrane protein biogenesis based on recent findings.
Collapse
Affiliation(s)
- Luka Smalinskaitė
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom
| |
Collapse
|
42
|
Bai L, Li H. Structural insights into the membrane chaperones for multi-pass membrane protein biogenesis. Curr Opin Struct Biol 2023; 79:102563. [PMID: 36863267 DOI: 10.1016/j.sbi.2023.102563] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 01/22/2023] [Accepted: 01/28/2023] [Indexed: 03/04/2023]
Abstract
Certain transmembrane α-helices of multi-pass membrane proteins line substrate transport paths or catalytic pockets and, therefore, are partially hydrophilic. Sec61 alone is insufficient to insert these less hydrophobic segments into the membrane and needs to work with dedicated membrane chaperones. Three such membrane chaperones have been described in the literature-the endoplasmic reticulum membrane protein complex (EMC), the TMCO1 complex, and the PAT complex. Recent structural studies on these membrane chaperones have revealed their overall architecture, multi-subunit assembly, putative substrate transmembrane helix-binding pockets, and cooperative mechanisms with the ribosome and Sec61 translocon. These structures are providing initial insights into the poorly understood processes of multi-pass membrane protein biogenesis.
Collapse
Affiliation(s)
- Lin Bai
- Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing, 100083, China.
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, 49503, United States.
| |
Collapse
|
43
|
Levray YS, Bana B, Tarr SJ, McLaughlin EJ, Rossi-Smith P, Waltho A, Charlton GH, Chiozzi RZ, Straton CR, Thalassinos K, Osborne AR. Formation of ER-lumenal intermediates during export of Plasmodium proteins containing transmembrane-like hydrophobic sequences. PLoS Pathog 2023; 19:e1011281. [PMID: 37000891 PMCID: PMC10096305 DOI: 10.1371/journal.ppat.1011281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 04/12/2023] [Accepted: 03/08/2023] [Indexed: 04/03/2023] Open
Abstract
During the blood stage of a malaria infection, malaria parasites export both soluble and membrane proteins into the erythrocytes in which they reside. Exported proteins are trafficked via the parasite endoplasmic reticulum and secretory pathway, before being exported across the parasitophorous vacuole membrane into the erythrocyte. Transport across the parasitophorous vacuole membrane requires protein unfolding, and in the case of membrane proteins, extraction from the parasite plasma membrane. We show that trafficking of the exported Plasmodium protein, Pf332, differs from that of canonical eukaryotic soluble-secreted and transmembrane proteins. Pf332 is initially ER-targeted by an internal hydrophobic sequence that unlike a signal peptide, is not proteolytically removed, and unlike a transmembrane segment, does not span the ER membrane. Rather, both termini of the hydrophobic sequence enter the ER-lumen and the ER-lumenal species is a productive intermediate for protein export. Furthermore, we show in intact cells, that two other exported membrane proteins, SBP1 and MAHRP2, assume a lumenal topology within the parasite secretory pathway. Although the addition of a C-terminal ER-retention sequence, recognised by the lumenal domain of the KDEL receptor, does not completely block export of SBP1 and MAHRP2, it does enhance their retention in the parasite ER. This indicates that a sub-population of each protein adopts an ER-lumenal state that is an intermediate in the export process. Overall, this suggests that although many exported proteins traverse the parasite secretory pathway as typical soluble or membrane proteins, some exported proteins that are ER-targeted by a transmembrane segment-like, internal, non-cleaved hydrophobic segment, do not integrate into the ER membrane, and form an ER-lumenal species that is a productive export intermediate. This represents a novel means, not seen in typical membrane proteins found in model systems, by which exported transmembrane-like proteins can be targeted and trafficked within the lumen of the secretory pathway.
Collapse
|
44
|
Diao F, Jiang C, Sun Y, Gao Y, Bai J, Nauwynck H, Wang X, Yang Y, Jiang P, Liu X. Porcine reproductive and respiratory syndrome virus infection triggers autophagy via ER stress-induced calcium signaling to facilitate virus replication. PLoS Pathog 2023; 19:e1011295. [PMID: 36972295 PMCID: PMC10079224 DOI: 10.1371/journal.ppat.1011295] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 04/06/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Calcium (Ca2+), a ubiquitous second messenger, plays a crucial role in many cellular functions. Viruses often hijack Ca2+ signaling to facilitate viral processes such as entry, replication, assembly, and egress. Here, we report that infection by the swine arterivirus, porcine reproductive and respiratory syndrome virus (PRRSV), induces dysregulated Ca2+ homeostasis, subsequently activating calmodulin-dependent protein kinase-II (CaMKII) mediated autophagy, and thus fueling viral replication. Mechanically, PRRSV infection induces endoplasmic reticulum (ER) stress and forms a closed ER–plasma membrane (PM) contacts, resulting the opening of store operated calcium entry (SOCE) channel and causing the ER to take up extracellular Ca2+, which is then released into the cytoplasm by inositol trisphosphate receptor (IP3R) channel. Importantly, pharmacological inhibition of ER stress or CaMKII mediated autophagy blocks PRRSV replication. Notably, we show that PRRSV protein Nsp2 plays a dominant role in the PRRSV induced ER stress and autophagy, interacting with stromal interaction molecule 1 (STIM1) and the 78 kDa glucose-regulated protein 78 (GRP78). The interplay between PRRSV and cellular calcium signaling provides a novel potential approach to develop antivirals and therapeutics for the disease outbreaks.
Collapse
Affiliation(s)
- Feifei Diao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Chenlong Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yangyang Sun
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Yanni Gao
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Juan Bai
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Hans Nauwynck
- Laboratory of Virology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Xianwei Wang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
| | - Yuanqi Yang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
| | - Ping Jiang
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- * E-mail: (PJ); (XL)
| | - Xing Liu
- Key Laboratory of Animal Disease Diagnostics and Immunology, Ministry of Agriculture, MOE International Joint Collaborative Research Laboratory for Animal Health & Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, PR China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou, PR China
- * E-mail: (PJ); (XL)
| |
Collapse
|
45
|
Pauwels E, Shewakramani NR, De Wijngaert B, Camps A, Provinciael B, Stroobants J, Kalies KU, Hartmann E, Maes P, Vermeire K, Das K. Structural insights into TRAP association with ribosome-Sec61 complex and translocon inhibition by a CADA derivative. SCIENCE ADVANCES 2023; 9:eadf0797. [PMID: 36867692 PMCID: PMC9984176 DOI: 10.1126/sciadv.adf0797] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 01/31/2023] [Indexed: 05/26/2023]
Abstract
During cotranslational translocation, the signal peptide of a nascent chain binds Sec61 translocon to initiate protein transport through the endoplasmic reticulum (ER) membrane. Our cryo-electron microscopy structure of ribosome-Sec61 shows binding of an ordered heterotetrameric translocon-associated protein (TRAP) complex, in which TRAP-γ is anchored at two adjacent positions of 28S ribosomal RNA and interacts with ribosomal protein L38 and Sec61α/γ. Four transmembrane helices (TMHs) of TRAP-γ cluster with one C-terminal helix of each α, β, and δ subunits. The seven TMH bundle helps position a crescent-shaped trimeric TRAP-α/β/δ core in the ER lumen, facing the Sec61 channel. Further, our in vitro assay establishes the cyclotriazadisulfonamide derivative CK147 as a translocon inhibitor. A structure of ribosome-Sec61-CK147 reveals CK147 binding the channel and interacting with the plug helix from the lumenal side. The CK147 resistance mutations surround the inhibitor. These structures help in understanding the TRAP functions and provide a new Sec61 site for designing translocon inhibitors.
Collapse
Affiliation(s)
- Eva Pauwels
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Neesha R. Shewakramani
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Brent De Wijngaert
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Anita Camps
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Becky Provinciael
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Joren Stroobants
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Kai-Uwe Kalies
- Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Lübeck, Lübeck 23562, Germany
| | - Enno Hartmann
- Centre for Structural and Cell Biology in Medicine, Institute of Biology, University of Lübeck, Lübeck 23562, Germany
| | - Piet Maes
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Clinical and Epidemiological Virology, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Kurt Vermeire
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| | - Kalyan Das
- Department of Microbiology, Immunology, and Transplantation, KU Leuven, Leuven 3000, Belgium
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Leuven 3000, Belgium
| |
Collapse
|
46
|
McKenna MJ, Shao S. The Endoplasmic Reticulum and the Fidelity of Nascent Protein Localization. Cold Spring Harb Perspect Biol 2023; 15:a041249. [PMID: 36041782 PMCID: PMC9979852 DOI: 10.1101/cshperspect.a041249] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
High-fidelity protein localization is essential to define the identities and functions of different organelles and to maintain cellular homeostasis. Accurate localization of nascent proteins requires specific protein targeting pathways as well as quality control (QC) mechanisms to remove mislocalized proteins. The endoplasmic reticulum (ER) is the first destination for approximately one-third of the eukaryotic proteome and a major site of protein biosynthesis and QC. In mammalian cells, trafficking from the ER provides nascent proteins access to the extracellular space and essentially every cellular membrane and organelle except for mitochondria and possibly peroxisomes. Here, we discuss the biosynthetic mechanisms that deliver nascent proteins to the ER and the QC mechanisms that interface with the ER to correct or degrade mislocalized proteins.
Collapse
Affiliation(s)
- Michael J McKenna
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| | - Sichen Shao
- Department of Cell Biology, Harvard Medical School, Blavatnik Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
47
|
Guna A, Hazu M, Pinton Tomaleri G, Voorhees RM. A TAle of Two Pathways: Tail-Anchored Protein Insertion at the Endoplasmic Reticulum. Cold Spring Harb Perspect Biol 2023; 15:a041252. [PMID: 36041783 PMCID: PMC9979854 DOI: 10.1101/cshperspect.a041252] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Tail-anchored (TA) proteins are an essential class of integral membrane proteins required for many aspects of cellular physiology. TA proteins contain a single carboxy-terminal transmembrane domain that must be post-translationally recognized, guided to, and ultimately inserted into the correct cellular compartment. The majority of TA proteins begin their biogenesis in the endoplasmic reticulum (ER) and utilize two parallel strategies for targeting and insertion: the guided-entry of tail-anchored proteins (GET) and ER-membrane protein complex (EMC) pathways. Here we focus on how these two sets of machinery target, transfer, and insert TAs into the lipid bilayer in close collaboration with quality control machinery. Additionally, we highlight the unifying features of the insertion process as revealed by recent structures of the GET and EMC membrane protein complexes.
Collapse
Affiliation(s)
- Alina Guna
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142, USA
| | - Masami Hazu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Giovani Pinton Tomaleri
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Rebecca M Voorhees
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, USA
| |
Collapse
|
48
|
Heo P, Culver JA, Miao J, Pincet F, Mariappan M. The Get1/2 insertase forms a channel to mediate the insertion of tail-anchored proteins into the ER. Cell Rep 2023; 42:111921. [PMID: 36640319 PMCID: PMC9932932 DOI: 10.1016/j.celrep.2022.111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 11/07/2022] [Accepted: 12/13/2022] [Indexed: 12/29/2022] Open
Abstract
Tail-anchored (TA) proteins contain a single C-terminal transmembrane domain (TMD) that is captured by the cytosolic Get3 in yeast (TRC40 in humans). Get3 delivers TA proteins to the Get1/2 complex for insertion into the endoplasmic reticulum (ER) membrane. How Get1/2 mediates insertion of TMDs of TA proteins into the membrane is poorly understood. Using bulk fluorescence and microfluidics assays, we show that Get1/2 forms an aqueous channel in reconstituted bilayers. We estimate the channel diameter to be ∼2.5 nm wide, corresponding to the circumference of two Get1/2 complexes. We find that the Get3 binding can seal the Get1/2 channel, which dynamically opens and closes. Our mutation analysis further shows that the Get1/2 channel activity is required to release TA proteins from Get3 for insertion into the membrane. Hence, we propose that the Get1/2 channel functions as an insertase for insertion of TMDs and as a translocase for translocation of C-terminal hydrophilic segments.
Collapse
Affiliation(s)
- Paul Heo
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France; Institute of Psychiatry and Neuroscience of Paris, INSERM U1266, 75014 Paris, France.
| | - Jacob A. Culver
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Nanobiology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Jennifer Miao
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA,Nanobiology Institute, Yale University West Campus, West Haven, CT 06516, USA
| | - Frederic Pincet
- Laboratoire de Physique de l'Ecole Normale Supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, 75005 Paris, France.
| | - Malaiyalam Mariappan
- Department of Cell Biology, Yale School of Medicine, 333 Cedar Street, New Haven, CT 06520, USA; Nanobiology Institute, Yale University West Campus, West Haven, CT 06516, USA.
| |
Collapse
|
49
|
Itskanov S, Park E. Mechanism of Protein Translocation by the Sec61 Translocon Complex. Cold Spring Harb Perspect Biol 2023; 15:a041250. [PMID: 35940906 PMCID: PMC9808579 DOI: 10.1101/cshperspect.a041250] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The endoplasmic reticulum (ER) is a major site for protein synthesis, folding, and maturation in eukaryotic cells, responsible for production of secretory proteins and most integral membrane proteins. The universally conserved protein-conducting channel Sec61 complex mediates core steps in these processes by translocating hydrophilic polypeptide segments of client proteins across the ER membrane and integrating hydrophobic transmembrane segments into the membrane. The Sec61 complex associates with several other molecular machines and enzymes to enable substrate engagement with the channel and coordination of protein translocation with translation, protein folding, and/or post-translational modifications. Recent cryo-electron microscopy and functional studies of these translocon complexes have greatly advanced our mechanistic understanding of Sec61-dependent protein biogenesis at the ER. Here, we will review the current models for how the Sec61 channel performs its functions in coordination with partner complexes.
Collapse
Affiliation(s)
- Samuel Itskanov
- Biophysics Graduate Program
- California Institute for Quantitative Biosciences
| | - Eunyong Park
- California Institute for Quantitative Biosciences
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, California 94720, USA
| |
Collapse
|
50
|
Sun S, Li X, Mariappan M. Signal sequences encode information for protein folding in the endoplasmic reticulum. J Cell Biol 2023; 222:213733. [PMID: 36459117 PMCID: PMC9723807 DOI: 10.1083/jcb.202203070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 09/22/2022] [Accepted: 10/26/2022] [Indexed: 12/05/2022] Open
Abstract
One-third of newly synthesized proteins in mammals are translocated into the endoplasmic reticulum (ER) through the Sec61 translocon. How protein translocation coordinates with chaperone availability in the ER to promote protein folding remains unclear. We find that marginally hydrophobic signal sequences and transmembrane domains cause transient retention at the Sec61 translocon and require the luminal BiP chaperone for efficient protein translocation. Using a substrate-trapping proteomic approach, we identify that nascent proteins bearing marginally hydrophobic signal sequences accumulate on the cytosolic side of the Sec61 translocon. Sec63 is co-translationally recruited to the translocation site and mediates BiP binding to incoming polypeptides. BiP binding not only releases translocationally paused nascent chains but also ensures protein folding in the ER. Increasing hydrophobicity of signal sequences bypasses Sec63/BiP-dependent translocation, but translocated proteins are prone to misfold and aggregate in the ER under limited BiP availability. Thus, the signal sequence-guided protein folding may explain why signal sequences are diverse and use multiple protein translocation pathways.
Collapse
Affiliation(s)
- Sha Sun
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| | - Xia Li
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| | - Malaiyalam Mariappan
- Department of Cell Biology, Nanobiology Institute, Yale School of Medicine, Yale West Campus, West Haven, CT
| |
Collapse
|