1
|
Schlief SC, Richman JM, Brink KS. Bone labeling experiments and intraskeletal growth patterns in captive leopard geckos (Eublepharis macularius). J Anat 2024:10.1111/joa.14151. [PMID: 39468396 PMCID: PMC12034826 DOI: 10.1111/joa.14151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 09/11/2024] [Accepted: 09/18/2024] [Indexed: 10/30/2024] Open
Abstract
An understanding of the dynamics of bone growth is key to interpreting life-history parameters of vertebrates. In this study, we used fluorochrome labels in captive leopard geckos (Eublepharis macularius) to track bone growth and intraskeletal variability from embryonic to adult growth stages. Thirteen individuals were administered fluorochromes from pre-hatching to 4 years of age. The left tibia, fibula, femur, humerus, radius, and ulna were examined histologically and compared for differences in the number of labels within and between individuals at each sampled growth stage, and the amount of bone growth between labels was calculated. Results suggest that limb elements had differing growth rates; the fibula grew the fastest per day on average and the femur grew the slowest per day on average. All labels administered in ovo were still present in all limb elements in adults except for the tibia, suggesting growth marks are not lost in most elements and accurate calculations of growth rates could be performed in individuals up to 3 years old. All ex ovo labels were accounted for; however, when two fluorochromes were administered 3 weeks apart, the labels could not be differentiated from each other due to the new bone not being deposited at a quantifiable level. Overall, the tibia in leopard geckos is the least reliable limb bone to use for skeletochronology and the humerus, radius, and fibula preserve the longest growth record. This research highlights that, as in other extinct and extant animals, patterns of bone growth are not consistent across reptiles. This study adds to the growing body of knowledge on growth variability in reptiles.
Collapse
Affiliation(s)
- Sierra C Schlief
- Department of Earth Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Joy M Richman
- Life Sciences Institute, University of British Columbia, Vancouver, British Columbia, Canada
| | - Kirstin S Brink
- Department of Earth Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
2
|
Woodruff DC, Curtice BD, Foster JR. Seis-ing up the Super-Morrison formation sauropods. J Anat 2024. [PMID: 38978276 DOI: 10.1111/joa.14108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 07/10/2024] Open
Abstract
The Upper Jurassic Morrison Formation sauropods Diplodocus (formerly "Seismosaurus") hallorum and Supersaurus vivianae are quantifiably the largest dinosaurian taxa from the formation, as well as being among the largest dinosaurs in the world. Their extreme body size (in particular body length, c. 50+ m) has fascinated the paleontological community since their discoveries and has sparked an ongoing discussion on the trends and limits of Morrison Formation sauropod body size. Although not an undeviating proxy, often the largest and skeletally most mature specimens are among the rarest (as exemplified in Triceratops). While their body size has no phylogenetic bearing, the extreme size and potential eco and biological significance of these two sauropod taxa are frequently discussed. Whether these rare and titanically proportioned sauropod specimens are large-bodied, senescent or both is an often-repeating rhetoric. To definitively make maturational inferences about these taxa, we osteohistologically sampled the holotype of D. hallorum (NMMNH P-25079) and the second known specimen of S. vivianae (WDC DMJ-021). Our age-determinant and maturational assessments indicate that both specimens were skeletally mature at their respective age of death. Retrocalculation methods for D. hallorum NMMNH P-25079 produce a maximum age-at-death estimation of 60 years, whereas S. vivianae WDC DMJ-021 lived well past skeletal maturity-so much so that reliable retrocalculated ages cannot be accurately determined at this time. Additionally, the rarity of such large sauropods within the Morrison Formation might be more parsimoniously explained as relating to their maturity as opposed to representing aberrant taxa on the Morrison landscape.
Collapse
Affiliation(s)
- D Cary Woodruff
- Phillip and Patricia Frost Museum of Science, Miami, Florida, USA
- Museum of the Rockies, Bozeman, Montana, USA
| | | | - John R Foster
- Utah Field House of Natural History State Park Museum, Vernal, Utah, USA
| |
Collapse
|
3
|
Atkins-Weltman KL, Simon DJ, Woodward HN, Funston GF, Snively E. A new oviraptorosaur (Dinosauria: Theropoda) from the end-Maastrichtian Hell Creek Formation of North America. PLoS One 2024; 19:e0294901. [PMID: 38266012 PMCID: PMC10807829 DOI: 10.1371/journal.pone.0294901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 11/08/2023] [Indexed: 01/26/2024] Open
Abstract
Caenagnathidae is a clade of derived, Late Cretaceous oviraptorosaurian theropods from Asia and North America. Because their remains are rare and often fragmentary, caenagnathid diversity is poorly understood. Anzu wyliei is the only caenagnathid species currently described from the late Maastrichtian Hell Creek Formation of the USA and is also among the largest and most completely preserved North American caenagnathids. Smaller, less complete caenagnathid material has long been known from the Hell Creek Formation, but it is unclear whether these are juvenile representatives of Anzu or if they represent distinct, unnamed taxa. Here, we describe a relatively small caenagnathid hindlimb from the Hell Creek Formation, and conduct osteohistological analysis to assess its maturity. Histological data and morphological differences from Anzu wyliei and other caenagnathids allow us to conclude that this specimen represents a new species of caenagnathid from the Hell Creek Formation, with a smaller adult body size than Anzu. This new taxon is also distinct from other small caenagnathid material previously described from the area, potentially indicating the coexistence of three distinct caenagnathid species in the Hell Creek Formation. These results show that caenagnathid diversity in the Hell Creek ecosystem has been underestimated.
Collapse
Affiliation(s)
| | - D. Jade Simon
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario, Canada
| | | | | | - Eric Snively
- Oklahoma State University, Tahlequah, OK, United States of America
| |
Collapse
|
4
|
Schade M, Knötschke N, Hörnig MK, Paetzel C, Stumpf S. Neurovascular anatomy of dwarf dinosaur implies precociality in sauropods. eLife 2022; 11:82190. [PMID: 36537069 PMCID: PMC9767461 DOI: 10.7554/elife.82190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 11/11/2022] [Indexed: 12/24/2022] Open
Abstract
Macronaria, a group of mostly colossal sauropod dinosaurs, comprised the largest terrestrial vertebrates of Earth's history. However, some of the smallest sauropods belong to this group as well. The Late Jurassic macronarian island dwarf Europasaurus holgeri is one of the most peculiar and best-studied sauropods worldwide. So far, the braincase material of this taxon from Germany pended greater attention. With the aid of micro-computed tomography (microCT), we report on the neuroanatomy of the nearly complete braincase of an adult individual, as well as the inner ears (endosseous labyrinths) of one other adult and several juveniles (the latter also containing novel vascular cavities). The presence of large and morphologically adult inner ears in juvenile material suggests precociality. Our findings add to the diversity of neurovascular anatomy in sauropod braincases and buttress the perception of sauropods as fast-growing and autonomous giants with manifold facets of reproductive and social behaviour. This suggests that - apart from sheer size - little separated Europasaurus from its large-bodied relatives.
Collapse
Affiliation(s)
- Marco Schade
- University of Greifswald, Institute of Geography and Geology, Palaeontology and HistoricalGreifswaldGermany,University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary BiologyGreifswaldGermany
| | | | - Marie K Hörnig
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary BiologyGreifswaldGermany
| | - Carina Paetzel
- University of Greifswald, Zoological Institute and Museum, Cytology and Evolutionary BiologyGreifswaldGermany
| | | |
Collapse
|
5
|
Heck CT, Woodward HN. Intraskeletal bone growth patterns in the North Island Brown Kiwi (Apteryx mantelli): Growth mark discrepancy and implications for extinct taxa. J Anat 2021; 239:1075-1095. [PMID: 34258760 PMCID: PMC8546512 DOI: 10.1111/joa.13503] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 06/15/2021] [Accepted: 06/18/2021] [Indexed: 12/13/2022] Open
Abstract
Osteohistology, the study of bone microstructure, provides an important avenue for assessing extinct and extant vertebrate growth and life history. Cortical vascularity and collagen fibre organization are direct reflections of growth rate, while bone growth marks are indicative of absolute age. However, each skeletal element has its own ontogenetic trajectory and microstructure of certain bones may not be a true representation of whole body growth. Extensive comparative study of modern taxa is required to resolve intraskeletal discrepancies among age, vascularity and tissue organization in extinct vertebrates. Despite their comparative utility, studies of bone microstructure in modern taxa are severely lacking. Here, we add to a growing comparative osteohistological database by describing (1) bone tissue organization, (2) growth mark count, (3) sexually dimorphic bone (e.g. medullary bone) and (4) secondary cortical reconstruction in the bone microstructure of a 14-year-old male and 5-year-old female North Island Brown Kiwi (Apteryx mantelli). Transverse and longitudinal histological ground sections were processed and described for femora, tibiotarsi, tarsometatarsi, humeri, ulnae and radii in both kiwis. Cortical bone can generally be described as parallel-fibered tissue, interrupted by cyclical growth marks, with vascular canals oriented longitudinally within primary and secondary osteons. Tissue morphologically resembling medullary bone is present in the hindlimbs of the female, and coarse compacted cancellous bone (CCCB) is found sporadically in the male and female hindlimbs. Lines of arrested growth (LAGs) are present in all hindlimb bones of both kiwi, but remodelling has obliterated all LAGs in the male ulnae and radii. LAG count varies intraskeletally, but large weight bearing elements such as femora and tibiotarsi have less remodelling and, thus, higher number of LAGs. LAG count did not match absolute age in any skeletal element; a maximum of seven LAGs are present in the male kiwi and a maximum of seven LAGs in the female kiwi. The tissue organization within the forelimbs and hindlimbs is reflective of the protracted growth strategy of the North Island Brown Kiwi and congruent with previous studies of the kiwi. LAGs were highly variable throughout the skeleton of the kiwi and a decoupling of age and LAG deposition is apparent from the male kiwi samples. Excess LAGs in the 5-year-old female kiwi may be a product of hatching, egg laying or captivity. Regardless, LAG count variation in the kiwi stresses the importance of intraskeletal sampling when assessing growth patterns of extinct taxa. An extensive ontogenetic sampling of kiwi is necessary for future investigations of bone growth patterns, CCCB formation, medullary bone and LAG deposition and obliteration in these elusive birds.
Collapse
Affiliation(s)
- Christian T. Heck
- Department of Biomedical SciencesOklahoma State University – Center for Health SciencesTulsaOKUSA
| | - Holly N. Woodward
- Department of Biomedical SciencesOklahoma State University – Center for Health SciencesTulsaOKUSA
| |
Collapse
|
6
|
Barta DE, Norell MA. The Osteology of Haya griva (Dinosauria: Ornithischia) from the Late Cretaceous of Mongolia. BULLETIN OF THE AMERICAN MUSEUM OF NATURAL HISTORY 2021. [DOI: 10.1206/0003-0090.445.1.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Daniel E. Barta
- Department of Anatomy and Cell Biology Oklahoma State University College of Osteopathic Medicine at the Cherokee Nation, Tahlequah, OK; and Richard Gilder Graduate School and Division of Paleontology, American Museum of Natural History, New York
| | - Mark A. Norell
- Division of Paleontology American Museum of Natural History, New York
| |
Collapse
|
7
|
Fabbri M, Navalón G, Mongiardino Koch N, Hanson M, Petermann H, Bhullar BA. A shift in ontogenetic timing produced the unique sauropod skull. Evolution 2021; 75:819-831. [PMID: 33578446 DOI: 10.1111/evo.14190] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 01/30/2021] [Indexed: 11/29/2022]
Abstract
Sauropod dinosaurs include the largest terrestrial vertebrates that have ever lived. Virtually every part of the sauropod body is heavily modified in association with gigantic size and associated physiological alterations. Sauropod skulls are no exception: they feature elongated, telescoped facial regions connected to tilted neurocrania and reoriented jaw adductor muscles. Several of these cranial features have been suggested to be adaptations for feeding on the one hand and the result of paedomorphic transformation near the base of Sauropoda on the other. However, the scarcity of sauropodomorph ontogenetic series has impeded further investigation of these hypotheses. We re-evaluated the cranial material attributed to the early sauropodomorph Anchisaurus, which our phylogenetic analyses confirm to be closely related to sauropods. Digital assembly of μCT-scanned skulls of the two known specimens, a juvenile and an adult, permitted us to examine the detailed ontogeny of cranial elements. The skull anatomy of Anchisaurus is distinguished by a mosaic of ancestral saurischian and sauropod-like characters. Sauropod-like characters of the braincase and adductor chamber appear late in ontogeny, suggesting that these features first evolved by the developmental mechanism of terminal addition. Shape analyses and investigation of allometric evolution demonstrate that cranial characters that appear late in the ontogeny of sauropodomorphs closely related to sauropods are already present in the embryos and juveniles of sauropods, suggesting a predisplacement-type shift in developmental timing from the ancestral anchisaurian condition. We propose that this developmental shift relaxed prior constraints on skull morphology, allowing sauropods to explore a novel range of phenotypes and enabling specializations of the feeding apparatus. The shift in timing occurred in concert with the evolution of gigantism and physiological and locomotory innovations.
Collapse
Affiliation(s)
- Matteo Fabbri
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511.,Peabody Museum of Natural History, Yale University, New Haven, Connecticut, 06511
| | - Guillermo Navalón
- Department of Earth Sciences, University of Oxford, Oxford, OX1 3AN, United Kingdom.,Unidad de Paleontología, Departamento de Biología, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Nicolás Mongiardino Koch
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511.,Peabody Museum of Natural History, Yale University, New Haven, Connecticut, 06511
| | - Michael Hanson
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511.,Peabody Museum of Natural History, Yale University, New Haven, Connecticut, 06511
| | - Holger Petermann
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511.,Peabody Museum of Natural History, Yale University, New Haven, Connecticut, 06511.,Denver Museum of Nature and Science, Denver, Colorado, 80205
| | - Bhart-Anjan Bhullar
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, 06511.,Peabody Museum of Natural History, Yale University, New Haven, Connecticut, 06511
| |
Collapse
|
8
|
Griffin CT, Stocker MR, Colleary C, Stefanic CM, Lessner EJ, Riegler M, Formoso K, Koeller K, Nesbitt SJ. Assessing ontogenetic maturity in extinct saurian reptiles. Biol Rev Camb Philos Soc 2020; 96:470-525. [PMID: 33289322 DOI: 10.1111/brv.12666] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 10/09/2020] [Accepted: 10/28/2020] [Indexed: 01/06/2023]
Abstract
Morphology forms the most fundamental level of data in vertebrate palaeontology because it is through interpretations of morphology that taxa are identified, creating the basis for broad evolutionary and palaeobiological hypotheses. Assessing maturity is one of the most basic aspects of morphological interpretation and provides the means to study the evolution of ontogenetic changes, population structure and palaeoecology, life-history strategies, and heterochrony along evolutionary lineages that would otherwise be lost to time. Saurian reptiles (the least-inclusive clade containing Lepidosauria and Archosauria) have remained an incredibly diverse, numerous, and disparate clade through their ~260-million-year history. Because of the great disparity in this group, assessing maturity of saurian reptiles is difficult, fraught with methodological and terminological ambiguity. We compiled a novel database of literature, assembling >900 individual instances of saurian maturity assessment, to examine critically how saurian maturity has been diagnosed. We review the often inexact and inconsistent terminology used in saurian maturity assessment (e.g. 'juvenile', 'mature') and provide routes for better clarity and cross-study coherence. We describe the various methods that have been used to assess maturity in every major saurian group, integrating data from both extant and extinct taxa to give a full account of the current state of the field and providing method-specific pitfalls, best practices, and fruitful directions for future research. We recommend that a new standard subsection, 'Ontogenetic Assessment', be added to the Systematic Palaeontology portions of descriptive studies to provide explicit ontogenetic diagnoses with clear criteria. Because the utility of different ontogenetic criteria is highly subclade dependent among saurians, even for widely used methods (e.g. neurocentral suture fusion), we recommend that phylogenetic context, preferably in the form of a phylogenetic bracket, be used to justify the use of a maturity assessment method. Different methods should be used in conjunction as independent lines of evidence when assessing maturity, instead of an ontogenetic diagnosis resting entirely on a single criterion, which is common in the literature. Critically, there is a need for data from extant taxa with well-represented growth series to be integrated with the fossil record to ground maturity assessments of extinct taxa in well-constrained, empirically tested methods.
Collapse
Affiliation(s)
- Christopher T Griffin
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| | - Michelle R Stocker
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| | - Caitlin Colleary
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Vertebrate Paleontology, Cleveland Museum of Natural History, 1 Wade Oval Drive, Cleveland, OH, 44106, U.S.A
| | - Candice M Stefanic
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Anatomical Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY, 11794, U.S.A
| | - Emily J Lessner
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Pathology and Anatomical Sciences, University of Missouri, 1 Hospital Drive, Columbia, MO, 65212, U.S.A
| | - Mitchell Riegler
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Geological Sciences, University of Florida, 241 Williamson Hall, Gainesville, FL, 32611, U.S.A
| | - Kiersten Formoso
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Earth Sciences, University of Southern California, 3651 Trousdale Pkwy, Los Angeles, CA, 90089, U.S.A
- Dinosaur Institute, Natural History Museum of Los Angeles County, 900 W Exposition Boulevard, Los Angeles, CA, 90007, U.S.A
| | - Krista Koeller
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
- Department of Biology, University of Florida, 220 Bartram Hall, Gainesville, FL, 32611, U.S.A
| | - Sterling J Nesbitt
- Department of Geosciences, Virginia Tech, 926 West Campus Drive, Blacksburg, VA, 24061, U.S.A
| |
Collapse
|
9
|
Hechenleitner EM, Leuzinger L, Martinelli AG, Rocher S, Fiorelli LE, Taborda JRA, Salgado L. Two Late Cretaceous sauropods reveal titanosaurian dispersal across South America. Commun Biol 2020; 3:622. [PMID: 33110212 PMCID: PMC7591563 DOI: 10.1038/s42003-020-01338-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 09/29/2020] [Indexed: 11/09/2022] Open
Abstract
South American titanosaurians have been central to the study of the evolution of Cretaceous sauropod dinosaurs. Despite their remarkable diversity, the fragmentary condition of several taxa and the scarcity of records outside Patagonia and southwestern Brazil have hindered the study of continental-scale paleobiogeographic relationships. We describe two new Late Cretaceous titanosaurians from Quebrada de Santo Domingo (La Rioja, Argentina), which help to fill a gap between these main areas of the continent. Our phylogenetic analysis recovers both new species, and several Brazilian taxa, within Rinconsauria. The data suggest that, towards the end of the Cretaceous, this clade spread throughout southern South America. At the same locality, we discovered numerous accumulations of titanosaurian eggs, likely related to the new taxa. With eggs distributed in three levels along three kilometres, the new site is one of the largest ever found and provides further evidence of nesting site philopatry among Titanosauria.
Collapse
Affiliation(s)
- E Martín Hechenleitner
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLaR, SEGEMAR, UNCa, CONICET, Entre Ríos y Mendoza s/n (5301), Anillaco, La Rioja, Argentina. .,Instituto de Biología de la Conservación y Paleobiología (IBICOPA), DACEFyN-UNLaR, 5300, La Rioja, Argentina.
| | - Léa Leuzinger
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLaR, SEGEMAR, UNCa, CONICET, Entre Ríos y Mendoza s/n (5301), Anillaco, La Rioja, Argentina.,Laboratorio de Paleontología de Vertebrados, Departamento de Ciencias Geológicas, Facultad de Ciencias Exactas y Naturales, Pabellón II, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Universitaria (C1428EGA), Buenos Aires, Argentina
| | - Agustín G Martinelli
- CONICET-Sección Paleontología de Vertebrados, Museo Argentino de Ciencias Naturales "Bernardino Rivadavia", Av. Ángel Gallardo 470, C1405 DJR, Buenos Aires, Argentina
| | - Sebastián Rocher
- Instituto de Geología y Recursos Naturales, Centro de Investigación e Innovación Tecnológica, Universidad Nacional de La Rioja (INGeReN-CENIIT-UNLaR), Av. Gob. Vernet y Apóstol Felipe, 5300, La Rioja, Argentina
| | - Lucas E Fiorelli
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLaR, SEGEMAR, UNCa, CONICET, Entre Ríos y Mendoza s/n (5301), Anillaco, La Rioja, Argentina
| | - Jeremías R A Taborda
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, CONICET, FCEFyN, Vélez Sarsfield 1611, Ciudad Universitaria, X5016GCA, Córdoba, Argentina
| | - Leonardo Salgado
- Instituto de Investigación en Paleobiología y Geología, Universidad Nacional de Río Negro-CONICET, Av. Presidente Julio A. Roca 1242, 8332, General Roca, Río Negro, Argentina
| |
Collapse
|
10
|
Sellés AG, Blanco A, Vila B, Marmi J, López-Soriano FJ, Llácer S, Frigola J, Canals M, Galobart À. A small Cretaceous crocodyliform in a dinosaur nesting ground and the origin of sebecids. Sci Rep 2020; 10:15293. [PMID: 32943663 PMCID: PMC7499430 DOI: 10.1038/s41598-020-71975-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/19/2020] [Indexed: 11/08/2022] Open
Abstract
Sebecosuchia was a group of highly specialized cursorial crocodyliforms that diversified during the Cretaceous and persist until the end of the Miocene. Their unique combination of cranial and post-cranial features indicates that they were active terrestrial predators that occupied the apex of the Late Cretaceous terrestrial ecosystems, even competing with theropod dinosaurs. Here, we report the discovery of the earliest sebecid worldwide, and the first from Eurasia, Ogresuchus furatus gen. et sp. nov., based on a semi-articulate specimen located in a titanosaurian sauropod nesting ground. The new taxon challenges current biogeographical models about the early dispersal and radiation of sebecid crocodylomorphs, and suggests an origin of the group much earlier than previously expected. Moreover, the new taxon suggests a potential convergent evolution between linages geographically isolated. Taphonomic evidences suggest that Ogresuchus died almost in the same place where fossilized, in a dinosaur nesting area. Biometric and morphologic observations lead to speculate that Ogresuchus could easily predate on sauropod hatchlings.
Collapse
Grants
- Ministerio de Educación, Cultura y Deporte (Ministry of Education, Culture and Sports, Spain)
- Departament d'Innovació, Universitats i Empresa, Generalitat de Catalunya (Department of Innovation, Education and Enterprise, Government of Catalonia)
- Consellería de Cultura, Educación e Ordenación Universitaria, Xunta de Galicia (Ministry of Culture, Education and University Planning, Government of Galicia)
Collapse
Affiliation(s)
- Albert G Sellés
- Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, C/ de Les Columnes S/N. Campus Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain.
- Museu de La Conca Dellà, c/Museu 4, 25650, Isona, Lleida, Spain.
| | - Alejandro Blanco
- Centro de Investigacións Científicas Avanzadas (CICA), Department de Física E Ciencias da Terra, Facultade de Ciencias, Universidade da Coruña, Campus da Zapateira s/n, 15071, A Coruña, Spain
- Bayerische Staatssammlung für Paläontologie Und Geologie Mesozoic Vertebrates Group, Richard-Wagner-Str. 10, 80333, München, Germany
| | - Bernat Vila
- Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, C/ de Les Columnes S/N. Campus Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
- Museu de La Conca Dellà, c/Museu 4, 25650, Isona, Lleida, Spain
| | - Josep Marmi
- Museu de La Conca Dellà, c/Museu 4, 25650, Isona, Lleida, Spain
| | - Francisco J López-Soriano
- Department of Biochemistry and Molecular Biology, Facultat de Biologia, Universitat de Barcelona, Diagonal 643, 08007, Barcelona, Spain
| | - Sergio Llácer
- Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, C/ de Les Columnes S/N. Campus Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Jaime Frigola
- GRC Geociències Marines, Dept. de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Miquel Canals
- GRC Geociències Marines, Dept. de Dinàmica de La Terra I de L'Oceà, Facultat de Ciències de la Terra, Universitat de Barcelona, 08028, Barcelona, Spain
| | - Àngel Galobart
- Institut Català de Paleontologia Miquel Crusafont, ICTA-ICP, Edifici Z, C/ de Les Columnes S/N. Campus Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
- Museu de La Conca Dellà, c/Museu 4, 25650, Isona, Lleida, Spain
| |
Collapse
|
11
|
Jentgen-Ceschino B, Stein K, Fischer V. Case study of radial fibrolamellar bone tissues in the outer cortex of basal sauropods. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190143. [PMID: 31928196 DOI: 10.1098/rstb.2019.0143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The histology of sauropod long bones often appears uniform and conservative along their evolutionary tree. One of the main aspects of their bone histology is to exhibit a fibrolamellar complex in the cortex of their long bones. Here, we report another bone tissue, the radial fibrolamellar bone (RFB), in the outer cortex of the humeri of a young adult cf. Isanosaurus (Early to Late Jurassic, Thailand) and an adult Spinophorosaurus nigerensis (Early to Middle Jurassic, Niger) that do not exhibit any pathological feature on the bone surface. Its location within the cortex is unexpected, because RFB is a rapidly deposited bone tissue that would rather be expected early in the ontogeny. A palaeopathological survey was conducted for these sampled specimens. Observed RFB occurrences are regarded as spiculated periosteal reactive bone, which is an aggressive form of periosteal reaction. A 'hair-on-end' pattern of neoplasmic origin (resembling a Ewing's sarcoma) is favoured for cf. Isanosaurus, while a sunburst pattern of viral or neoplasmic origin (resembling an avian osteopetrosis or haemangioma) is favoured for Spinophorosaurus. This study highlights the importance of bone histology in assessing the frequency and nature of palaeopathologies. This article is part of the theme issue 'Vertebrate palaeophysiology'.
Collapse
Affiliation(s)
- Benjamin Jentgen-Ceschino
- Department of Geology, Université de Liège, 14 Allée du 6 Aout, Liège 4000, Belgium.,Earth System Science - AMGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Koen Stein
- Earth System Science - AMGC, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium.,Royal Belgian Institute of Natural Sciences, Directorate 'Earth and History of Life', Rue Vautier 29, 1000 Brussels, Belgium
| | - Valentin Fischer
- Department of Geology, Université de Liège, 14 Allée du 6 Aout, Liège 4000, Belgium
| |
Collapse
|
12
|
High-latitude neonate and perinate ornithopods from the mid-Cretaceous of southeastern Australia. Sci Rep 2019; 9:19600. [PMID: 31862946 PMCID: PMC6925213 DOI: 10.1038/s41598-019-56069-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/26/2019] [Indexed: 12/27/2022] Open
Abstract
Dinosaurs were remarkably climate-tolerant, thriving from equatorial to polar latitudes. High-paleolatitude eggshells and hatchling material from the Northern Hemisphere confirms that hadrosaurid ornithopods reproduced in polar regions. Similar examples are lacking from Gondwanan landmasses. Here we describe two non-iguanodontian ornithopod femora from the Griman Creek Formation (Cenomanian) in New South Wales, Australia. These incomplete proximal femora represent the first perinatal ornithopods described from Australia, supplementing neonatal and slightly older ‘yearling’ specimens from the Aptian–Albian Eumeralla and Wonthaggi formations in Victoria. While pseudomorphic preservation obviates histological examination, anatomical and size comparisons with Victorian specimens, which underwent previous histological work, support perinatal interpretations for the Griman Creek Formation femora. Estimated femoral lengths (37 mm and 45 mm) and body masses (113–191 g and 140–236 g), together with the limited development of features in the smallest femur, suggest a possible embryonic state. Low body masses (<1 kg for ‘yearlings’ and ~20 kg at maturity) would have precluded small ornithopods from long-distance migration, even as adults, in the Griman Creek, Eumeralla, and Wonthaggi formations. Consequently, these specimens support high-latitudinal breeding in a non-iguanodontian ornithopod in eastern Gondwana during the early Late Cretaceous.
Collapse
|
13
|
Bailleul AM, O’Connor J, Schweitzer MH. Dinosaur paleohistology: review, trends and new avenues of investigation. PeerJ 2019; 7:e7764. [PMID: 31579624 PMCID: PMC6768056 DOI: 10.7717/peerj.7764] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 08/26/2019] [Indexed: 12/12/2022] Open
Abstract
In the mid-19th century, the discovery that bone microstructure in fossils could be preserved with fidelity provided a new avenue for understanding the evolution, function, and physiology of long extinct organisms. This resulted in the establishment of paleohistology as a subdiscipline of vertebrate paleontology, which has contributed greatly to our current understanding of dinosaurs as living organisms. Dinosaurs are part of a larger group of reptiles, the Archosauria, of which there are only two surviving lineages, crocodilians and birds. The goal of this review is to document progress in the field of archosaur paleohistology, focusing in particular on the Dinosauria. We briefly review the "growth age" of dinosaur histology, which has encompassed new and varied directions since its emergence in the 1950s, resulting in a shift in the scientific perception of non-avian dinosaurs from "sluggish" reptiles to fast-growing animals with relatively high metabolic rates. However, fundamental changes in growth occurred within the sister clade Aves, and we discuss this major evolutionary transition as elucidated by histology. We then review recent innovations in the field, demonstrating how paleohistology has changed and expanded to address a diversity of non-growth related questions. For example, dinosaur skull histology has elucidated the formation of curious cranial tissues (e.g., "metaplastic" tissues), and helped to clarify the evolution and function of oral adaptations, such as the dental batteries of duck-billed dinosaurs. Lastly, we discuss the development of novel techniques with which to investigate not only the skeletal tissues of dinosaurs, but also less-studied soft-tissues, through molecular paleontology and paleohistochemistry-recently developed branches of paleohistology-and the future potential of these methods to further explore fossilized tissues. We suggest that the combination of histological and molecular methods holds great potential for examining the preserved tissues of dinosaurs, basal birds, and their extant relatives. This review demonstrates the importance of traditional bone paleohistology, but also highlights the need for innovation and new analytical directions to improve and broaden the utility of paleohistology, in the pursuit of more diverse, highly specific, and sensitive methods with which to further investigate important paleontological questions.
Collapse
Affiliation(s)
- Alida M. Bailleul
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Jingmai O’Connor
- Key Laboratory of Vertebrate Evolution and Human Origins of the Chinese Academy of Sciences, Institute of Vertebrate Paleontology and Paleoanthropology, Beijing, China
- CAS Center for Excellence in Life and Paleoenvironment, Beijing, China
| | - Mary H. Schweitzer
- Department of Biology, North Carolina State University, Raleigh, NC, USA
- North Carolina Museum of Natural Science, Raleigh, NC, USA
- Department of Geology, Lund University, Lund, Sweden
- Museum of the Rockies, Montana State University, Bozeman, MT, USA
| |
Collapse
|
14
|
Lee SA. Trends in embryonic and ontogenetic growth metabolisms in nonavian dinosaurs and extant birds, mammals, and crocodylians with implications for dinosaur egg incubation. Phys Rev E 2019; 99:052405. [PMID: 31212519 DOI: 10.1103/physreve.99.052405] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Indexed: 11/07/2022]
Abstract
The embryonic metabolism of the saurischian dinosaur Troodon formosus and the ornithischian dinosaurs Protoceratops andrewsi and Hypacrosaurus stebingeri have been determined by using a mass growth model based on conservation of energy and found to be very similar. Embryonic and ontogenetic growth metabolisms are also evaluated for extant altricial birds, precocial birds, mammals, and crocodylians to examine for trends in the different groups of animals and to provide a context for interpreting our results for nonavian dinosaurs. This analysis reveals that the embryonic metabolisms of these nonavian dinosaurs were closer to the range observed in extant crocodylians than extant birds. The embryonic metabolisms of nonavian dinosaurs were in the range observed for extant mammals of similar masses. The measured embryonic metabolic rates for these three nonavian dinosaurs are then used to calculate the incubation times for eggs of 22 nonavian dinosaurs from both Saurischia and Ornithischia. The calculated incubation times vary from about 50 days for Archaeopteryx lithographica to about 150 days for Alamosaurus sanjuanensis.
Collapse
Affiliation(s)
- Scott A Lee
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, USA
| |
Collapse
|
15
|
Krupandan E, Chinsamy-Turan A, Pol D. The Long Bone Histology of the Sauropodomorph, Antetonitrus ingenipes. Anat Rec (Hoboken) 2019; 301:1506-1518. [PMID: 30312030 DOI: 10.1002/ar.23898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 02/04/2018] [Accepted: 02/28/2018] [Indexed: 11/09/2022]
Abstract
This analysis of the long bone microstructure of Antetonitrus ingenipes fills a crucial gap in our understanding of the growth dynamics of sauropodomorph dinosaurs. The bone histology of basal Sauropodomorpha are often characterized by zonal tissue, and contrasts with that of more derived sauropod taxa which show a shift toward the deposition of uninterrupted fibrolamellar bone (with lines of growth being either absent or only present in the outer circumferential layer). In Antetonitrus, growth patterns in the youngest individuals exhibit uninterrupted fibrolamellar bone without any growth marks. Sub-adult individuals, also exhibit highly vascularized fibrolamellar bone throughout the cortex, as in more derived Sauropods and Mussaurus, but growth lines occur intermittently (although not regularly) throughout the cortex as in Lessemsaurus. This indicates that Antetonitrus does not exhibit the growth dynamics previously considered characteristic of Sauropoda. Despite this, the largest (and possibly the oldest femur, NMQR 1705/163) does show an incipient external fundamental system (EFS). Our findings further suggest that growth marks are decoupled from bone size, which indicates a level of developmental plasticity in this taxon. Modulations or textural shifts in the pattern of vascular channel arrangements throughout the fibrolamellar bone in the cortex may be related to periods of resource limitations, although the lack of consistency of these modulations suggest that it is unlikely due to seasonal fluctuations. Localized bands of radial fibrolamellar bone, followed by resumption of normal growth in two samples are interpreted as evidence of a disease infliction, and subsequent recovery thereof. Anat Rec, 301:1506-1518, 2018. © 2018 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Emil Krupandan
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift, 7701, South Africa
| | - Anusuya Chinsamy-Turan
- Department of Biological Sciences, University of Cape Town, Private Bag X3, Rhodes Gift, 7701, South Africa
| | - Diego Pol
- Museo Paleontológico Egidio Feruglio, Av. Fontana 140, Trelew, Chubut Province, U9100GYO, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Av. Rivadavia 1917 (C1033AAJ), Ciudad Autónoma de Buenos Aires, República Argentina
| |
Collapse
|
16
|
O'Keefe FR, Sander PM, Wintrich T, Werning S. Ontogeny of Polycotylid Long Bone Microanatomy and Histology. Integr Org Biol 2019; 1:oby007. [PMID: 33791514 PMCID: PMC7671113 DOI: 10.1093/iob/oby007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Plesiosauria is an extinct clade of diapsid marine reptiles that evolved in the Late Triassic and radiated globally for the remainder of the Mesozoic. The recent description of a pregnant specimen of Polycotylus latipinnis demonstrates that some plesiosaurs were viviparous. To establish a baseline of histological data on plesiosaur ontogeny, we sampled the mother and fetus of the gravid plesiosaur specimen. To widen the base of data concerning ontogeny and life history of plesiosaurs, we gathered additional morphologic and histologic data from a securely identified growth series of polycotylids from the Pierre Shale of South Dakota. Paleohistological thin sections were prepared from the three humeri. Both adults show a dense, heavily remodeled cortex consisting entirely of longitudinally oriented secondary osteons, except for a thin rind of superficial primary bone. The mother exhibits an external fundamental system, indicating it was fully mature; the other adult does not. In both adults the cortex grades into a spongy medulla, comprising large vascular canals and erosion rooms surrounded by secondary lamellar trabecular bone, and lacking a marrow cavity. The fetal humerus possesses a medullary region similar to that of the Dolichorhynchops bonneri adult, although its lamellar bone is primary and deposited around calcified cartilage. The medulla is demarcated from the cortex by a prominent Kastschenko’s line. The cortex of the fetus is a relatively thin layer of periosteal woven bone, longitudinally to radially vascularized, and interfingered with columns of osteoblasts surrounded by rapidly-deposited extracellular matrix. The neonate humerus resembles the fetus, with its trabeculae identical in both size and histology, although it lacks calcified cartilage. The cortex is also similar but much thicker, consisting entirely of rapidly deposited, radially vascularized, woven to fibrolamellar bone. The cortex carries a line near its surface. This feature is not a line of arrested growth, but a sudden change in vascular angle and increase in bone density. We argue this feature is a birth line indicating a change in growth regime, possibly in response to increased hydrodynamic forces after birth. The birth line indicates that the neonate was about 40% of maternal length when born. Our histological data demonstrate that polycotylids had very high fetal growth rates, and that birth size was large. Comparison with the geologically oldest plesiosaur confirms that rapid growth evolved in the Triassic, although histological details differ, and the degree to which the polycotylid ontogenetic pattern is generalizable to other plesiosaurs is currently unknown. Further histological research utilizing full growth series is needed, particularly for Jurassic taxa.
Collapse
Affiliation(s)
- F R O'Keefe
- Department of Biological Sciences, Marshall University, One John Marshall Drive, Huntington, WV, USA, and Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
| | - P M Sander
- Division of Paleontology, Steinmann Institute, University of Bonn, Nussallee 8, 53115 Bonn, Germany, and Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
| | - T Wintrich
- Division of Paleontology, Steinmann Institute, University of Bonn, Nussallee 8, 53115 Bonn, Germany, and Dinosaur Institute, Natural History Museum of Los Angeles County, 900 Exposition Boulevard, Los Angeles, CA 90007, USA
| | - S Werning
- Department of Medical and Health Sciences, Des Moines University, 3200 Grand Avenue, Des Moines, IA 50312, USA
| |
Collapse
|
17
|
The Smallest Diplodocid Skull Reveals Cranial Ontogeny and Growth-Related Dietary Changes in the Largest Dinosaurs. Sci Rep 2018; 8:14341. [PMID: 30310088 PMCID: PMC6181913 DOI: 10.1038/s41598-018-32620-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 08/24/2018] [Indexed: 12/04/2022] Open
Abstract
Sauropod dinosaurs were the largest terrestrial vertebrates; yet despite a robust global fossil record, the paucity of cranial remains complicates attempts to understand their paleobiology. An assemblage of small diplodocid sauropods from the Upper Jurassic Morrison Formation of Montana, USA, has produced the smallest diplodocid skull yet discovered. The ~24 cm long skull is referred to cf. Diplodocus based on the presence of several cranial and vertebral characters. This specimen enhances known features of early diplodocid ontogeny including a short snout with narrow-crowned teeth limited to the anterior portion of the jaws and more spatulate teeth posteriorly. The combination of size plus basal and derived character expression seen here further emphasizes caution when naming new taxa displaying the same, as these may be indicative of immaturity. This young diplodocid reveals that cranial modifications occurred throughout growth, providing evidence for ontogenetic dietary partitioning and recapitulation of ancestral morphologies.
Collapse
|
18
|
Nacarino-Meneses C, Köhler M. Limb bone histology records birth in mammals. PLoS One 2018; 13:e0198511. [PMID: 29924818 PMCID: PMC6010216 DOI: 10.1371/journal.pone.0198511] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 05/21/2018] [Indexed: 11/24/2022] Open
Abstract
The annual cyclicality of cortical bone growth marks (BGMs) allows reconstruction of some important life history traits, such as longevity, growth rate or age at maturity. Little attention has been paid, however, to non-cyclical BGMs, though some record key life history events such as hatching (egg-laying vertebrates), metamorphosis (amphibians), or weaning (suggested for Microcebus and the hedgehog). Here, we investigate the relationship between non-cyclical BGMs and a stressful biological event in mammals: the moment of birth. In the present study, we histologically examine ontogenetic series of femora, tibiae and metapodia in several extant representatives of the genus Equus (E. hemionus, E. quagga and E. grevyi). Our analysis reveals the presence of a non-cyclical growth mark that is deposited around the moment of birth, analogous to the neonatal line described for teeth. We therefore refer to it as neonatal line. The presence of this feature within the bone cross-section agrees with a period of growth arrest in newborn foals regulated by the endocrine system. The neonatal line is accompanied by modifications in bone tissue type and vascularization, and has been identified in all bones studied and at different ontogenetic ages. Our discovery of a non-cyclical BGM related to the moment of birth in mammals is an important step towards the histological reconstruction of life histories in extant and fossil equids.
Collapse
Affiliation(s)
- Carmen Nacarino-Meneses
- Department of Evolutionary Paleobiology, Institut Català de Paleontologia Miquel Crusafont (ICP), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Meike Köhler
- Department of Evolutionary Paleobiology, Institut Català de Paleontologia Miquel Crusafont (ICP), Campus de la Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
19
|
Hechenleitner EM, Taborda JRA, Fiorelli LE, Grellet-Tinner G, Nuñez-Campero SR. Biomechanical evidence suggests extensive eggshell thinning during incubation in the Sanagasta titanosaur dinosaurs. PeerJ 2018; 6:e4971. [PMID: 29910984 PMCID: PMC6003389 DOI: 10.7717/peerj.4971] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 05/23/2018] [Indexed: 11/20/2022] Open
Abstract
The reproduction of titanosaur dinosaurs is still a complex and debated topic. Their Late Cretaceous nesting sites are distributed worldwide and their eggs display substantial morphological variations according to the parent species. In contrast to the typical 1.3–2.0 mm thick shells common to eggs of most titanosaur species (e.g., those that nested in Auca Mahuevo, Tama, Toteşti or Boseong), the Cretaceous Sanagasta eggs of Argentina display an unusual shell thickness of up to 7.9 mm. Their oviposition was synchronous with a palaeogeothermal process, leading to the hypothesis that their extra thick eggshell was an adaptation to this particular nesting environment. Although this hypothesis has already been supported indirectly through several investigations, the mechanical implications of developing such thick shells and how this might have affected the success of hatching remains untested. Finite element analyses estimate that the breaking point of the thick-shelled Sanagasta eggs is 14–45 times higher than for other smaller and equally sized titanosaur eggs. The considerable energetic disadvantage for piping through these thick eggshells suggests that their dissolution during incubation would have been paramount for a successful hatching.
Collapse
Affiliation(s)
- E Martín Hechenleitner
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina
| | - Jeremías R A Taborda
- Centro de Investigaciones en Ciencias de la Tierra (CICTERRA), Universidad Nacional de Córdoba, CONICET, FCEFyN), Córdoba, Argentina
| | - Lucas E Fiorelli
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina
| | - Gerald Grellet-Tinner
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina.,The Orcas Island Historical Museums, Eastsound, WA, USA
| | - Segundo R Nuñez-Campero
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica de La Rioja (CRILAR), Provincia de La Rioja, UNLAR, SEGEMAR, UNCa, CONICET, Anillaco, La Rioja, Argentina
| |
Collapse
|
20
|
Maganuco S, Dal Sasso C. The smallest biggest theropod dinosaur: a tiny pedal ungual of a juvenile Spinosaurus from the Cretaceous of Morocco. PeerJ 2018; 6:e4785. [PMID: 29868253 PMCID: PMC5984586 DOI: 10.7717/peerj.4785] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 04/27/2018] [Indexed: 11/20/2022] Open
Abstract
We describe a nearly complete pedal ungual phalanx, discovered in the Kem Kem Beds (Cenomanian) of Tafilalt region, south-eastern Morocco. The bone is symmetric, pointed, low, elongate, and almost flat ventrally in lateral aspect. This peculiar morphology allows to refer the specimen to the smallest known individual of the genus Spinosaurus. The bone belongs to an early juvenile individual and it is proportionally identical to the ungual of the third digit of a large partial skeleton recently found, suggesting an isometric growth for this part of the pes and the retention of peculiar locomotor adaptations—such as traversing soft substrates or paddling—during the entire lifespan.
Collapse
|
21
|
Woodward HN, Rich TH, Vickers-Rich P. The bone microstructure of polar "hypsilophodontid" dinosaurs from Victoria, Australia. Sci Rep 2018; 8:1162. [PMID: 29348463 PMCID: PMC5773672 DOI: 10.1038/s41598-018-19362-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 12/29/2017] [Indexed: 12/05/2022] Open
Abstract
High-latitude (i.e., “polar”) Mesozoic fauna endured months of twilight and relatively low mean annual temperatures. Yet non-avian dinosaurs flourished in this taxing environment. Fossils of basal ornithopod dinosaurs (“hypsilophodontids”) are common in the Early Cretaceous high-latitude sediments of Victoria, Australia, and four taxa have been described; although their ontogenetic histories are largely unexplored. In the present study, eighteen tibiae and femora were utilized in the first multi-specimen ontogenetic histological analysis of Australian polar hypsilophodontids. The sample consists of eleven individuals from the Flat Rocks locality (Late Valanginian or Barremian), and five from the Dinosaur Cove locality (Albian). In both groups, growth was most rapid during the first three years, and skeletal maturity occurred between five and seven years. There is a weak asymptotic trend in a plot of growth mark count versus femur length, with considerable individual variation. Histology suggests two genera are present within the Dinosaur Cove sample, but bone microstructure alone could not distinguish genera within the Flat Rocks sample, or across the two geologically separate (~ 26 Ma) localities. Additional histologic sampling, combined with morphological analyses, may facilitate further differentiation between ontogenetic, individual, and species variation.
Collapse
Affiliation(s)
- Holly N Woodward
- Oklahoma State University Center for Health Sciences, Tulsa, Oklahoma, United States of America.
| | - Thomas H Rich
- Museums Victoria, Melbourne, Victoria, Australia.,Swinburne University of Science and Technology, Melbourne, Victoria, Australia
| | - Patricia Vickers-Rich
- Museums Victoria, Melbourne, Victoria, Australia.,Swinburne University of Science and Technology, Melbourne, Victoria, Australia.,School of Earth, Atmosphere and Environment, Monash University, Melbourne, Victoria, Australia.,Deakin University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Grellet-Tinner G, Lindsay S, Thompson MB. The biomechanical, chemical and physiological adaptations of the eggs of two Australian megapodes to their nesting strategies and their implications for extinct titanosaur dinosaurs. J Microsc 2017; 267:237-249. [PMID: 28556927 DOI: 10.1111/jmi.12572] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2016] [Accepted: 03/29/2017] [Indexed: 11/29/2022]
Abstract
Megapodes are galliform birds endemic to Australasia and unusual among modern birds in that they bury their eggs for incubation in diverse substrates and using various strategies. Alectura lathami and Leipoa ocellata are Australian megapodes that build and nest in mounds of soil and organic matter. Such unusual nesting behaviours have resulted in particular evolutionary adaptations of their eggs and eggshells. We used a combination of scanning electron microscopy, including electron backscatter diffraction and energy-dispersive X-ray spectroscopy, to determine the fine structure of the eggshells and micro-CT scanning to map the structure of pores. We discovered that the surface of the eggshell of A. lathami displays nodes similar to those of extinct titanosaur dinosaurs from Transylvania and Auca Mahuevo egg layer #4. We propose that this pronounced nodular ornamentation is an adaptation to an environment rich in organic acids from their nest mound, protecting the egg surface from chemical etching and leaving the eggshell thickness intact. By contrast, L. ocellata nests in mounds of sand with less organic matter in semiarid environments and has eggshells with weakly defined nodes, like those of extinct titanosaurs from AM L#3 that also lived in a semiarid environment. We suggest the internode spaces in both megapode and titanosaur species act as funnels, which concentrate the condensed water vapour between the nodes. This water funnelling in megapodes through the layer of calcium phosphate reduces the likelihood of bacterial infection by creating a barrier to microbial invasion. In addition, the accessory layer of both species possesses sulphur, which reinforces the calcium phosphate barrier to bacterial and fungal contamination. Like titanosaurs, pores through the eggshell are Y-shaped in both species, but A. lathami displays unique mid-shell connections tangential to the eggshell surface and that connect some adjacent pores, like the eggshells of titanosaur of AM L#4 and Transylvania. The function of these interconnections is not known, but likely helps the diffusion of gases in eggs buried in environments where occlusion of pores is possible.
Collapse
Affiliation(s)
- G Grellet-Tinner
- CONICET, CRILAR, Anillaco, La Rioja, Argentina.,The Orcas Island Historical Museums, Eastsound, Washington, U.S.A
| | - S Lindsay
- The Australian Museum, Sydney, NSW, Australia
| | - M B Thompson
- School of Biological Sciences, Heydon-Laurence Building (A08), University of Sydney, NSW, Australia
| |
Collapse
|
23
|
Lee SA. Embryonic metabolism of the ornithischian dinosaurs Protoceratops andrewsi and Hypacrosaurus stebingeri and implications for calculations of dinosaur egg incubation times. Phys Rev E 2017; 95:042407. [PMID: 28505802 DOI: 10.1103/physreve.95.042407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Indexed: 06/07/2023]
Abstract
The embryonic metabolisms of the ornithischian dinosaurs Protoceratops andrewsi and Hypacrosaurus stebingeri have been determined and are in the range observed in extant reptiles. The average value of the measured embryonic metabolic rates for P. andrewsi and H. stebingeri are then used to calculate the incubation times for 21 dinosaurs from both Sauischia and Ornithischia using a mass growth model based on conservation of energy. The calculated incubation times vary from about 70 days for Archaeopteryx lithographica to about 180 days for Alamosaurus sanjuanensis. Such long incubation times seem unlikely, particularly for the sauropods and large theropods. Incubation times are also predicted with the assumption that the saurischian dinosaurs had embryonic metabolisms in the range observed in extant birds.
Collapse
Affiliation(s)
- Scott A Lee
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, USA
| |
Collapse
|
24
|
Lee SA. Incubation times of dinosaur eggs via embryonic metabolism. Phys Rev E 2016; 94:022402. [PMID: 27627330 DOI: 10.1103/physreve.94.022402] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Indexed: 11/07/2022]
Abstract
The incubation times for the eggs of 21 dinosaurs are determined from an estimate of their embyronic metabolic rate and the mass of the hatchlings via a mass growth model based on conservation of energy. Embryos in extant birds and crocodiles are studied in order to determine the best model for embryonic metabolism and growth. These results are used to develop a theoretical model that predicts the incubation times of an egg. This model is applied to dinosaur eggs and provides a unique window into dinosaur reproduction. The dinosaurs studied come from both Saurischia and Ornithischia. The incubation times vary from about 28 days for Archaeopteryx lithographica to about 76 days for Alamosaurus sanjuanensis.
Collapse
Affiliation(s)
- Scott A Lee
- Department of Physics and Astronomy, University of Toledo, Toledo, Ohio 43606, USA
| |
Collapse
|