1
|
Ma Q, Xu S, Hu S, Zuo K. Arabidopsis Ankyrin-Repeat Protein Kinase ANK-PK2 Negatively Regulates Salt Tolerance by Mediating Degradation of the Sugar Transporter Protein STP11. PLANT, CELL & ENVIRONMENT 2025; 48:4051-4065. [PMID: 39887771 DOI: 10.1111/pce.15417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 01/12/2025] [Indexed: 02/01/2025]
Abstract
Soluble sugars provide energy sources required for plant growth and development. They also act as osmoprotectants to improve the salt tolerance of plants. However, molecular mechanism underlying the negative regulation of soluble sugar accumulation in plants under salt stress conditions remains unknown. In this study, we investigated the functions of ankyrin-repeat kinase 2 (ANK-PK2) that regulates soluble sugar content in Arabidopsis under salt stress. ANK-PK2 interacts with and phosphorylates the sugar transporter protein 11 (STP11) under salt stress. Phosphorylated STP11 is easier to degrade, and its glucose-transporting ability and soluble sugar accumulation are inhibited. The ank-pk2 mutant exhibited increased salt tolerance. The salt-sensitive phenotype of the mutant stp11 was recovered through a dephosphorylation mutation that changed Thr227 in STP11 to Ala227. Our results revealed a novel molecular mechanism underlying salt stress adaptation in Arabidopsis, which ANK-PK2 negatively regulates salt tolerance by phosphorylating and subsequently decreasing the transport activity of STP11 to balance the cellular soluble sugar content in Arabidopsis.
Collapse
Affiliation(s)
- Qijun Ma
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Shi Hu
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Kaijing Zuo
- Single Cell Research Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
2
|
Zeng J, Cao Y, Xu Q, Ran Y, Guo Y, Jiao P, Lang X, Qiao D, Xu H, Cao Y. The sugar transporter AsSTL is regulated by the kinase Hog1 and is involved in glycerol transport and the response to osmotic stress in the salt-tolerant ascomycete aspergillus sydowii H-1. Fungal Genet Biol 2025; 179:103986. [PMID: 40288484 DOI: 10.1016/j.fgb.2025.103986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 04/02/2025] [Accepted: 04/17/2025] [Indexed: 04/29/2025]
Abstract
Sugar transporters (STs) are critical biological macromolecules that involved in the regulation of fungal development and responses to abiotic stresses. While monosaccharide- and sucrose-specific transporters have been extensively characterized in yeast and plants, knowledge of STs in filamentous fungi remains limited. Here, through genome mining, we identified 173 STs in the salt-tolerant fungus Aspergillus sydowii H-1 and classified them into nine subgroups. Notably, 37 of these STs showed active responses to high-salt stress, with the glycerol transporter AsSTL exhibiting particularly strong induction. Protein-protein interaction analysis revealed that AsSTL is regulated by multiple mitogen-activated protein kinases, including Hog1, Ssk22, Ste11, Pbs2 and Fus3. Functional validation via Hog1 knockout experiments demonstrated that Hog1 positively regulates AsSTL. Localization studies revealed that AsSTL localizes to the plasma membrane, where it mediates glycerol absorption. The deletion of AsSTL significantly impaired glycerol uptake, conidial production, growth, and stress tolerance to NaCl and H₂O₂ stress, and purple pigment synthesis. These findings establish AsSTL as a key Hog1-reglulated protein, essential for glycerol homeostasis, salt stress adaptation, and secondary metabolite production in A. sydowii H-1. This study highlights the critical roles of ST proteins in fungal stress responses and provides insights into potential mechanisms for improving stress tolerance in fungi.
Collapse
Affiliation(s)
- Jie Zeng
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yu Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China; Department of Laboratory and Equipment Management, Sichuan University, Chengdu 610065, PR China
| | - Qingrui Xu
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yulu Ran
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Yihan Guo
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Pengrui Jiao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Xiaoqiang Lang
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Dairong Qiao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China
| | - Hui Xu
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| | - Yi Cao
- Microbiology and Metabolic Engineering of Key Laboratory of Sichuan Province, College of Life Sciences, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
3
|
Sharma R, Kumar D, Parkirti P, Singh A, Sharma A, Langeh K, Singh A, Sharma M, Mir NR, Khajuria A, Kapoor N, Bhardwaj R, Ohri P. Membrane transporters in Plants: Key players in abiotic and biotic stress tolerance and nutritional transport. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 227:110084. [PMID: 40449185 DOI: 10.1016/j.plaphy.2025.110084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 04/10/2025] [Accepted: 05/26/2025] [Indexed: 06/03/2025]
Abstract
Various abiotic and biotic stressors, including water extremes, temperature fluctuations, salinity, and heavy metals, pathogens and diseases significantly reduce global crop yields. Rapid plant responses are essential for adapting and minimizing metabolic losses. In this context, plant transporters (PTs) are essential for modulating stress responses by enabling the passage of diverse molecules and ions through the plasma membrane. Plant transporters play a pivotal role in regulating water and facilitating nutrient uptake, maintaining cellular equilibrium including osmotic regulation, detoxification, biofortification and orchestrating source-to-sink dynamics across different environmental stages in plants. In this review, we delved into recent discoveries concerning diverse transporter families such as ABC, MATE, NRAMP, SWEET, Symporters, STP, KUP, COPT/Ctr, NPF, NRT, PHT, YSL, ZIP and STP. Understanding the functions of these transporters is paramount for elucidating stress tolerance mechanisms and enhancing crop resilience through breeding and gene editing. These specialized plant membrane transporters play a crucial role in securing sustainable economic yields and maintaining high-quality produce, particularly in challenging growth conditions. We explored their contributions to plant robust growth via their crucial role in NPK and secondary metabolite transport. Through an integrated analysis of transporter dynamics during stress, we unveiled the nexus between nutrient management and stress resilience. We also clustered promising techniques that has been achieved to identify PTs such as function-driven screens, phenotype-driven screens and in silico-based approaches and provide a comprehensive overview of these transporters, offering valuable insights for the research community. This review also discusses future prospects for the use of bioinformatic computational tools in constructing signaling networks to improve our understanding of the behavior of transporters under abiotic and biotic stress. In this review, we highlight examples with case studies that illustrated how new technology and computational tools has been utilized in advanced identification and characterization of PTs functions. By strategically manipulating these transporters, we can pave the way for the development of "Plants for the Future."
Collapse
Affiliation(s)
- Roohi Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Deepak Kumar
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Parkirti Parkirti
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anchita Singh
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Alisha Sharma
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Kamini Langeh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Amandeep Singh
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Manu Sharma
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Nahida Rehman Mir
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Anjali Khajuria
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Nitika Kapoor
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, Punjab, 143005, India
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, Punjab, 143005, India.
| |
Collapse
|
4
|
Wang X, Wang Z, Tang X, Qin J, Zhou X, Gu L, Bian H, Sun L, Huang H, Yang R, Wang J, Wang S, Chen S, Yang Z, Zhao W. The SlDOF9-SlSWEET17 Module: a Switch for Controlling Sugar Distribution Between Nematode Induced Galls and Roots in Tomato. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2501771. [PMID: 40349184 DOI: 10.1002/advs.202501771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/12/2025] [Indexed: 05/14/2025]
Abstract
In the complex interactions between plants and pathogens, the regulation of nutrient allocation plays a critical role in determining plant health and susceptibility to diseases. Root-knot nematodes (RKNs, Meloidogyne incognita) extract sugar from plants during their interactions with the hosts. SWEET (Sugars Will Eventually be Exported Transporters) proteins are a class of non-energy-consuming sugar uniporters that regulate the allocation of sugars in plant. Here, it is find that SlSWEET17 (Solanum lycopersicum SWEET17), a member of the SWEET family in tomato, is localized to the plasma membrane, Golgi body and small vacuoles, and is highly expressed in galls. Further studies show that SlSWEET17 negatively regulates the sugar transport capacity of other SlSWEETs via protein interactions. Overexpression of SlSWEET17 significantly decreases the soluble sugar content in galls and susceptibility to RKNs, while SlSWEET17 knockout-mutation (ko-mutation) has the opposite effect. It is also identified SlDOF9 (Solanum lycopersicum DNA binding with one finger 9), an upstream negative regulator of SlSWEET17, using ChIP (chromatin immunoprecipitation) analysis, electrophoretic mobility shift assays and dual-Luciferase assays. SlDOF9-overexpressing plants show increased sugar content in galls and susceptibility to RKNs, and sldof9cr ko-mutants have the opposite phenotype. This results show how SlDOF9-SlSWEET17 affects RKN infection through sugar partitioning from roots to galls.
Collapse
Affiliation(s)
- Xiaoyun Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Zhimei Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xinyue Tang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jiamei Qin
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoxuan Zhou
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Lixia Gu
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huihui Bian
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Lulu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Jianli Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Shuangchen Chen
- College of Horticulture and Plant Protection, Henan University of Science and Technology, Luoyang, 471023, China
| | - Zhongren Yang
- College of Horticulture and Plant Protection, Inner Mongolia Agricultural University, Inner Mongolia, 010010, China
| | - Wenchao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 Beinong Road, Changping District, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
5
|
Yao X, Sui X, Zhang Y. Amino Acid Metabolism and Transporters in Plant-Pathogen Interactions: Mechanisms and Implications. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40304541 DOI: 10.1111/pce.15594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 04/19/2025] [Accepted: 04/21/2025] [Indexed: 05/02/2025]
Abstract
In the intricate landscape of plant-pathogen interactions, amino acids and their dedicated transporters emerge as pivotal players underpinning immune signalling and metabolic reprogramming. Amino acid metabolism serves as a linchpin in orchestrating systemic defence responses, with transporter-mediated amino acid homoeostasis intricately intertwined with immune pathways. This review synthesizes the dual roles of amino acids, including glutamate, proline, γ-aminobutyric acid, β-aminobutyric acid and pipecolic acid, as metabolic intermediates and signalling molecules that modulate defence responses. Complementing this metabolic framework, amino acid transporters, including LHT1 and members of the AAP and UMAMIT family, participate in plant defence against pathogens or provide nutrients to pathogens by regulating the transmembrane transport of amino acids. Their disease resistance or susceptibility functions are closely related to plant tissue-specificity and substrate-specificity. Additionally, this review explores the potential coordinated regulation between amino acid and sugar transporters in the context of plant-pathogen interactions. Looking ahead, future research should focus on resolving transporter mechanisms in resistance, dissecting regulatory hubs linking metabolism and transport, mapping nutrient fluxes at the host-pathogen interface and exploring the subcellular localization and transport direction of transporters to inform precision crop protection strategies.
Collapse
Affiliation(s)
- Xuehui Yao
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaolei Sui
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, College of Horticulture, China Agricultural University, Beijing, China
| | - Yangyong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
6
|
Andersen CG, Bavnhøj L, Brag S, Bohush A, Chrenková A, Driller JH, Pedersen BP. Comparative analysis of STP6 and STP10 unravels molecular selectivity in sugar transport proteins. Proc Natl Acad Sci U S A 2025; 122:e2417370122. [PMID: 40279393 PMCID: PMC12054785 DOI: 10.1073/pnas.2417370122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 03/20/2025] [Indexed: 04/27/2025] Open
Abstract
The distribution of sugars is crucial for plant energy, signaling, and defense mechanisms. Sugar Transport Proteins (STPs) are Sugar Porters (SPs) that mediate proton-driven cellular uptake of glucose. Some STPs also transport fructose, while others remain highly selective for only glucose. What determines this selectivity, allowing STPs to distinguish between compounds with highly similar chemical composition, remains unknown. Here, we present the structure of Arabidopsis thaliana STP6 in an inward-occluded conformational state with glucose bound and demonstrate its role as both a glucose and fructose transporter. We perform a comparative analysis of STP6 with the glucose-selective STP10 using in vivo and in vitro systems, demonstrating how different experimental setups strongly influence kinetic transport properties. We analyze the properties of the monosaccharide binding site and show that the position of a single methyl group in the binding site is sufficient to shuffle glucose and fructose specificity, providing detailed insights into the fine-tuned dynamics of affinity-induced specificity for sugar uptake. Altogether, these findings enhance our understanding of sugar selectivity in STPs and more broadly SP proteins.
Collapse
Affiliation(s)
| | - Laust Bavnhøj
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Søren Brag
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Anastasiia Bohush
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Adriana Chrenková
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | - Jan Heiner Driller
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus CDK-8000, Denmark
| | | |
Collapse
|
7
|
Lei M, Wang X, Chen K, Wei Q, Zhou M, Chen G, Su S, Tai Y, Zhuang K, Li D, Liu M, Zhang S, Wang Y. Sugar transporters: mediators of carbon flow between plants and microbes. FRONTIERS IN PLANT SCIENCE 2025; 16:1536969. [PMID: 40308299 PMCID: PMC12042665 DOI: 10.3389/fpls.2025.1536969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Accepted: 03/31/2025] [Indexed: 05/02/2025]
Abstract
Pathogens and symbiotic microorganisms significantly influence plant growth and crop productivity. Enhancing crop disease resistance and maximizing the beneficial role of symbiotic microorganisms in agriculture constitute critical areas of scientific investigation. A fundamental aspect of plant-microorganisms interactions revolves around nutritional dynamics, characterized by either "food shortage" or "food supply" scenarios. Notably, pathogenic and symbiotic microorganisms predominantly utilize photosynthetic sugars as their primary carbon source during host colonization. This phenomenon has generated substantial interest in the regulatory mechanisms governing sugar transport and redistribution at the plant-microorganism interface. Sugar transporters, which primarily mediate the allocation of sugars to various sink organs, have emerged as crucial players in plant-pathogen interactions and the establishment of beneficial symbiotic associations. This review systematically categorized plant sugar transporters and highlighted their functional significance in mediating plant interactions with pathogenic and beneficial microorganisms. Furthermore, we synthesized recent advancements in understanding the molecular regulatory mechanisms of these transporters and identified key scientific questions warranting further investigation. Elucidating the roles of sugar transporters offers novel strategies for enhancing crop health and productivity, thereby contributing to agricultural sustainability and global food security.
Collapse
Affiliation(s)
- Mengyu Lei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xiaodi Wang
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kuan Chen
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Qianqian Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Miaomiao Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Gong Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Shuai Su
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Yuying Tai
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Kexin Zhuang
- State Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Dexiao Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Mengjuan Liu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Senlei Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| | - Youning Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, College of Agronomy, Northwest A&F University, Yangling, China
| |
Collapse
|
8
|
Suresh P, Muneer S. Light spectrum mediated improved graft-healing response by enhanced expression of transport protein in vegetables under drought conditions. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:109780. [PMID: 40398271 DOI: 10.1016/j.plaphy.2025.109780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/17/2025] [Accepted: 03/11/2025] [Indexed: 05/23/2025]
Abstract
Vegetable production faces unprecedented challenges due to a rapid change in climate. Among several challenges increased stress factors like drought, salinity, and temperature threaten overall vegetable production. Grafting, a well-established technique of uniting a scion (shoot) with a compatible rootstock, has emerged as a crucial strategy for enhancing vegetable resilience. This approach strategically combines the desired fruiting characteristics of the scion with the robust root system and stress tolerance of the rootstock. Whereas, successful grafting can be hampered by stress conditions, that leads to poor graft union formation and reduced crop growth. This highlights the need for innovative solutions to optimize successful healing process during grafting. Light-emitting diodes (LEDs) offer a promising avenue for exploration. Recent research suggests that manipulating the light spectrum using LEDs during the grafting process can significantly improve its success rate. Specific wavelengths of light are known to influence critical crop physiological processes, including photosynthesis, hormone signaling, and stress response pathways that leads a better graft-union formation with a high compatibility rate. Hence, it can be hypothesized that targeted light spectrums can promote graft union development and enhance crop resilience under stress. This present review is a detailed summarization of controlled environment studies utilizing LEDs that is exposed to vegetables under various light spectra, encompassing red, blue, and far-red wavelength combinations which are meticulously tailored to optimize crop growth and stress tolerance. The review also highlights the impact of the light spectrum on several key parameters, such as the percentage of successful grafts, graft union formation, and scion and rootstock growth under drought stress conditions, molecular exchange at graft junction. This review holds significant promise for revolutionizing vegetable grafting practices, particularly in controlled environments. By harnessing the power of light spectrum manipulation in conjunction with grafting, growers can potentially achieve higher yields, better quality produce, and increased tolerance to environmental stressors. This combined approach paves the way for a more sustainable and productive future for vegetable farming in a changing climate.
Collapse
Affiliation(s)
- Preethika Suresh
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India; School of Bioscience and Technology, Vellore Institute of Technology, Vellore, Tamil-Nadu, India
| | - Sowbiya Muneer
- Horticulture and Molecular Physiology Lab, Department of Horticulture and Food Science, School of Agricultural Innovations and Advanced Learning, Vellore Institute of Technology, Vellore, Tamil-Nadu, India.
| |
Collapse
|
9
|
Xue L, Hozain MI, Frost CJ, Talebi A, Nyamdari B, Aulakh KB, Zhou R, Harding SA, Tsai C. Overexpression of plasma membrane SUT1 in poplar alters lateral sucrose partitioning in stem and promotes leaf necrosis. PLANT DIRECT 2025; 9:e70023. [PMID: 40084039 PMCID: PMC11897725 DOI: 10.1002/pld3.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 03/16/2025]
Abstract
In Populus and many other tree species, photoassimilate sucrose diffuses down a concentration gradient via symplastically connected mesophyll cells to minor vein phloem for long-distance transport. There is no evidence for apoplastic phloem-loading in Populus. However, plasma membrane sucrose transporters (SUT1 and SUT3) orthologous to those associated with apoplastic phloem loading are expressed in vascular tissues of poplar. While SUT3 functions in sucrose import into developing xylem, the role of SUT1 remains unclear. Here, we overexpressed PtaSUT1 in Populus tremula x P. alba to examine the effects on sucrose partitioning in transgenic plants. Overall leaf sucrose levels were similar between wild type and transgenic lines. Stem sucrose levels were not changed in bark but were significantly reduced in the adjacent xylem, suggesting hindered intercellular sucrose trafficking from the phloem to the developing xylem. Fully expanded leaves of transgenic plants deteriorated prematurely with declining photosynthesis prior to severe necrotic spotting. Necrotic spotting advanced most rapidly in the distal portion of mature leaves and was accompanied by sharp hexose increases and sharp sucrose decreases there. Leaf transcriptome profiling and network inference revealed the down-regulation of copper proteins and elevated expression of copper microRNAs prior to noticeable leaf injury. Our results suggest ectopic expression of PtaSUT1 altered sucrose partitioning in stems with systemic effects on leaf health and copper homeostasis mediated in part by sucrose-sensitive copper miRNAs.
Collapse
Affiliation(s)
- Liang‐Jiao Xue
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGAUSA
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
- State Key Laboratory of Tree Genetics and Breeding, College of ForestryNanjing Forestry UniversityNanjingJiangsuChina
| | - Moh'd I. Hozain
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGAUSA
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Christopher J. Frost
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGAUSA
- BIO5 InstituteDanvilleVAUSA
| | - Afraz Talebi
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGAUSA
| | - Batbayar Nyamdari
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGAUSA
| | - Kavita B. Aulakh
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGAUSA
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
| | - Ran Zhou
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGAUSA
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
- Department of Plant BiologyUniversity of GeorgiaAthensGAUSA
| | - Scott A. Harding
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGAUSA
| | - Chung‐Jui Tsai
- Warnell School of Forestry and Natural ResourcesUniversity of GeorgiaAthensGAUSA
- Department of GeneticsUniversity of GeorgiaAthensGAUSA
- Department of Plant BiologyUniversity of GeorgiaAthensGAUSA
| |
Collapse
|
10
|
Liu W, Jiang H, Zeng F. The sugar transporter proteins in plants: An elaborate and widespread regulation network-A review. Int J Biol Macromol 2025; 294:139252. [PMID: 39755309 DOI: 10.1016/j.ijbiomac.2024.139252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 12/25/2024] [Accepted: 12/25/2024] [Indexed: 01/06/2025]
Abstract
In higher plants, sugars are the primary products of photosynthesis, where CO2 is converted into organic carbon within the mesophyll cells of leaves. These sugars serve as a critical source of carbon skeletons for the biosynthesis of essential cellular compounds, energy production, and as osmotic and signaling molecules. Plant sugar transporter proteins play a key role in facilitating the long-distance translocation of sugars from source to sink organs, thereby controlling their distribution and accumulation across the plant. Over the past decade, substantial progress has been achieved in identifying the functions of individual genes linked to sugar transporters; however, the diverse regulatory mechanisms influencing these transporters remain insufficiently explored. This review consolidates current and previous research on the functions of sugar transporter proteins, focusing on their involvement in phloem transport pathways their impact on crop yield, cross-talk with other signals, and plant-microbe interactions. Furthermore, we propose future directions for studying the mechanisms of sugar transporter proteins and their potential applications in agriculture, with the goal of improving sugar utilization efficiency in crops and ultimately increasing crop yield.
Collapse
Affiliation(s)
- Weigang Liu
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Hong Jiang
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China
| | - Fankui Zeng
- Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Lanzhou 730000, China; Yantai Zhongke Research Institute of Advanced Materials and Green Chemical Engineering, Yantai 262306, China; Qingdao Center of Resource Chemistry & New Materials, Qingdao 266100, China.
| |
Collapse
|
11
|
Hanbing L, Junxia L, Yong Z, Ning C, Xinmei J, Xuejiao T, Xihong Y, Yao C. The HmERF1-HmbZIP1 module increases powdery mildew resistance by inhibiting HmSWEET1 sugars transporting in Heracleum moellendorffii Hance. PHYSIOLOGIA PLANTARUM 2025; 177:e70145. [PMID: 40104963 DOI: 10.1111/ppl.70145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 02/05/2025] [Accepted: 02/22/2025] [Indexed: 03/20/2025]
Abstract
Powdery mildew (PM) caused by Eeysiphe heraclei is a serious concern in Heracleum moellendorffii Hance. E. heraclei is a biotrophic fungus that absorbs glucose as the major carbon energy source, using haustoria after infection. However, the mechanisms of sugar efflux from host cells to the fungus remain undetermined. Our previous study revealed that E. heraclei infection altered sugar transfer and distribution in H. moellendorffii, and that increased sugar concentrated in the infected regions. Here, RNA-sequencing was used to identify a key sugar transporter, HmSWEET1, which transported hexose sugars. Overexpression or silencing of the HmSWEET1 gene in H. moellendorffii enhanced or reduced resistance to PM by regulating sugar concentrations in infection sites. Further analysis identified two key transcription factors, HmERF1 and HmbZIP1, which are bound to the HmSWEET1 promoter, inhibit the gene expression. Furthermore, overexpression of HmERF1 and HmbZIP1 in H. moellendorffii enhanced plant resistance to PM by interfering with the ability of HmSWEET1 to transport sugars, thereby decreasing the sugar concentrations in infected leaf areas. Moreover, HmERF1 interaction with HmbZIP1 in H. moellendorffii further enhanced plant resistance. The results identified a novel HmERF1-HmbZIP1-HmSWEET1 module, which strengthened PM' resistance by reducing sugar supplies in H. moellendorffii through suppression of sugar transport by HmSWEET1.
Collapse
Affiliation(s)
- Liu Hanbing
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Liu Junxia
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Zhang Yong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Cao Ning
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Jiang Xinmei
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Tong Xuejiao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Yu Xihong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| | - Cheng Yao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, Harbin, China
| |
Collapse
|
12
|
Zhang Q, Wang Z, Gao R, Jiang Y. Sugars, Lipids and More: New Insights Into Plant Carbon Sources During Plant-Microbe Interactions. PLANT, CELL & ENVIRONMENT 2025; 48:1656-1673. [PMID: 39465686 PMCID: PMC11695786 DOI: 10.1111/pce.15242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/14/2024] [Accepted: 10/11/2024] [Indexed: 10/29/2024]
Abstract
Heterotrophic microbes rely on host-derived carbon sources for their growth and survival. Depriving pathogens of plant carbon is therefore a promising strategy for protecting plants from disease and reducing yield losses. Importantly, this carbon starvation-mediated resistance is expected to be more broad-spectrum and durable than race-specific R-gene-mediated resistance. Although sugars are well characterized as major carbon sources for bacteria, emerging evidence suggests that plant-derived lipids are likely to be an essential carbon source for some fungal microbes, particularly biotrophs. Here, we comprehensively discuss the dual roles of carbon sources (mainly sugars and lipids) and their transport processes in immune signalling and microbial nutrition. We summarize recent findings revealing the crucial roles of lipids as susceptibility factors at all stages of pathogen infection. In particular, we discuss the potential pathways by which lipids and other plant carbon sources are delivered to biotrophs, including protein-mediated transport, vesicle trafficking and autophagy. Finally, we highlight knowledge gaps and offer suggestions for clarifying the mechanisms that underlie nutrient uptake by biotrophs, providing guidance for future research on the application of carbon starvation-mediated resistance.
Collapse
Affiliation(s)
- Qiang Zhang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Zongqi Wang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Runjie Gao
- School of Life SciencesEast China Normal UniversityShanghaiChina
| | - Yina Jiang
- School of Life SciencesEast China Normal UniversityShanghaiChina
| |
Collapse
|
13
|
Yang C, Zhao X, Ai C, Luo Z, Liu M. Transcription factor ZjABF1 promotes sugar accumulation and abiotic resistance by positively regulating the expression of sugar transport protein ZjSWEET11 and ZjSWEET18 in Chinese jujube. Int J Biol Macromol 2025; 291:138799. [PMID: 39708885 DOI: 10.1016/j.ijbiomac.2024.138799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 12/23/2024]
Abstract
Chinese jujube (Ziziphus jujuba Mill.) exhibits a remarkable resilience to both drought and salinity. Additionally, it is characterized by a high sugar content, with sucrose being the predominant component of its soluble sugars. However, the molecular mechanisms linking robust abiotic stress resistance, sugar accumulation and sugar transport proteins ZjSWEETs remain poorly understood in jujube. In this study, we identified two critical sugar transport proteins, ZjSWEET11 and ZjSWEET18, in Chinese jujube through comprehensive assays and established a positive correlation between sucrose accumulation and the expression of these genes. Furthermore, we discovered that the key transcription factor ZjABF1 within the ABA signaling pathway positively regulated the transcriptional expression of ZjSWEET11 and ZjSWEET18 and increased the sugar contents, consequently improving the drought and salt stress resistance of plants. Basing on these results, we proposed a working module that ZjABF1 promotes sugar accumulation and improves stress resistance by targeting and up-regulating of ZjSWEET11 and ZjSWEET18. Our findings provide valuable insights into the mechanisms underlying sugar accumulation and abiotic stress adaptation in Chinese jujube.
Collapse
Affiliation(s)
- Chong Yang
- National Engineering Research Center for Agriculture in Northern Mountainous Areas, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xuan Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China; Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Changfeng Ai
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Zhi Luo
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China; Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China.
| |
Collapse
|
14
|
Xiao J, He Z, He X, Lin Y, Kong X. Tracing microbial community across endophyte-to-saprotroph continuum of Cinnamomum camphora (L.) Presl leaves considering priority effect of endophyte on litter decomposition. Front Microbiol 2025; 15:1518569. [PMID: 39881990 PMCID: PMC11774851 DOI: 10.3389/fmicb.2024.1518569] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025] Open
Abstract
Endophytes typically coexist with plants in symbiosis and transition into the saprobic system as plant tissues senesce, participating in the decomposition process of litter. However, the dynamic changes of endophytic communities during this process and their role in litter decomposition remain unclear. This study tracked the microbial composition across the transition from live leaves to litter in Cinnamomum camphora (L.) Presl (C. camphora), evaluating the contribution of endophytes to litter decomposition by examining microbial diversity, community assembly, and co-occurrence networks along the endophyte-to-saprotroph spectrum. The results revealed increasing bacterial diversity but stable fungal diversity, and the diversity of endogenous microbes is mirrored this in the saprophytic phase. Bacterial community assembly was characterized by deterministic processes during the symbiotic phase, shifted to stochastic processes during the saprophytic phase. In contrast, fungal community assembly was predominantly driven by stochastic processes throughout the continuum. Out of the 49 keystone taxa identified, only Pseudorhodoplanes sinuspersici demonstrated a significant positive correlation with community assembly. All identified bacterial keystone taxa during the saprophytic phase originated from endophytic sources, and around 80% of the fungal keystone taxa in the initial stages of decomposition were similarly endophytic in origin. Additionally, 60% of the dominant bacterial taxa and 28% of the dominant fungal taxa at the commencement of decomposition were of endophytic descent. This suggests that endogenous microbes possess the potential to evolve into both keystone and dominant taxa during the saprophytic phase. Endogenous keystone and dominant microbes both exhibited significant correlations with microbial network, indicating their substantial ecological presence in microbial community. Both endogenous keystone and dominant taxa exerted significant potential influences on litter decomposition. Overall, during the saprophytic phase, endophytes are likely to influence the assemblage of microbial communities, the network structure, and decomposition-related functions. Specifically, it appears that bacterial endophytes may possess a greater adaptability to the decomposition processes of leaf litter compared to their fungal counterparts.
Collapse
Affiliation(s)
- Jiamin Xiao
- College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Zaihua He
- College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Xingbing He
- College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Yonghui Lin
- College of Biology and Environmental Sciences, Jishou University, Jishou, China
| | - Xiangshi Kong
- College of Tourism and Management Engineering, Jishou University, Zhangjiajie, China
| |
Collapse
|
15
|
Zhu Y, Zong Y, Wang X, Gong D, Zhang X, Zhang F, Prusky D, Bi Y. Regulation of sucrose metabolism, sugar transport and pentose phosphate pathway by PacC in apple fruit colonized by Penicillium expansum. Food Chem 2024; 461:140863. [PMID: 39153373 DOI: 10.1016/j.foodchem.2024.140863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/27/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
A critical transcription factor, PacC, modulates the expression of fungal pH signaling. Although PacC-mediated environmental pH has been reported to regulate the growth and pathogenicity of postharvest pathogens, the involvement of PacC in sucrose metabolism, sugar transport, and the pentose phosphate pathway (PPP) in different zones of decayed fruit remains unclear. Our work showed that the inoculation with a PePacC deletion strain of Penicillium expansum (ΔPePacC) accelerated sucrose catabolism and glucose and fructose accumulation in different zones of apple fruit. This was attributed to an increase in sucrose metabolism enzyme activities and up-regulation of the sugar transporter protein-related gene expression. Moreover, ΔPePacC inoculation increased the PPP-related enzyme activities and the levels of nicotinamide adenine dinucleotide phosphate (NADPH) and NADP+. In conclusion, PacC modulates sucrose metabolism, sugar transport, and the PPP in apple fruit by mediating dynamic changes in environmental pH, thereby enhancing fruit disease resistance.
Collapse
Affiliation(s)
- Yatong Zhu
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuanyuan Zong
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Xuexue Wang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Di Gong
- School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Xuemei Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Feng Zhang
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China
| | - Dov Prusky
- Department of Postharvest and Food Science, Agricultural Research Organization, the Volcani Center, RishonLeZion 7505101, Israel
| | - Yang Bi
- College of Food Science and Engineering, Gansu Agricultural University, Lanzhou 730070, China.
| |
Collapse
|
16
|
Sun L, Zhu M, Zhou X, Gu R, Hou Y, Li T, Huang H, Yang R, Wang S, Zhao W. The miR396a-SlGRF8 module regulates sugar accumulation in the roots via SlSTP10 during the interaction between root-knot nematodes and tomato plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:2701-2715. [PMID: 39451077 DOI: 10.1111/jipb.13794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024]
Abstract
Root-knot nematodes (RKNs; Meloidogyne spp.) are a serious threat to crop production. The competition between plants and pathogens for assimilates influences the outcome of their interactions. However, the mechanisms by which plants and nematodes compete with each other for assimilates have not been elucidated. In this study, we demonstrated that miR396a plays a negative role in defense against RKNs and a positive role in sugar accumulation in tomato roots. The overexpression of SlGRF8 (Solanum lycopersicum growth-regulating factor 8), the target of miR396a, decreased the sugar content of the roots and the susceptibility to RKNs, whereas the grf8-cr mutation had the opposite effects. Furthermore, we confirmed that SlGRF8 regulated the sugar content in roots by directly activating the transcription of SlSTP10 (Solanum lycopersicum sugar transporter protein 10) in response to RKN stress. Moreover, SlSTP10 was expressed primarily in the tissues surrounding giant cells, and the SlSTP10 knockout increased both the sugar content in the roots and the plant's susceptibility to RKNs. Overall, this study provides important insight into the molecular mechanism through which the miR396a-SlGRF8-SlSTP10 module regulates sugar allocation in roots under RKN stress.
Collapse
Affiliation(s)
- Lulu Sun
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Mengting Zhu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Xiaoxuan Zhou
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Ruiyue Gu
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Yuying Hou
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Tongtong Li
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Huang Huang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Rui Yang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Shaohui Wang
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| | - Wenchao Zhao
- College of Plant Science and Technology, Beijing University of Agriculture, Beijing, 102206, China
- Beijing Key Laboratory for Agricultural Application and New Technique, Beijing University of Agriculture, Beijing, 102206, China
| |
Collapse
|
17
|
Lee DH, Lee HS, Choi MS, Parys K, Honda K, Kondoh Y, Lee JM, Edelbacher N, Heo G, Enugutti B, Osada H, Shirasu K, Belkhadir Y. Reprogramming of flagellin receptor responses with surrogate ligands. Nat Commun 2024; 15:9811. [PMID: 39532858 PMCID: PMC11557590 DOI: 10.1038/s41467-024-54271-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
Receptor kinase (RK) families process information from small molecules, short peptides, or glycan ligands to regulate core cellular pathways in plants. To date, whether individual plant RKs are capable of processing signals from distinct types of ligands remains largely unexplored. Addressing this requires the discovery of structurally unrelated ligands that engage the same receptor. Here, we focus on FLAGELLIN-SENSING 2 (FLS2), an RK that senses a peptide of bacterial flagellin to activate antibacterial immunity in Arabidopsis. We interrogate >20,000 potential interactions between small molecules and the sensory domain of FLS2 using a large-scale reverse chemical screen. We discover two small molecules that interact with FLS2 in atypical ways. The surrogate ligands weakly activate the receptor to drive a functional antibacterial response channeled via unusual gene expression programs. Thus, chemical probes acting as biased ligands can be exploited to discover unexpected levels of output flexibility in RKs signal transduction.
Collapse
Grants
- I 3654 Austrian Science Fund (Fonds zur Förderung der Wissenschaftlichen Forschung)
- LS17-047 Vienna Science and Technology Fund (Wiener Wissenschafts-, Forschungs- und Technologiefonds)
- NRF-2021R1A6A3A03039464 National Research Foundation of Korea (NRF)
- JP21H04720 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP20H05909 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
- JP22H00364 Ministry of Education, Culture, Sports, Science and Technology (MEXT)
Collapse
Affiliation(s)
- Du-Hwa Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria.
- Department of Chemistry, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| | - Ho-Seok Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Korea
- Department of Biology, Kyung Hee University, Seoul, Korea
| | - Min-Soo Choi
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Katarzyna Parys
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
- Faculty of Biology, Genetics, University of Munich (LMU), Martinsried, Germany
| | - Kaori Honda
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Yasumitsu Kondoh
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
| | - Jung-Min Lee
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Natalie Edelbacher
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Geon Heo
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Balaji Enugutti
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria
| | - Hiroyuki Osada
- RIKEN Center for Sustainable Resource Science, Wako, Saitama, Japan
- University of Shizuoka, Shizuoka, Japan
| | - Ken Shirasu
- RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Youssef Belkhadir
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Dr. Bohr-Gasse 3, Vienna, Austria.
- Douar Ifraden, Residence Taghazout Ocean #13, Taghazout, Morocco.
| |
Collapse
|
18
|
Dang T, Piro L, Pasini C, Santelia D. Starch metabolism in guard cells: At the intersection of environmental stimuli and stomatal movement. PLANT PHYSIOLOGY 2024; 196:1758-1777. [PMID: 39115378 PMCID: PMC11531838 DOI: 10.1093/plphys/kiae414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/19/2024] [Indexed: 11/05/2024]
Abstract
Starch metabolism in guard cells plays a central role in regulating stomatal movement in response to light, elevated ambient CO2 and potentially other abiotic and biotic factors. Here, we discuss how various guard cell signal transduction pathways converge to promote rearrangements in guard cell starch metabolism for efficient stomatal responses, an essential physiological process that sustains plant productivity and stress tolerance. We suggest manipulation of guard cell starch dynamics as a previously overlooked strategy to improve stomatal behavior under changing environmental conditions.
Collapse
Affiliation(s)
- Trang Dang
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Lucia Piro
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Carlo Pasini
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| | - Diana Santelia
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
19
|
Zhang Q, Xu Q, Zhang N, Zhong T, Xing Y, Fan Z, Yan M, Xu M. A maize WAK-SnRK1α2-WRKY module regulates nutrient availability to defend against head smut disease. MOLECULAR PLANT 2024; 17:1654-1671. [PMID: 39360383 DOI: 10.1016/j.molp.2024.09.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/13/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
Obligate biotrophs depend on living hosts for nutrient acquisition to complete their life cycle, yet the mechanisms by which hosts restrict nutrient availability to pathogens remain largely unknown. The fungal pathogen Sporisorium reilianum infects maize seedlings and causes head smut disease in inflorescences at maturity, while a cell wall-associated kinase, ZmWAK, provides quantitative resistance against it. In this study, we demonstrate that S. reilianum can rapidly activate ZmWAK kinase activity, which is sustained by the 407th threonine residue in the juxtamembrane domain, enabling it to interact with and phosphorylate ZmSnRK1α2, a conserved sucrose non-fermenting-related kinase α subunit. The activated ZmSnRK1α2 translocates from the cytoplasm to the nucleus, where it phosphorylates and destabilizes the transcription factor ZmWRKY53. The reduced ZmWRKY53 abundance leads to the downregulation of genes involved in transmembrane transport and carbohydrate metabolism, resulting in nutrient starvation for S. reilianum in the apoplast. Collectively, our study uncovers a WAK-SnRK1α2-WRKY53 signaling module in maize that conveys phosphorylation cascades from the plasma membrane to the nucleus to confer plant resistance against head smut in maize, offering new insights and potential targets for crop disease management.
Collapse
Affiliation(s)
- Qianqian Zhang
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Qianya Xu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Nan Zhang
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China; Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong 510640, P.R. China
| | - Tao Zhong
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Yuexian Xing
- Institute of Maize Research, Jilin Academy of Agricultural Sciences, Gongzhuling, Jilin 136100, P.R. China
| | - Zhou Fan
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Mingzhu Yan
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China
| | - Mingliang Xu
- State Key Laboratory of Plant Environmental Resilience/College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, P.R. China.
| |
Collapse
|
20
|
Chen SY, Li X, Duan K, Li ZY, Bai Y, Wang XY, Yang J, Zou XH, Xu ML, Wang Y, Gao QH. Changes in soluble sugars and the expression of sugar transporter protein genes in strawberry crowns responding to Colletotrichum fructicola infection. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:1777-1793. [PMID: 39687699 PMCID: PMC11646252 DOI: 10.1007/s12298-024-01523-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 10/04/2024] [Accepted: 10/21/2024] [Indexed: 12/18/2024]
Abstract
Strawberry (Fragaria × ananassa) production has been greatly hampered by anthracnose crown rot caused by Colletotrichum fructicola. Crown, the modified stem of strawberry, is a sink organ involved in sugar allocation. Some Sugar Transport Proteins (STPs) are involved in competition for sugars between pathogen and host. However, the chemical nature and involvement of strawberry STPs (FaSTPs) in crown rot development is largely elusive. To reveal how strawberry alters soluble sugars and upregulates STPs in responses to C. fructicola, high performance liquid chromatograph and FaSTP expression analysis were performed in the crowns of three strawberry varieties, following a genome-wide identification of FaSTPs. Both C. fructicola and mock treatment/control changed glucose, fructose and sucrose accumulation in strawberry crowns. With increasing infection duration, the hexose/sucrose ratio increased in all varieties; no such trend was clearly visible in mock-treated plants. A total of 56 FaSTP loci scattered across four subgenomes were identified in octoploid strawberry, and most of the protein products of these genes had a preferential location on plasma membrane. Putative fungal elicitor responsive cis-elements were identified in the promoters of more than half FaSTPs. At least eight members were upregulated in strawberry crowns during C. fructicola invasion. Of them, FaSTP8 expression was markedly enhanced in three varieties at all time points except for 3 dpi in 'Jiuxiang'. RNAseq data retrieval further validated the expression responses of FaSTPs to Colletotrichum spp. In summary, this work identified several FaSTP candidate genes responsive to Colletotrichum fructicola invasion, demonstrated changes in soluble sugar levels in strawberry crowns as a result of infection, and laid the groundwork for future efforts to engineer strawberry resistance to Colletotrichum spp. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01523-9.
Collapse
Affiliation(s)
- Si-Yu Chen
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
- College of Food Science, Shanghai Ocean University, Shanghai, 201306 China
| | - Xue Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Ke Duan
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
| | - Zi-Yi Li
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Yun Bai
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
- College of Food Science, Shanghai Ocean University, Shanghai, 201306 China
| | - Xin-Yi Wang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
- Ecological Technique and Engineering College, Shanghai Institute of Technology, Shanghai, 201418 China
| | - Jing Yang
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
| | - Xiao-Hua Zou
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
| | - Mei-Ling Xu
- Jiading District Agricultural Technology Extension Service Center, Shanghai, 201800 China
| | - Ying Wang
- Qinghai Xiaomei Agricultural Technology Co. Ltd, Xining, 810000 China
| | - Qing-Hua Gao
- Shanghai Key Laboratory of Protected Horticultural Technology, Forestry and Fruit Tree Research Institute, Shanghai Academy of Agricultural Sciences (SAAS), Jinqi Rd 1000#, Fengxian District, Shanghai, 201403 China
| |
Collapse
|
21
|
Guo H, Guan Z, Liu Y, Chao K, Zhu Q, Zhou Y, Wu H, Pi E, Chen H, Zeng H. Comprehensive identification and expression analyses of sugar transporter genes reveal the role of GmSTP22 in salt stress resistance in soybean. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109095. [PMID: 39255613 DOI: 10.1016/j.plaphy.2024.109095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/02/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024]
Abstract
The transport, compartmentation and allocation of sugar are critical for plant growth and development, as well as for stress resistance, but sugar transporter genes have not been comprehensively characterized in soybean. Here, we performed a genome-wide identification and expression analyses of sugar transporter genes in soybean in order to reveal their putative functions. A total of 122 genes encoding sucrose transporters (SUTs) and monosaccharide transporters (MSTs) were identified in soybean. They were classified into 8 subfamilies according to their phylogenetic relationships and their conserved motifs. Comparative genomics analysis indicated that whole genome duplication/segmental duplication and tandem duplication contributed to the expansion of sugar transporter genes in soybean. Expression analysis by retrieving transcriptome datasets suggested that most of these sugar transporter genes were expressed in various tissues, and a number of genes exhibited tissue-specific expression patterns. Several genes including GmSTP21, GmSFP8, and GmPLT5/6/7/8/9 were predominantly expressed in nodules, and GmPLT8 was significantly induced by rhizobia inoculation in root hairs. Transcript profiling and qRT-PCR analyses suggested that half of these sugar transporter genes were significantly induced or repressed under stresses like salt, drought, and cold. In addition, GmSTP22 was found to be localized in the plasma membrane, and its overexpression promoted plant growth and salt tolerance in transgenic Arabidopsis under the supplement with glucose or sucrose. This study provides insights into the evolutionary expansion, expression pattern and functional divergence of sugar transporter gene family, and will enable further understanding of their biological functions in the regulation of growth, yield formation and stress resistance of soybean.
Collapse
Affiliation(s)
- Hang Guo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Zhengxing Guan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yuanyuan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Kexin Chao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Qiuqing Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yi Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Haicheng Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Huatao Chen
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
22
|
Asif M, Xie X, Zhao Z. Virulence regulation in plant-pathogenic bacteria by host-secreted signals. Microbiol Res 2024; 288:127883. [PMID: 39208525 DOI: 10.1016/j.micres.2024.127883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/07/2024] [Accepted: 08/17/2024] [Indexed: 09/04/2024]
Abstract
Bacterial pathogens manipulate host signaling pathways and evade host defenses using effector molecules, coordinating their deployment to ensure successful infection. However, host-derived metabolites as signals, and their critical role in regulating bacterial virulence requires further insights. Effective regulation of virulence, which is essential for pathogenic bacteria, involves controlling factors that enable colonization, defense evasion, and tissue damage. This regulation is dynamic, influenced by environmental cues including signals from host plants like exudates. Plant exudates, comprising of diverse compounds released by roots and tissues, serve as rich chemical signals affecting the behavior and virulence of associated bacteria. Plant nutrients act as signaling molecules that are sensed through membrane-localized receptors and intracellular response mechanisms in bacteria. This review explains how different bacteria detect and answer to secreted chemical signals, regulating virulence gene expression. Our main emphasis is exploring the recognition process of host-originated signaling molecules through molecular sensors on cellular membranes and intracellular signaling pathways. This review encompasses insights into how bacterial strains individually coordinate their virulence in response to various distinct host-derived signals that can positively or negatively regulate their virulence. Furthermore, we explained the interruption of plant defense with the perception of host metabolites to dampen pathogen virulence. The intricate interplay between pathogens and plant signals, particularly in how pathogens recognize host metabolic signals to regulate virulence genes, portrays a crucial initial interaction leading to profound influences on infection outcomes. This work will greatly aid researchers in developing new strategies for preventing and treating infections.
Collapse
Affiliation(s)
- Muhammad Asif
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Xin Xie
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China
| | - Zhibo Zhao
- Department of Plant Pathology, College of Agriculture, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
23
|
Feng H, Mon W, Su X, Li Y, Zhang S, Zhang Z, Zheng K. Integrated Biological Experiments and Proteomic Analyses of Nicotiana tabacum Xylem Sap Revealed the Host Response to Tomato Spotted Wilt Orthotospovirus Infection. Int J Mol Sci 2024; 25:10907. [PMID: 39456688 PMCID: PMC11507450 DOI: 10.3390/ijms252010907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/03/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024] Open
Abstract
The plant vascular system is not only a transportation system for delivering nutrients but also a highway transport network for spreading viruses. Tomato spotted wilt orthotospovirus (TSWV) is among the most destructive viruses that cause serious losses in economically important crops worldwide. However, there is minimal information about the long-distance movements of TSWV in the host plant vascular system. In this this study, we confirm that TSWV virions are present in the xylem as observed by transmission electron microscopy (TEM). Further, a quantitative proteomic analysis based on label-free methods was conducted to reveal the uniqueness of protein expression in xylem sap during TSWV infection. Thus, this study identified and quantified 3305 proteins in two groups. Furthermore, TSWV infection induced three viral structural proteins, N, Gn and Gc, and 315 host proteins differentially expressed in xylem (163 up-regulated and 152 down-regulated). GO enrichment analysis showed up-regulated proteins significantly enriched in homeostasis, wounding, defense response, and DNA integration terms, while down-regulated proteins significantly enriched in cell wall biogenesis/xyloglucan metabolic process-related terms. KEGG enrichment analysis showed that the differentially expressed proteins (DEPs) were most strongly associated with plant-pathogen interaction, MAPK signaling pathway, and plant hormone signal transduction. Cluster analysis of DEPs function showed the DEPs can be categorized into cell wall metabolism-related proteins, antioxidant proteins, PCD-related proteins, host defense proteins such as receptor-like kinases (RLKs), salicylic acid binding protein (SABP), pathogenesis related proteins (PR), DNA methylation, and proteinase inhibitor (PI). Finally, parallel reaction monitoring (PRM) validated 20 DEPs, demonstrating that the protein abundances were consistent between label-free and PRM data. Finally, 11 genes were selected for RT-qPCR validation of the DEPs and label-free-based proteomic analysis concordant results. Our results contribute to existing knowledge on the complexity of host plant xylem system response to virus infection and provide a basis for further study of the mechanism underlying TSWV long-distance movement in host plant vascular system.
Collapse
Affiliation(s)
- Hongping Feng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Waiwai Mon
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
- Deputy Director of Microbiology Laboratory, Department of Biotechnology Research, Ministry of Science and Technology, Tansoe Rd., Kyaukse 05151, Myanmar
| | - Xiaoxia Su
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Yu Li
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Shaozhi Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Zhongkai Zhang
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| | - Kuanyu Zheng
- Biotechnology and Germplasm Resources Research Institute, Yunnan Academy of Agricultural Sciences, 2238# Beijing Rd., Panlong District, Kunming 650205, China; (H.F.); (W.M.); (X.S.); (Y.L.); (S.Z.)
| |
Collapse
|
24
|
Chen Y, Miller AJ, Qiu B, Huang Y, Zhang K, Fan G, Liu X. The role of sugar transporters in the battle for carbon between plants and pathogens. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2844-2858. [PMID: 38879813 PMCID: PMC11536462 DOI: 10.1111/pbi.14408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 05/03/2024] [Accepted: 05/27/2024] [Indexed: 11/05/2024]
Abstract
In photosynthetic cells, plants convert carbon dioxide to sugars that can be moved between cellular compartments by transporters before being subsequently metabolized to support plant growth and development. Most pathogens cannot synthesize sugars directly but have evolved mechanisms to obtain plant-derived sugars as C resource for successful infection and colonization. The availability of sugars to pathogens can determine resistance or susceptibility. Here, we summarize current progress on the roles of sugar transporters in plant-pathogen interactions. We highlight how transporters are manipulated antagonistically by both host and pathogens in competing for sugars. We examine the potential application of this target in resistance breeding and discuss opportunities and challenges for the future.
Collapse
Affiliation(s)
- Yi Chen
- Biochemistry & Metabolism DepartmentJohn Innes CentreNorwichUK
| | | | - Bowen Qiu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| | - Yao Huang
- School of Life ScienceNanChang UniversityNanchangJiangxiChina
| | - Kai Zhang
- Key Laboratory of Marine Biogenetic Resources, Third Institute of OceanographyMinistry of Natural ResourcesXiamenChina
| | - Gaili Fan
- Xiamen Greening Administration CentreXiamenChina
| | - Xiaokun Liu
- Jiangxi Provincial Key Laboratory of Ex Situ Plant Conservation and Utilization Lushan Botanical GardenChinese Academy of ScienceJiujiangJiangxiChina
| |
Collapse
|
25
|
Nakagami S, Wang Z, Han X, Tsuda K. Regulation of Bacterial Growth and Behavior by Host Plant. ANNUAL REVIEW OF PHYTOPATHOLOGY 2024; 62:69-96. [PMID: 38857544 DOI: 10.1146/annurev-phyto-010824-023359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
Plants are associated with diverse bacteria in nature. Some bacteria are pathogens that decrease plant fitness, and others are beneficial bacteria that promote plant growth and stress resistance. Emerging evidence also suggests that plant-associated commensal bacteria collectively contribute to plant health and are essential for plant survival in nature. Bacteria with different characteristics simultaneously colonize plant tissues. Thus, plants need to accommodate bacteria that provide service to the host plants, but they need to defend against pathogens at the same time. How do plants achieve this? In this review, we summarize how plants use physical barriers, control common goods such as water and nutrients, and produce antibacterial molecules to regulate bacterial growth and behavior. Furthermore, we highlight that plants use specialized metabolites that support or inhibit specific bacteria, thereby selectively recruiting plant-associated bacterial communities and regulating their function. We also raise important questions that need to be addressed to improve our understanding of plant-bacteria interactions.
Collapse
Affiliation(s)
- Satoru Nakagami
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Zhe Wang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Xiaowei Han
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| | - Kenichi Tsuda
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Wuhan, China
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China;
| |
Collapse
|
26
|
Liu H, Liu J, Si X, Zhang S, Zhang L, Tong X, Yu X, Jiang X, Cheng Y. Sugar Transporter HmSWEET8 Cooperates with HmSTP1 to Enhance Powdery Mildew Susceptibility in Heracleum moellendorffii Hance. PLANTS (BASEL, SWITZERLAND) 2024; 13:2302. [PMID: 39204738 PMCID: PMC11360598 DOI: 10.3390/plants13162302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/14/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
The powdery mildew caused by Eeysiphe heraclei is a serious concern in Heracleum moellendorffii Hance. Therefore, exploring the mechanisms underlying sugar efflux from host cells to the fungus during the plant-fungus interaction showed great significance. The study successfully cloned HmSWEET8 and HmSTP1 genes based on RNA-seq technology. The complementation assays in yeast EBY.VW4000 found HmSWEET8 and HmSTP1 transporting hexose. Over-expressing or silencing HmSWEET8 in H. moellendorffii leaves increased or decreased powdery mildew susceptibility by changing glucose concentration in infective sites. Meanwhile, over-expressing HmSTP1 in H. moellendorffii leaves also increased powdery mildew susceptibility by elevating the glucose content of infective areas. Additionally, HmSTP1 expression was up-regulated obviously in HmSWEET8 over-expressed plants and inhibited significantly in HmSWEET8 silenced plants. Co-expressing HmSWEET8 and HmSTP1 genes significantly increased powdery mildew susceptibility compared with over-expressed HmSWEET8 or HmSTP1 plants alone. The results demonstrated that HmSTP1 may assist with HmSWEET8 to promote E. heraclei infection. Consequently, the infection caused by E. heraclei resulted in the activation of HmSWEET8, leading to an increased transfer of glucose to the apoplasmic spaces at the sites of infection, then, HmSTP1 facilitated the transport of glucose into host cells, promoting powdery mildew infection.
Collapse
Affiliation(s)
- Hanbing Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Junxia Liu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Xiaohui Si
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Shuhong Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Lili Zhang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China;
| | - Xuejiao Tong
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Xihong Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Xinmei Jiang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| | - Yao Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin 150030, China; (H.L.); (J.L.); (X.S.); (S.Z.); (X.T.); (X.Y.)
- Key Laboratory of Biology and Genetic Improvement of Horticulture Crops (Northeast Region), Ministry of Agriculture and Rural Afairs, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
27
|
Rogan CJ, Pang YY, Mathews SD, Turner SE, Weisberg AJ, Lehmann S, Rentsch D, Anderson JC. Transporter-mediated depletion of extracellular proline directly contributes to plant pattern-triggered immunity against a bacterial pathogen. Nat Commun 2024; 15:7048. [PMID: 39147739 PMCID: PMC11327374 DOI: 10.1038/s41467-024-51244-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
Plants possess cell surface-localized immune receptors that detect microbe-associated molecular patterns (MAMPs) and initiate defenses that provide effective resistance against microbial pathogens. Many MAMP-induced signaling pathways and cellular responses are known, yet how pattern-triggered immunity (PTI) limits pathogen growth in plants is poorly understood. Through a combined metabolomics and genetics approach, we discovered that plant-exuded proline is a virulence-inducing signal and nutrient for the bacterial pathogen Pseudomonas syringae, and that MAMP-induced depletion of proline from the extracellular spaces of Arabidopsis leaves directly contributes to PTI against P. syringae. We further show that MAMP-induced depletion of extracellular proline requires the amino acid transporter Lysine Histidine Transporter 1 (LHT1). This study demonstrates that depletion of a single extracellular metabolite is an effective component of plant induced immunity. Given the important role for amino acids as nutrients for microbial growth, their depletion at sites of infection may be a broadly effective means for defense against many pathogens.
Collapse
Affiliation(s)
- Conner J Rogan
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Yin-Yuin Pang
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sophie D Mathews
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Sydney E Turner
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Alexandra J Weisberg
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA
| | - Silke Lehmann
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Doris Rentsch
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, OR, 97331, USA.
| |
Collapse
|
28
|
Chen X, Gao J, Shen Y. Abscisic acid controls sugar accumulation essential to strawberry fruit ripening via the FaRIPK1-FaTCP7-FaSTP13/FaSPT module. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1400-1417. [PMID: 38815085 DOI: 10.1111/tpj.16862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 05/05/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
Strawberry is considered as a model plant for studying the ripening of abscisic acid (ABA)-regulated non-climacteric fruits, a process in which sugar plays a fundamental role, while how ABA regulates sugar accumulation remains unclear. This study provides a direct line of physiological, biochemical, and molecular evidence that ABA signaling regulates sugar accumulation via the FaRIPK1-FaTCP7-FaSTP13/FaSPT signaling pathway. Herein, FaRIPK1, a red-initial protein kinase 1 previously identified in strawberry fruit, not only interacted with the transcription factor FaTCP7 (TEOSINTE BRANCHEN 1, CYCLOIDEA, and PCF) but also phosphorylated the critical Ser89 and Thr93 sites of FaTCP7, which negatively regulated strawberry fruit ripening, as evidenced by the transient overexpression (OE) and virus-induced gene silencing transgenic system. Furthermore, the DAP-seq experiments revealed that FvTCP7 bound the motif "GTGGNNCCCNC" in the promoters of two sugar transporter genes, FaSTP13 (sugar transport protein 13) and FaSPT (sugar phosphate/phosphate translocator), inhibiting their transcription activities as determined by the electrophoretic mobility shift assay, yeast one-hybrid, and dual-luciferase reporter assays. The downregulated FaSTP13 and FaSPT transcripts in the FaTCP7-OE fruit resulted in a reduction in soluble sugar content. Consistently, the yeast absorption test revealed that the two transporters had hexose transport activity. Especially, the phosphorylation-inhibited binding of FaTCP7 to the promoters of FaSTP13 and FaSPT could result in the release of their transcriptional activities. In addition, the phosphomimetic form FaTCP7S89D or FaTCP7T93D could rescue the phenotype of FaTCP7-OE fruits. Importantly, exogenous ABA treatment enhanced the FaRIPK1-FaTCP7 interaction. Overall, we found direct evidence that ABA signaling controls sugar accumulation during strawberry fruit ripening via the "FaRIPK1-FaTCP7-FaSTP13/FaSPT" module.
Collapse
Affiliation(s)
- Xuexue Chen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jiahui Gao
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, No. 7 BeiNong Road, Beijing, 102206, China
| |
Collapse
|
29
|
Luo S, Zheng S, Li Z, Cao J, Wang B, Xu Y, Chong K. Monosaccharide transporter OsMST6 is activated by transcription factor OsERF120 to enhance chilling tolerance in rice seedlings. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4038-4051. [PMID: 38490694 DOI: 10.1093/jxb/erae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/15/2024] [Indexed: 03/17/2024]
Abstract
Chilling stress caused by extreme weather is threatening global rice (Oryza sativa L.) production. Identifying components of the signal transduction pathways underlying chilling tolerance in rice would advance molecular breeding. Here, we report that OsMST6, which encodes a monosaccharide transporter, positively regulates the chilling tolerance of rice seedlings. mst6 mutants showed hypersensitivity to chilling, while OsMST6 overexpression lines were tolerant. During chilling stress, OsMST6 transported more glucose into cells to modulate sugar and abscisic acid signaling pathways. We showed that the transcription factor OsERF120 could bind to the DRE/CRT element of the OsMST6 promoter and activate the expression of OsMST6 to positively regulate chilling tolerance. Genetically, OsERF120 was functionally dependent on OsMST6 when promoting chilling tolerance. In summary, OsERF120 and OsMST6 form a new downstream chilling regulatory pathway in rice in response to chilling stress, providing valuable findings for molecular breeding aimed at achieving global food security.
Collapse
Affiliation(s)
- Shengtao Luo
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shuangshuang Zheng
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhitao Li
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Cao
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Wang
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunyuan Xu
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Chong
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
30
|
Wu X, Lin T, Zhou X, Zhang W, Liu S, Qiu H, Birch PRJ, Tian Z. Potato E3 ubiquitin ligase StRFP1 positively regulates late blight resistance by degrading sugar transporters StSWEET10c and StSWEET11. THE NEW PHYTOLOGIST 2024; 243:688-704. [PMID: 38769723 DOI: 10.1111/nph.19848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/02/2024] [Indexed: 05/22/2024]
Abstract
Potato (Solanum tuberosum) is the fourth largest food crop in the world. Late blight, caused by oomycete Phytophthora infestans, is the most devastating disease threatening potato production. Previous research has shown that StRFP1, a potato Arabidopsis Tóxicos en Levadura (ATL) family protein, positively regulates late blight resistance via its E3 ligase activity. However, the underlying mechanism is unknown. Here, we reveal that StRFP1 is associated with the plasma membrane (PM) and undergoes constitutive endocytic trafficking. Its PM localization is essential for inhibiting P. infestans colonization. Through in vivo and in vitro assays, we investigated that StRFP1 interacts with two sugar transporters StSWEET10c and StSWEET11 at the PM. Overexpression (OE) of StSWEET10c or StSWEET11 enhances P. infestans colonization. Both StSWEET10c and StSWEET11 exhibit sucrose transport ability in yeast, and OE of StSWEET10c leads to an increased sucrose content in the apoplastic fluid of potato leaves. StRFP1 ubiquitinates StSWEET10c and StSWEET11 to promote their degradation. We illustrate a novel mechanism by which a potato ATL protein enhances disease resistance by degrading susceptibility (S) factors, such as Sugars Will Eventually be Exported Transporters (SWEETs). This offers a potential strategy for improving disease resistance by utilizing host positive immune regulators to neutralize S factors.
Collapse
Affiliation(s)
- Xintong Wu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Tianyu Lin
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Xiaoshuang Zhou
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Wenjun Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Shengxuan Liu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Huishan Qiu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| | - Paul R J Birch
- Division of Plant Science, School of Life Science, University of Dundee (at JHI), Invergowrie, Dundee, DD2 5DA, UK
- Cell and Molecular Science, James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK
| | - Zhendong Tian
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University (HZAU), Wuhan, 430070, China
- Hubei Hongshan Laboratory (HZAU), Wuhan, 430070, China
- Key Laboratory of Potato Biology and Biotechnology (HZAU), Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China
- Potato Engineering and Technology Research Center of Hubei Province (HZAU), Wuhan, 430070, China
| |
Collapse
|
31
|
Singh J, James D, Das S, Patel MK, Sutar RR, Achary VMM, Goel N, Gupta KJ, Reddy MK, Jha G, Sonti RV, Foyer CH, Thakur JK, Tripathy BC. Co-overexpression of SWEET sucrose transporters modulates sucrose synthesis and defence responses to enhance immunity against bacterial blight in rice. PLANT, CELL & ENVIRONMENT 2024; 47:2578-2596. [PMID: 38533652 DOI: 10.1111/pce.14901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 02/21/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024]
Abstract
Enhancing carbohydrate export from source to sink tissues is considered to be a realistic approach for improving photosynthetic efficiency and crop yield. The rice sucrose transporters OsSUT1, OsSWEET11a and OsSWEET14 contribute to sucrose phloem loading and seed filling. Crucially, Xanthomonas oryzae pv. oryzae (Xoo) infection in rice enhances the expression of OsSWEET11a and OsSWEET14 genes, and causes leaf blight. Here we show that co-overexpression of OsSUT1, OsSWEET11a and OsSWEET14 in rice reduced sucrose synthesis and transport leading to lower growth and yield but reduced susceptibility to Xoo relative to controls. The immunity-related hypersensitive response (HR) was enhanced in the transformed lines as indicated by the increased expression of defence genes, higher salicylic acid content and presence of HR lesions on the leaves. The results suggest that the increased expression of OsSWEET11a and OsSWEET14 in rice is perceived as a pathogen (Xoo) attack that triggers HR and results in constitutive activation of plant defences that are related to the signalling pathways of pathogen starvation. These findings provide a mechanistic basis for the trade-off between plant growth and immunity because decreased susceptibility against Xoo compromised plant growth and yield.
Collapse
Affiliation(s)
- Jitender Singh
- National Institute of Plant Genome Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Donald James
- Forest Biotechnology Department, Kerala Forest Research Institute, Thrissur, Kerala, India
| | - Shubhashis Das
- National Institute of Plant Genome Research, New Delhi, India
| | - Manish Kumar Patel
- Department of Postharvest Science of Fresh Produce, Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion, Israel
| | | | | | - Naveen Goel
- National Institute of Plant Genome Research, New Delhi, India
| | | | - Malireddy K Reddy
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Gopaljee Jha
- National Institute of Plant Genome Research, New Delhi, India
| | - Ramesh V Sonti
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | | | - Jitendra Kumar Thakur
- National Institute of Plant Genome Research, New Delhi, India
- International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| | - Baishnab C Tripathy
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
32
|
Tian X, Li Y, Wang S, Zou H, Xiao Q, Ma B, Ma F, Li M. Glucose uptake from the rhizosphere mediated by MdDOF3-MdHT1.2 regulates drought resistance in apple. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1566-1581. [PMID: 38205680 PMCID: PMC11123392 DOI: 10.1111/pbi.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/28/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024]
Abstract
In plants under drought stress, sugar content in roots increases, which is important for drought resistance. However, the molecular mechanisms for controlling the sugar content in roots during response to drought remain elusive. Here, we found that the MdDOF3-MdHT1.2 module-mediated glucose influx into the root is essential for drought resistance in apple (Malus × domestica). Drought induced glucose uptake from the rhizosphere and up-regulated the transcription of hexose transporter MdHT1.2. Compared with the wild-type plants, overexpression of MdHT1.2 promoted glucose uptake from the rhizosphere, thereby facilitating sugar accumulation in root and enhancing drought resistance, whereas silenced plants showed the opposite phenotype. Furthermore, ATAC-seq, RNA-seq and biochemical analysis demonstrated that MdDOF3 directly bound to the promoter of MdHT1.2 and was strongly up-regulated under drought. Overexpression of MdDOF3 in roots improved MdHT1.2-mediated glucose transport capacity and enhanced plant resistance to drought, but MdDOF3-RNAihr apple plants showed the opposite phenotype. Moreover, overexpression of MdDOF3 in roots did not attenuate drought sensitivity in MdHT1.2-RNAi plants, which was correlated with a lower glucose uptake capacity and glucose content in root. Collectively, our findings deciphered the molecular mechanism through which glucose uptake from the rhizosphere is mediated by MdDOF3-MdHT1.2, which acts to modulate sugar content in root and promote drought resistance.
Collapse
Affiliation(s)
- Xiaocheng Tian
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Shaoteng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Hui Zou
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Qian Xiao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Baiquan Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| | - Mingjun Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Shaanxi Key Laboratory of AppleNorthwest A&F UniversityYanglingShaanxiChina
| |
Collapse
|
33
|
Roussin-Léveillée C, Mackey D, Ekanayake G, Gohmann R, Moffett P. Extracellular niche establishment by plant pathogens. Nat Rev Microbiol 2024; 22:360-372. [PMID: 38191847 PMCID: PMC11593749 DOI: 10.1038/s41579-023-00999-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/21/2023] [Indexed: 01/10/2024]
Abstract
The plant extracellular space, referred to as the apoplast, is inhabited by a variety of microorganisms. Reflecting the crucial nature of this compartment, both plants and microorganisms seek to control, exploit and respond to its composition. Upon sensing the apoplastic environment, pathogens activate virulence programmes, including the delivery of effectors with well-established roles in suppressing plant immunity. We posit that another key and foundational role of effectors is niche establishment - specifically, the manipulation of plant physiological processes to enrich the apoplast in water and nutritive metabolites. Facets of plant immunity counteract niche establishment by restricting water, nutrients and signals for virulence activation. The complex competition to control and, in the case of pathogens, exploit the apoplast provides remarkable insights into the nature of virulence, host susceptibility, host defence and, ultimately, the origin of phytopathogenesis. This novel framework focuses on the ecology of a microbial niche and highlights areas of future research on plant-microorganism interactions.
Collapse
Affiliation(s)
| | - David Mackey
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA.
- Department of Molecular Genetics, The Ohio State University, Columbus, OH, USA.
- Center for Applied Plant Sciences, The Ohio State University, Columbus, OH, USA.
| | - Gayani Ekanayake
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Reid Gohmann
- Department of Horticulture and Crop Science, The Ohio State University, Columbus, OH, USA
| | - Peter Moffett
- Centre SÈVE, Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
34
|
Loo EPI, Durán P, Pang TY, Westhoff P, Deng C, Durán C, Lercher M, Garrido-Oter R, Frommer WB. Sugar transporters spatially organize microbiota colonization along the longitudinal root axis of Arabidopsis. Cell Host Microbe 2024; 32:543-556.e6. [PMID: 38479394 DOI: 10.1016/j.chom.2024.02.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 02/01/2024] [Accepted: 02/21/2024] [Indexed: 04/13/2024]
Abstract
Plant roots are functionally heterogeneous in cellular architecture, transcriptome profile, metabolic state, and microbial immunity. We hypothesized that axial differentiation may also impact spatial colonization by root microbiota along the root axis. We developed two growth systems, ArtSoil and CD-Rhizotron, to grow and then dissect Arabidopsis thaliana roots into three segments. We demonstrate that distinct endospheric and rhizosphere bacterial communities colonize the segments, supporting the hypothesis of microbiota differentiation along the axis. Root metabolite profiling of each segment reveals differential metabolite enrichment and specificity. Bioinformatic analyses and GUS histochemistry indicate microbe-induced accumulation of SWEET2, 4, and 12 sugar uniporters. Profiling of root segments from sweet mutants shows altered spatial metabolic profiles and reorganization of endospheric root microbiota. This work reveals the interdependency between root metabolites and microbial colonization and the contribution of SWEETs to spatial diversity and stability of microbial ecosystem.
Collapse
Affiliation(s)
- Eliza P-I Loo
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany.
| | - Paloma Durán
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| | - Tin Yau Pang
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Computer Science and Department of Biology, 40225 Düsseldorf, Germany; Heinrich Heine University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Division of Cardiology, Pulmonology and Vascular Medicine, 40225 Düsseldorf, Germany
| | - Philipp Westhoff
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Plant Metabolism and Metabolomics Laboratory, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany
| | - Chen Deng
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, 40225 Düsseldorf, Germany
| | - Carlos Durán
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Martin Lercher
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Computer Science and Department of Biology, 40225 Düsseldorf, Germany; Heinrich Heine University Düsseldorf, Medical Faculty and University Hospital Düsseldorf, Division of Cardiology, Pulmonology and Vascular Medicine, 40225 Düsseldorf, Germany
| | - Ruben Garrido-Oter
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany; Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany; Earlham Institute, Norwich NR4 7UZ, UK
| | - Wolf B Frommer
- Heinrich Heine University Düsseldorf, Faculty of Mathematics and Natural Sciences, Institute for Molecular Physiology, 40225 Düsseldorf, Germany; Cluster of Excellence on Plant Sciences, 40225 Düsseldorf, Germany; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, 464-8601 Nagoya, Japan.
| |
Collapse
|
35
|
Pegler JL, Patrick JW, McDermott B, Brown A, Oultram JMJ, Grof CPL, Ward JM. Phaseolus vulgaris STP13.1 is an H +-coupled monosaccharide transporter, present in source leaves and seed coats, with higher substrate affinity at depolarized potentials. PLANT DIRECT 2024; 8:e585. [PMID: 38651017 PMCID: PMC11033725 DOI: 10.1002/pld3.585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 03/25/2024] [Accepted: 03/28/2024] [Indexed: 04/25/2024]
Abstract
Sugar transport proteins (STPs) are high-affinity H+-coupled hexose symporters. Recently, the contribution of STP13 to bacterial and fungal pathogen resistance across multiple plant species has garnered significant interest. Quantitative PCR analysis of source leaves, developing embryos, and seed coats of Phaseolus vulgaris L. (common bean) revealed that PvSTP13.1 was expressed in source leaves and seed coats throughout seed development. In contrast, PvSTP13.1 transcripts were detected at exceedingly low levels in developing embryos. To characterize the transport mechanism, PvSTP13.1 was expressed in Xenopus laevis oocytes, and inward-directed currents were analyzed using two-electrode voltage clamping. PvSTP13.1 was shown to function as an H+-coupled monosaccharide symporter exhibiting a unique high affinity for hexoses and aldopentoses at depolarized membrane potentials. Specifically, of the 31 assessed substrates, which included aldohexoses, deoxyhexoses, fructose, 3-O-methyl-D-glucose, aldopentoses, polyols, glycosides, disaccharides, trisaccharides, and glucuronic acid, PvSTP13.1 displayed the highest affinity (K 0.5) for glucose (43 μM), mannose (92 μM), galactose (145 μM), fructose (224 μM), xylose (1.0 mM), and fucose (3.7 mM) at pH 5.6 at a depolarized membrane potential of -40 mV. The results presented here suggest PvSTP13.1 contributes to retrieval of hexoses from the apoplasmic space in source leaves and coats of developing seeds.
Collapse
Affiliation(s)
- Joseph L. Pegler
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John W. Patrick
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Benjamin McDermott
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Anthony Brown
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Jackson M. J. Oultram
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - Christopher P. L. Grof
- Centre for Plant Science, School of Environmental and Life Sciences, College of Engineering, Science and EnvironmentUniversity of NewcastleCallaghanNew South WalesAustralia
| | - John M. Ward
- Plant and Microbial BiologyUniversity of Minnesota Twin CitiesSt. PaulMinnesotaUSA
| |
Collapse
|
36
|
Miebach M, Faivre L, Schubert D, Jameson P, Remus‐Emsermann M. Nonpathogenic leaf-colonizing bacteria elicit pathogen-like responses in a colonization density-dependent manner. PLANT-ENVIRONMENT INTERACTIONS (HOBOKEN, N.J.) 2024; 5:e10137. [PMID: 38482131 PMCID: PMC10934995 DOI: 10.1002/pei3.10137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/12/2024] [Accepted: 02/16/2024] [Indexed: 11/02/2024]
Abstract
Leaves are colonized by a complex mix of microbes, termed the leaf microbiota. Even though the leaf microbiota is increasingly recognized as an integral part of plant life and health, our understanding of its interactions with the plant host is still limited. Here, mature, axenically grown Arabidopsis thaliana plants were spray inoculated with six diverse leaf-colonizing bacteria. The transcriptomic changes in leaves were tracked over time and significant changes in ethylene marker (ARL2) expression were observed only 2-4 days after spray inoculation. Whole-transcriptome sequencing revealed that 4 days after inoculation, leaf transcriptional changes to colonization by nonpathogenic and pathogenic bacteria differed in strength but not in the type of response. Inoculation of plants with different densities of the nonpathogenic bacterium Williamsia sp. Leaf354 showed that high bacterial titers resulted in disease phenotypes and led to severe transcriptional reprogramming with a strong focus on plant defense. An in silico epigenetic analysis of the data was congruent with the transcriptomic analysis. These findings suggest (1) that plant responses are not rapid after spray inoculation, (2) that plant responses only differ in strength, and (3) that plants respond to high titers of nonpathogenic bacteria with pathogen-like responses.
Collapse
Affiliation(s)
- Moritz Miebach
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
- Biomolecular Interaction CentreUniversity of CanterburyChristchurchNew Zealand
| | - Léa Faivre
- Department of Biology, Chemistry, Pharmacy, Institute of Biology ‐ Microbiology and Dahlem Centre of Plant Sciences]Freie Universität BerlinBerlinGermany
| | - Daniel Schubert
- Department of Biology, Chemistry, Pharmacy, Institute of Biology ‐ Microbiology and Dahlem Centre of Plant Sciences]Freie Universität BerlinBerlinGermany
| | - Paula Jameson
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
| | - Mitja Remus‐Emsermann
- School of Biological SciencesUniversity of CanterburyChristchurchNew Zealand
- Biomolecular Interaction CentreUniversity of CanterburyChristchurchNew Zealand
- Department of Biology, Chemistry, Pharmacy, Institute of Biology ‐ Microbiology and Dahlem Centre of Plant Sciences]Freie Universität BerlinBerlinGermany
| |
Collapse
|
37
|
Xiao L, Gheysen G, Yang M, Xiao X, Xu L, Guo X, Yang L, Liu W, He Y, Peng D, Peng H, Ma K, Long H, Wang G, Xiao Y. Brown planthopper infestation on rice reduces plant susceptibility to Meloidogyne graminicola by reducing root sugar allocation. THE NEW PHYTOLOGIST 2024; 242:262-277. [PMID: 38332248 DOI: 10.1111/nph.19570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/16/2024] [Indexed: 02/10/2024]
Abstract
Plants are simultaneously attacked by different pests that rely on sugars uptake from plants. An understanding of the role of plant sugar allocation in these multipartite interactions is limited. Here, we characterized the expression patterns of sucrose transporter genes and evaluated the impact of targeted transporter gene mutants and brown planthopper (BPH) phloem-feeding and oviposition on root sugar allocation and BPH-reduced rice susceptibility to Meloidogyne graminicola. We found that the sugar transporter genes OsSUT1 and OsSUT2 are induced at BPH oviposition sites. OsSUT2 mutants showed a higher resistance to gravid BPH than to nymph BPH, and this was correlated with callose deposition, as reflected in a different effect on M. graminicola infection. BPH phloem-feeding caused inhibition of callose deposition that was counteracted by BPH oviposition. Meanwhile, this pivotal role of sugar allocation in BPH-reduced rice susceptibility to M. graminicola was validated on rice cultivar RHT harbouring BPH resistance genes Bph3 and Bph17. In conclusion, we demonstrated that rice susceptibility to M. graminicola is regulated by BPH phloem-feeding and oviposition on rice through differences in plant sugar allocation.
Collapse
Affiliation(s)
- Liying Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Godelieve Gheysen
- Department of Biotechnology, Faculty of Bioscience Engineering, Ghent University, Proeftuinstraat 86, Ghent, 9000, Belgium
| | - Mingwei Yang
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xueqiong Xiao
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lihe Xu
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoli Guo
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lijie Yang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Wen Liu
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yueping He
- Hubei Key Laboratory of Insect Resources Utilization and Sustainable Pest Management, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Deliang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Science, Beijing, 100193, China
| | - Kangsheng Ma
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haibo Long
- Institute of Environment and Plant Protection, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Gaofeng Wang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yannong Xiao
- Key Laboratory of Plant Pathology of Hubei Province, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
38
|
de Jager N, Shukla V, Koprivova A, Lyčka M, Bilalli L, You Y, Zeier J, Kopriva S, Ristova D. Traits linked to natural variation of sulfur content in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1036-1050. [PMID: 37831920 PMCID: PMC10837017 DOI: 10.1093/jxb/erad401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
Sulfur (S) is an essential mineral nutrient for plant growth and development; it is important for primary and specialized plant metabolites that are crucial for biotic and abiotic interactions. Foliar S content varies up to 6-fold under a controlled environment, suggesting an adaptive value under certain natural environmental conditions. However, a major quantitative regulator of S content in Arabidopsis thaliana has not been identified yet, pointing to the existence of either additional genetic factors controlling sulfate/S content or of many minor quantitative regulators. Here, we use overlapping information of two separate ionomics studies to select groups of accessions with low, mid, and high foliar S content. We quantify series of metabolites, including anions (sulfate, phosphate, and nitrate), thiols (cysteine and glutathione), and seven glucosinolates, gene expression of 20 genes, sulfate uptake, and three biotic traits. Our results suggest that S content is tightly connected with sulfate uptake, the concentration of sulfate and phosphate anions, and glucosinolate and glutathione synthesis. Additionally, our results indicate that the growth of pathogenic bacteria is enhanced in the A. thaliana accessions containing higher S in their leaves, suggesting a complex regulation between S homeostasis, primary and secondary metabolism, and biotic pressures.
Collapse
Affiliation(s)
- Nicholas de Jager
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Varsa Shukla
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Anna Koprivova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Martin Lyčka
- Mendel Centre for Plant Genomics and Proteomics, Central European Institute of Technology (CEITEC), Masaryk University, 625 00 Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, 625 00 Brno, Czech Republic
| | - Lorina Bilalli
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Yanrong You
- Institute for Molecular Ecophysiology of Plants, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Jürgen Zeier
- Institute for Molecular Ecophysiology of Plants, Cluster of Excellence on Plant Sciences (CEPLAS), Heinrich Heine University, Universitätsstraße 1, D-40225 Düsseldorf, Germany
| | - Stanislav Kopriva
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| | - Daniela Ristova
- Institute for Plant Sciences, Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, D-50674 Cologne, Germany
| |
Collapse
|
39
|
Harris FM, Mou Z. Damage-Associated Molecular Patterns and Systemic Signaling. PHYTOPATHOLOGY 2024; 114:308-327. [PMID: 37665354 DOI: 10.1094/phyto-03-23-0104-rvw] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cellular damage inflicted by wounding, pathogen infection, and herbivory releases a variety of host-derived metabolites, degraded structural components, and peptides into the extracellular space that act as alarm signals when perceived by adjacent cells. These so-called damage-associated molecular patterns (DAMPs) function through plasma membrane localized pattern recognition receptors to regulate wound and immune responses. In plants, DAMPs act as elicitors themselves, often inducing immune outputs such as calcium influx, reactive oxygen species generation, defense gene expression, and phytohormone signaling. Consequently, DAMP perception results in a priming effect that enhances resistance against subsequent pathogen infections. Alongside their established function in local tissues, recent evidence supports a critical role of DAMP signaling in generation and/or amplification of mobile signals that induce systemic immune priming. Here, we summarize the identity, signaling, and synergy of proposed and established plant DAMPs, with a focus on those with published roles in systemic signaling.
Collapse
Affiliation(s)
- Fiona M Harris
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| | - Zhonglin Mou
- Department of Microbiology and Cell Science, University of Florida, P.O. Box 110700, Gainesville, FL 32611
| |
Collapse
|
40
|
Yamada K, Mine A. Sugar coordinates plant defense signaling. SCIENCE ADVANCES 2024; 10:eadk4131. [PMID: 38266087 PMCID: PMC10807812 DOI: 10.1126/sciadv.adk4131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 12/22/2023] [Indexed: 01/26/2024]
Abstract
Pathogen recognition triggers energy-intensive defense systems. Although successful defense should depend on energy availability, how metabolic information is communicated to defense remains unclear. We show that sugar, especially glucose-6-phosphate (G6P), is critical in coordinating defense in Arabidopsis. Under sugar-sufficient conditions, phosphorylation levels of calcium-dependent protein kinase 5 (CPK5) are elevated by G6P-mediated suppression of protein phosphatases, enhancing defense responses before pathogen invasion. Subsequently, recognition of bacterial flagellin activates sugar transporters, leading to increased cellular G6P, which elicits CPK5-independent signaling promoting synthesis of the phytohormone salicylic acid (SA) for antibacterial defense. In contrast, while perception of fungal chitin does not promote sugar influx or SA accumulation, chitin-induced synthesis of the antifungal compound camalexin requires basal sugar influx activity. By monitoring sugar levels, plants determine defense levels and execute appropriate outputs against bacterial and fungal pathogens. Together, our findings provide a comprehensive view of the roles of sugar in defense.
Collapse
Affiliation(s)
- Kohji Yamada
- Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan
- JST, PRESTO, Kawaguchi, Japan
| | - Akira Mine
- JST, PRESTO, Kawaguchi, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
41
|
Yi SY, Nekrasov V, Ichimura K, Kang SY, Shirasu K. Plant U-box E3 ligases PUB20 and PUB21 negatively regulate pattern-triggered immunity in Arabidopsis. PLANT MOLECULAR BIOLOGY 2024; 114:7. [PMID: 38265485 DOI: 10.1007/s11103-023-01409-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
KEY MESSAGE Plant U-box E3 ligases PUB20 and PUB21 are flg22-triggered signaling components and negatively regulate immune responses. Plant U-box proteins (PUBs) constitute a class of E3 ligases that are associated with various stress responses. Among the class IV PUBs featuring C-terminal Armadillo (ARM) repeats, PUB20 and PUB21 are closely related homologs. Here, we show that both PUB20 and PUB21 negatively regulate innate immunity in plants. Loss of PUB20 and PUB21 function leads to enhanced resistance to surface inoculation with the virulent bacterium Pseudomonas syringae pv. tomato DC3000 (Pst DC3000). However, the resistance levels remain unaffected after infiltration inoculation, suggesting that PUB20 and PUB21 primarily function during the early defense stages. The enhanced resistance to Pst DC3000 in PUB mutant plants (pub20-1, pub21-1, and pub20-1/pub21-1) correlates with extensive flg22-triggered reactive oxygen production, strong MPK3 activation, and enhanced transcriptional activation of early immune response genes. Additionally, PUB mutant plants (except pub21-1) exhibit constitutive stomatal closure after Pst DC3000 inoculation, implying the significant role of PUB20 in stomatal immunity. Comparative analyses of flg22 responses between PUB mutants and wild-type plants reveals that the robust activation of the pattern-induced immune responses may enhance resistance against Pst DC3000. Notably, the hypersensitivity responses triggered by RPM1/avrRpm1 and RPS2/avrRpt2 are independent of PUB20 and PUB21. These results suggest that PUB20 and PUB21 knockout mutations affect bacterial invasion, likely during the early stages, acting as negative regulators of plant immunity.
Collapse
Affiliation(s)
- So Young Yi
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, 32439, Republic of Korea.
| | - Vladimir Nekrasov
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, UK
| | - Kazuya Ichimura
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan
| | - Si-Yong Kang
- Department of Horticulture, College of Industrial Sciences, Kongju National University, Yesan, 32439, Republic of Korea.
- Research Center of Crop Breeding for Omics and Artificial Intelligence, Kongju National University, Yesan, 32439, Republic of Korea.
| | - Ken Shirasu
- Center for Sustainable Resource Science, RIKEN, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, Kanagawa, 230-0045, Japan.
| |
Collapse
|
42
|
Jian Y, Gong D, Wang Z, Liu L, He J, Han X, Tsuda K. How plants manage pathogen infection. EMBO Rep 2024; 25:31-44. [PMID: 38177909 PMCID: PMC10897293 DOI: 10.1038/s44319-023-00023-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 10/27/2023] [Accepted: 11/27/2023] [Indexed: 01/06/2024] Open
Abstract
To combat microbial pathogens, plants have evolved specific immune responses that can be divided into three essential steps: microbial recognition by immune receptors, signal transduction within plant cells, and immune execution directly suppressing pathogens. During the past three decades, many plant immune receptors and signaling components and their mode of action have been revealed, markedly advancing our understanding of the first two steps. Activation of immune signaling results in physical and chemical actions that actually stop pathogen infection. Nevertheless, this third step of plant immunity is under explored. In addition to immune execution by plants, recent evidence suggests that the plant microbiota, which is considered an additional layer of the plant immune system, also plays a critical role in direct pathogen suppression. In this review, we summarize the current understanding of how plant immunity as well as microbiota control pathogen growth and behavior and highlight outstanding questions that need to be answered.
Collapse
Affiliation(s)
- Yinan Jian
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Dianming Gong
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, 430070, Wuhan, China
| | - Zhe Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Lijun Liu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Jingjing He
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Xiaowei Han
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China
| | - Kenichi Tsuda
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Hubei Key Laboratory of Plant Pathology, College of Plant Science and Technology, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, 430070, Wuhan, China.
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, 518120, Shenzhen, China.
| |
Collapse
|
43
|
Yu L, Wang X, Tang C, Wang H, Rabbani Nasab H, Kang Z, Wang J. Genome-Wide Characterization of Berberine Bridge Enzyme Gene Family in Wheat ( Triticum aestivum L.) and the Positive Regulatory Role of TaBBE64 in Response to Wheat Stripe Rust. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19986-19999. [PMID: 38063491 DOI: 10.1021/acs.jafc.3c06280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Berberine bridge enzymes (BBEs), functioning as carbonate oxidases, enhance disease resistance in Arabidopsis and tobacco. However, the understanding of BBEs' role in monocots against pathogens remains limited. This study identified 81 TaBBEs with FAD_binding_4 and BBE domains. Phylogenetic analysis revealed a separation of the BBE gene family between monocots and dicots. Notably, RNA-seq showed TaBBE64's significant induction by both pathogen-associated molecular pattern treatment and Puccinia striiformis f. sp. tritici (Pst) infection at early stages. Subcellular localization revealed TaBBE64 at the cytoplasmic membrane. Knocking down TaBBE64 compromised wheat's Pst resistance, reducing reactive oxygen species and promoting fungal growth, confirming its positive role. Molecular docking and enzyme activity assays confirmed TaBBE64's glucose oxidation to produce H2O2. Since Pst relies on living wheat cells for carbohydrate absorption, TaBBE64's promotion of glucose oxidation limits fungal growth and resists pathogen infection. This study sheds light on BBEs' role in wheat resistance against biotrophic fungi.
Collapse
Affiliation(s)
- Ligang Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Xiaojie Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Chunlei Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Huiqing Wang
- Plant Protection Station of Xinjiang Uygur Autonomous Region, Urumqi 830006, Xinjiang, P. R. China
| | - Hojjatollah Rabbani Nasab
- Plant Protection Research Department, Agricultural and Natural Resources Research and Education Centre of Golestan Province, Agricultural Research Education and Extension Organization (AREEO), Gorgan 999067, Iran
| | - Zhensheng Kang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| | - Jianfeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A & F University, Yangling 712100, P. R. China
| |
Collapse
|
44
|
Fakhar AZ, Liu J, Pajerowska-Mukhtar KM, Mukhtar MS. The ORFans' tale: new insights in plant biology. TRENDS IN PLANT SCIENCE 2023; 28:1379-1390. [PMID: 37453923 DOI: 10.1016/j.tplants.2023.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 05/17/2023] [Accepted: 06/19/2023] [Indexed: 07/18/2023]
Abstract
Orphan genes (OGs) are protein-coding genes without a significant sequence similarity in closely related species. Despite their functional importance, very little is known about the underlying molecular mechanisms by which OGs participate in diverse biological processes. Here, we discuss the evolutionary mechanisms of OGs' emergence with relevance to species-specific adaptations. We also provide a mechanistic view of the involvement of OGs in multiple processes, including growth, development, reproduction, and carbon-metabolism-mediated immunity. We highlight the interconnection between OGs and the sucrose nonfermenting 1 (SNF1)-related protein kinases (SnRKs)-target of rapamycin (TOR) signaling axis for phytohormone signaling, nutrient metabolism, and stress responses. Finally, we propose a high-throughput pipeline for OGs' interspecies and intraspecies gene transfer through a transgenic approach for future biotechnological advances.
Collapse
Affiliation(s)
- Ali Zeeshan Fakhar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA
| | | | - M Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 1300 University Blvd., Birmingham, AL 35294, USA.
| |
Collapse
|
45
|
Tubergen PJ, Medlock G, Moore A, Zhang X, Papin JA, Danna CH. A computational model of Pseudomonas syringae metabolism unveils a role for branched-chain amino acids in Arabidopsis leaf colonization. PLoS Comput Biol 2023; 19:e1011651. [PMID: 38150474 PMCID: PMC10775980 DOI: 10.1371/journal.pcbi.1011651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 01/09/2024] [Accepted: 11/02/2023] [Indexed: 12/29/2023] Open
Abstract
Bacterial pathogens adapt their metabolism to the plant environment to successfully colonize their hosts. In our efforts to uncover the metabolic pathways that contribute to the colonization of Arabidopsis thaliana leaves by Pseudomonas syringae pv tomato DC3000 (Pst DC3000), we created iPst19, an ensemble of 100 genome-scale network reconstructions of Pst DC3000 metabolism. We developed a novel approach for gene essentiality screens, leveraging the predictive power of iPst19 to identify core and ancillary condition-specific essential genes. Constraining the metabolic flux of iPst19 with Pst DC3000 gene expression data obtained from naïve-infected or pre-immunized-infected plants, revealed changes in bacterial metabolism imposed by plant immunity. Machine learning analysis revealed that among other amino acids, branched-chain amino acids (BCAAs) metabolism significantly contributed to the overall metabolic status of each gene-expression-contextualized iPst19 simulation. These predictions were tested and confirmed experimentally. Pst DC3000 growth and gene expression analysis showed that BCAAs suppress virulence gene expression in vitro without affecting bacterial growth. In planta, however, an excess of BCAAs suppress the expression of virulence genes at the early stages of infection and significantly impair the colonization of Arabidopsis leaves. Our findings suggesting that BCAAs catabolism is necessary to express virulence and colonize the host. Overall, this study provides valuable insights into how plant immunity impacts Pst DC3000 metabolism, and how bacterial metabolism impacts the expression of virulence.
Collapse
Affiliation(s)
- Philip J. Tubergen
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Greg Medlock
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Anni Moore
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Xiaomu Zhang
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| | - Jason A. Papin
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America
| | - Cristian H. Danna
- Department of Biology, University of Virginia, Charlottesville, Virginia, United States of America
| |
Collapse
|
46
|
Yakubu I, Kong HG. The Relationship between the Sugar Preference of Bacterial Pathogens and Virulence on Plants. THE PLANT PATHOLOGY JOURNAL 2023; 39:529-537. [PMID: 38081313 PMCID: PMC10721386 DOI: 10.5423/ppj.rw.06.2023.0081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/19/2023] [Accepted: 09/19/2023] [Indexed: 12/17/2023]
Abstract
Plant pathogenic bacteria colonize plant surfaces and inner tissues to acquire essential nutrients. Nonstructural sugars hold paramount significance among these nutrients, as they serve as pivotal carbon sources for bacterial sustenance. They obtain sugar from their host by diverting nonstructural carbohydrates en route to the sink or enzymatic breakdown of structural carbohydrates within plant tissues. Despite the prevalence of research in this domain, the area of sugar selectivity and preferences exhibited by plant pathogenic bacteria remains inadequately explored. Within this expository framework, our present review endeavors to elucidate the intricate variations characterizing the distribution of simple sugars within diverse plant tissues, thus influencing the virulence dynamics of plant pathogenic bacteria. Subsequently, we illustrate the apparent significance of comprehending the bacterial preference for specific sugars and sugar alcohols, postulating this insight as a promising avenue to deepen our comprehension of bacterial pathogenicity. This enriched understanding, in turn, stands to catalyze the development of more efficacious strategies for the mitigation of plant diseases instigated by bacterial pathogens.
Collapse
Affiliation(s)
- Ismaila Yakubu
- Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University, Cheongju 28644, Korea
- Department of Crop Protection, Faculty of Agriculture/Institute for Agricultural Research, Ahmadu Bello University, Zaria 810211, Nigeria
| | - Hyun Gi Kong
- Department of Plant Medicine, College of Agriculture, Life and Environment Science, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
47
|
Zhang J, Wang S, Wang H, He P, Chang Y, Zheng W, Tang X, Li L, Wang C, He X. Metabolome and Transcriptome Profiling Reveals the Function of MdSYP121 in the Apple Response to Botryosphaeria dothidea. Int J Mol Sci 2023; 24:16242. [PMID: 38003432 PMCID: PMC10671699 DOI: 10.3390/ijms242216242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/04/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
The vesicular transport system is important for substance transport in plants. In recent years, the regulatory relationship between the vesicular transport system and plant disease resistance has received widespread attention; however, the underlying mechanism remains unclear. MdSYP121 is a key protein in the vesicular transport system. The overexpression of MdSYP121 decreased the B. dothidea resistance of apple, while silencing MdSYP121 resulted in the opposite phenotype. A metabolome and transcriptome dataset analysis showed that MdSYP121 regulated apple disease resistance by significantly affecting sugar metabolism. HPLC results showed that the levels of many soluble sugars were significantly higher in the MdSYP121-OE calli. Furthermore, the expression levels of genes related to sugar transport were significantly higher in the MdSYP121-OE calli after B. dothidea inoculation. In addition, the relationships between the MdSYP121 expression level, the soluble sugar content, and apple resistance to B. dothidea were verified in an F1 population derived from a cross between 'Golden Delicious' and 'Fuji Nagafu No. 2'. In conclusion, these results suggested that MdSYP121 negatively regulated apple resistance to B. dothidea by influencing the soluble sugar content. These technologies and methods allow us to investigate the molecular mechanism of the vesicular transport system regulating apple resistance to B. dothidea.
Collapse
Affiliation(s)
- Jiahu Zhang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (X.T.); (C.W.)
| | - Sen Wang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Haibo Wang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Ping He
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Yuansheng Chang
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Wenyan Zheng
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Xiao Tang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (X.T.); (C.W.)
| | - Linguang Li
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| | - Chen Wang
- College of Life Sciences, Shandong Agricultural University, Tai’an 271018, China; (X.T.); (C.W.)
| | - Xiaowen He
- Shandong Institute of Pomology, Tai’an 271000, China; (J.Z.); (S.W.); (H.W.); (P.H.); (Y.C.); (W.Z.); (L.L.)
| |
Collapse
|
48
|
Hu Y, Xin XF. A sweet story from Phytophthora-soybean interaction. Trends Microbiol 2023; 31:1093-1095. [PMID: 37770374 DOI: 10.1016/j.tim.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/30/2023]
Abstract
Phytopathogenic microbes obtain nutrients from host plants to support their growth and metabolism. A recent study by Zhu et al. revealed that the oomycete pathogen Phytophthora sojae upregulates the activity of soybean trehalose 6-phosphate synthase 6 (GmTPS6) and increases trehalose accumulation (through an effector PsAvh413) to promote nutritional gain.
Collapse
Affiliation(s)
- Yezhou Hu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Xiu-Fang Xin
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Chinese Academy of Sciences (CAS) and CAS John Innes Centre of Excellence for Plant and Microbial Sciences, Shanghai 200032, China.
| |
Collapse
|
49
|
Ren Y, Liao S, Xu Y. An update on sugar allocation and accumulation in fruits. PLANT PHYSIOLOGY 2023; 193:888-899. [PMID: 37224524 DOI: 10.1093/plphys/kiad294] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 04/26/2023] [Accepted: 05/04/2023] [Indexed: 05/26/2023]
Abstract
Fruit sweetness is determined by the amount and composition of sugars in the edible flesh. The accumulation of sugar is a highly orchestrated process that requires coordination of numerous metabolic enzymes and sugar transporters. This coordination enables partitioning and long-distance translocation of photoassimilates from source tissues to sink organs. In fruit crops, sugars ultimately accumulate in the sink fruit. Whereas tremendous progress has been achieved in understanding the function of individual genes associated with sugar metabolism and sugar transport in non-fruit crops, there is less known about the sugar transporters and metabolic enzymes responsible for sugar accumulation in fruit crop species. This review identifies knowledge gaps and can serve as a foundation for future studies, with comprehensive updates focusing on (1) the physiological roles of the metabolic enzymes and sugar transporters responsible for sugar allocation and partitioning and that contribute to sugar accumulation in fruit crops; and (2) the molecular mechanisms underlying the transcriptional and posttranslational regulation of sugar transport and metabolism. We also provide insights into the challenges and future directions of studies on sugar transporters and metabolic enzymes and name several promising genes that should be targeted with gene editing in the pursuit of optimized sugar allocation and partitioning to enhance sugar accumulation in fruits.
Collapse
Affiliation(s)
- Yi Ren
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Shengjin Liao
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| | - Yong Xu
- National Watermelon and Melon Improvement Center, Beijing Academy of Agricultural and Forestry Sciences (BAAFS), State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Beijing Key Laboratory of Vegetable Germplasm Improvement, Beijing 100097, China
| |
Collapse
|
50
|
Anderson JC. Ill Communication: Host Metabolites as Virulence-Regulating Signals for Plant-Pathogenic Bacteria. ANNUAL REVIEW OF PHYTOPATHOLOGY 2023; 61:49-71. [PMID: 37253693 DOI: 10.1146/annurev-phyto-021621-114026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Plant bacterial pathogens rely on host-derived signals to coordinate the deployment of virulence factors required for infection. In this review, I describe how diverse plant-pathogenic bacteria detect and respond to plant-derived metabolic signals for the purpose of virulence gene regulation. I highlight examples of how pathogens perceive host metabolites through membrane-localized receptors as well as intracellular response mechanisms. Furthermore, I describe how individual strains may coordinate their virulence using multiple distinct host metabolic signals, and how plant signals may positively or negatively regulate virulence responses. I also describe how plant defenses may interfere with the perception of host metabolites as a means to dampen pathogen virulence. The emerging picture is that recognition of host metabolic signals for the purpose of virulence gene regulation represents an important primary layer of interaction between pathogenic bacteria and host plants that shapes infection outcomes.
Collapse
Affiliation(s)
- Jeffrey C Anderson
- Department of Botany and Plant Pathology, Oregon State University, Corvallis, Oregon, USA;
| |
Collapse
|