1
|
Wang H, Weissenhorn W, Boscheron C. Protocol for HIV-1 budding control by inducible inhibition of ESCRT-III. STAR Protoc 2025; 6:103808. [PMID: 40372921 DOI: 10.1016/j.xpro.2025.103808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 02/24/2025] [Accepted: 04/15/2025] [Indexed: 05/17/2025] Open
Abstract
We present a protocol for temporal inhibition of HIV-1 virus-like particle (VLP) release using ESCRT-III proteins fused to the Hepatitis C virus NS3 protease. These fusion proteins function like wild-type ESCRT-III but convert into dominant-negative inhibitors upon addition of the NS3 inhibitor Glecaprevir. The procedure involves co-transfection of Gag and CHMP-NS3-Green plasmids into HEK293 or HeLa cells, followed by drug treatment. Steps for protein expression analysis, VLP quantification by immunoblotting, and live-cell imaging of VLP release kinetics are included. For complete details on the use and execution of this protocol, please refer to Wang et al.1.
Collapse
Affiliation(s)
- Haiyan Wang
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Winfried Weissenhorn
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| | - Cécile Boscheron
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), Grenoble, France.
| |
Collapse
|
2
|
Lu TW, Frost A, Moss FR. Organelle homeostasis requires ESCRTs. Curr Opin Cell Biol 2025; 93:102481. [PMID: 39954309 DOI: 10.1016/j.ceb.2025.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 01/22/2025] [Indexed: 02/17/2025]
Abstract
The endosomal sorting complexes required for transport (ESCRT) catalyze membrane shape transformations throughout the cell. Canonical functions of the ESCRTs include endosomal multivesicular body biogenesis, enveloped virus budding, and abscission of daughter cell plasma membranes. The ESCRT machinery is also required for membranous organelle homeostasis generally, including by facilitating lipid transport at membrane contact sites, repairing membrane damage, driving lysosomal catabolism, and maintaining nuclear envelope integrity, among other roles. Here, we review a subset of recent discoveries and highlight opportunities to better understand how ESCRT activities support cell health.
Collapse
Affiliation(s)
- Tsan-Wen Lu
- Bay Area Institute of Science, Altos Labs, Redwood City, CA 94065, USA
| | - Adam Frost
- Bay Area Institute of Science, Altos Labs, Redwood City, CA 94065, USA
| | - Frank R Moss
- Bay Area Institute of Science, Altos Labs, Redwood City, CA 94065, USA.
| |
Collapse
|
3
|
Weiner E, Berryman E, González Solís A, Shi Y, Otegui MS. The green ESCRTs: Newly defined roles for ESCRT proteins in plants. J Biol Chem 2025; 301:108465. [PMID: 40157538 PMCID: PMC12051064 DOI: 10.1016/j.jbc.2025.108465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
Endocytosis and endosomal trafficking of plasma membrane proteins for degradation regulate cellular homeostasis and development. As part of these processes, ubiquitinated plasma membrane proteins (cargo) are recognized, clustered, and sorted into intraluminal vesicles of multivesicular endosomes by endosomal sorting complexes required for transport (ESCRT) proteins. At endosomes, ESCRT proteins recognize ubiquitinated cargo and mediate the deformation of the endosomal membrane in a negative geometry, away from the cytosol. ESCRTs are organized in five major complexes that are sequentially recruited to the endosomal membrane where they mediate its vesiculation and cargo sequestration. ESCRTs also participate in other membrane remodeling events and are widely conserved across organisms, both eukaryotes and prokaryotes. Plants contain both conserved and unique ESCRT components and show a general trend toward gene family expansion. Plant endosomes show a wide range of membrane budding patterns with potential implications in cargo sequestration efficiency, plant development, and hormone signaling. Understanding the diversification and specialization of plant ESCRT proteins can provide valuable insights in the mechanisms of ESCRT-mediated membrane bending. In this review, we discuss the endosomal function of ESCRT proteins, their unique features in plants, and the potential connections to the modes of plant endosomal vesiculation.
Collapse
Affiliation(s)
- Ethan Weiner
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Elizabeth Berryman
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Ariadna González Solís
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Yuchen Shi
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA
| | - Marisa S Otegui
- Department of Botany and Center for Quantitative Cell Imaging, University of Wisconsin-Madison, Wisconsin, USA.
| |
Collapse
|
4
|
Naskar S, Merino A, Espadas J, Singh J, Roux A, Colom A, Low HH. Mechanism for Vipp1 spiral formation, ring biogenesis, and membrane repair. Nat Struct Mol Biol 2025; 32:571-584. [PMID: 39528797 PMCID: PMC11919738 DOI: 10.1038/s41594-024-01401-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 09/11/2024] [Indexed: 11/16/2024]
Abstract
The ESCRT-III-like protein Vipp1 couples filament polymerization with membrane remodeling. It assembles planar sheets as well as 3D rings and helical polymers, all implicated in mitigating plastid-associated membrane stress. The architecture of Vipp1 planar sheets and helical polymers remains unknown, as do the geometric changes required to transition between polymeric forms. Here we show how cyanobacterial Vipp1 assembles into morphologically-related sheets and spirals on membranes in vitro. The spirals converge to form a central ring similar to those described in membrane budding. Cryo-EM structures of helical filaments reveal a close geometric relationship between Vipp1 helical and planar lattices. Moreover, the helical structures reveal how filaments twist-a process required for Vipp1, and likely other ESCRT-III filaments, to transition between planar and 3D architectures. Overall, our results provide a molecular model for Vipp1 ring biogenesis and a mechanism for Vipp1 membrane stabilization and repair, with implications for other ESCRT-III systems.
Collapse
Affiliation(s)
- Souvik Naskar
- Department of Infectious Disease, Imperial College, London, UK
| | - Andrea Merino
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain
| | - Javier Espadas
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Jayanti Singh
- Department of Infectious Disease, Imperial College, London, UK
| | - Aurelien Roux
- Biochemistry Department, University of Geneva, Geneva, Switzerland
| | - Adai Colom
- Biofisika Institute (CSIC, UPV/EHU) and Department of Biochemistry and Molecular Biology, University of the Basque Country, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain.
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK.
| |
Collapse
|
5
|
Helmold BR, Ahrens A, Fitzgerald Z, Ozdinler PH. Spastin and alsin protein interactome analyses begin to reveal key canonical pathways and suggest novel druggable targets. Neural Regen Res 2025; 20:725-739. [PMID: 38886938 PMCID: PMC11433914 DOI: 10.4103/nrr.nrr-d-23-02068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 06/20/2024] Open
Abstract
Developing effective and long-term treatment strategies for rare and complex neurodegenerative diseases is challenging. One of the major roadblocks is the extensive heterogeneity among patients. This hinders understanding the underlying disease-causing mechanisms and building solutions that have implications for a broad spectrum of patients. One potential solution is to develop personalized medicine approaches based on strategies that target the most prevalent cellular events that are perturbed in patients. Especially in patients with a known genetic mutation, it may be possible to understand how these mutations contribute to problems that lead to neurodegeneration. Protein-protein interaction analyses offer great advantages for revealing how proteins interact, which cellular events are primarily involved in these interactions, and how they become affected when key genes are mutated in patients. This line of investigation also suggests novel druggable targets for patients with different mutations. Here, we focus on alsin and spastin, two proteins that are identified as "causative" for amyotrophic lateral sclerosis and hereditary spastic paraplegia, respectively, when mutated. Our review analyzes the protein interactome for alsin and spastin, the canonical pathways that are primarily important for each protein domain, as well as compounds that are either Food and Drug Administration-approved or are in active clinical trials concerning the affected cellular pathways. This line of research begins to pave the way for personalized medicine approaches that are desperately needed for rare neurodegenerative diseases that are complex and heterogeneous.
Collapse
Affiliation(s)
- Benjamin R. Helmold
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Angela Ahrens
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Zachary Fitzgerald
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - P. Hande Ozdinler
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Center for Molecular Innovation and Drug Discovery, Center for Developmental Therapeutics, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
- Mesulam Center for Cognitive Neurology and Alzheimer’s Disease, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Feinberg School of Medicine, Les Turner ALS Center at Northwestern University, Chicago, IL, USA
| |
Collapse
|
6
|
Pan S, Gries K, Engel BD, Schroda M, Haselwandter CA, Scheuring S. The cyanobacterial protein VIPP1 forms ESCRT-III-like structures on lipid bilayers. Nat Struct Mol Biol 2025; 32:543-554. [PMID: 39060677 PMCID: PMC11762370 DOI: 10.1038/s41594-024-01367-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 07/03/2024] [Indexed: 07/28/2024]
Abstract
The biogenesis and maintenance of thylakoid membranes require vesicle-inducing protein in plastids 1 (VIPP1). VIPP1 is a member of the endosomal sorting complex required for transport-III (ESCRT-III) superfamily, whose members form diverse filament-based supramolecular structures that facilitate membrane deformation and fission. VIPP1 cryo-electron microscopy (EM) structures in solution revealed helical rods and baskets of stacked rings, with amphipathic membrane-binding domains in the lumen. However, how VIPP1 interacts with membranes remains largely unknown. Here, using high-speed atomic force microscopy (HS-AFM), we show that VIPP1 assembles into right-handed chiral spirals and regular polygons on supported lipid bilayers via ESCRT-III-like filament assembly and dynamics. VIPP1 filaments grow clockwise into spirals through polymerization at a ring-shaped central polymerization hub, and into polygons through clockwise polymerization at the sector peripheries. Interestingly, VIPP1 initially forms Archimedean spirals, which upon maturation transform into logarithmic spirals through lateral annealing of strands to the outermore low-curvature spiral turns.
Collapse
Affiliation(s)
- Sichen Pan
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA
| | - Karin Gries
- Molecular Biotechnology and Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | | | - Michael Schroda
- Molecular Biotechnology and Systems Biology, RPTU Kaiserslautern-Landau, Kaiserslautern, Germany
| | - Christoph A Haselwandter
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, USA
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, New York, NY, USA.
- Weill Cornell Medicine, Department of Physiology and Biophysics, New York, NY, USA.
| |
Collapse
|
7
|
Nachmias D, Frohn BP, Sachse C, Mizrahi I, Elia N. ESCRTs - a multi-purpose membrane remodeling device encoded in all life forms. Trends Microbiol 2025:S0966-842X(25)00008-3. [PMID: 39979199 DOI: 10.1016/j.tim.2025.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/13/2025] [Accepted: 01/15/2025] [Indexed: 02/22/2025]
Abstract
The ESCRT (endosomal sorting complexes required for transport) membrane remodeling complex, found across all life forms, exhibits a versatility that transcends evolutionary boundaries. From orchestrating the constriction of micron-wide tubes in cell division to facilitating the budding of 50 nm vesicles in receptor degradation, ESCRTs perform diverse functions in animal cells. However, the basis of this functional diversity remains enigmatic. While extensively studied in eukaryotes, the role of ESCRTs in prokaryotes is only beginning to emerge. This review synthesizes data on ESCRT systems across the tree of life, focusing on microorganisms and drawing parallels to their functions in human cells. This comparative approach highlights the remarkable plasticity of the ESCRT system across functional, structural, and genomic levels in both prokaryotes and eukaryotes. This integrated knowledge supports a model in which the ESCRT system evolved as a multipurpose membrane remodeling tool, adaptable to specific functions within and across organisms. Our review not only underscores the significance of ESCRTs in microorganisms but also paves the way for exciting avenues of research into the intricacies of cellular membrane dynamics, offering valuable insights into the evolution of cellular complexity across diverse organisms and ecosystems.
Collapse
Affiliation(s)
- Dikla Nachmias
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Béla P Frohn
- Department of Cellular and Molecular Biophysics, Max Planck Institute of Biochemistry, Martinsried 82152, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Department of Biology, Heinrich Heine University, Dusseldorf, Germany
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; The Goldman Sonnenfeldt School of Sustainability and Climate Change, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva 84105, Israel; National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva 84105, Israel.
| |
Collapse
|
8
|
Souza DP, Espadas J, Chaaban S, Moody ERR, Hatano T, Balasubramanian M, Williams TA, Roux A, Baum B. Asgard archaea reveal the conserved principles of ESCRT-III membrane remodeling. SCIENCE ADVANCES 2025; 11:eads5255. [PMID: 39919172 PMCID: PMC11804906 DOI: 10.1126/sciadv.ads5255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Accepted: 01/07/2025] [Indexed: 02/09/2025]
Abstract
ESCRT-III proteins assemble into composite polymers that undergo stepwise changes in composition and structure to deform membranes across the tree of life. Here, using a phylogenetic analysis, we demonstrate that the two endosomal sorting complex required for transport III (ESCRT-III) proteins present in eukaryote's closest Asgard archaeal relatives are evolutionarily related to the B- and A-type eukaryotic paralogs that initiate and execute membrane remodeling, respectively. We show that Asgard ESCRT-IIIB assembles into parallel arrays on planar membranes to initiate membrane deformation, from where it recruits ESCRT-IIIA to generate composite polymers. Last, we show that Asgard ESCRT-IIIA is able to remodel membranes into tubes as a likely prelude to scission. Together, these data reveal a set of conserved principles governing ESCRT-III-dependent membrane remodeling that first emerged in a two-component ESCRT-III system in archaea.
Collapse
Affiliation(s)
| | - Javier Espadas
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Sami Chaaban
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Edmund R. R. Moody
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Tomoyuki Hatano
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Mohan Balasubramanian
- Centre for Mechanochemical Cell Biology, Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Tom A. Williams
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, CH-1211 Geneva, Switzerland
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
9
|
Liu J, Lelek M, Yang Y, Salles A, Zimmer C, Shen Y, Krupovic M. A relay race of ESCRT-III paralogs drives cell division in a hyperthermophilic archaeon. mBio 2025; 16:e0099124. [PMID: 39699168 PMCID: PMC11796394 DOI: 10.1128/mbio.00991-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 11/25/2024] [Indexed: 12/20/2024] Open
Abstract
Cell division is a fundamental process ensuring the perpetuation of all cellular life forms. Archaea of the order Sulfolobales divide using a simpler version of the eukaryotic endosomal sorting complexes required for transport (ESCRT) machinery, composed of three ESCRT-III homologs (ESCRT-III, -III-1, and -III-2), AAA+ ATPase Vps4 and an archaea-specific component CdvA. Here, we clarify how these components act sequentially to drive the division of the hyperthermophilic archaeon Saccharolobus islandicus. Our data suggest that ESCRT-III plays an active role during the early stage of membrane constriction during cytokinesis, whereas ESCRT-III-1 and ESCRT-III-2 are indispensable for the "pre-late" and "late" stages of cytokinesis, respectively. In the escrt-III-1 deletion strain, the division is blocked when the mid-cell constriction reaches ~30% of the initial cell diameter ("pre-late" stage), yielding "chain-like" cellular aggregates. Depletion of ESCRT-III-2 leads to the accumulation of cells connected through narrow membrane bridges ("late" stage), consistent with the key role of this protein in the final membrane abscission. We used 3D-single molecule localization microscopy to image ESCRT-III rings of different diameters and show that the decrease in the ESCRT-III ring diameter and membrane constriction are inconsistent with a mechanism exclusively based on spiraling of the ESCRT-III filaments. By contrast, the cone-shaped assemblies of ESCRT-III-1 and ESCRT-III-2 are consistent with spiral formation, highlighting the distinct roles of the three ESCRT-III proteins during the cytokinesis. We propose the "relay race" model, whereby the cytokinesis is achieved through a sequential and concerted action of different ESCRT machinery components. IMPORTANCE Two major cytokinesis mechanisms, rooted in contractile FtsZ and endosomal sorting complexes required for transport (ESCRT) rings, respectively, have emerged in the course of evolution. Whereas bacteria rely on the FtsZ-based mechanism, different lineages of archaea use either of the two systems, and eukaryotes have inherited the ESCRT-based cell division machinery from their archaeal ancestors. The mechanism of ESCRT-based cell division in archaea remains poorly understood and mechanistic studies on different archaeal model systems are essential to unravel the natural history of the ESCRT machinery. Here we investigate the interplay between three major ESCRT-III homologs during the division of a hyperthermophilic archaeon Saccharolobus islandicus and propose the "relay race" model of cytokinesis.
Collapse
Affiliation(s)
- Junfeng Liu
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mickaël Lelek
- Imaging and Modeling Unit, Institut Pasteur, Université Paris Cité, Paris, France
| | - Yunfeng Yang
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Audrey Salles
- Institut Pasteur, Université Paris Cité, Unit of Technology and Service Photonic BioImaging (UTechS PBI), C2RT, Paris, France
| | - Christophe Zimmer
- Imaging and Modeling Unit, Institut Pasteur, Université Paris Cité, Paris, France
- Rudolf Virchow Center, University of Würzburg, Würzburg, Germany
| | - Yulong Shen
- CRISPR and Archaea Biology Research Centre, Microbial Technology Institute and State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| | - Mart Krupovic
- Institut Pasteur, Université Paris Cité, CNRS UMR6047, Archaeal Virology Unit, Paris, France
| |
Collapse
|
10
|
Melnikov N, Junglas B, Halbi G, Nachmias D, Zerbib E, Gueta N, Upcher A, Zalk R, Sachse C, Bernheim-Groswasser A, Elia N. The Asgard archaeal ESCRT-III system forms helical filaments and remodels eukaryotic-like membranes. EMBO J 2025; 44:665-681. [PMID: 39753954 PMCID: PMC11791191 DOI: 10.1038/s44318-024-00346-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 02/05/2025] Open
Abstract
The ESCRT machinery mediates membrane remodeling in numerous processes in cells including cell division and nuclear membrane reformation. The identification of ESCRT homologs in Asgard archaea, currently considered the closest prokaryotic relative of eukaryotes, implies a role for ESCRTs in the membrane remodeling processes that occurred during eukaryogenesis. Yet, the function of these distant ESCRT homologs is mostly unresolved. Here we show that Asgard ESCRT-III proteins of the Lokiarcheota self-assemble into helical filaments, a hallmark of the ESCRT system. We determined the cryo-EM structure of the filaments at 3.6 Å resolution and found that they share features of bacterial and eukaryotic ESCRT-III assemblies. Markedly, Asgard ESCRT-III filaments bound and deformed eukaryotic-like membrane vesicles. Oligonucleotides facilitated the assembly of ESCRT-III filaments and tuned the extent of membrane remodeling. The ability of Asgard archaeal ESCRTs to remodel eukaryotic-like membranes, which are fundamentally different from archaeal membranes, and the structural properties of these proteins places them at the junction between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Nataly Melnikov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Benedikt Junglas
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Gal Halbi
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Dikla Nachmias
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Erez Zerbib
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Noam Gueta
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Alexander Upcher
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ran Zalk
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225, Düsseldorf, Germany.
| | - Anne Bernheim-Groswasser
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
11
|
Cheng AY, Simmonds AJ. Peroxisome inter-organelle cooperation in Drosophila. Genome 2025; 68:1-12. [PMID: 39471439 DOI: 10.1139/gen-2024-0082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
Many cellular functions are compartmentalized within the optimized environments of organelles. However, processing or storage of metabolites from the same pathway can occur in multiple organelles. Thus, spatially separated organelles need to cooperate functionally. Coordination between organelles in different specialized cells is also needed, with shared metabolites passed via circulation. Peroxisomes are membrane-bounded organelles responsible for cellular redox and lipid metabolism in eukaryotic cells. Peroxisomes coordinate with other organelles including mitochondria, endoplasmic reticulum, lysosomes, and lipid droplets. This functional coordination requires, or is at least enhanced by, direct contact between peroxisomes and other organelles. Peroxisome dysfunction in humans leads to multiorgan effects including neurological, metabolic, developmental, and age-related diseases. Thus, increased understanding of peroxisome coordination with other organelles, especially cells in various organs is essential. Drosophila melanogaster (fruit fly) has emerged recently as an effective animal model for understanding peroxisomes. Here we review current knowledge of pathways regulating coordination between peroxisomes with other organelles in flies, speculating about analogous roles for conserved Drosophila genes encoding proteins with known organelle coordinating roles in other species.
Collapse
Affiliation(s)
- Andy Y Cheng
- Department of Cell Biology, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, 5-14 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| | - Andrew J Simmonds
- Department of Cell Biology, Faculty of Medicine and Dentistry, College of Health Sciences, University of Alberta, 5-14 Medical Sciences Building, Edmonton, AB T6G 2H7, Canada
| |
Collapse
|
12
|
Junglas B, Hudina E, Schönnenbeck P, Ritter I, Heddier A, Santiago-Schübel B, Huesgen PF, Schneider D, Sachse C. Structural plasticity of bacterial ESCRT-III protein PspA in higher-order assemblies. Nat Struct Mol Biol 2025; 32:23-34. [PMID: 39152237 PMCID: PMC11746142 DOI: 10.1038/s41594-024-01359-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 06/21/2024] [Indexed: 08/19/2024]
Abstract
Eukaryotic members of the endosome sorting complex required for transport-III (ESCRT-III) family have been shown to form diverse higher-order assemblies. The bacterial phage shock protein A (PspA) has been identified as a member of the ESCRT-III superfamily, and PspA homo-oligomerizes to form rod-shaped assemblies. As observed for eukaryotic ESCRT-III, PspA forms tubular assemblies of varying diameters. Using electron cryo-electron microscopy, we determined 61 Synechocystis PspA structures and observed in molecular detail how the structural plasticity of PspA rods is mediated by conformational changes at three hinge regions in the monomer and by the fixed and changing molecular contacts between protomers. Moreover, we reduced and increased the structural plasticity of PspA rods by removing the loop connecting helices α3/α4 and the addition of nucleotides, respectively. Based on our analysis of PspA-mediated membrane remodeling, we suggest that the observed mode of structural plasticity is a prerequisite for the biological function of ESCRT-III members.
Collapse
Affiliation(s)
- Benedikt Junglas
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Esther Hudina
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Philipp Schönnenbeck
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Ilona Ritter
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
| | - Anja Heddier
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany
| | - Beatrix Santiago-Schübel
- Zentralinstitut für Engineering, Elektronik und Analytik (ZEA-3), Forschungszentrum Jülich, Jülich, Germany
| | - Pitter F Huesgen
- Zentralinstitut für Engineering, Elektronik und Analytik (ZEA-3), Forschungszentrum Jülich, Jülich, Germany
- Cluster of Excellence on Aging-related Disorders (CECAD), Medical Faculty and University Hospital, University of Cologne, Cologne, Germany
- Institute of Biochemistry, Faculty of Mathematics and Natural Sciences, University of Cologne, Cologne, Germany
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Mainz, Germany
- Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, Jülich, Germany.
- Department of Biology, Heinrich Heine University, Düsseldorf, Germany.
| |
Collapse
|
13
|
Yong J, Villalta JE, Vu N, Kukurugya MA, Olsson N, López MP, Lazzari-Dean JR, Hake K, McAllister FE, Bennett BD, Jan CH. Impairment of lipid homeostasis causes lysosomal accumulation of endogenous protein aggregates through ESCRT disruption. eLife 2024; 12:RP86194. [PMID: 39713930 DOI: 10.7554/elife.86194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Protein aggregation increases during aging and is a pathological hallmark of many age-related diseases. Protein homeostasis (proteostasis) depends on a core network of factors directly influencing protein production, folding, trafficking, and degradation. Cellular proteostasis also depends on the overall composition of the proteome and numerous environmental variables. Modulating this cellular proteostasis state can influence the stability of multiple endogenous proteins, yet the factors contributing to this state remain incompletely characterized. Here, we performed genome-wide CRISPRi screens to elucidate the modulators of proteostasis state in mammalian cells, using a fluorescent dye to monitor endogenous protein aggregation. These screens identified known components of the proteostasis network and uncovered a novel link between protein and lipid homeostasis. Increasing lipid uptake and/or disrupting lipid metabolism promotes the accumulation of sphingomyelins and cholesterol esters and drives the formation of detergent-insoluble protein aggregates at the lysosome. Proteome profiling of lysosomes revealed ESCRT accumulation, suggesting disruption of ESCRT disassembly, lysosomal membrane repair, and microautophagy. Lipid dysregulation leads to lysosomal membrane permeabilization but does not otherwise impact fundamental aspects of lysosomal and proteasomal functions. Together, these results demonstrate that lipid dysregulation disrupts ESCRT function and impairs proteostasis.
Collapse
Affiliation(s)
- John Yong
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Ngoc Vu
- Calico Life Sciences LLC, South San Francisco, United States
| | | | - Niclas Olsson
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - Kayley Hake
- Calico Life Sciences LLC, South San Francisco, United States
| | | | | | - Calvin H Jan
- Calico Life Sciences LLC, South San Francisco, United States
| |
Collapse
|
14
|
Keeley O, Coyne AN. Nuclear and degradative functions of the ESCRT-III pathway: implications for neurodegenerative disease. Nucleus 2024; 15:2349085. [PMID: 38700207 PMCID: PMC11073439 DOI: 10.1080/19491034.2024.2349085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/24/2024] [Indexed: 05/05/2024] Open
Abstract
The ESCRT machinery plays a pivotal role in membrane-remodeling events across multiple cellular processes including nuclear envelope repair and reformation, nuclear pore complex surveillance, endolysosomal trafficking, and neuronal pruning. Alterations in ESCRT-III functionality have been associated with neurodegenerative diseases including Frontotemporal Dementia (FTD), Amyotrophic Lateral Sclerosis (ALS), and Alzheimer's Disease (AD). In addition, mutations in specific ESCRT-III proteins have been identified in FTD/ALS. Thus, understanding how disruptions in the fundamental functions of this pathway and its individual protein components in the human central nervous system (CNS) may offer valuable insights into mechanisms underlying neurodegenerative disease pathogenesis and identification of potential therapeutic targets. In this review, we discuss ESCRT components, dynamics, and functions, with a focus on the ESCRT-III pathway. In addition, we explore the implications of altered ESCRT-III function for neurodegeneration with a primary emphasis on nuclear surveillance and endolysosomal trafficking within the CNS.
Collapse
Affiliation(s)
- Olivia Keeley
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Alyssa N. Coyne
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Brain Science Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Kölling R. Interaction between ESCRT-III proteins and the yeast SERINC homolog Tms1. Genetics 2024; 228:iyae132. [PMID: 39271159 DOI: 10.1093/genetics/iyae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 07/30/2024] [Indexed: 09/15/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT)-III is involved in membrane remodeling and abscission during intraluminal vesicle (ILV) formation at endosomes. Our data now suggest that ESCRT-III function could be connected to lipid remodeling of the endosomal membrane. This notion is based on our finding that ESCRT-III proteins bind to the yeast serine incorporator (SERINC) homolog Tms1. Human SERINC3 and SERINC5 are HIV-1 restriction factors and have been shown to act as scramblases, flipping phospholipids between membrane leaflets. Due to the extraordinarily high sequence conservation between Tms1 and human SERINCs, it is likely that Tms1 is also a scramblase. While deletion of TMS1 had only a moderate effect on the sorting of multivesicular body (MVB) cargo proteins, the simultaneous deletion of a component of the Vps55/Vps68 complex led to a strong synergistic phenotype. This pronounced synergism suggests that Tms1 and Vps55/Vps68 perform a parallel function at endosomes. Vps55/Vps68 loosely resembles Tms1 in its overall structure. Thus, it is possible that Vps55/Vps68 is also a scramblase. Since both Vps55 and Tms1 physically interact with ESCRT-III proteins, we propose that the recruitment of a scramblase plays a crucial role in ESCRT-III-dependent membrane remodeling at endosomes.
Collapse
Affiliation(s)
- Ralf Kölling
- Institut für Lebensmittelwissenschaft und Biotechnologie, Fg. Hefegenetik und Gärungstechnologie, Universität Hohenheim, 70599 Stuttgart, Germany
| |
Collapse
|
16
|
Cui Y, Wang M, Cheng A, Zhang W, Yang Q, Tian B, Ou X, Huang J, Wu Y, Zhang S, Sun D, He Y, Zhao X, Wu Z, Zhu D, Jia R, Chen S, Liu M. The precise function of alphaherpesvirus tegument proteins and their interactions during the viral life cycle. Front Microbiol 2024; 15:1431672. [PMID: 39015737 PMCID: PMC11250606 DOI: 10.3389/fmicb.2024.1431672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 06/20/2024] [Indexed: 07/18/2024] Open
Abstract
Alphaherpesvirus is a widespread pathogen that causes diverse diseases in humans and animals and can severely damage host health. Alphaherpesvirus particles comprise a DNA core, capsid, tegument and envelope; the tegument is located between the nuclear capsid and envelope. According to biochemical and proteomic analyses of alphaherpesvirus particles, the tegument contains at least 24 viral proteins and plays an important role in the alphaherpesvirus life cycle. This article reviews the important role of tegument proteins and their interactions during the viral life cycle to provide a reference and inspiration for understanding alphaherpesvirus infection pathogenesis and identifying new antiviral strategies.
Collapse
Affiliation(s)
- Yuxi Cui
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mingshu Wang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Anchun Cheng
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Wei Zhang
- Sinopharm Yangzhou VAC Biological Engineering Co., Ltd., Yangzhou, China
| | - Qiao Yang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Bin Tian
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xumin Ou
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Juan Huang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ying Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shaqiu Zhang
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Di Sun
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yu He
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xinxin Zhao
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhen Wu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dekang Zhu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Renyong Jia
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Shun Chen
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Mafeng Liu
- Engineering Research Center of Southwest Animal Disease Prevention and Control Technology, Ministry of Education of the People’s Republic of China, Chengdu, China
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, Chengdu, China
- International Joint Research Center for Animal Disease Prevention and Control of Sichuan Province, Chengdu, China
- Institute of Veterinary Medicine and Immunology, Sichuan Agricultural University, Chengdu, China
- Research Center of Avian Disease, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
17
|
Hirano Y, Sato T, Miura A, Kubota Y, Shindo T, Fukase K, Fukagawa T, Kabayama K, Haraguchi T, Hiraoka Y. Disordered region of nuclear membrane protein Bqt4 recruits phosphatidic acid to the nuclear envelope to maintain its structural integrity. J Biol Chem 2024; 300:107430. [PMID: 38825008 PMCID: PMC11253665 DOI: 10.1016/j.jbc.2024.107430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/09/2024] [Accepted: 05/18/2024] [Indexed: 06/04/2024] Open
Abstract
The nuclear envelope (NE) is a permeable barrier that maintains nuclear-cytoplasmic compartmentalization and ensures nuclear function; however, it ruptures in various situations such as mechanical stress and mitosis. Although the protein components for sealing a ruptured NE have been identified, the mechanism by which lipid components are involved in this process remains to be elucidated. Here, we found that an inner nuclear membrane (INM) protein Bqt4 directly interacts with phosphatidic acid (PA) and serves as a platform for NE maintenance in the fission yeast Schizosaccharomyces pombe. The intrinsically disordered region (IDR) of Bqt4, proximal to the transmembrane domain, binds to PA and forms a solid aggregate in vitro. Excessive accumulation of Bqt4 IDR in INM results in membrane overproliferation and lipid droplet formation in the nucleus, leading to centromere dissociation from the NE and chromosome missegregation. Our findings suggest that Bqt4 IDR controls nuclear membrane homeostasis by recruiting PA to the INM, thereby maintaining the structural integrity of the NE.
Collapse
Affiliation(s)
- Yasuhiro Hirano
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| | - Tsukino Sato
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Ayane Miura
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Yoshino Kubota
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | | | - Koichi Fukase
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Tatsuo Fukagawa
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Kazuya Kabayama
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Tokuko Haraguchi
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan
| | - Yasushi Hiraoka
- Graduate School of Frontier Biosciences, Osaka University, Suita, Japan.
| |
Collapse
|
18
|
Krüger L, Gaskell-Mew L, Graham S, Shirran S, Hertel R, White MF. Reversible conjugation of a CBASS nucleotide cyclase regulates bacterial immune response to phage infection. Nat Microbiol 2024; 9:1579-1592. [PMID: 38589469 PMCID: PMC11153139 DOI: 10.1038/s41564-024-01670-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
Prokaryotic antiviral defence systems are frequently toxic for host cells and stringent regulation is required to ensure survival and fitness. These systems must be readily available in case of infection but tightly controlled to prevent activation of an unnecessary cellular response. Here we investigate how the bacterial cyclic oligonucleotide-based antiphage signalling system (CBASS) uses its intrinsic protein modification system to regulate the nucleotide cyclase. By integrating a type II CBASS system from Bacillus cereus into the model organism Bacillus subtilis, we show that the protein-conjugating Cap2 (CBASS associated protein 2) enzyme links the cyclase exclusively to the conserved phage shock protein A (PspA) in the absence of phage. The cyclase-PspA conjugation is reversed by the deconjugating isopeptidase Cap3 (CBASS associated protein 3). We propose a model in which the cyclase is held in an inactive state by conjugation to PspA in the absence of phage, with conjugation released upon infection, priming the cyclase for activation.
Collapse
Affiliation(s)
- Larissa Krüger
- School of Biology, University of St Andrews, St Andrews, UK.
| | | | - Shirley Graham
- School of Biology, University of St Andrews, St Andrews, UK
| | - Sally Shirran
- School of Biology, University of St Andrews, St Andrews, UK
| | - Robert Hertel
- Genomic and Applied Microbiology, Göttingen Centre for Molecular Biosciences, Georg-August-University Göttingen, Göttingen, Germany
| | - Malcolm F White
- School of Biology, University of St Andrews, St Andrews, UK.
| |
Collapse
|
19
|
Liu M, Liu Y, Song T, Yang L, Qi L, Zhang YZ, Wang Y, Shen QT. Three-dimensional architecture of ESCRT-III flat spirals on the membrane. Proc Natl Acad Sci U S A 2024; 121:e2319115121. [PMID: 38709931 PMCID: PMC11098116 DOI: 10.1073/pnas.2319115121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 04/01/2024] [Indexed: 05/08/2024] Open
Abstract
The endosomal sorting complexes required for transport (ESCRTs) are responsible for membrane remodeling in many cellular processes, such as multivesicular body biogenesis, viral budding, and cytokinetic abscission. ESCRT-III, the most abundant ESCRT subunit, assembles into flat spirals as the primed state, essential to initiate membrane invagination. However, the three-dimensional architecture of ESCRT-III flat spirals remained vague for decades due to highly curved filaments with a small diameter and a single preferred orientation on the membrane. Here, we unveiled that yeast Snf7, a component of ESCRT-III, forms flat spirals on the lipid monolayers using cryogenic electron microscopy. We developed a geometry-constrained Euler angle-assigned reconstruction strategy and obtained moderate-resolution structures of Snf7 flat spirals with varying curvatures. Our analyses showed that Snf7 subunits recline on the membrane with N-terminal motifs α0 as anchors, adopt an open state with fused α2/3 helices, and bend α2/3 gradually from the outer to inner parts of flat spirals. In all, we provide the orientation and conformations of ESCRT-III flat spirals on the membrane and unveil the underlying assembly mechanism, which will serve as the initial step in understanding how ESCRTs drive membrane abscission.
Collapse
Affiliation(s)
- Mingdong Liu
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| | - Yunhui Liu
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
| | - Tiefeng Song
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining314400, China
| | - Liuyan Yang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao266237, China
| | - Lei Qi
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
- Biomedical Research Center for Structural Analysis, Shandong University, Jinan250012, China
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao266237, China
| | - Yong Wang
- College of Life Sciences, Zhejiang University, Hangzhou310058, China
- The Provincial International Science and Technology Cooperation Base on Engineering Biology, International Campus of Zhejiang University, Haining314400, China
| | - Qing-Tao Shen
- School of Life Sciences, Department of Chemical Biology, Southern University of Science and Technology, Shenzhen518055, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao266237, China
- Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen518055, China
- iHuman Institute and School of Life Science and Technology, ShanghaiTech University, Shanghai201210, China
| |
Collapse
|
20
|
Spada SJ, Rose KM, Sette P, O'Connor SK, Dussupt V, Siddartha Yerramilli V, Nagashima K, Sjoelund VH, Cruz P, Kabat J, Ganesan S, Smelkinson M, Nita-Lazar A, Hoyt F, Scarlata S, Hirsch V, Best SM, Grigg ME, Bouamr F. Human ESCRT-I and ALIX function as scaffolding helical filaments in vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.592080. [PMID: 38903125 PMCID: PMC11188096 DOI: 10.1101/2024.05.01.592080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
The Endosomal Sorting Complex Required for Transport (ESCRT) is an evolutionarily conserved machinery that performs reverse-topology membrane scission in cells universally required from cytokinesis to budding of enveloped viruses. Upstream acting ESCRT-I and ALIX control these events and link recruitment of viral and cellular partners to late-acting ESCRT-III CHMP4 through incompletely understood mechanisms. Using structure-function analyses combined with super-resolution imaging, we show that ESCRT-I and ALIX function as distinct helical filaments in vivo . Together, they are essential for optimal structural scaffolding of HIV-1 nascent virions, the retention of viral and human genomes through defined functional interfaces, and recruitment of CHMP4 that itself assembles into corkscrew-like filaments intertwined with ESCRT-I or ALIX helices. Disruption of filament assembly or their conformationally clustered RNA binding interfaces in human cells impaired membrane abscission, resulted in major structural instability and leaked nucleic acid from nascent virions and nuclear envelopes. Thus, ESCRT-I and ALIX function as helical filaments in vivo and serve as both nucleic acid-dependent structural scaffolds as well as ESCRT-III assembly templates. Significance statement When cellular membranes are dissolved or breached, ESCRT is rapidly deployed to repair membranes to restore the integrity of intracellular compartments. Membrane sealing is ensured by ESCRT-III filaments assembled on the inner face of membrane; a mechanism termed inverse topology membrane scission. This mechanism, initiated by ESCRT-I and ALIX, is universally necessary for cytokinesis, wound repair, budding of enveloped viruses, and more. We show ESCRT-I and ALIX individually oligomerize into helical filaments that cluster newly discovered nucleic acid-binding interfaces and scaffold-in genomes within nascent virions and nuclear envelopes. These oligomers additionally appear to serve as ideal templates for ESCRT-III polymerization, as helical filaments of CHMP4B were found intertwined ESCRT-I or ALIX filaments in vivo . Similarly, corkscrew-like filaments of ALIX are also interwoven with ESCRT-I, supporting a model of inverse topology membrane scission that is synergistically reinforced by inward double filament scaffolding.
Collapse
|
21
|
Knyazeva A, Li S, Corkery DP, Shankar K, Herzog LK, Zhang X, Singh B, Niggemeyer G, Grill D, Gilthorpe JD, Gaetani M, Carlson LA, Waldmann H, Wu YW. A chemical inhibitor of IST1-CHMP1B interaction impairs endosomal recycling and induces noncanonical LC3 lipidation. Proc Natl Acad Sci U S A 2024; 121:e2317680121. [PMID: 38635626 PMCID: PMC11047075 DOI: 10.1073/pnas.2317680121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 03/18/2024] [Indexed: 04/20/2024] Open
Abstract
The endosomal sorting complex required for transport (ESCRT) machinery constitutes multisubunit protein complexes that play an essential role in membrane remodeling and trafficking. ESCRTs regulate a wide array of cellular processes, including cytokinetic abscission, cargo sorting into multivesicular bodies (MVBs), membrane repair, and autophagy. Given the versatile functionality of ESCRTs, and the intricate organizational structure of the ESCRT machinery, the targeted modulation of distinct ESCRT complexes is considerably challenging. This study presents a pseudonatural product targeting IST1-CHMP1B within the ESCRT-III complexes. The compound specifically disrupts the interaction between IST1 and CHMP1B, thereby inhibiting the formation of IST1-CHMP1B copolymers essential for normal-topology membrane scission events. While the compound has no impact on cytokinesis, MVB sorting, or biogenesis of extracellular vesicles, it rapidly inhibits transferrin receptor recycling in cells, resulting in the accumulation of transferrin in stalled sorting endosomes. Stalled endosomes become decorated by lipidated LC3, suggesting a link between noncanonical LC3 lipidation and inhibition of the IST1-CHMP1B complex.
Collapse
Affiliation(s)
- Anastasia Knyazeva
- Department of Chemistry, Umeå University, 901 87Umeå, Sweden
- Science for Life Laboratory, Umeå University, 901 87Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
| | - Shuang Li
- Department of Chemistry, Umeå University, 901 87Umeå, Sweden
- Science for Life Laboratory, Umeå University, 901 87Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
| | - Dale P. Corkery
- Department of Chemistry, Umeå University, 901 87Umeå, Sweden
- Science for Life Laboratory, Umeå University, 901 87Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
| | - Kasturika Shankar
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, 901 87Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, 901 87, Umeå, Sweden
| | - Laura K. Herzog
- Department of Chemistry, Umeå University, 901 87Umeå, Sweden
- Science for Life Laboratory, Umeå University, 901 87Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
| | - Xuepei Zhang
- Chemical Proteomics Core Facility, Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77Stockholm, Sweden
- Chemical Proteomics Unit, Science for Life Laboratory, 171 77Stockholm, Sweden
- Chemical Proteomics, Swedish National Infrastructure for Biological Mass Spectrometry, 171 77Stockholm, Sweden
| | - Birendra Singh
- Department of Surgical and Perioperative Sciences, Unit of Anesthesiology and Intensive Care Medicine, Umeå University, 901 87Umeå, Sweden
| | - Georg Niggemeyer
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | - David Grill
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
| | | | - Massimiliano Gaetani
- Chemical Proteomics Core Facility, Division of Chemistry I, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 77Stockholm, Sweden
- Chemical Proteomics Unit, Science for Life Laboratory, 171 77Stockholm, Sweden
- Chemical Proteomics, Swedish National Infrastructure for Biological Mass Spectrometry, 171 77Stockholm, Sweden
| | - Lars-Anders Carlson
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
- Department of Medical Biochemistry and Biophysics, 901 87Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, 901 87, Umeå, Sweden
- Molecular Infection Medicine Sweden, Umeå University, 901 87, Umeå, Sweden
| | - Herbert Waldmann
- Department of Chemical Biology, Max Planck Institute of Molecular Physiology, 44227, Dortmund, Germany
- Faculty of Chemistry and Chemical Biology, Technical University Dortmund, 44227, Dortmund, Germany
| | - Yao-Wen Wu
- Department of Chemistry, Umeå University, 901 87Umeå, Sweden
- Science for Life Laboratory, Umeå University, 901 87Umeå, Sweden
- Umeå Centre for Microbial Research, Umeå University, 901 87Umeå, Sweden
| |
Collapse
|
22
|
Yumura S. Wound Repair of the Cell Membrane: Lessons from Dictyostelium Cells. Cells 2024; 13:341. [PMID: 38391954 PMCID: PMC10886852 DOI: 10.3390/cells13040341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/30/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
The cell membrane is frequently subjected to damage, either through physical or chemical means. The swift restoration of the cell membrane's integrity is crucial to prevent the leakage of intracellular materials and the uncontrolled influx of extracellular ions. Consequently, wound repair plays a vital role in cell survival, akin to the importance of DNA repair. The mechanisms involved in wound repair encompass a series of events, including ion influx, membrane patch formation, endocytosis, exocytosis, recruitment of the actin cytoskeleton, and the elimination of damaged membrane sections. Despite the absence of a universally accepted general model, diverse molecular models have been proposed for wound repair in different organisms. Traditional wound methods not only damage the cell membrane but also impact intracellular structures, including the underlying cortical actin networks, microtubules, and organelles. In contrast, the more recent improved laserporation selectively targets the cell membrane. Studies on Dictyostelium cells utilizing this method have introduced a novel perspective on the wound repair mechanism. This review commences by detailing methods for inducing wounds and subsequently reviews recent developments in the field.
Collapse
Affiliation(s)
- Shigehiko Yumura
- Graduate School of Sciences and Technology for Innovation, Yamaguchi University, Yamaguchi 753-8511, Japan
| |
Collapse
|
23
|
Clippinger AK, Naismith TV, Yoo W, Jansen S, Kast DJ, Hanson PI. IST1 regulates select recycling pathways. Traffic 2024; 25:e12921. [PMID: 37926552 PMCID: PMC11027954 DOI: 10.1111/tra.12921] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 08/21/2023] [Accepted: 09/23/2023] [Indexed: 11/07/2023]
Abstract
ESCRTs (Endosomal Sorting Complex Required for Transports) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intraluminal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT-III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Functionally, depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP-1. IST1 is also important for export of mannose 6-phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain-containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin-containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live-cell microscopy, we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.
Collapse
Affiliation(s)
- Amy K Clippinger
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Teresa V Naismith
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Wonjin Yoo
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Silvia Jansen
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - David J Kast
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Phyllis I Hanson
- Department of Cell Biology and Physiology, Washington University in St. Louis, St. Louis, Missouri, USA
- Department of Biological Chemistry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
24
|
Farzaneh M, Khoshnam SE. Functional Roles of Mesenchymal Stem Cell-derived Exosomes in Ischemic Stroke Treatment. Curr Stem Cell Res Ther 2024; 19:2-14. [PMID: 36567297 DOI: 10.2174/1574888x18666221222123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/28/2022] [Accepted: 10/18/2022] [Indexed: 12/27/2022]
Abstract
Stroke is a life-threatening disease and one of the leading causes of death and physical disability worldwide. Currently, no drugs on the market promote neural recovery after stroke insult, and spontaneous remodeling processes are limited to induce recovery in the ischemic regions. Therefore, promoting a cell-based therapy has been needed to elevate the endogenous recovery process. Mesenchymal stem cells (MSCs) have been regarded as candidate cell sources for therapeutic purposes of ischemic stroke, and their therapeutic effects are mediated by exosomes. The microRNA cargo in these extracellular vesicles is mostly responsible for the positive effects. When it comes to the therapeutic viewpoint, MSCsderived exosomes could be a promising therapeutic strategy against ischemic stroke. The aim of this review is to discuss the current knowledge around the potential of MSCs-derived exosomes in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
25
|
Carlton JG, Baum B. Roles of ESCRT-III polymers in cell division across the tree of life. Curr Opin Cell Biol 2023; 85:102274. [PMID: 37944425 PMCID: PMC7615534 DOI: 10.1016/j.ceb.2023.102274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 10/12/2023] [Accepted: 10/12/2023] [Indexed: 11/12/2023]
Abstract
Every cell becomes two through a carefully orchestrated process of division. Prior to division, contractile machinery must first be assembled at the cell midzone to ensure that the cut, when it is made, bisects the two separated copies of the genetic material. Second, this contractile machinery must be dynamically tethered to the limiting plasma membrane so as to bring the membrane with it as it constricts. Finally, the connecting membrane must be severed to generate two physically separate daughter cells. In several organisms across the tree of life, Endosomal Sorting Complex Required for Transport (ESCRT)-III family proteins aid cell division by forming composite polymers that function together with the Vps4 AAA-ATPase to constrict and cut the membrane tube connecting nascent daughter cells from the inside. In this review, we discuss unique features of ESCRT-III that enable it to play this role in division in many archaea and eukaryotes.
Collapse
Affiliation(s)
- Jeremy Graham Carlton
- Comprehensive Cancer Centre, School of Cancer & Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King's College London, Guy's Hospital, London, SE1 1UL, UK; Organelle Dynamics Laboratory, The Francis Crick Institute, 1 Midland Road, London, NW1 1AT, UK.
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
26
|
Wang H, Gallet B, Moriscot C, Pezet M, Chatellard C, Kleman JP, Göttlinger H, Weissenhorn W, Boscheron C. An Inducible ESCRT-III Inhibition Tool to Control HIV-1 Budding. Viruses 2023; 15:2289. [PMID: 38140530 PMCID: PMC10748027 DOI: 10.3390/v15122289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated autocleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization, and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins. Notably, upon drug administration, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted no effect but synergized with CHMP2A-NS3. Localization studies demonstrated the relocalization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.
Collapse
Affiliation(s)
- Haiyan Wang
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | - Benoit Gallet
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | | | - Mylène Pezet
- University Grenoble Alpes, INSERM, IAB, 38000 Grenoble, France;
| | - Christine Chatellard
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | - Jean-Philippe Kleman
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | - Heinrich Göttlinger
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA;
| | - Winfried Weissenhorn
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| | - Cécile Boscheron
- University Grenoble Alpes, CEA, CNRS, Institut de Biologie Structurale (IBS), 38000 Grenoble, France; (H.W.); (B.G.); (C.C.); (J.-P.K.)
| |
Collapse
|
27
|
Pfitzner AK, Zivkovic H, Bernat-Silvestre C, West M, Peltier T, Humbert F, Odorizzi G, Roux A. Vps60 initiates alternative ESCRT-III filaments. J Cell Biol 2023; 222:e202206028. [PMID: 37768378 PMCID: PMC10538557 DOI: 10.1083/jcb.202206028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 03/08/2023] [Accepted: 06/12/2023] [Indexed: 09/29/2023] Open
Abstract
Endosomal sorting complex required for transport-III (ESCRT-III) participates in essential cellular functions, from cell division to endosome maturation. The remarkable increase of its subunit diversity through evolution may have enabled the acquisition of novel functions. Here, we characterize a novel ESCRT-III copolymer initiated by Vps60. Membrane-bound Vps60 polymers recruit Vps2, Vps24, Did2, and Ist1, as previously shown for Snf7. Snf7- and Vps60-based filaments can coexist on membranes without interacting as their polymerization and recruitment of downstream subunits remain spatially and biochemically separated. In fibroblasts, Vps60/CHMP5 and Snf7/CHMP4 are both recruited during endosomal functions and cytokinesis, but their localization is segregated and their recruitment dynamics are different. Contrary to Snf7/CHMP4, Vps60/CHMP5 is not recruited during nuclear envelope reformation. Taken together, our results show that Vps60 and Snf7 form functionally distinct ESCRT-III polymers, supporting the notion that diversification of ESCRT-III subunits through evolution is linked to the acquisition of new cellular functions.
Collapse
Affiliation(s)
| | - Henry Zivkovic
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | | | - Matt West
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Tanner Peltier
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Frédéric Humbert
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
| | - Greg Odorizzi
- Department of Molecular Cellular and Developmental Biology, University of Colorado, Boulder, CO, USA
| | - Aurélien Roux
- Department of Biochemistry, University of Geneva, Geneva, Switzerland
- National Center of Competence in Research in Chemical Biology, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Schlösser L, Sachse C, Low HH, Schneider D. Conserved structures of ESCRT-III superfamily members across domains of life. Trends Biochem Sci 2023; 48:993-1004. [PMID: 37718229 DOI: 10.1016/j.tibs.2023.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/04/2023] [Accepted: 08/22/2023] [Indexed: 09/19/2023]
Abstract
Structural and evolutionary studies of cyanobacterial phage shock protein A (PspA) and inner membrane-associated protein of 30 kDa (IM30) have revealed that these proteins belong to the endosomal sorting complex required for transport-III (ESCRT-III) superfamily, which is conserved across all three domains of life. PspA and IM30 share secondary and tertiary structures with eukaryotic ESCRT-III proteins, whilst also oligomerizing via conserved interactions. Here, we examine the structures of bacterial ESCRT-III-like proteins and compare the monomeric and oligomerized forms with their eukaryotic counterparts. We discuss conserved interactions used for self-assembly and highlight key hinge regions that mediate oligomer ultrastructure versatility. Finally, we address the differences in nomenclature assigned to equivalent structural motifs in both the bacterial and eukaryotic fields and suggest a common nomenclature applicable across the ESCRT-III superfamily.
Collapse
Affiliation(s)
- Lukas Schlösser
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany
| | - Carsten Sachse
- Ernst-Ruska Centre for Microscopy and Spectroscopy with Electrons, ER-C-3/Structural Biology, Forschungszentrum Jülich, 52425 Jülich, Germany; Institute for Biological Information Processing/IBI-6 Cellular Structural Biology, Jülich, Germany; Department of Biology, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Harry H Low
- Department of Infectious Disease, Imperial College, London, UK
| | - Dirk Schneider
- Department of Chemistry, Biochemistry, Johannes Gutenberg University Mainz, Germany; Institute of Molecular Physiology, Johannes Gutenberg University Mainz, Mainz, Germany.
| |
Collapse
|
29
|
Wang H, Gallet B, Moriscot C, Pezet M, Chatellard C, Kleman JP, Göttlinger H, Weissenhorn W, Boscheron C. An inducible ESCRT-III inhibition tool to control HIV-1 budding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562494. [PMID: 37905063 PMCID: PMC10614826 DOI: 10.1101/2023.10.16.562494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
HIV-1 budding as well as many other cellular processes require the Endosomal Sorting Complex Required for Transport (ESCRT) machinery. Understanding the architecture of the native ESCRT-III complex at HIV-1 budding sites is limited due to spatial resolution and transient ESCRT-III recruitment. Here, we developed a drug-inducible transient HIV-1 budding inhibitory tool to enhance the ESCRT-III lifetime at budding sites. We generated auto-cleavable CHMP2A, CHMP3, and CHMP4B fusion proteins with the hepatitis C virus NS3 protease. We characterized the CHMP-NS3 fusion proteins in the absence and presence of protease inhibitor Glecaprevir with regard to expression, stability, localization and HIV-1 Gag VLP budding. Immunoblotting experiments revealed rapid and stable accumulation of CHMP-NS3 fusion proteins with variable modification of Gag VLP budding upon drug administration. Notably, CHMP2A-NS3 and CHMP4B-NS3 fusion proteins substantially decrease VLP release while CHMP3-NS3 exerted a minor effect and synergized with CHMP2A-NS3. Localization studies demonstrated the re-localization of CHMP-NS3 fusion proteins to the plasma membrane, endosomes, and Gag VLP budding sites. Through the combined use of transmission electron microscopy and video-microscopy, we unveiled drug-dependent accumulation of CHMP2A-NS3 and CHMP4B-NS3, causing a delay in HIV-1 Gag-VLP release. Our findings provide novel insight into the functional consequences of inhibiting ESCRT-III during HIV-1 budding and establish new tools to decipher the role of ESCRT-III at HIV-1 budding sites and other ESCRT-catalyzed cellular processes.
Collapse
|
30
|
Ader NR, Chen L, Surovtsev IV, Chadwick WL, Rodriguez EC, King MC, Lusk CP. An ESCRT grommet cooperates with a diffusion barrier to maintain nuclear integrity. Nat Cell Biol 2023; 25:1465-1477. [PMID: 37783794 PMCID: PMC11365527 DOI: 10.1038/s41556-023-01235-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 08/17/2023] [Indexed: 10/04/2023]
Abstract
The molecular mechanisms by which the endosomal sorting complexes required for transport (ESCRT) proteins contribute to the integrity of the nuclear envelope (NE) barrier are not fully defined. We leveraged the single NE hole generated by mitotic extrusion of the Schizosaccharomyces pombe spindle pole body to reveal two modes of ESCRT function executed by distinct complements of ESCRT-III proteins, both dependent on CHMP7/Cmp7. A grommet-like function is required to restrict the NE hole in anaphase B, whereas replacement of Cmp7 by a sealing module ultimately closes the NE in interphase. Without Cmp7, nucleocytoplasmic compartmentalization remains intact despite NE discontinuities of up to 540 nm, suggesting mechanisms to limit diffusion through these holes. We implicate spindle pole body proteins as key components of a diffusion barrier acting with Cmp7 in anaphase B. Thus, NE remodelling mechanisms cooperate with proteinaceous diffusion barriers beyond nuclear pore complexes to maintain the nuclear compartment.
Collapse
Affiliation(s)
- Nicholas R Ader
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Linda Chen
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Ivan V Surovtsev
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
- Department of Physics, Yale University, New Haven, CT, USA
| | | | - Elisa C Rodriguez
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA
| | - Megan C King
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
- Department of Molecular, Cell and Developmental Biology, Yale University, New Haven, CT, USA.
| | - C Patrick Lusk
- Department of Cell Biology, Yale School of Medicine, New Haven, CT, USA.
| |
Collapse
|
31
|
Montizaan D, Saunders C, Yang K, Sasidharan S, Maity S, Reker-Smit C, Stuart MCA, Montis C, Berti D, Roos WH, Salvati A. Role of Curvature-Sensing Proteins in the Uptake of Nanoparticles with Different Mechanical Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303267. [PMID: 37236202 DOI: 10.1002/smll.202303267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Indexed: 05/28/2023]
Abstract
Nanoparticles of different properties, such as size, charge, and rigidity, are used for drug delivery. Upon interaction with the cell membrane, because of their curvature, nanoparticles can bend the lipid bilayer. Recent results show that cellular proteins capable of sensing membrane curvature are involved in nanoparticle uptake; however, no information is yet available on whether nanoparticle mechanical properties also affect their activity. Here liposomes and liposome-coated silica are used as a model system to compare uptake and cell behavior of two nanoparticles of similar size and charge, but different mechanical properties. High-sensitivity flow cytometry, cryo-TEM, and fluorescence correlation spectroscopy confirm lipid deposition on the silica. Atomic force microscopy is used to quantify the deformation of individual nanoparticles at increasing imaging forces, confirming that the two nanoparticles display distinct mechanical properties. Uptake studies in HeLa and A549 cells indicate that liposome uptake is higher than for the liposome-coated silica. RNA interference studies to silence their expression show that different curvature-sensing proteins are involved in the uptake of both nanoparticles in both cell types. These results confirm that curvature-sensing proteins have a role in nanoparticle uptake, which is not restricted to harder nanoparticles, but includes softer nanomaterials commonly used for nanomedicine applications.
Collapse
Affiliation(s)
- Daphne Montizaan
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Catherine Saunders
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Keni Yang
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Sajitha Sasidharan
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Sourav Maity
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Catharina Reker-Smit
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Marc C A Stuart
- Electron Microscopy, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, Groningen, 9747 AG, The Netherlands
| | - Costanza Montis
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, Florence, 50019, Italy
| | - Debora Berti
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3, Sesto Fiorentino, Florence, 50019, Italy
| | - Wouter H Roos
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh 4, Groningen, 9747 AG, The Netherlands
| | - Anna Salvati
- Department of Nanomedicine & Drug Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| |
Collapse
|
32
|
Clippinger AK, Naismith TV, Yoo W, Jansen S, Kast D, Hanson PI. IST1 regulates select endosomal recycling pathways. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.31.551359. [PMID: 37577466 PMCID: PMC10418098 DOI: 10.1101/2023.07.31.551359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
ESCRTs (Endosomal Sorting Complex Required for Transport) are a modular set of protein complexes with membrane remodeling activities that include the formation and release of intralumenal vesicles (ILVs) to generate multivesicular endosomes. While most of the 12 ESCRT-III proteins are known to play roles in ILV formation, IST1 has been associated with a wider range of endosomal remodeling events. Here, we extend previous studies of IST1 function in endosomal trafficking and confirm that IST1, along with its binding partner CHMP1B, contributes to scission of early endosomal carriers. Depleting IST1 impaired delivery of transferrin receptor from early/sorting endosomes to the endocytic recycling compartment and instead increased its rapid recycling to the plasma membrane via peripheral endosomes enriched in the clathrin adaptor AP-1. IST1 is also important for export of mannose 6-phosphate receptor from early/sorting endosomes. Examination of IST1 binding partners on endosomes revealed that IST1 interacts with the MIT domain-containing sorting nexin SNX15, a protein previously reported to regulate endosomal recycling. Our kinetic and spatial analyses establish that SNX15 and IST1 occupy a clathrin-containing subdomain on the endosomal perimeter distinct from those previously implicated in cargo retrieval or degradation. Using live-cell microscopy we see that SNX15 and CHMP1B alternately recruit IST1 to this subdomain or the base of endosomal tubules. These findings indicate that IST1 contributes to a subset of recycling pathways from the early/sorting endosome.
Collapse
|
33
|
Hudait A, Hurley JH, Voth GA. Dynamics of upstream ESCRT organization at the HIV-1 budding site. Biophys J 2023; 122:2655-2674. [PMID: 37218128 PMCID: PMC10397573 DOI: 10.1016/j.bpj.2023.05.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 03/27/2023] [Accepted: 05/11/2023] [Indexed: 05/24/2023] Open
Abstract
In the late stages of the HIV-1 life cycle, membrane localization and self-assembly of Gag polyproteins induce membrane deformation and budding. Release of the virion requires direct interaction between immature Gag lattice and upstream ESCRT machinery at the viral budding site, followed by assembly of downstream ESCRT-III factors, culminating in membrane scission. However, molecular details of upstream ESCRT assembly dynamics at the viral budding site remain unclear. In this work, using coarse-grained (CG) molecular dynamics (MD) simulations, we investigated the interactions between Gag, ESCRT-I, ESCRT-II, and membrane to delineate the dynamical mechanisms by which upstream ESCRTs assemble templated by late-stage immature Gag lattice. We first systematically derived "bottom-up" CG molecular models and interactions of upstream ESCRT proteins from experimental structural data and extensive all-atom MD simulations. Using these molecular models, we performed CG MD simulations of ESCRT-I oligomerization and ESCRT-I/II supercomplex formation at the neck of the budding virion. Our simulations demonstrate that ESCRT-I can effectively oligomerize to higher-order complexes templated by the immature Gag lattice both in the absence of ESCRT-II and when multiple copies of ESCRT-II are localized at the bud neck. The ESCRT-I/II supercomplexes formed in our simulations exhibit predominantly columnar structures, which has important implications for the nucleation pathway of downstream ESCRT-III polymers. Importantly, ESCRT-I/II supercomplexes bound to Gag initiate membrane neck constriction by pulling the inner edge of the bud neck closer to the ESCRT-I headpiece ring. Our findings serve to elucidate a network of interactions between upstream ESCRT machinery, immature Gag lattice, and membrane neck that regulate protein assembly dynamics at the HIV-1 budding site.
Collapse
Affiliation(s)
- Arpa Hudait
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois
| | - James H Hurley
- Department of Molecular and Cell Biology and California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California; California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, California
| | - Gregory A Voth
- Department of Chemistry, Chicago Center for Theoretical Chemistry, Institute for Biophysical Dynamics, and James Franck Institute, The University of Chicago, Chicago, Illinois.
| |
Collapse
|
34
|
Vp V, Kannan A, Perumal MK. Role of adipocyte-derived extracellular vesicles during the progression of liver inflammation to hepatocellular carcinoma. J Cell Physiol 2023; 238:1125-1140. [PMID: 36960683 DOI: 10.1002/jcp.31008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/03/2023] [Accepted: 03/11/2023] [Indexed: 03/25/2023]
Abstract
Extracellular vesicles are membrane-bound cargos that vary in size and are stably transported through various bodily fluids. Extracellular vesicles communicate information between the cells and organs. Extracellular vesicles from the diseased cells alter cellular responses of the recipient cells contributing to disease progression. In obesity, adipocytes become hypertrophic and the extracellular vesicles from these dysfunctional adipocytes showed altered cargo contents instigating pathophysiological response leading to chronic liver diseases. In this review, the role of adipocyte-derived extracellular vesicles on the progression of liver inflammation, fibrosis, cirrhosis, and hepatocellular carcinoma are extensively discussed. Newer approaches are crucial to take advantage of extracellular vesicles and their content as biomarkers to diagnose initial liver inflammation before reaching to an irreversible liver failure stage.
Collapse
Affiliation(s)
- Venkateish Vp
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Anbarasu Kannan
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Madan Kumar Perumal
- Department of Biochemistry, CSIR-Central Food Technological Research Institute, Mysore, Karnataka, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
35
|
Li Z, Gao Y, Cao Y, He F, Jiang R, Liu H, Cai H, Zan T. Extracellular RNA in melanoma: Advances, challenges, and opportunities. Front Cell Dev Biol 2023; 11:1141543. [PMID: 37215082 PMCID: PMC10192583 DOI: 10.3389/fcell.2023.1141543] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 04/10/2023] [Indexed: 05/24/2023] Open
Abstract
Melanoma, a malignant mass lesion that originates in melanocytes and has a high rate of malignancy, metastasis, and mortality, is defined by these characteristics. Malignant melanoma is a kind of highly malignant tumor that produces melanin and has a high mortality rate. Its incidence accounts for 1%-3% of all malignant tumors and shows an obvious upward trend. The discovery of biomolecules for the diagnosis and treatment of malignant melanoma has important application value. So far, the exact molecular mechanism of melanoma development relevant signal pathway still remains unclear. According to previous studies, extracellular RNAs (exRNAs) have been implicated in tumorigenesis and spread of melanoma. They can influence the proliferation, invasion and metastasis of melanoma by controlling the expression of target genes and can also influence tumor progression by participating in signal transduction mechanisms. Therefore, understanding the relationship between exRNA and malignant melanoma and targeting therapy is of positive significance for its prevention and treatment. In this review, we did an analysis of extracellular vesicles of melanoma which focused on the role of exRNAs (lncRNAs, miRNAs, and mRNAs) and identifies several potential therapeutic targets. In addition, we discuss the typical signaling pathways involved in exRNAs, advances in exRNA detection and how they affect the tumor immune microenvironment in melanoma.
Collapse
Affiliation(s)
- Zhouxiao Li
- Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yiyang Gao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yang Cao
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feifan He
- Department of Radiology, The Fourth School of Clinical Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Runyi Jiang
- Department of Orthopaedic Oncology, Spinal Tumor Center, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Hanyuan Liu
- Department of General Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hongzhou Cai
- Department of Urology, Jiangsu Cancer Hospital and The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Institute of Cancer Research, Nanjing, Jiangsu, China
| | - Tao Zan
- Department of Plastic and Reconstructive Surgery, Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
36
|
Hurtig F, Burgers TC, Cezanne A, Jiang X, Mol FN, Traparić J, Pulschen AA, Nierhaus T, Tarrason-Risa G, Harker-Kirschneck L, Löwe J, Šarić A, Vlijm R, Baum B. The patterned assembly and stepwise Vps4-mediated disassembly of composite ESCRT-III polymers drives archaeal cell division. SCIENCE ADVANCES 2023; 9:eade5224. [PMID: 36921039 PMCID: PMC10017037 DOI: 10.1126/sciadv.ade5224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 02/14/2023] [Indexed: 05/13/2023]
Abstract
ESCRT-III family proteins form composite polymers that deform and cut membrane tubes in the context of a wide range of cell biological processes across the tree of life. In reconstituted systems, sequential changes in the composition of ESCRT-III polymers induced by the AAA-adenosine triphosphatase Vps4 have been shown to remodel membranes. However, it is not known how composite ESCRT-III polymers are organized and remodeled in space and time in a cellular context. Taking advantage of the relative simplicity of the ESCRT-III-dependent division system in Sulfolobus acidocaldarius, one of the closest experimentally tractable prokaryotic relatives of eukaryotes, we use super-resolution microscopy, electron microscopy, and computational modeling to show how CdvB/CdvB1/CdvB2 proteins form a precisely patterned composite ESCRT-III division ring, which undergoes stepwise Vps4-dependent disassembly and contracts to cut cells into two. These observations lead us to suggest sequential changes in a patterned composite polymer as a general mechanism of ESCRT-III-dependent membrane remodeling.
Collapse
Affiliation(s)
- Fredrik Hurtig
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Thomas C. Q. Burgers
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Alice Cezanne
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Xiuyun Jiang
- Laboratory of Soft Matter Physics, The Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Frank N. Mol
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Jovan Traparić
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Tim Nierhaus
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | | | - Lena Harker-Kirschneck
- University College London, Institute for the Physics of Living Systems, WC1E 6BT London, UK
| | - Jan Löwe
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | - Rifka Vlijm
- Molecular Biophysics, Zernike Institute for Advanced Materials, University of Groningen, 9747 AG Groningen, Netherlands
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
37
|
Jukic N, Perrino AP, Redondo-Morata L, Scheuring S. Structure and dynamics of ESCRT-III membrane remodeling proteins by high-speed atomic force microscopy. J Biol Chem 2023; 299:104575. [PMID: 36870686 PMCID: PMC10074808 DOI: 10.1016/j.jbc.2023.104575] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/06/2023] Open
Abstract
Endosomal Sorting Complex Required for Transport (ESCRT) proteins assemble on the cytoplasmic leaflet of membranes and remodel them. ESCRT is involved in biological processes where membranes are bent away from the cytosol, constricted, and finally severed, such as in multi-vesicular body formation (in the endosomal pathway for protein sorting) or abscission during cell division. The ESCRT system is hijacked by enveloped viruses to allow buds of nascent virions to be constricted, severed and released. ESCRT-III proteins, the most downstream components of the ESCRT system, are monomeric and cytosolic in their autoinhibited conformation. They share a common architecture, a four-helix bundle with a fifth helix that interacts with this bundle to prevent polymerizing. Upon binding to negatively charged membranes, the ESCRT-III components adopt an activated state that allows them to polymerize into filaments and spirals, and to interact with the AAA-ATPase Vps4 for polymer remodeling. ESCRT-III has been studied with electron microscopy (EM) and fluorescence microscopy (FM); these methods provided invaluable information about ESCRT assembly structures or their dynamics, respectively, but neither approach provides detailed insights into both aspects simultaneously. High-speed atomic force microscopy (HS-AFM) has overcome this shortcoming, providing movies at high spatio-temporal resolution of biomolecular processes, significantly increasing our understanding of ESCRT-III structure and dynamics. Here, we review the contributions of HS-AFM in the analysis of ESCRT-III, focusing on recent developments of non-planar and deformable HS-AFM supports. We divide the HS-AFM observations into four sequential steps in the ESCRT-III lifecycle: 1) polymerization, 2) morphology, 3) dynamics, and 4) depolymerization.
Collapse
Affiliation(s)
- Nebojsa Jukic
- Weill Cornell Medicine, Physiology, Biophysics and Systems Biology Graduate Program, New York, NY 10065, USA
| | - Alma P Perrino
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065, USA
| | - Lorena Redondo-Morata
- Université de Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019-UMR9017-CIIL-Centre d'Infection et d'Immunité de Lille, F-59000 Lille, France
| | - Simon Scheuring
- Weill Cornell Medicine, Department of Anesthesiology, 1300 York Avenue, New York, NY 10065, USA; Weill Cornell Medicine, Department of Physiology and Biophysics, 1300 York Avenue, New York, NY 10065, USA; Kavli Institute at Cornell for Nanoscale Science, Cornell University, Ithaca, New York, NY 14853, USA.
| |
Collapse
|
38
|
Marie PP, Fan S, Mason J, Wells A, Mendes CC, Wainwright SM, Scott S, Fischer R, Harris AL, Wilson C, Goberdhan DCI. Accessory ESCRT-III proteins are conserved and selective regulators of Rab11a-exosome formation. J Extracell Vesicles 2023; 12:e12311. [PMID: 36872252 PMCID: PMC9986085 DOI: 10.1002/jev2.12311] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 01/18/2023] [Accepted: 02/09/2023] [Indexed: 03/07/2023] Open
Abstract
Exosomes are secreted nanovesicles with potent signalling activity that are initially formed as intraluminal vesicles (ILVs) in late Rab7-positive multivesicular endosomes, and also in recycling Rab11a-positive endosomes, particularly under some forms of nutrient stress. The core proteins of the Endosomal Sorting Complex Required for Transport (ESCRT) participate in exosome biogenesis and ILV-mediated destruction of ubiquitinylated cargos. Accessory ESCRT-III components have reported roles in ESCRT-III-mediated vesicle scission, but their precise functions are poorly defined. They frequently only appear essential under stress. Comparative proteomics analysis of human small extracellular vesicles revealed that accessory ESCRT-III proteins, CHMP1A, CHMP1B, CHMP5 and IST1, are increased in Rab11a-enriched exosome preparations. We show that these proteins are required to form ILVs in Drosophila secondary cell recycling endosomes, but unlike core ESCRTs, they are not involved in degradation of ubiquitinylated proteins in late endosomes. Furthermore, CHMP5 knockdown in human HCT116 colorectal cancer cells selectively inhibits Rab11a-exosome production. Accessory ESCRT-III knockdown suppresses seminal fluid-mediated reproductive signalling by secondary cells and the growth-promoting activity of Rab11a-exosome-containing EVs from HCT116 cells. We conclude that accessory ESCRT-III components have a specific, ubiquitin-independent role in Rab11a-exosome generation, a mechanism that might be targeted to selectively block pro-tumorigenic activities of these vesicles in cancer.
Collapse
Affiliation(s)
- Pauline P. Marie
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Shih‐Jung Fan
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - John Mason
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Adam Wells
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Cláudia C. Mendes
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - S. Mark Wainwright
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Sheherezade Scott
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | - Roman Fischer
- Target Discovery InstituteUniversity of OxfordOxfordUK
| | | | - Clive Wilson
- Department of Physiology Anatomy and GeneticsUniversity of OxfordOxfordUK
| | | |
Collapse
|
39
|
Romano JD, Mayoral J, Guevara RB, Rivera-Cuevas Y, Carruthers VB, Weiss LM, Coppens I. Toxoplasma gondii scavenges mammalian host organelles through the usurpation of host ESCRT-III and Vps4A. J Cell Sci 2023; 136:jcs260159. [PMID: 36718630 PMCID: PMC10022688 DOI: 10.1242/jcs.260159] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 01/19/2023] [Indexed: 02/01/2023] Open
Abstract
Intracellular pathogens exploit cellular resources through host cell manipulation. Within its nonfusogenic parasitophorous vacuole (PV), Toxoplasma gondii targets host nutrient-filled organelles and sequesters them into the PV through deep invaginations of the PV membrane (PVM) that ultimately detach from this membrane. Some of these invaginations are generated by an intravacuolar network (IVN) of parasite-derived tubules attached to the PVM. Here, we examined the usurpation of host ESCRT-III and Vps4A by the parasite to create PVM buds and vesicles. CHMP4B associated with the PVM/IVN, and dominant-negative (DN) CHMP4B formed many long PVM invaginations containing CHMP4B filaments. These invaginations were shorter in IVN-deficient parasites, suggesting cooperation between the IVN and ESCRT. In infected cells expressing Vps4A-DN, enlarged intra-PV structures containing host endolysosomes accumulated, reflecting defects in PVM scission. Parasite mutants lacking T. gondii (Tg)GRA14 or TgGRA64, which interact with ESCRT, reduced CHMP4B-DN-induced PVM invaginations and intra-PV host organelles, with greater defects in a double knockout, revealing the exploitation of ESCRT to scavenge host organelles by Toxoplasma.
Collapse
Affiliation(s)
- Julia D. Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| | - Joshua Mayoral
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Rebekah B. Guevara
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Yolanda Rivera-Cuevas
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Vern B. Carruthers
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Louis M. Weiss
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY 10461, USA
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD 21205, USA
| |
Collapse
|
40
|
Su C, Rodriguez-Franco M, Lace B, Nebel N, Hernandez-Reyes C, Liang P, Schulze E, Mymrikov EV, Gross NM, Knerr J, Wang H, Siukstaite L, Keller J, Libourel C, Fischer AAM, Gabor KE, Mark E, Popp C, Hunte C, Weber W, Wendler P, Stanislas T, Delaux PM, Einsle O, Grosse R, Römer W, Ott T. Stabilization of membrane topologies by proteinaceous remorin scaffolds. Nat Commun 2023; 14:323. [PMID: 36658193 PMCID: PMC9852587 DOI: 10.1038/s41467-023-35976-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 01/10/2023] [Indexed: 01/20/2023] Open
Abstract
In plants, the topological organization of membranes has mainly been attributed to the cell wall and the cytoskeleton. Additionally, few proteins, such as plant-specific remorins have been shown to function as protein and lipid organizers. Root nodule symbiosis requires continuous membrane re-arrangements, with bacteria being finally released from infection threads into membrane-confined symbiosomes. We found that mutations in the symbiosis-specific SYMREM1 gene result in highly disorganized perimicrobial membranes. AlphaFold modelling and biochemical analyses reveal that SYMREM1 oligomerizes into antiparallel dimers and may form a higher-order membrane scaffolding structure. This was experimentally confirmed when expressing this and other remorins in wall-less protoplasts is sufficient where they significantly alter and stabilize de novo membrane topologies ranging from membrane blebs to long membrane tubes with a central actin filament. Reciprocally, mechanically induced membrane indentations were equally stabilized by SYMREM1. Taken together we describe a plant-specific mechanism that allows the stabilization of large-scale membrane conformations independent of the cell wall.
Collapse
Affiliation(s)
- Chao Su
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | | | - Beatrice Lace
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Nils Nebel
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Casandra Hernandez-Reyes
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Pengbo Liang
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Eija Schulze
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Evgeny V Mymrikov
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
| | - Nikolas M Gross
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
| | - Julian Knerr
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Hong Wang
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Lina Siukstaite
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Jean Keller
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Cyril Libourel
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Alexandra A M Fischer
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Division of Synthetic Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Katharina E Gabor
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Eric Mark
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Claudia Popp
- Ludwig-Maximilians-University (LMU) Munich, Institute of Genetics, 82152, Martinsried, Germany
| | - Carola Hunte
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute for Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Wilfried Weber
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Division of Synthetic Biology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
| | - Petra Wendler
- Institute of Biochemistry and Biology, Department of Biochemistry, University of Potsdam, 14476, Potsdam-Golm, Germany
| | - Thomas Stanislas
- Center for Plant Molecular Biology (ZMBP), University of Tübingen, 72076, Tübingen, Germany
| | - Pierre-Marc Delaux
- Laboratoire de Recherche en Sciences Végétales (LRSV), Université de Toulouse, CNRS, UPS, INP Toulouse, Castanet Tolosan, France
| | - Oliver Einsle
- Institute of Biochemistry, Faculty of Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Robert Grosse
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- Institute of Pharmacology, Medical Faculty, University of Freiburg, 79104, Freiburg, Germany
| | - Winfried Römer
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
| | - Thomas Ott
- Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- CIBSS - Centre of Integrative Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany.
| |
Collapse
|
41
|
The archaeal Cdv cell division system. Trends Microbiol 2023; 31:601-615. [PMID: 36658033 DOI: 10.1016/j.tim.2022.12.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 12/09/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The Cdv system is the protein machinery that performs cell division and other membrane-deforming processes in a subset of archaea. Evolutionarily, the system is closely related to the eukaryotic ESCRT machinery, with which it shares many structural and functional similarities. Since its first description 15 years ago, the understanding of the Cdv system progressed rather slowly, but recent discoveries sparked renewed interest and insights. The emerging physical picture appears to be that CdvA acts as a membrane anchor, CdvB as a scaffold that localizes division to the mid-cell position, CdvB1 and CvdB2 as the actual constriction machinery, and CdvC as the ATPase that detaches Cdv proteins from the membrane. This paper provides a comprehensive overview of the research done on Cdv and explains how this relatively understudied machinery acts to perform its cell-division function. Understanding of the Cdv system helps to better grasp the biophysics and evolution of archaea, and furthermore provides new opportunities for the bottom-up building of a divisome for synthetic cells.
Collapse
|
42
|
Benyair R, Giridharan SSP, Rivero-Ríos P, Hasegawa J, Bristow E, Eskelinen EL, Shmueli MD, Fishbain-Yoskovitz V, Merbl Y, Sharkey LM, Paulson HL, Hanson PI, Patnaik S, Al-Ramahi I, Botas J, Marugan J, Weisman LS. Upregulation of the ESCRT pathway and multivesicular bodies accelerates degradation of proteins associated with neurodegeneration. AUTOPHAGY REPORTS 2023; 2:2166722. [PMID: 37064812 PMCID: PMC10101321 DOI: 10.1080/27694127.2023.2166722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Many neurodegenerative diseases, including Huntington's disease (HD) and Alzheimer's disease (AD), occur due to an accumulation of aggregation-prone proteins, which results in neuronal death. Studies in animal and cell models show that reducing the levels of these proteins mitigates disease phenotypes. We previously reported a small molecule, NCT-504, which reduces cellular levels of mutant huntingtin (mHTT) in patient fibroblasts as well as mouse striatal and cortical neurons from an HdhQ111 mutant mouse. Here, we show that NCT-504 has a broader potential, and in addition reduces levels of Tau, a protein associated with Alzheimer's disease, as well as other tauopathies. We find that in untreated cells, Tau and mHTT are degraded via autophagy. Notably, treatment with NCT-504 diverts these proteins to multivesicular bodies (MVB) and the ESCRT pathway. Specifically, NCT-504 causes a proliferation of endolysosomal organelles including MVB, and an enhanced association of mHTT and Tau with endosomes and MVB. Importantly, depletion of proteins that act late in the ESCRT pathway blocked NCT-504 dependent degradation of Tau. Moreover, NCT-504-mediated degradation of Tau occurred in cells where Atg7 is depleted, which indicates that this pathway is independent of canonical autophagy. Together, these studies reveal that upregulation of traffic through an ESCRT-dependent MVB pathway may provide a therapeutic approach for neurodegenerative diseases.
Collapse
Affiliation(s)
- Ron Benyair
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Sai Srinivas Panapakkam Giridharan
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Pilar Rivero-Ríos
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Junya Hasegawa
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | - Emily Bristow
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| | | | - Merav D Shmueli
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | | | - Yifat Merbl
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Lisa M Sharkey
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States
| | - Henry L Paulson
- Department of Neurology, University of Michigan, Ann Arbor, Michigan, United States
| | - Phyllis I Hanson
- Department of Biological Chemistry, University of Michigan School of Medicine, 1150 W. Medical Center Drive, Ann Arbor, Michigan, United States
| | - Samarjit Patnaik
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, Texas, United States
| | - Juan Botas
- Department of Molecular and Human Genetics, Department of Molecular and Cellular Biology, Jan and Dan Duncan Neurological Research Institute, Houston, Texas, United States
| | - Juan Marugan
- Division of Pre-Clinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, 9800 Medical Center Drive, Rockville, Maryland 20850, United States
| | - Lois S Weisman
- Cell and Developmental Biology, University of Michigan, Ann Arbor, United States; Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States
| |
Collapse
|
43
|
Lucci C, De Groef L. On the other end of the line: Extracellular vesicle-mediated communication in glaucoma. Front Neuroanat 2023; 17:1148956. [PMID: 37113676 PMCID: PMC10126352 DOI: 10.3389/fnana.2023.1148956] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
In the last decade, extracellular vesicles (EVs) have emerged as a promising field of research due to their ability to participate in cell-to-cell communication via the transfer of their very diverse and complex cargo. The latter reflects the nature and physiological state of the cell of origin and, as such, EVs may not only play a pivotal role in the cellular events that culminate into disease, but also hold great potential as drug delivery vehicles and biomarkers. Yet, their role in glaucoma, the leading cause of irreversible blindness worldwide, has not been fully studied. Here, we provide an overview of the different EV subtypes along with their biogenesis and content. We elaborate on how EVs released by different cell types can exert a specific function in the context of glaucoma. Finally, we discuss how these EVs provide opportunities to be used as biomarkers for diagnosis and monitoring of disease.
Collapse
|
44
|
Azad K, Guilligay D, Boscheron C, Maity S, De Franceschi N, Sulbaran G, Effantin G, Wang H, Kleman JP, Bassereau P, Schoehn G, Roos WH, Desfosses A, Weissenhorn W. Structural basis of CHMP2A-CHMP3 ESCRT-III polymer assembly and membrane cleavage. Nat Struct Mol Biol 2023; 30:81-90. [PMID: 36604498 DOI: 10.1038/s41594-022-00867-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 10/12/2022] [Indexed: 01/07/2023]
Abstract
The endosomal sorting complex required for transport (ESCRT) is a highly conserved protein machinery that drives a divers set of physiological and pathological membrane remodeling processes. However, the structural basis of ESCRT-III polymers stabilizing, constricting and cleaving negatively curved membranes is yet unknown. Here we present cryo-EM structures of membrane-coated CHMP2A-CHMP3 filaments from Homo sapiens of two different diameters at 3.3 and 3.6 Å resolution. The structures reveal helical filaments assembled by CHMP2A-CHMP3 heterodimers in the open ESCRT-III conformation, which generates a partially positive charged membrane interaction surface, positions short N-terminal motifs for membrane interaction and the C-terminal VPS4 target sequence toward the tube interior. Inter-filament interactions are electrostatic, which may facilitate filament sliding upon VPS4-mediated polymer remodeling. Fluorescence microscopy as well as high-speed atomic force microscopy imaging corroborate that VPS4 can constrict and cleave CHMP2A-CHMP3 membrane tubes. We therefore conclude that CHMP2A-CHMP3-VPS4 act as a minimal membrane fission machinery.
Collapse
Affiliation(s)
- Kimi Azad
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Delphine Guilligay
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Cecile Boscheron
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Sourav Maity
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Nicola De Franceschi
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.,Curie Institute, Laboratory of Physical Chemistry Curie, University of PSL, Sorbonne University, CNRS, Paris, France
| | - Guidenn Sulbaran
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Gregory Effantin
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Haiyan Wang
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Jean-Philippe Kleman
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Patricia Bassereau
- Curie Institute, Laboratory of Physical Chemistry Curie, University of PSL, Sorbonne University, CNRS, Paris, France
| | - Guy Schoehn
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France
| | - Wouter H Roos
- Moleculaire Biofysica, Zernike Institute, Rijksuniversiteit Groningen, Groningen, the Netherlands
| | - Ambroise Desfosses
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| | - Winfried Weissenhorn
- Institute of Structural Biology (IBS), University Grenoble Alpes, CEA, CNRS, Grenoble, France.
| |
Collapse
|
45
|
Tan M, Ge Y, Wang X, Wang Y, Liu Y, He F, Teng H. Extracellular Vesicles (EVs) in Tumor Diagnosis and Therapy. Technol Cancer Res Treat 2023; 22:15330338231171463. [PMID: 37122245 PMCID: PMC10134167 DOI: 10.1177/15330338231171463] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2023] Open
Abstract
In recent years, extracellular vesicles (EVs) have gained significant attention due to their tremendous potential for clinical applications. EVs play a crucial role in various aspects, including tumorigenesis, drug resistance, immune escape, and reconstruction of the tumor microenvironment. Despite the growing interest in EVs, many questions still need to be addressed before they can be practically applied in clinical settings. This paper aims to review EVs' isolation methods, structure research, the roles of EVs in tumorigenesis and their mechanisms in multiple types of tumors, their potential application in drug delivery, and the expectations for their future in clinical research.
Collapse
Affiliation(s)
- Mingdian Tan
- School of Medicine, Asian Liver Center, Stanford, CA, USA
| | - Yizhi Ge
- The Affiliated Cancer Hospital of Nanjing Medical University (Jiangsu Cancer Hospital) and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Xiaogang Wang
- The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Yan Wang
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Stanford University School of Medicine, Stanford, CA, USA
| | - Yi Liu
- School of Medicine, Asian Liver Center, Stanford, CA, USA
| | - Feng He
- Stanford University School of Medicine, Stanford, CA, USA
| | - Hongqi Teng
- The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
46
|
Nachmias D, Melnikov N, Zorea A, Sharon M, Yemini R, De-Picchoto Y, Tsirkas I, Aharoni A, Frohn B, Schwille P, Zarivach R, Mizrahi I, Elia N. Asgard ESCRT-III and VPS4 reveal conserved chromatin binding properties of the ESCRT machinery. THE ISME JOURNAL 2023; 17:117-129. [PMID: 36221007 PMCID: PMC9751279 DOI: 10.1038/s41396-022-01328-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 11/06/2022]
Abstract
The archaeal Asgard superphylum currently stands as the most promising prokaryotic candidate, from which eukaryotic cells emerged. This unique superphylum encodes for eukaryotic signature proteins (ESP) that could shed light on the origin of eukaryotes, but the properties and function of these proteins is largely unresolved. Here, we set to understand the function of an Asgard archaeal protein family, namely the ESCRT machinery, that is conserved across all domains of life and executes basic cellular eukaryotic functions, including membrane constriction during cell division. We find that ESCRT proteins encoded in Loki archaea, express in mammalian and yeast cells, and that the Loki ESCRT-III protein, CHMP4-7, resides in the eukaryotic nucleus in both organisms. Moreover, Loki ESCRT-III proteins associated with chromatin, recruited their AAA-ATPase VPS4 counterpart to organize in discrete foci in the mammalian nucleus, and directly bind DNA. The human ESCRT-III protein, CHMP1B, exhibited similar nuclear properties and recruited both human and Asgard VPS4s to nuclear foci, indicating interspecies interactions. Mutation analysis revealed a role for the N terminal region of ESCRT-III in mediating these phenotypes in both human and Asgard ESCRTs. These findings suggest that ESCRT proteins hold chromatin binding properties that were highly preserved through the billion years of evolution separating Asgard archaea and humans. The conserved chromatin binding properties of the ESCRT membrane remodeling machinery, reported here, may have important implications for the origin of eukaryogenesis.
Collapse
Affiliation(s)
- Dikla Nachmias
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Nataly Melnikov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Alvah Zorea
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Maya Sharon
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Reut Yemini
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Yasmin De-Picchoto
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Ioannis Tsirkas
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Amir Aharoni
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Bela Frohn
- Department of Cellular and Molecular Biophysics, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Petra Schwille
- Department of Cellular and Molecular Biophysics, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany
| | - Raz Zarivach
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- The Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Itzhak Mizrahi
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel
| | - Natalie Elia
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
- National Institute for Biotechnology in the Negev (NIBN), Ben-Gurion University of the Negev, Beer Sheva, 84105, Israel.
| |
Collapse
|
47
|
Meadowcroft B, Palaia I, Pfitzner AK, Roux A, Baum B, Šarić A. Mechanochemical Rules for Shape-Shifting Filaments that Remodel Membranes. PHYSICAL REVIEW LETTERS 2022; 129:268101. [PMID: 36608212 DOI: 10.1103/physrevlett.129.268101] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The sequential exchange of filament composition to increase filament curvature was proposed as a mechanism for how some biological polymers deform and cut membranes. The relationship between the filament composition and its mechanical effect is lacking. We develop a kinetic model for the assembly of composite filaments that includes protein-membrane adhesion, filament mechanics and membrane mechanics. We identify the physical conditions for such a membrane remodeling and show this mechanism of sequential polymer assembly lowers the energetic barrier for membrane deformation.
Collapse
Affiliation(s)
- Billie Meadowcroft
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
- Department of Physics and Astronomy, Institute for the Physics of Living Systems, University College London, London WC1E 6BT, United Kingdom
- MRC Laboratory for Molecular Cell Biology, University College London, London WC1E 6BT, United Kingdom
| | - Ivan Palaia
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| | | | - Aurélien Roux
- Biochemistry Department, University of Geneva, CH-1211 Geneva, Switzerland
- Swiss National Centre for Competence in Research Programme Chemical Biology, CH-1211 Geneva, Switzerland
| | - Buzz Baum
- MRC Laboratory of Molecular Biology, University of Cambridge, Cambridge CB2 1TN, United Kingdom
| | - Anđela Šarić
- Institute of Science and Technology Austria, 3400 Klosterneuburg, Austria
| |
Collapse
|
48
|
Cheppali SK, Dharan R, Sorkin R. Forces of Change: Optical Tweezers in Membrane Remodeling Studies. J Membr Biol 2022; 255:677-690. [PMID: 35616705 DOI: 10.1007/s00232-022-00241-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/22/2022] [Indexed: 12/24/2022]
Abstract
Optical tweezers allow precise measurement of forces and distances with piconewton and nanometer precision, and have thus been instrumental in elucidating the mechanistic details of various biological processes. Some examples include the characterization of motor protein activity, studies of protein-DNA interactions, and characterizing protein folding trajectories. The use of optical tweezers (OT) to study membranes is, however, much less abundant. Here, we review biophysical studies of membranes that utilize optical tweezers, with emphasis on various assays that have been developed and their benefits and limitations. First, we discuss assays that employ membrane-coated beads, and overview protein-membrane interactions studies based on manipulation of such beads. We further overview a body of studies that make use of a very powerful experimental tool, the combination of OT, micropipette aspiration, and fluorescence microscopy, that allow detailed studies of membrane curvature generation and sensitivity. Finally, we describe studies focused on membrane fusion and fission. We then summarize the overall progress in the field and outline future directions.
Collapse
Affiliation(s)
- Sudheer K Cheppali
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel.,Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Raviv Dharan
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel.,Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel.,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel.,Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel
| | - Raya Sorkin
- Raymond and Beverly Sackler Faculty of Exact Sciences, School of Chemistry, Tel Aviv University, Tel Aviv, Israel. .,Center for Physics and Chemistry of Living Systems, Tel Aviv University, Tel Aviv, Israel. .,Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel. .,Center for Light-Matter Interaction, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
49
|
Clarke AL, Lettman MM, Audhya A. Lgd regulates ESCRT-III complex accumulation at multivesicular endosomes to control intralumenal vesicle formation. Mol Biol Cell 2022; 33:ar144. [PMID: 36287829 PMCID: PMC9727795 DOI: 10.1091/mbc.e22-08-0342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 02/04/2023] Open
Abstract
Membrane remodeling mediated by heteropolymeric filaments composed of ESCRT-III subunits is an essential process that occurs at a variety of organelles to maintain cellular homeostasis. Members of the evolutionarily conserved Lgd/CC2D1 protein family have been suggested to regulate ESCRT-III polymer assembly, although their specific roles, particularly in vivo, remain unclear. Using the Caenorhabditis elegans early embryo as a model system, we show that Lgd/CC2D1 localizes to endosomal membranes, and its loss impairs endolysosomal cargo sorting and degradation. At the ultrastructural level, the absence of Lgd/CC2D1 results in the accumulation of enlarged endosomal compartments that contain a reduced number of intralumenal vesicles (ILVs). However, unlike aberrant endosome morphology caused by depletion of other ESCRT components, ILV size is only modestly altered in embryos lacking Lgd/CC2D1. Instead, loss of Lgd/CC2D1 impairs normal accumulation of ESCRT-III on endosomal membranes, likely slowing the kinetics of ILV formation. Together, our findings suggest a role for Lgd/CC2D1 in the recruitment and/or stable assembly of ESCRT-III subunits on endosomal membranes to facilitate efficient ILV biogenesis.
Collapse
Affiliation(s)
- Aryel L. Clarke
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Molly M. Lettman
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| | - Anjon Audhya
- Department of Biomolecular Chemistry, University of Wisconsin School of Medicine and Public Health, Madison, WI 53705
| |
Collapse
|
50
|
Kim JH, Lee CH, Baek MC. Dissecting exosome inhibitors: therapeutic insights into small-molecule chemicals against cancer. Exp Mol Med 2022; 54:1833-1843. [PMID: 36446847 PMCID: PMC9707221 DOI: 10.1038/s12276-022-00898-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/29/2022] [Accepted: 10/03/2022] [Indexed: 11/30/2022] Open
Abstract
Intensive research in the field of cancer biology has revealed unique methods of communication between cells through extracellular vesicles called exosomes. Exosomes are released from a broad spectrum of cell types and serve as functional mediators under physiological or pathological conditions. Hence, blocking the release of exosome bio carriers may prove useful for slowing the progression of certain types of cancers. Therefore, efforts are being made to develop exosome inhibitors to be used both as research tools and as therapies in clinical trials. Thus, studies on exosomes may lead to a breakthrough in cancer research, for which new clinical targets for different types of cancers are urgently needed. In this review, we briefly outline exosome inhibitors and discuss their modes of action and potential for use as therapeutic tools for cancer.
Collapse
Affiliation(s)
- Jong Hyun Kim
- grid.412072.20000 0004 0621 4958Department of Biochemistry, School of Medicine, Daegu Catholic University, Daegu, 42472 South Korea
| | - Chan-Hyeong Lee
- grid.258803.40000 0001 0661 1556Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944 South Korea
| | - Moon-Chang Baek
- grid.258803.40000 0001 0661 1556Department of Molecular Medicine, CMRI, Exosome Convergence Research Center (ECRC), School of Medicine, Kyungpook National University, Daegu, 41944 South Korea
| |
Collapse
|