1
|
Huang Y, Ye Q, Wang J, Zhu K, Yang H, Jiang X, Shen M. Recent progress in the identification and in vitro culture of skin organoids. Regen Ther 2025; 29:341-351. [PMID: 40242086 PMCID: PMC12000699 DOI: 10.1016/j.reth.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 11/13/2024] [Accepted: 01/04/2025] [Indexed: 04/18/2025] Open
Abstract
An organoid is a cell-based structure that shows organ-specific properties and shares a similar spatial organization as the corresponding organ. Organoids possess powerful capability to reproduce the key functions of the associated organ structures, and their similarity to the organs makes them physiologically relevant systems. The primary challenge associated with the development of skin organoids is the complexity of the human skin architecture, which encompasses the epidermis and the dermis as well as accessory structures, including hair follicles, sweat glands, and sebaceous glands, that perform various functions such as thermoregulation. The ultimate objectives of developing skin organoids are to regenerate the complete skin structure in vitro and reconstruct the skin in vivo. Consequently, safety, reliability, and the fidelity of the tissue interfaces are key considerations in this process. For this purpose, the present article reviews the most recent advances in this field, focusing on the cell sources, culture methods, culture conditions, and biomarkers for identifying the structure and function of skin organoids developed in vitro or in vivo. The subsequent sections summarize the recent applications of skin organoids in related disease diagnosis and treatments, and discuss the future prospects of these organoids in terms of clinical applications. This review of skin organoids can provide an important foundation for studies on human skin development, disease modeling, and reconstructive surgery, with broad utility for promising future opportunities in both biomedical research and clinical practice.
Collapse
Affiliation(s)
- Yanan Huang
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| | - Qing Ye
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| | | | - Kaimin Zhu
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| | - Haojie Yang
- Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, China
| | - Xiaoping Jiang
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| | - Meihua Shen
- Shanghai Corps Hospital of Chinese People's Armed Police, China
| |
Collapse
|
2
|
Chuong CM, Wu P, Yu Z, Liang YC, Widelitz RB. Organizational principles of integumentary organs: Maximizing variations for effective adaptation. Dev Biol 2025; 522:171-195. [PMID: 40113027 DOI: 10.1016/j.ydbio.2025.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/16/2025] [Accepted: 03/17/2025] [Indexed: 03/22/2025]
Abstract
The integument serves as the interface between an organism and its environment. It primarily comprises ectoderm-derived epithelium and mesenchyme derived from various embryonic sources. These integumentary organs serve as a barrier defining the physiological boundary between the internal and exterior environments and fulfill diverse functions. How does the integument generate such a large diversity? Here, we attempt to decipher the organizational principles. We focus on amniotes and use appendage follicles as the primary examples. The integument begins as a simple planar sheet of coupled epithelial and mesenchymal cells, then becomes more complex through the following patterning processes. 1) De novo Turing periodic patterning process: This process converts the integument into multiple skin appendage units. 2) Adaptive patterning process: Dermal muscle, blood vessels, adipose tissue, and other components are assembled and organized around appendage follicles when present. 3) Cyclic renewal: Skin appendage follicles contain stem cells and their niches, enabling physiological molting and regeneration in the adult animal. 4) Spatial variations: Multiple appendage units allow modulation of shape, size, keratin types, and color patterns of feathers and hairs across the animal's surface. 5) Temporal phenotypic plasticity: Cyclic renewal permits temporal transition of appendage phenotypes, i.e. regulatory patterning or integumentary metamorphosis, throughout an animal's lifetime. The diversities in (4) and (5) can be generated epigenetically within the same animal. Over the evolutionary timescale, different species can modulate the number, size, and distributions of existing ectodermal organs in the context of micro-evolution, allowing effective adaptation to new climates as seen in the variation of hair length among mammals. Novel ectodermal organs can also emerge in the context of macro-evolution, enabling animals to explore new ecological niches, as seen in the emergence of feathers on dinosaurs. These principles demonstrate how multi-scale organ adaption in the amniotes can maximize diverse and flexible integumentary organ phenotypes, producing a vast repertoire for natural selection and thereby providing effective adaptation and evolutionary advantages.
Collapse
Affiliation(s)
- Cheng Ming Chuong
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| | - Ping Wu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Zhou Yu
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Ya-Chen Liang
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Randall B Widelitz
- Department of Pathology, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| |
Collapse
|
3
|
Matsumoto-Oda A, Utsumi D, Takahashi K, Hirata S, Nyachieo A, Chai D, Jillani N, Raymond M. Inter-species differences in wound-healing rate: a comparative study involving primates and rodents. Proc Biol Sci 2025; 292:20250233. [PMID: 40300631 PMCID: PMC12040475 DOI: 10.1098/rspb.2025.0233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 05/01/2025] Open
Abstract
Injuries, which affect survival and biological functioning, are common in the animal kingdom. This study systematically investigated whether the slow wound healing observed in humans is a unique characteristic within the primate order. First, we found no significant difference in wound-healing rates between baboons under experimental conditions and those in their natural environment (0.613 mm d-1). Second, comparisons among four non-human primates (velvet monkeys, Sykes' monkeys, baboons and chimpanzees) revealed no significant differences in wound-healing rates. Furthermore, these rates showed no significant differences compared to those observed in rodents, suggesting a potential commonality in wound-healing rates across diverse animal species. In contrast, human wound-healing rates were found to be markedly slower (0.25 mm d-1), approximately three times slower than those observed in non-human primates. This finding indicates that the slow wound healing observed in humans is not a common characteristic among primate order and highlights the possibility of evolutionary adaptations in humans. Understanding these inter-species differences in wound-healing rates may provide valuable insights into the evolutionary implications of wound healing. This study also underscores the need for further research into the biological processes underlying wound healing in various species.
Collapse
Affiliation(s)
- Akiko Matsumoto-Oda
- Graduate School of Tourism Sciences, University of the Ryukyus, Okinawa, Japan
| | - Daisuke Utsumi
- Advanced Medical Research Center, Faculty of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Kenzo Takahashi
- Department of Dermatology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Satoshi Hirata
- Kumamoto Sanctuary, Wildlife Research Center, Kyoto University, Kyoto, Japan
| | | | - Daniel Chai
- Kenya Institute of Primate Research, Nairobi, Kenya
| | | | - Michel Raymond
- Institut des Sciences de l’Evolution, University of Montpellier, CNRS, Montpellier, France
| |
Collapse
|
4
|
Zhang C, Song W, Guo X, Li Z, Kong Y, Du J, Hou L, Feng Y, Wang Y, Zhang M, Liang L, Huang Y, Li J, Zhu D, Liu Q, Tan Y, Zhao Z, Zhao Y, Fu X, Huang S. Piezoelectric nanocomposite electrospun dressings: Tailoring mechanics for scar-free wound recovery. BIOMATERIALS ADVANCES 2025; 167:214119. [PMID: 39556886 DOI: 10.1016/j.bioadv.2024.214119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/31/2024] [Accepted: 11/11/2024] [Indexed: 11/20/2024]
Abstract
Rational wound management and enhancing healing quality are critical in clinical practice. Electrical stimulation therapy (EST) has emerged as a valuable adjunctive treatment due to its safety and cost-effectiveness. Integrating piezoelectric materials into dressings offers a way to miniaturize and personalize electrotherapy, enhancing convenience. To address the impact of physical factors of dressings on wound healing, a nanocomposite piezoelectric electrospun dressing using poly(L-lactic acid) (PLLA) and barium titanate (BaTiO3) was developed. We intentionally exaggerated design flaws to mimic the characteristics of scar extracellular matrix (ECM), including the oriented thick fibers and high Young's modulus. Initially, these dressings promoted fibrosis and hindered functional regeneration. However, when the piezoelectric effect was triggered by ultrasound, the fibrotic phenotype was reversed, leading to scar-free healing with well-regenerated functional structures. This study highlights the significant therapeutic potential of piezoelectric dressings in skin wound treatment and underscores the importance of carefully designing the static physical properties of dressings for optimal efficacy.
Collapse
Affiliation(s)
- Chao Zhang
- School of Medicine, Nankai University, Tianjin 300071, China; Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Wei Song
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Xu Guo
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China; College of Graduate, Tianjin Medical University, Tianjin 300203, China
| | - Zhao Li
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yi Kong
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Jinpeng Du
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Linhao Hou
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yu Feng
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yuzhen Wang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Mengde Zhang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Liting Liang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yuyan Huang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Jianjun Li
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Dongzhen Zhu
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Qinghua Liu
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Yaxin Tan
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| | - Ziteng Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yantao Zhao
- Senior Department of Orthopedics, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Xiaobing Fu
- School of Medicine, Nankai University, Tianjin 300071, China; Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China; College of Graduate, Tianjin Medical University, Tianjin 300203, China.
| | - Sha Huang
- Research Center for Wound Repair and Tissue Regeneration, Medical Innovation Research Department, Chinese PLA General Hospital, Beijing 100048, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China.
| |
Collapse
|
5
|
Joyner AL, Ortigão-Farias JR, Kornberg T. Conserved roles of engrailed: patterning tissues and specifying cell types. Development 2024; 151:dev204250. [PMID: 39671171 DOI: 10.1242/dev.204250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
More than 40 years ago, studies of the Drosophila engrailed and Hox genes led to major discoveries that shaped the history of developmental biology. We learned that these genes define the state of determination of cells that populate particular spatially defined regions: the identity of segmental domains by Hox genes, and the identity of posterior developmental compartments by engrailed. Hence, the boundaries that delimit spatial domains depend on engrailed. Here, we review the engrailed field, which now includes orthologs in Drosophila and mouse, as well as many other animals. We focus on fly and mouse and highlight additional functions that span early stages of embryogenesis and neural development.
Collapse
Affiliation(s)
- Alexandra L Joyner
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10021, USA
- Biochemistry, Cell & Molecular Biology Program and Neuroscience Program, Weill Cornell Graduate School of Medical Sciences, New York, NY 10021, USA
| | | | - Thomas Kornberg
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
6
|
Xiong M, Yang X, Shi Z, Xiang J, Gao H, Ji S, Li Y, Pi W, Chen H, Zhang H, Wang M, Li Y, Hong Y, Liu D, Fu X, Dong Y, Sun X. Programmable Artificial Skins Accomplish Antiscar Healing with Multiple Appendage Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407322. [PMID: 39460410 DOI: 10.1002/adma.202407322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Indexed: 10/28/2024]
Abstract
Functional appendage regeneration is essential for skin rehabilitation, but it has always failed by current existing healing approaches, owing to their inefficacy in preventing disfiguring scars. In this study, a novel regeneration-directing artificial skin (RDAS) system is presented, which is based on the rational design of multi-layered hydrogels that closely mimic natural skin matrices. By leveraging the programmability and architectural rigidity of DNA components, without the need for exogenous cell transplantation, such RDAS effectively minimizes tissue fibrosis by accurately guiding the regenerative process in wound fibroblasts, enabling rapid scarless wound repair, restoration of dermal function, and successful in situ regeneration of multiple appendages, such as hair follicles (HFs), sebaceous glands (SGs), and sweat glands (SwGs). Therefore, the RDAS offers a cell-free antiscarring therapeutic strategy for regenerative wound healing, resulting in improved outcomes. This innovative approach holds great potential for future clinical applications and burn rehabilitation.
Collapse
Affiliation(s)
- Mingchen Xiong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Xinling Yang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Ziwei Shi
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jiangbing Xiang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, 210023, P. R. China
| | - Huanhuan Gao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Shuaifei Ji
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yingying Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Wei Pi
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Huating Chen
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Hongliang Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Mengyang Wang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yiyue Hong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Dongsheng Liu
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of the Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| | - Yuanchen Dong
- CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, Beijing, 100048, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Beijing, 100048, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Beijing, 100048, P. R. China
- Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, P. R. China
| |
Collapse
|
7
|
Gadre P, Markova P, Ebrahimkutty M, Jiang Y, Bouzada FM, Watt FM. Emergence and properties of adult mammalian epidermal stem cells. Dev Biol 2024; 515:129-138. [PMID: 39059680 DOI: 10.1016/j.ydbio.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
In this review we discuss how the mammalian interfollicular epidermis forms during development, maintains homeostasis, and is repaired following wounding. Recent studies have provided new insights into the relationship between the stem cell compartment and the differentiating cell layers; the ability of differentiated cells to dedifferentiate into stem cells; and the epigenetic memory of epidermal cells following wounding.
Collapse
Affiliation(s)
- Purna Gadre
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Pavlina Markova
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | | | - Yidan Jiang
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Francisco M Bouzada
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Fiona M Watt
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| |
Collapse
|
8
|
Chen W, Li J, Xu K, Luo J, Wang M, Liu Y, Wang F, Du S, Xu W, Ge J, Li Y, Fu B, Tan J, Yang Y, Wang J, Xue X, Jin L, Yang Z, Liu F, Wang S. Genetic Variants Associated with Sweat Gland Phenotypes in 6210 Han Chinese Individuals. J Invest Dermatol 2024; 144:2096-2100.e8. [PMID: 38608834 DOI: 10.1016/j.jid.2024.02.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 04/14/2024]
Affiliation(s)
- Wenyan Chen
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinxi Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China
| | - Ke Xu
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Junyu Luo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Mengran Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu Liu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fudi Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjie Xu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jieyu Ge
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Li
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Bingfei Fu
- Institute of Intelligent Media Computing, School of Computer Science, Fudan University, Shanghai, China
| | - Jingze Tan
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Yajun Yang
- Ministry of Education Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Science, Fudan University, Shanghai, China
| | - Jiucun Wang
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Xiangyang Xue
- Institute of Intelligent Media Computing, School of Computer Science, Fudan University, Shanghai, China
| | - Li Jin
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai, China; Fudan University Taizhou Institute of Health Sciences, Taizhou, China; Research Unit of Dissecting the Population Genetics and Developing New Technologies for Treatment and Prevention of Skin Phenotypes and Dermatological Diseases (2019RU058), Chinese Academy of Medical Sciences, Shanghai, China
| | - Zhaohui Yang
- Academy of Medical Science, Zhengzhou University, Zhengzhou, China
| | - Fan Liu
- Department of Forensic Sciences, College of Criminal Justice, Naif Arab University for Security Sciences, Riyadh, Saudi Arabia
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
9
|
Zhao J, Zhang L, Zhang Y, Cao M, Wang C, Hu A, Cao L, Luo Q, You Z, Ma X, Gong L, Zhang C, Li H. FGF7 and FGF10 Promote Fate Transition of Human Epidermal Cell-derived Organoids to an Eccrine Gland Phenotype. Int J Biol Sci 2024; 20:4162-4177. [PMID: 39247826 PMCID: PMC11379064 DOI: 10.7150/ijbs.97422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 07/21/2024] [Indexed: 09/10/2024] Open
Abstract
Rationale: Reconstruction of hair follicles (HFs) and eccrine sweat glands (ESGs) is essential for functional skin regeneration. In skin reconstruction research, we found that foreskin-derived epidermal cells reconstructed HF organoids unidirectionally, but not ESG organoids. Methods: To investigate key genes and pathways influencing the fate of ESG and HF, a transcriptome profiling of ESG placode-containing skin and HF placode-containing skin was employed, and key DEGs were identified and validated by RT-qPCR and immunofluorescence staining in mice and rats. Subsequently, adult human epidermal cell-derived organoids were reconstructed to probe functional roles and mechanisms of FGF7 and FGF10 by series of approaches integrating RT-qPCR, immunofluorescence-staining, WB, apoptosis assay, and pathway interference assay. Results: All members of FGF7 subfamily were among the key DEGs screened, the differential expression of FGF7 and FGF10 and their receptors FGFR1/FGFR2 was verified between ESG placode-containing skin and HF placode-containing skin. In vivo and in vitro Matrigel plug models showed that both FGF7 and FGF10 promoted fate transition of human epidermal cell-derived organoids to ESG phenotype organoids, FGF7 and FGF10 had a synergistic effect, and mainly function through the FGFR1/2-MEK1/2-ERK1/2 pathway. Conclusions: Adult epidermal cells can be manipulated to reconstruct personalized HF and ESG to meet different needs.
Collapse
Affiliation(s)
- Junhong Zhao
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Lei Zhang
- Department of Psychiatry and Clinical Psychology, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Yonghong Zhang
- School of Basic Medicine, Academy of Bio-Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Manxiu Cao
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Cangyu Wang
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Anqi Hu
- Laboratory of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Leilei Cao
- Department of Burns and Plastic Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Qizhi Luo
- Department of Burns and Plastic Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| | - Zhen You
- Department of Urology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Xueping Ma
- School of Basic Medicine, Academy of Bio-Medicine Research, Hubei Key Laboratory of Embryonic Stem Cell Research, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Liang Gong
- Department of Urology of The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and Fourth Medical Center of PLA General Hospital, Beijing, China
| | - Haihong Li
- Department of Burns and Plastic Surgery, the Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong Province, China
| |
Collapse
|
10
|
Sekiguchi R, Martin D, Doyle A, Wang S, Yamada K. Salivary Gland Tissue Recombination Can Modify Cell Fate. J Dent Res 2024; 103:755-764. [PMID: 38715201 PMCID: PMC11191754 DOI: 10.1177/00220345241247484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2024] Open
Abstract
Although mesenchyme is essential for inducing the epithelium of ectodermal organs, its precise role in organ-specific epithelial fate determination remains poorly understood. To elucidate the roles of tissue interactions in cellular differentiation, we performed single-cell RNA sequencing and imaging analyses on recombined tissues, where mesenchyme and epithelium were switched ex vivo between two types of embryonic mouse salivary glands: the parotid gland (a serous gland) and the submandibular gland (a predominantly mucous gland). We found partial induction of molecules that define gland-specific acinar and myoepithelial cells in recombined salivary epithelium. The parotid epithelium recombined with submandibular mesenchyme began to express mucous acinar genes not intrinsic to the parotid gland. While myoepithelial cells do not normally line parotid acini, newly induced myoepithelial cells densely populated recombined parotid acini. However, mucous acinar and myoepithelial markers continued to be expressed in submandibular epithelial cells recombined with parotid mesenchyme. Consequently, some epithelial cells appeared to be plastic, such that their fate could still be modified in response to mesenchymal signaling, whereas other epithelial cells appeared to be already committed to a specific fate. We also discovered evidence for bidirectional induction: transcriptional changes were observed not only in the epithelium but also in the mesenchyme after heterotypic tissue recombination. For example, parotid epithelium induced the expression of muscle-related genes in submandibular fibroblasts that began to mimic parotid fibroblast gene expression. These studies provide the first comprehensive unbiased molecular characterization of tissue recombination approaches exploring the regulation of cell fate.
Collapse
Affiliation(s)
- R. Sekiguchi
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - D. Martin
- Genomics and Computational Biology Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - A.D. Doyle
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Imaging Core, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| | - S. Wang
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | | | - K.M. Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
11
|
Lv X, Zhao N, Long S, Wang G, Ran X, Gao J, Wang J, Wang T. 3D skin bioprinting as promising therapeutic strategy for radiation-associated skin injuries. Wound Repair Regen 2024; 32:217-228. [PMID: 38602068 DOI: 10.1111/wrr.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/16/2024] [Accepted: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Both cutaneous radiation injury and radiation combined injury (RCI) could have serious skin traumas, which are collectively referred to as radiation-associated skin injuries in this paper. These two types of skin injuries require special managements of wounds, and the therapeutic effects still need to be further improved. Cutaneous radiation injuries are common in both radiotherapy patients and victims of radioactive source accidents, which could lead to skin necrosis and ulcers in serious conditions. At present, there are still many challenges in management of cutaneous radiation injuries including early diagnosis, lesion assessment, and treatment prognosis. Radiation combined injuries are special and important issues in severe nuclear accidents, which often accompanied by serious skin traumas. Mass victims of RCI would be the focus of public health concern. Three-dimensional (3D) bioprinting, as a versatile and favourable technique, offers effective approaches to fabricate biomimetic architectures with bioactivity, which provides potentials for resolve the challenges in treating radiation-associated skin injuries. Combining with the cutting-edge advances in 3D skin bioprinting, the authors analyse the damage characteristics of skin wounds in both cutaneous radiation injury and RCI and look forward to the potential value of 3D skin bioprinting for the treatments of radiation-associated skin injuries.
Collapse
Affiliation(s)
- Xiaofan Lv
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Na Zhao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
- Institute of Materia Medica and Department of Pharmaceutics, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Shuang Long
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Guojian Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Xinze Ran
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Jining Gao
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Junping Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| | - Tao Wang
- State Key Laboratory of Trauma and Chemical Poisoning, Institute of Combined Injury, School of Preventive Military Medicine, Army Medical University (Third Military Medical University), Chongqing, China
| |
Collapse
|
12
|
Dhouailly D. The avian ectodermal default competence to make feathers. Dev Biol 2024; 508:64-76. [PMID: 38190932 DOI: 10.1016/j.ydbio.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/10/2024]
Abstract
Feathers originate as protofeathers before birds, in pterosaurs and basal dinosaurs. What characterizes a feather is not only its outgrowth, but its barb cells differentiation and a set of beta-corneous proteins. Reticula appear concomitantly with feathers, as small bumps on plantar skin, made only of keratins. Avian scales, with their own set of beta-corneous proteins, appear more recently than feathers on the shank, and only in some species. In the chick embryo, when feather placodes form, all the non-feather areas of the integument are already specified. Among them, midventral apterium, cornea, reticula, and scale morphogenesis appear to be driven by negative regulatory mechanisms, which modulate the inherited capacity of the avian ectoderm to form feathers. Successive dermal/epidermal interactions, initiated by the Wnt/β-catenin pathway, and involving principally Eda/Edar, BMP, FGF20 and Shh signaling, are responsible for the formation not only of feather, but also of scale placodes and reticula, with notable differences in the level of Shh, and probably FGF20 expressions. This sequence is a dynamic and labile process, the turning point being the FGF20 expression by the placode. This epidermal signal endows its associated dermis with the memory to aggregate and to stimulate the morphogenesis that follows, involving even a re-initiation of the placode.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, University Grenoble-Alpes, Institute for Advanced Biosciences, 38700, La Tronche, France.
| |
Collapse
|
13
|
Li YY, Ji SF, Fu XB, Jiang YF, Sun XY. Biomaterial-based mechanical regulation facilitates scarless wound healing with functional skin appendage regeneration. Mil Med Res 2024; 11:13. [PMID: 38369464 PMCID: PMC10874556 DOI: 10.1186/s40779-024-00519-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 01/30/2024] [Indexed: 02/20/2024] Open
Abstract
Scar formation resulting from burns or severe trauma can significantly compromise the structural integrity of skin and lead to permanent loss of skin appendages, ultimately impairing its normal physiological function. Accumulating evidence underscores the potential of targeted modulation of mechanical cues to enhance skin regeneration, promoting scarless repair by influencing the extracellular microenvironment and driving the phenotypic transitions. The field of skin repair and skin appendage regeneration has witnessed remarkable advancements in the utilization of biomaterials with distinct physical properties. However, a comprehensive understanding of the underlying mechanisms remains somewhat elusive, limiting the broader application of these innovations. In this review, we present two promising biomaterial-based mechanical approaches aimed at bolstering the regenerative capacity of compromised skin. The first approach involves leveraging biomaterials with specific biophysical properties to create an optimal scarless environment that supports cellular activities essential for regeneration. The second approach centers on harnessing mechanical forces exerted by biomaterials to enhance cellular plasticity, facilitating efficient cellular reprogramming and, consequently, promoting the regeneration of skin appendages. In summary, the manipulation of mechanical cues using biomaterial-based strategies holds significant promise as a supplementary approach for achieving scarless wound healing, coupled with the restoration of multiple skin appendage functions.
Collapse
Affiliation(s)
- Ying-Ying Li
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Yu-Feng Jiang
- Department of Tissue Regeneration and Wound Repair, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
14
|
Wang L, Li J. Morphogenesis of fungiform papillae in developing miniature pigs. Heliyon 2024; 10:e24953. [PMID: 38314265 PMCID: PMC10837543 DOI: 10.1016/j.heliyon.2024.e24953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/16/2024] [Accepted: 01/17/2024] [Indexed: 02/06/2024] Open
Abstract
Objective Fungiform papillae contain taste buds and play a critical role in mastication and the gustatory system. In this study, we report a series of sequential observations of organogenesis of fungiform papillae in miniature pigs, as well as changes in the expression of BMP2, BMP4, Wnt5a, Sox2, and Notch1 signaling pathway components. Design In this study, we investigated the spatiotemporal expression patterns of BMP, Wnt, Sox2 and Notch in the fungiform papillae of miniature pigs at the bud stage (E40), cap stage (E50) and bell stage (E60). Pregnant miniature pigs were obtained, and the samples were processed for histological staining. Immunohistochemistry and real-time PCR were used to detect the mRNA and protein expression levels of BMP2, BMP4, Wnt5a, Sox2, and Notch1. Results At E40, fungiform papillae were present on the anterior two-thirds of the tongue in a specific array and pattern. The fungiform papillae were enlarged and basically developed at E50 and were largest at the earlier stage (E60). Most of the BMP2 was concentrated in the epithelial layer and the connective tissue core of the fungal papilloma and gradually accumulated from E40-E60. BMP-4 was weakly expressed in the fungiform papillae epithelia, but BMP-4-positive cells were also observed in the developing tongue muscle at E50 and E60. Wnt5a-positive cells were observed in the fungiform papillae epithelia and developing tongue muscle at all three time points. Sox2-positive cells were observed only in fungiform papillae epithelial cells, and Notch1-positive cells could not be detected. Conclusions This study provides primary data regarding the morphogenesis and expression of developmental signals in the fungiform papillae of miniature pigs, establishing a foundation for further research in both this model and humans.
Collapse
Affiliation(s)
- Lingxiao Wang
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, China
| | - Jun Li
- Department of Dental Implant Center, Beijing Stomatological Hospital, Capital Medical University, Capital Medical University School of Stomatology, No. 4 Tian Tan Xi Li, Beijing, 100050, China
| |
Collapse
|
15
|
Ma X, Zhao LL, Yu YC, Cheng Y. Engrailed: Pathological and physiological effects of a multifunctional developmental gene. Genesis 2024; 62:e23557. [PMID: 37830136 DOI: 10.1002/dvg.23557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/14/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023]
Abstract
Engrailed-1 (EN1) is a developmental gene that encodes En1, a highly conserved transcription factor involved in regionalization during early embryogenesis and in the later maintenance of normal neurons. After birth, EN1 still plays a role in the development and physiology of the body; for example, it exerts a protective effect on midbrain dopaminergic (mDA) neurons, and loss of EN1 causes mDA neurons in the ventral midbrain to gradually die approximately 6 weeks after birth, resulting in motor and nonmotor symptoms similar to those observed in Parkinson's disease. Notably, EN1 has been identified as a possible susceptibility gene for idiopathic Parkinson's disease in humans. EN1 is involved in the processes of wound-healing scar production and tissue and organ fibrosis. Additionally, EN1 can lead to tumorigenesis and thus provides a target for the treatment of some tumors. In this review, we summarize the effects of EN1 on embryonic organ development, describe the consequences of the deletion or overexpression of the EN1 gene, and discuss the pathways in which EN1 is involved. We hope to clarify the role of EN1 as a developmental gene and present potential therapeutic targets for diseases involving the EN1 gene.
Collapse
Affiliation(s)
- Xiang Ma
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Liang-Liang Zhao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yi-Chun Yu
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| | - Yan Cheng
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, P.R. China
| |
Collapse
|
16
|
Sahu S, Sahoo S, Sullivan T, O'Sullivan TN, Turan S, Albaugh ME, Burkett S, Tran B, Salomon DS, Kozlov SV, Koehler KR, Jolly MK, Sharan SK. Spatiotemporal modulation of growth factors directs the generation of multilineage mouse embryonic stem cell-derived mammary organoids. Dev Cell 2024; 59:175-186.e8. [PMID: 38159568 PMCID: PMC10872289 DOI: 10.1016/j.devcel.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/20/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Ectodermal appendages, such as the mammary gland (MG), are thought to have evolved from hair-associated apocrine glands to serve the function of milk secretion. Through the directed differentiation of mouse embryonic stem cells (mESCs), here, we report the generation of multilineage ESC-derived mammary organoids (MEMOs). We adapted the skin organoid model, inducing the dermal mesenchyme to transform into mammary-specific mesenchyme via the sequential activation of Bone Morphogenetic Protein 4 (BMP4) and Parathyroid Hormone-related Protein (PTHrP) and inhibition of hedgehog (HH) signaling. Using single-cell RNA sequencing, we identified gene expression profiles that demonstrate the presence of mammary-specific epithelial cells, fibroblasts, and adipocytes. MEMOs undergo ductal morphogenesis in Matrigel and can reconstitute the MG in vivo. Further, we demonstrate that the loss of function in placode regulators LEF1 and TBX3 in mESCs results in impaired skin and MEMO generation. In summary, our MEMO model is a robust tool for studying the development of ectodermal appendages, and it provides a foundation for regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| | - Teresa Sullivan
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - T Norene O'Sullivan
- Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA
| | - Sevilay Turan
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mary E Albaugh
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Bao Tran
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - David S Salomon
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Serguei V Kozlov
- Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA; Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Karl R Koehler
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology, Department of Plastic & Oral Surgery, and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| | - Shyam K Sharan
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
17
|
M. S. Barron A, Fabre T, De S. Distinct fibroblast functions associated with fibrotic and immune-mediated inflammatory diseases and their implications for therapeutic development. F1000Res 2024; 13:54. [PMID: 38681509 PMCID: PMC11053351 DOI: 10.12688/f1000research.143472.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/28/2023] [Indexed: 05/01/2024] Open
Abstract
Fibroblasts are ubiquitous cells that can adopt many functional states. As tissue-resident sentinels, they respond to acute damage signals and shape the earliest events in fibrotic and immune-mediated inflammatory diseases. Upon sensing an insult, fibroblasts produce chemokines and growth factors to organize and support the response. Depending on the size and composition of the resulting infiltrate, these activated fibroblasts may also begin to contract or relax thus changing local stiffness within the tissue. These early events likely contribute to the divergent clinical manifestations of fibrotic and immune-mediated inflammatory diseases. Further, distinct changes to the cellular composition and signaling dialogue in these diseases drive progressive fibroblasts specialization. In fibrotic diseases, fibroblasts support the survival, activation and differentiation of myeloid cells, granulocytes and innate lymphocytes, and produce most of the pathogenic extracellular matrix proteins. Whereas, in immune-mediated inflammatory diseases, sequential accumulation of dendritic cells, T cells and B cells programs fibroblasts to support local, destructive adaptive immune responses. Fibroblast specialization has clear implications for the development of effective induction and maintenance therapies for patients with these clinically distinct diseases.
Collapse
Affiliation(s)
- Alexander M. S. Barron
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Thomas Fabre
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| | - Saurav De
- Inflammation & Immunology Research Unit, Pfizer, Inc., Cambridge, Massachusetts, 02139, USA
| |
Collapse
|
18
|
Dingwall HL, Tomizawa RR, Aharoni A, Hu P, Qiu Q, Kokalari B, Martinez SM, Donahue JC, Aldea D, Mendoza M, Glass IA, Wu H, Kamberov YG. Sweat gland development requires an eccrine dermal niche and couples two epidermal programs. Dev Cell 2024; 59:20-32.e6. [PMID: 38096824 PMCID: PMC10872420 DOI: 10.1016/j.devcel.2023.11.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 10/02/2023] [Accepted: 11/14/2023] [Indexed: 12/22/2023]
Abstract
Eccrine sweat glands are indispensable for human thermoregulation and, similar to other mammalian skin appendages, form from multipotent epidermal progenitors. Limited understanding of how epidermal progenitors specialize to form these vital organs has precluded therapeutic efforts toward their regeneration. Herein, we applied single-nucleus transcriptomics to compare the expression content of wild-type, eccrine-forming mouse skin to that of mice harboring a skin-specific disruption of Engrailed 1 (En1), a transcription factor that promotes eccrine gland formation in humans and mice. We identify two concurrent but disproportionate epidermal transcriptomes in the early eccrine anlagen: one that is shared with hair follicles and one that is En1 dependent and eccrine specific. We demonstrate that eccrine development requires the induction of a dermal niche proximal to each developing gland in humans and mice. Our study defines the signatures of eccrine identity and uncovers the eccrine dermal niche, setting the stage for targeted regeneration and comprehensive skin repair.
Collapse
Affiliation(s)
- Heather L Dingwall
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Reiko R Tomizawa
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Adam Aharoni
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Peng Hu
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Qi Qiu
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Blerina Kokalari
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Joan C Donahue
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Daniel Aldea
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Meryl Mendoza
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Ian A Glass
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - Hao Wu
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA
| | - Yana G Kamberov
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA, USA.
| |
Collapse
|
19
|
Branch MC, Ezhkova E. Defining the fate trajectory of eccrine gland formation. Dev Cell 2024; 59:1-3. [PMID: 38194909 PMCID: PMC10838196 DOI: 10.1016/j.devcel.2023.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 01/11/2024]
Abstract
Eccrine glands secrete water onto the surface of human skin to regulate body temperature. In this issue of Developmental Cell, Dingwall et al. dissect the transcriptional signature of developing eccrine glands, and they also uncover a unique dermal niche that is responsible for promoting eccrine gland developmental progression.
Collapse
Affiliation(s)
- Meagan C Branch
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elena Ezhkova
- Department of Cell, Developmental, and Regenerative Biology, Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
20
|
Notley SR, Mitchell D, Taylor NAS. A century of exercise physiology: concepts that ignited the study of human thermoregulation. Part 4: evolution, thermal adaptation and unsupported theories of thermoregulation. Eur J Appl Physiol 2024; 124:147-218. [PMID: 37796290 DOI: 10.1007/s00421-023-05262-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 06/13/2023] [Indexed: 10/06/2023]
Abstract
This review is the final contribution to a four-part, historical series on human exercise physiology in thermally stressful conditions. The series opened with reminders of the principles governing heat exchange and an overview of our contemporary understanding of thermoregulation (Part 1). We then reviewed the development of physiological measurements (Part 2) used to reveal the autonomic processes at work during heat and cold stresses. Next, we re-examined thermal-stress tolerance and intolerance, and critiqued the indices of thermal stress and strain (Part 3). Herein, we describe the evolutionary steps that endowed humans with a unique potential to tolerate endurance activity in the heat, and we examine how those attributes can be enhanced during thermal adaptation. The first of our ancestors to qualify as an athlete was Homo erectus, who were hairless, sweating specialists with eccrine sweat glands covering almost their entire body surface. Homo sapiens were skilful behavioural thermoregulators, which preserved their resource-wasteful, autonomic thermoeffectors (shivering and sweating) for more stressful encounters. Following emigration, they regularly experienced heat and cold stress, to which they acclimatised and developed less powerful (habituated) effector responses when those stresses were re-encountered. We critique hypotheses that linked thermoregulatory differences to ancestry. By exploring short-term heat and cold acclimation, we reveal sweat hypersecretion and powerful shivering to be protective, transitional stages en route to more complete thermal adaptation (habituation). To conclude this historical series, we examine some of the concepts and hypotheses of thermoregulation during exercise that did not withstand the tests of time.
Collapse
Affiliation(s)
- Sean R Notley
- Defence Science and Technology Group, Department of Defence, Melbourne, Australia
- School of Human Kinetics, University of Ottawa, Ottawa, Canada
| | - Duncan Mitchell
- Brain Function Research Group, School of Physiology, University of the Witwatersrand, Johannesburg, South Africa
- School of Human Sciences, University of Western Australia, Crawley, Australia
| | - Nigel A S Taylor
- Research Institute of Human Ecology, College of Human Ecology, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
21
|
Wu X, Du YZ. Nanodrug Delivery Strategies to Signaling Pathways in Alopecia. Mol Pharm 2023; 20:5396-5415. [PMID: 37817669 DOI: 10.1021/acs.molpharmaceut.3c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
Over 50% of the global population suffers from hair loss. The mixed results in the treatment of hair loss reveal the limitations of conventional commercial topical drugs. One the one hand, the definite pathogenesis of hair loss is still an enigma. On the other hand, targeted drug carriers ensure the drug therapeutic effect and low side effects. This review highlights the organization and overview of nine crucial signaling pathways associated with hair loss, as well as the development of nanobased topical delivery systems loading the clinical drugs, which will fuel emerging hair loss treatment strategies.
Collapse
Affiliation(s)
- Xiaochuan Wu
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Yong-Zhong Du
- Jinhua Institute of Zhejiang University, Jinhua, Zhejiang 321299, China
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China
| |
Collapse
|
22
|
Koutsioumpa C, Santiago C, Jacobs K, Lehnert BP, Barrera V, Hutchinson JN, Schmelyun D, Lehoczky JA, Paul DL, Ginty DD. Skin-type-dependent development of murine mechanosensory neurons. Dev Cell 2023; 58:2032-2047.e6. [PMID: 37607547 PMCID: PMC10615785 DOI: 10.1016/j.devcel.2023.07.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/26/2023] [Accepted: 07/27/2023] [Indexed: 08/24/2023]
Abstract
Mechanosensory neurons innervating the skin underlie our sense of touch. Fast-conducting, rapidly adapting mechanoreceptors innervating glabrous (non-hairy) skin form Meissner corpuscles, while in hairy skin, they associate with hair follicles, forming longitudinal lanceolate endings. How mechanoreceptors develop axonal endings appropriate for their skin targets is unknown. We report that mechanoreceptor morphologies across different skin regions are indistinguishable during early development but diverge post-natally, in parallel with skin maturation. Neurons terminating along the glabrous and hairy skin border exhibit hybrid morphologies, forming both Meissner corpuscles and lanceolate endings. Additionally, molecular profiles of neonatal glabrous and hairy skin-innervating neurons largely overlap. In mouse mutants with ectopic glabrous skin, mechanosensory neurons form end-organs appropriate for the altered skin type. Finally, BMP5 and BMP7 are enriched in glabrous skin, and signaling through type I bone morphogenetic protein (BMP) receptors in neurons is critical for Meissner corpuscle morphology. Thus, mechanoreceptor morphogenesis is flexibly instructed by target tissues.
Collapse
Affiliation(s)
- Charalampia Koutsioumpa
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Celine Santiago
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Kiani Jacobs
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Brendan P Lehnert
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Victor Barrera
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - John N Hutchinson
- Bioinformatics Core, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Dhane Schmelyun
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Jessica A Lehoczky
- Department of Orthopedic Surgery, Brigham and Women's Hospital, Boston, MA 02115, USA
| | - David L Paul
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
23
|
Hong ZX, Zhu ST, Li H, Luo JZ, Yang Y, An Y, Wang X, Wang K. Bioengineered skin organoids: from development to applications. Mil Med Res 2023; 10:40. [PMID: 37605220 PMCID: PMC10463602 DOI: 10.1186/s40779-023-00475-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/01/2023] [Indexed: 08/23/2023] Open
Abstract
Significant advancements have been made in recent years in the development of highly sophisticated skin organoids. Serving as three-dimensional models that mimic human skin, these organoids have evolved into complex structures and are increasingly recognized as effective alternatives to traditional culture models and human skin due to their ability to overcome the limitations of two-dimensional systems and ethical concerns. The inherent plasticity of skin organoids allows for their construction into physiological and pathological models, enabling the study of skin development and dynamic changes. This review provides an overview of the pivotal work in the progression from 3D layered epidermis to cyst-like skin organoids with appendages. Furthermore, it highlights the latest advancements in organoid construction facilitated by state-of-the-art engineering techniques, such as 3D printing and microfluidic devices. The review also summarizes and discusses the diverse applications of skin organoids in developmental biology, disease modelling, regenerative medicine, and personalized medicine, while considering their prospects and limitations.
Collapse
Affiliation(s)
- Zi-Xuan Hong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Shun-Tian Zhu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Hao Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Jing-Zhi Luo
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China
| | - Yu Yang
- Department of Hepatopancreatobiliary Surgery, the Third Affiliated Hospital of Soochow University, Changzhou, 213000, Jiangsu, China
| | - Yang An
- Department of Plastic Surgery, Peking University Third Hospital, Beijing, 100191, China.
| | - Xi Wang
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
| | - Kai Wang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, 100191, China.
- Clinical Stem Cell Research Center, Peking University Third Hospital, Beijing, 100191, China.
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Beijing, 100037, China.
- Beijing Key Laboratory of Metabolic Disorder Related Cardiovascular Disease, Capital Medical University, Beijing, 100050, China.
| |
Collapse
|
24
|
Wei H, Du S, Parksong J, Pasolli HA, Matte-Martone C, Regot S, Gonzalez LE, Xin T, Greco V. Organ function is preserved despite reorganization of niche architecture in the hair follicle. Cell Stem Cell 2023; 30:962-972.e6. [PMID: 37419106 PMCID: PMC10362479 DOI: 10.1016/j.stem.2023.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 05/01/2023] [Accepted: 06/07/2023] [Indexed: 07/09/2023]
Abstract
The ability of stem cells to build and replenish tissues depends on support from their niche. Although niche architecture varies across organs, its functional importance is unclear. During hair follicle growth, multipotent epithelial progenitors build hair via crosstalk with their remodeling fibroblast niche, the dermal papilla, providing a powerful model to functionally interrogate niche architecture. Through mouse intravital imaging, we show that dermal papilla fibroblasts remodel individually and collectively to form a morphologically polarized, structurally robust niche. Asymmetric TGF-β signaling precedes morphological niche polarity, and loss of TGF-β signaling in dermal papilla fibroblasts leads them to progressively lose their stereotypic architecture, instead surrounding the epithelium. The reorganized niche induces the redistribution of multipotent progenitors but nevertheless supports their proliferation and differentiation. However, the differentiated lineages and hairs produced by progenitors are shorter. Overall, our results reveal that niche architecture optimizes organ efficiency but is not absolutely essential for organ function.
Collapse
Affiliation(s)
- Haoyang Wei
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Shuangshuang Du
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Jeeun Parksong
- Departments of Cell Biology and Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY 10065, USA
| | | | - Sergi Regot
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Lauren E Gonzalez
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Tianchi Xin
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA.
| | - Valentina Greco
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Departments of Cell Biology and Dermatology, Yale Stem Cell Center, Yale Cancer Center, Yale School of Medicine, New Haven, CT 06510, USA.
| |
Collapse
|
25
|
Dhouailly D. Evo Devo of the Vertebrates Integument. J Dev Biol 2023; 11:25. [PMID: 37367479 DOI: 10.3390/jdb11020025] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/19/2023] [Accepted: 05/21/2023] [Indexed: 06/28/2023] Open
Abstract
All living jawed vertebrates possess teeth or did so ancestrally. Integumental surface also includes the cornea. Conversely, no other anatomical feature differentiates the clades so readily as skin appendages do, multicellular glands in amphibians, hair follicle/gland complexes in mammals, feathers in birds, and the different types of scales. Tooth-like scales are characteristic of chondrichthyans, while mineralized dermal scales are characteristic of bony fishes. Corneous epidermal scales might have appeared twice, in squamates, and on feet in avian lineages, but posteriorly to feathers. In contrast to the other skin appendages, the origin of multicellular glands of amphibians has never been addressed. In the seventies, pioneering dermal-epidermal recombination between chick, mouse and lizard embryos showed that: (1) the clade type of the appendage is determined by the epidermis; (2) their morphogenesis requires two groups of dermal messages, first for primordia formation, second for appendage final architecture; (3) the early messages were conserved during amniotes evolution. Molecular biology studies that have identified the involved pathways, extending those data to teeth and dermal scales, suggest that the different vertebrate skin appendages evolved in parallel from a shared placode/dermal cells unit, present in a common toothed ancestor, c.a. 420 mya.
Collapse
Affiliation(s)
- Danielle Dhouailly
- Department of Biology and Chemistry, Institute for Advanced Biosciences, University Grenoble-Alpes, 38700 La Tronche, France
| |
Collapse
|
26
|
Myung P, Ito M. Solving a molecular cryptogram for the human fingerprint. Cell 2023; 186:899-901. [PMID: 36868211 DOI: 10.1016/j.cell.2023.01.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 01/23/2023] [Accepted: 01/23/2023] [Indexed: 03/05/2023]
Abstract
No two fingerprint patterns are exactly alike. In this issue of Cell, Glover et al. uncover the molecular and cellular mechanisms that result in patterned skin ridges over volar digits. This study reveals that the remarkable diversity of fingerprint configurations may originate from a common patterning code.
Collapse
Affiliation(s)
- Peggy Myung
- Department of Dermatology, Yale University, New Haven, CT 06520, USA; Department of Pathology, Yale University, New Haven, CT 06520, USA
| | - Mayumi Ito
- The Ronald O. Perelman Department of Dermatology, Grossman School of Medicine, New York University, New York, NY 10016, USA; The Department of Cell Biology, Grossman School of Medicine, New York University, New York, NY 10016, USA.
| |
Collapse
|
27
|
Glover JD, Sudderick ZR, Shih BBJ, Batho-Samblas C, Charlton L, Krause AL, Anderson C, Riddell J, Balic A, Li J, Klika V, Woolley TE, Gaffney EA, Corsinotti A, Anderson RA, Johnston LJ, Brown SJ, Wang S, Chen Y, Crichton ML, Headon DJ. The developmental basis of fingerprint pattern formation and variation. Cell 2023; 186:940-956.e20. [PMID: 36764291 DOI: 10.1016/j.cell.2023.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 11/04/2022] [Accepted: 01/10/2023] [Indexed: 02/11/2023]
Abstract
Fingerprints are complex and individually unique patterns in the skin. Established prenatally, the molecular and cellular mechanisms that guide fingerprint ridge formation and their intricate arrangements are unknown. Here we show that fingerprint ridges are epithelial structures that undergo a truncated hair follicle developmental program and fail to recruit a mesenchymal condensate. Their spatial pattern is established by a Turing reaction-diffusion system, based on signaling between EDAR, WNT, and antagonistic BMP pathways. These signals resolve epithelial growth into bands of focalized proliferation under a precociously differentiated suprabasal layer. Ridge formation occurs as a set of waves spreading from variable initiation sites defined by the local signaling environments and anatomical intricacies of the digit, with the propagation and meeting of these waves determining the type of pattern that forms. Relying on a dynamic patterning system triggered at spatially distinct sites generates the characteristic types and unending variation of human fingerprint patterns.
Collapse
Affiliation(s)
- James D Glover
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Zoe R Sudderick
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Barbara Bo-Ju Shih
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | | | - Laura Charlton
- Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Andrew L Krause
- Department of Mathematical Sciences, Durham University, Durham DH1 3LE, UK
| | - Calum Anderson
- Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Jon Riddell
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Adam Balic
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK
| | - Jinxi Li
- State Key Laboratory of Genetic Engineering, Human Phenome Institute, Fudan University, Shanghai 200433, PRC
| | - Václav Klika
- Department of Mathematics, FNSPE, Czech Technical University in Prague, Prague 16000, Czechia
| | | | - Eamonn A Gaffney
- Mathematical Institute, University of Oxford, Oxford OX2 6GG, UK
| | - Andrea Corsinotti
- Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Luke J Johnston
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sara J Brown
- Centre for Genomic & Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Sijia Wang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai 200031, PRC
| | - Yuhang Chen
- Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Michael L Crichton
- Institute of Mechanical, Process and Energy Engineering, Heriot-Watt University, Edinburgh EH14 4AS, UK
| | - Denis J Headon
- The Roslin Institute and R(D)SVS, University of Edinburgh, Edinburgh EH25 9RG, UK.
| |
Collapse
|
28
|
Yuan X, Duan X, Enhejirigala, Li Z, Yao B, Song W, Wang Y, Kong Y, Zhu S, Zhang F, Liang L, Zhang M, Zhang C, Kong D, Zhu M, Huang S, Fu X. Reciprocal interaction between vascular niche and sweat gland promotes sweat gland regeneration. Bioact Mater 2023; 21:340-357. [PMID: 36185745 PMCID: PMC9483744 DOI: 10.1016/j.bioactmat.2022.08.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 11/26/2022] Open
|
29
|
Aldea D, Kokalari B, Atsuta Y, Dingwall HL, Zheng Y, Nace A, Cotsarelis G, Kamberov YG. Differential modularity of the mammalian Engrailed 1 enhancer network directs sweat gland development. PLoS Genet 2023; 19:e1010614. [PMID: 36745673 PMCID: PMC9934363 DOI: 10.1371/journal.pgen.1010614] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/16/2023] [Accepted: 01/13/2023] [Indexed: 02/07/2023] Open
Abstract
Enhancers are context-specific regulators of expression that drive biological complexity and variation through the redeployment of conserved genes. An example of this is the enhancer-mediated control of Engrailed 1 (EN1), a pleiotropic gene whose expression is required for the formation of mammalian eccrine sweat glands. We previously identified the En1 candidate enhancer (ECE) 18 cis-regulatory element that has been highly and repeatedly derived on the human lineage to potentiate ectodermal EN1 and induce our species' uniquely high eccrine gland density. Intriguingly, ECE18 quantitative activity is negligible outside of primates and ECE18 is not required for En1 regulation and eccrine gland formation in mice, raising the possibility that distinct enhancers have evolved to modulate the same trait. Here we report the identification of the ECE20 enhancer and show it has conserved functionality in mouse and human developing skin ectoderm. Unlike ECE18, knock-out of ECE20 in mice reduces ectodermal En1 and eccrine gland number. Notably, we find ECE20, but not ECE18, is also required for En1 expression in the embryonic mouse brain, demonstrating that ECE20 is a pleiotropic En1 enhancer. Finally, that ECE18 deletion does not potentiate the eccrine phenotype of ECE20 knock-out mice supports the secondary incorporation of ECE18 into the regulation of this trait in primates. Our findings reveal that the mammalian En1 regulatory machinery diversified to incorporate both shared and lineage-restricted enhancers to regulate the same phenotype, and also have implications for understanding the forces that shape the robustness and evolvability of developmental traits.
Collapse
Affiliation(s)
- Daniel Aldea
- Department of Genetics, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Blerina Kokalari
- Department of Genetics, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yuji Atsuta
- Genetics Department, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Heather L. Dingwall
- Department of Genetics, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Ying Zheng
- Department of Dermatology, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Arben Nace
- Department of Dermatology, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - George Cotsarelis
- Department of Dermatology, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Yana G. Kamberov
- Department of Genetics, Perelman School of Medicine, Philadelphia, Pennsylvania, United States of America
| |
Collapse
|
30
|
Castilla-Ibeas A, Zdral S, Galán L, Haro E, Allou L, Campa VM, Icardo JM, Mundlos S, Oberg KC, Ros MA. Failure of digit tip regeneration in the absence of Lmx1b suggests Lmx1b functions disparate from dorsoventral polarity. Cell Rep 2023; 42:111975. [PMID: 36641754 DOI: 10.1016/j.celrep.2022.111975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 11/07/2022] [Accepted: 12/22/2022] [Indexed: 01/15/2023] Open
Abstract
Mammalian digit tip regeneration is linked to the presence of nail tissue, but a nail-explicit model is missing. Here, we report that nail-less double-ventral digits of ΔLARM1/2 mutants that lack limb-specific Lmx1b enhancers fail to regenerate. To separate the nail's effect from the lack of dorsoventral (DV) polarity, we also interrogate double-dorsal double-nail digits and show that they regenerate. Thus, DV polarity is not a prerequisite for regeneration, and the nail requirement is supported. Transcriptomic comparison between wild-type and non-regenerative ΔLARM1/2 mutant blastemas reveals differential upregulation of vascularization and connective tissue functional signatures in wild type versus upregulation of inflammation in the mutant. These results, together with the finding of Lmx1b expression in the postnatal dorsal dermis underneath the nail and uniformly in the regenerative blastema, open the possibility of additional Lmx1b roles in digit tip regeneration, in addition to the indirect effect of mediating the formation of the nail.
Collapse
Affiliation(s)
- Alejandro Castilla-Ibeas
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Sofía Zdral
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Laura Galán
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Endika Haro
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Lila Allou
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Víctor M Campa
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain
| | - Jose M Icardo
- Departamento de Anatomía y Biología Celular, Universidad de Cantabria, Santander, Spain
| | - Stefan Mundlos
- RG Development & Disease, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA, USA
| | - Marian A Ros
- Instituto de Biomedicina y Biotecnología de Cantabria (IBBTEC; CSIC-SODERCAN-UC), Santander, Spain.
| |
Collapse
|
31
|
Cao M, Zhang L, Cheng J, Wang C, Zhao J, Liu X, Yan Y, Tang Y, Chen Z, Li H. Differential antigen expression between human apocrine sweat glands and eccrine sweat glands. Eur J Histochem 2022; 67:3559. [PMID: 36546419 PMCID: PMC9827426 DOI: 10.4081/ejh.2023.3559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
Bromhidrosis has a great negative impact on personal occupation and social psychology. It is not yet clear whether bromhidrosis is caused by apocrine sweat glands or the co-action of apocrine sweat glands and eccrine sweat glands. To distinguish between apocrine sweat glands and eccrine sweat glands, specific antigen markers for apocrine sweat glands and eccrine sweat glands must be found first. In the study, we detected the expression of K7, K18, K19, Na+-K+-2Cl- cotransporter 1 (NKCC1), carbonic anhydrase II (CAII), Forkhead transcription factor a1 (Foxa1), homeobox transcription factor engrailed homeobox1 (En1), gross cystic disease fluid protein-15 (GCDFP-15), mucin-1 (MUC-1), cluster of differentiation 15 (CD15) and apolipoprotein (APOD) in eccrine sweat glands and apocrine sweat glands by immunofluorescence staining. The results showed that K7, K18, K19, Foxa1, GCDFP-15 and MUC-1 were expressed in both apocrine and eccrine sweat glands, CD15 and APOD were only expressed in apocrine sweat glands, and CAII, NKCC1 and En1 were only expressed in eccrine sweat glands. We conclude that CD15 and APOD can serve as specific markers for apocrine sweat glands, while CAII, NKCC1 and En1 can serve as specific markers for eccrine sweat glands to differentiate the two sweat glands.
Collapse
Affiliation(s)
- Manxiu Cao
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei,*These authors contributed equally to this work
| | - Lei Zhang
- Department of Mental Health, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, Guangdong,*These authors contributed equally to this work
| | - Jiaqi Cheng
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei,*These authors contributed equally to this work
| | - Cangyu Wang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Junhong Zhao
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Xiang Liu
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Yongjing Yan
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Yue Tang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Zixiu Chen
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei,Department of Wound Repair; Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, Guangdong, China,Correspondence: Prof. Haihong Li, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan 442000, Hubei, China.
| |
Collapse
|
32
|
Zhang M, Zhang C, Li Z, Fu X, Huang S. Advances in 3D skin bioprinting for wound healing and disease modeling. Regen Biomater 2022; 10:rbac105. [PMID: 36683757 PMCID: PMC9845530 DOI: 10.1093/rb/rbac105] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/23/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022] Open
Abstract
Even with many advances in design strategies over the past three decades, an enormous gap remains between existing tissue engineering skin and natural skin. Currently available in vitro skin models still cannot replicate the three-dimensionality and heterogeneity of the dermal microenvironment sufficiently to recapitulate many of the known characteristics of skin disorder or disease in vivo. Three-dimensional (3D) bioprinting enables precise control over multiple compositions, spatial distributions and architectural complexity, therefore offering hope for filling the gap of structure and function between natural and artificial skin. Our understanding of wound healing process and skin disease would thus be boosted by the development of in vitro models that could more completely capture the heterogeneous features of skin biology. Here, we provide an overview of recent advances in 3D skin bioprinting, as well as design concepts of cells and bioinks suitable for the bioprinting process. We focus on the applications of this technology for engineering physiological or pathological skin model, focusing more specifically on the function of skin appendages and vasculature. We conclude with current challenges and the technical perspective for further development of 3D skin bioprinting.
Collapse
Affiliation(s)
| | | | | | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, China,School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin 300071, China
| | - Sha Huang
- Correspondence address. Tel: +86-10-66867384, E-mail:
| |
Collapse
|
33
|
Abstract
Skin is largely composed of an epidermis that overlies a supporting dermis. Recent advancements in our understanding of how diverse groups of dermal fibroblasts regulate epidermal and hair follicle growth and differentiation have been fueled by tools capable of resolving molecular heterogeneity at a single-cell level. Fibroblast heterogeneity can be traced back to their developmental origin before their segregation into spatially distinct fibroblast subtypes. The mechanisms that drive this lineage diversification during development are being unraveled, with studies showing that both large- and small-scale positional signals play important roles during dermal development. Here, we first delineate what is known about the origins of the dermis and the central role of Wnt/β-catenin signaling in its specification across anatomical locations. We then discuss how one of the first morphologically recognizable fibroblast subtypes, the hair follicle dermal condensate lineage, emerges. Leveraging the natural variation of skin and its appendages between species and between different anatomical locations, these collective studies have identified shared and divergent factors that contribute to the extraordinary diversity of skin.
Collapse
Affiliation(s)
- Peggy Myung
- Department of Dermatology, Yale University, New Haven, CT 06510, USA
| | - Thomas Andl
- Burnett School of Biomedical Sciences, Orlando, FL 32827, USA
| | - Radhika Atit
- Department of Biology, Department of Genetics and Genome Sciences, Department of Dermatology, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
34
|
Wang Y, Yuan X, Yao B, Zhu S, Zhu P, Huang S. Tailoring bioinks of extrusion-based bioprinting for cutaneous wound healing. Bioact Mater 2022; 17:178-194. [PMID: 35386443 PMCID: PMC8965032 DOI: 10.1016/j.bioactmat.2022.01.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 01/15/2022] [Accepted: 01/16/2022] [Indexed: 12/11/2022] Open
Abstract
Extrusion-based bioprinting (EBB) holds potential for regenerative medicine. However, the widely-used bioinks of EBB exhibit some limitations for skin regeneration, such as unsatisfactory bio-physical (i.e., mechanical, structural, biodegradable) properties and compromised cellular compatibilities, and the EBB-based bioinks with therapeutic effects targeting cutaneous wounds still remain largely undiscussed. In this review, the printability considerations for skin bioprinting were discussed. Then, current strategies for improving the physical properties of bioinks and for reinforcing bioinks in EBB approaches were introduced, respectively. Notably, we highlighted the applications and effects of current EBB-based bioinks on wound healing, wound scar formation, vascularization and the regeneration of skin appendages (i.e., sweat glands and hair follicles) and discussed the challenges and future perspectives. This review aims to provide an overall view of the applications, challenges and promising solutions about the EBB-based bioinks for cutaneous wound healing and skin regeneration.
Collapse
Affiliation(s)
- Yuzhen Wang
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, 589 Yunzhong Road, Pingcheng District, Datong, Shanxi, 037006, PR China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- School of Medicine, Nankai University, 94 Wei Jing Road, Tianjin, 300071, PR China
| | - Bin Yao
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 51 Fu Cheng Road, Beijing, 100048, PR China
- Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, PR China
| | - Shuoji Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
| | - Ping Zhu
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, 106 Zhongshan Er Road, Guangzhou, Guangdong, 510080, PR China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration Affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, Beijing, 100853, PR China
| |
Collapse
|
35
|
Luo H, Wang Z, Qi F, Wang D. Applications of human amniotic fluid stem cells in wound healing. Chin Med J (Engl) 2022; 135:2272-2281. [PMID: 36535008 PMCID: PMC9771343 DOI: 10.1097/cm9.0000000000002076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Indexed: 12/23/2022] Open
Abstract
ABSTRACT Complete wound regeneration preserves skin structure and physiological functions, including sensation and perception of stimuli, whereas incomplete wound regeneration results in fibrosis and scarring. Amniotic fluid stem cells (AFSCs) would be a kind of cell population with self-renewing and non-immunogenic ability that have a considerable role in wound generation. They are easy to harvest, culture, and store; moreover, they are non-tumorigenic and not subject to ethical restrictions. They can differentiate into different kinds of cells that replenish the skin, subcutaneous tissues, and accessory organs. Additionally, AFSCs independently produce paracrine effectors and secrete them in exosomes, thereby modulating local immune cell activity. They demonstrate anti-inflammatory and immunomodulatory properties, regulate the physicochemical microenvironment of the wound, and promote full wound regeneration. Thus, AFSCs are potential resources in stem cell therapy, especially in scar-free wound healing. This review describes the biological characteristics and clinical applications of AFSCs in treating wounds and provide new ideas for the treatment of wound healing.
Collapse
Affiliation(s)
- Han Luo
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
- Department of Plastic Surgery and Burns, Fuling Central Hospital, Chongqing 408000, China
| | - Zhen Wang
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
| | - Fang Qi
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
| | - Dali Wang
- Department of Plastic Surgery and Burns, The Affiliated Hospital of Zunyl Medical University, Zunyl, Guizhou 563003, China
| |
Collapse
|
36
|
Wang Y, Yao B, Duan X, Li J, Song W, Enhejirigala, Li Z, Yuan X, Kong Y, Zhang Y, Fu X, Huang S. Notch1 down-regulation in lineage-restricted niches is involved in the development of mouse eccrine sweat glands. J Mol Histol 2022; 53:857-867. [PMID: 36006534 DOI: 10.1007/s10735-022-10098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022]
Abstract
Eccrine sweat gland (SG) restrictedly exists in mouse foot pads indicating that mouse plantar dermis (PD) contains the SG lineage-restricted niches. However, it is still unclear how these niches can affect stem cell fate towards SG. In this study, we tried to find the key cues by which stem cells sense and interact with the SG lineage-specific niches both in vivo and in vitro. Firstly, we used transcriptomics RNA sequencing analysis to screen differentially expressed genes between SG cells and epidermal stem cells (ES), and used proteomic analysis to screen differentially expressed proteins between PD and dorsal dermis (DD). Notch1 was found differentially expressed in both gene and protein levels, and was closely related to SG morphogenesis based on Gene Ontology (GO) enrichment analysis. Secondly, the spatial-temporal changes of Notch1 during embryonic and post-natal development of SG were detected. Thirdly, mouse mesenchymal stem cells (MSCs) were introduced into SG-like cells in vitro in order to further verify the possible roles of Notch1. Results revealed that Notch1 was continuously down-regulated along with the process of SG morphogenesis in vivo, and also along with the process that MSCs differentiated into SG-like cells in vitro. Hence, we suggest that Notch1 possibly acts as with roles of "gatekeeper" during SG development and regulates the interactions between stem cells and the SG lineage-specific niches. This study might help for understanding mechanisms of embryonic SG organogenesis.
Collapse
Affiliation(s)
- Yuzhen Wang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, 589 Yunzhong Road, Pingcheng District, 037006, Datong, Shanxi, P. R. China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Academy of Medical Engineering and Translational Medicine, Tianjin University, 300072, Tianjin, P. R. China
| | - Xianlan Duan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,School of Medicine, Nankai University, 94 Wei Jing Road, 300071, Tianjin, P.R. China
| | - Jianjun Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Department of General Surgery, the First Medical Centre, Chinese PLA General Hospital, 28 Fu Xing Road, 100853, Beijing, P.R. China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China
| | - Enhejirigala
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Institute of Basic Medical Research, Inner Mongolia Medical University, Hohhot, Inner Mongolia, P.R. China.,College of Graduate, Tianjin Medical University, 22 Qi Xiang Tai Road, 300050, Tianjin, P.R. China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,School of Medicine, Nankai University, 94 Wei Jing Road, 300071, Tianjin, P.R. China
| | - Yi Kong
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.,Department of Clinical Laboratory, the First Medical Center, Chinese PLA General Hospital, 28 Fu Xing Road, 100853, Beijing, P.R. China
| | - Yijie Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China. .,PLA Key Laboratory of Tissue Repair and Regenerative Medicine, Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, 28 Fu Xing Road, 100048, Beijing, P.R. China.
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, Chinese PLA General Hospital, 28 Fu Xing Road, 100048, Beijing, P. R. China.
| |
Collapse
|
37
|
Chen Z, Zhao J, Yan Y, Zhang L, Du L, Liu X, Cao M, Wang C, Tang Y, Li H. Differential distribution and genetic determination of eccrine sweat glands and hair follicles in the volar skin of C57BL/6 mice and SD rats. BMC Vet Res 2022; 18:316. [PMID: 35974330 PMCID: PMC9380334 DOI: 10.1186/s12917-022-03416-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 08/09/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Eccrine sweat glands (ESGs) and hair follicles (HFs) are the prominent skin appendages regulating human body temperature. C57BL/6 mice and Sprague-Dawley (SD) rats are the most commonly used model animals for studying ESGs and HFs. Previous studies have shown the distribution of ESGs and HFs in volar hindfeet of C57BL/6 mice, but there are few or no reports on the distribution of ESGs and HFs in volar forefeet of C57BL/6 mice and volar feet of SD rats. Here, we investigated the differential distribution and genetic determination of ESGs and HFs in the volar skin of C57BL/6 mice and SD rats through gross observation, iodine-starch sweat test, double staining with Nile Blue A and Oil Red O, hematoxylin and eosin (HE) staining, double immunofluorescence staining of LIM Homeobox 2 (LHX2)/Na+-K+-ATPase α1(NKA) or LHX2/Na+-K+-2Cl- cotransporter 1 (NKCC1), and qRT-PCR detection of ESG-related gene Engrailed 1 (En1) and HF-related gene LHX2. RESULTS The results showed ESGs but no HFs in the footpads of C57BL/6 mice and SD rats, both ESGs and HFs in the inter-footpads (IFPs) of C57BL/6 mice, and neither ESGs nor HFs in the IFPs of SD rats. The relative quantitative change in En1 was consistent with the differential distribution of ESGs, and the relative quantitative change of LHX2 was consistent with the differential distribution of HFs. CONCLUSION C57BL/6 mice and SD rats had their own characteristics in the distribution of ESGs and HFs in the volar skin, and researchers should choose mice or rats, and even forefeet or hindfeet as their research object according to different purposes. The study provides a basis for selection of optimal animal models to study development, wound healing and regeneration of skin appendages.
Collapse
Affiliation(s)
- Zixiu Chen
- Jinzhou Medical University Graduate Training Base, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Junhong Zhao
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.,Hubei Clinical Medical Research Center of Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yongjing Yan
- Jinzhou Medical University Graduate Training Base, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Lei Zhang
- Mental Health Center, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China.,Hubei Clinical Medical Research Center of Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Xiang Liu
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Manxiu Cao
- Jinzhou Medical University Graduate Training Base, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Cangyu Wang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yue Tang
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Haihong Li
- Jinzhou Medical University Graduate Training Base, Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China. .,Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China. .,Hubei Clinical Medical Research Center of Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China. .,Department of Wound Repair; Institute of Wound Repair and Regeneration Medicine, Southern University of Science and Technology Hospital, Southern University of Science and Technology School of Medicine, Shenzhen, China.
| |
Collapse
|
38
|
Lin X, Zhu L, He J. Morphogenesis, Growth Cycle and Molecular Regulation of Hair Follicles. Front Cell Dev Biol 2022; 10:899095. [PMID: 35646909 PMCID: PMC9133560 DOI: 10.3389/fcell.2022.899095] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 04/18/2022] [Indexed: 12/19/2022] Open
Abstract
As one of the main appendages of skin, hair follicles play an important role in the process of skin regeneration. Hair follicle is a tiny organ formed by the interaction between epidermis and dermis, which has complex and fine structure and periodic growth characteristics. The hair growth cycle is divided into three continuous stages, growth (anagen), apoptosis-driven regression (catagen) and relative quiescence (telogen). And The Morphogenesis and cycle of hair follicles are regulated by a variety of signal pathways. When the signal molecules in the pathways are abnormal, it will affect the development and cycle of hair follicles, which will lead to hair follicle-related diseases.This article will review the structure, development, cycle and molecular regulation of hair follicles, in order to provide new ideas for solving diseases and forming functional hair follicle.
Collapse
|
39
|
Lee J, van der Valk WH, Serdy SA, Deakin C, Kim J, Le AP, Koehler KR. Generation and characterization of hair-bearing skin organoids from human pluripotent stem cells. Nat Protoc 2022; 17:1266-1305. [PMID: 35322210 PMCID: PMC10461778 DOI: 10.1038/s41596-022-00681-y] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/04/2022] [Indexed: 12/28/2022]
Abstract
Human skin uses millions of hairs and glands distributed across the body surface to function as an external barrier, thermoregulator and stimuli sensor. The large-scale generation of human skin with these appendages would be beneficial, but is challenging. Here, we describe a detailed protocol for generating hair-bearing skin tissue entirely from a homogeneous population of human pluripotent stem cells in a three-dimensional in vitro culture system. Defined culture conditions are used over a 2-week period to induce differentiation of pluripotent stem cells to surface ectoderm and cranial neural crest cells, which give rise to the epidermis and dermis, respectively, in each organoid unit. After 60 d of incubation, the skin organoids produce hair follicles. By day ~130, the skin organoids reach full complexity and contain stratified skin layers, pigmented hair follicles, sebaceous glands, Merkel cells and sensory neurons, recapitulating the cell composition and architecture of fetal skin tissue at week 18 of gestation. Skin organoids can be maintained in culture using this protocol for up to 150 d, enabling the organoids to be used to investigate basic skin biology, model disease and, further, reconstruct or regenerate skin tissue.
Collapse
Affiliation(s)
- Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA.
- Department of Surgery, Harvard Medical School, Boston, MA, USA.
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.
| | - Wouter H van der Valk
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
- Department of Otorhinolaryngology and Head & Neck Surgery, Leiden University Medical Center, Leiden, the Netherlands
| | - Sara A Serdy
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
| | - CiCi Deakin
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Biological Engineering, Wentworth Institute of Technology, Boston, MA, USA
| | - Jin Kim
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Anh Phuong Le
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, MA, USA.
- F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA, USA.
- Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, MA, USA.
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
40
|
Ji SF, Zhou LX, Sun ZF, Xiang JB, Cui SY, Li Y, Chen HT, Liu YQ, Gao HH, Fu XB, Sun XY. Small molecules facilitate single factor-mediated sweat gland cell reprogramming. Mil Med Res 2022; 9:13. [PMID: 35351192 PMCID: PMC8962256 DOI: 10.1186/s40779-022-00372-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/24/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Large skin defects severely disrupt the overall skin structure and can irreversibly damage sweat glands (SG), thus impairing the skin's physiological function. This study aims to develop a stepwise reprogramming strategy to convert fibroblasts into SG lineages, which may provide a promising method to obtain desirable cell types for the functional repair and regeneration of damaged skin. METHODS The expression of the SG markers cytokeratin 5 (CK5), cytokeratin 10 (CK10), cytokeratin 18 (CK18), carcino-embryonic antigen (CEA), aquaporin 5 (AQP5) and α-smooth muscle actin (α-SMA) was assessed with quantitative PCR (qPCR), immunofluorescence and flow cytometry. Calcium activity analysis was conducted to test the function of induced SG-like cells (iSGCs). Mouse xenograft models were also used to evaluate the in vivo regeneration of iSGCs. BALB/c nude mice were randomly divided into a normal group, SGM treatment group and iSGC transplantation group. Immunocytochemical analyses and starch-iodine sweat tests were used to confirm the in vivo regeneration of iSGCs. RESULTS EDA overexpression drove HDF conversion into iSGCs in SG culture medium (SGM). qPCR indicated significantly increased mRNA levels of the SG markers CK5, CK18 and CEA in iSGCs, and flow cytometry data demonstrated (4.18 ± 0.04)% of iSGCs were CK5 positive and (4.36 ± 0.25)% of iSGCs were CK18 positive. The addition of chemical cocktails greatly accelerated the SG fate program. qPCR results revealed significantly increased mRNA expression of CK5, CK18 and CEA in iSGCs, as well as activation of the duct marker CK10 and luminal functional marker AQP5. Flow cytometry indicated, after the treatment of chemical cocktails, (23.05 ± 2.49)% of iSGCs expressed CK5+ and (55.79 ± 3.18)% of iSGCs expressed CK18+, respectively. Calcium activity analysis indicated that the reactivity of iSGCs to acetylcholine was close to that of primary SG cells [(60.79 ± 7.71)% vs. (70.59 ± 0.34)%, ns]. In vivo transplantation experiments showed approximately (5.2 ± 1.1)% of the mice were sweat test positive, and the histological analysis results indicated that regenerated SG structures were present in iSGCs-treated mice. CONCLUSION We developed a SG reprogramming strategy to generate functional iSGCs from HDFs by using the single factor EDA in combination with SGM and small molecules. The generation of iSGCs has important implications for future in situ skin regeneration with SG restoration.
Collapse
Affiliation(s)
- Shuai-Fei Ji
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Lai-Xian Zhou
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Zhi-Feng Sun
- Department of Respiratory, The Second Medical Center, Chinese PLA General Hospital, Beijing, 100036, China
| | - Jiang-Bing Xiang
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.,Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Shao-Yuan Cui
- Department of Nephrology, The First Medical Center, Chinese PLA General Hospital, State Key Laboratory of Kidney Diseases, Beijing, 100048, China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Hua-Ting Chen
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Yi-Qiong Liu
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Huan-Huan Gao
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China
| | - Xiao-Bing Fu
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| | - Xiao-Yan Sun
- Research Center for Tissue Repair and Regeneration Affiliated To Medical Innovation Research Department and 4th Medical Center, PLA General Hospital and PLA Medical College; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, 28 Fu Xing Road, Beijing, 100853, China. .,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
41
|
Moskwa N, Mahmood A, Nelson DA, Altrieth AL, Forni PE, Larsen M. Single-cell RNA sequencing reveals PDGFRα+ stromal cell subpopulations that promote proacinar cell differentiation in embryonic salivary gland organoids. Development 2022; 149:dev200167. [PMID: 35224622 PMCID: PMC8977102 DOI: 10.1242/dev.200167] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 02/18/2022] [Indexed: 12/12/2022]
Abstract
Stromal cells can direct the differentiation of epithelial progenitor cells during organ development. Fibroblast growth factor (FGF) signaling is essential for submandibular salivary gland development. Through stromal fibroblast cells, FGF2 can indirectly regulate proacinar cell differentiation in organoids, but the mechanisms are not understood. We performed single-cell RNA-sequencing and identified multiple stromal cell subsets, including Pdgfra+ stromal subsets expressing both Fgf2 and Fgf10. When combined with epithelial progenitor cells in organoids, magnetic-activated cell-sorted PDGFRα+ cells promoted proacinar cell differentiation similarly to total stroma. Gene expression analysis revealed that FGF2 increased the expression of multiple stromal genes, including Bmp2 and Bmp7. Both BMP2 and BMP7 synergized with FGF2, stimulating proacinar cell differentiation but not branching. However, stromal cells grown without FGF2 did not support proacinar organoid differentiation and instead differentiated into myofibroblasts. In organoids, TGFβ1 treatment stimulated myofibroblast differentiation and inhibited the proacinar cell differentiation of epithelial progenitor cells. Conversely, FGF2 reversed the effects of TGFβ1. We also demonstrated that adult salivary stromal cells were FGF2 responsive and could promote proacinar cell differentiation. These FGF2 signaling pathways may have applications in future regenerative therapies.
Collapse
Affiliation(s)
- Nicholas Moskwa
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Ayma Mahmood
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Deirdre A. Nelson
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Amber L. Altrieth
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Paolo E. Forni
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| | - Melinda Larsen
- Department of Biological Sciences, University at Albany, State University of New York, Albany, NY 12222, USA
- Graduate Program in Molecular, Cellular, Developmental and Neural Biology, University at Albany, State University of New York, Albany, NY 12222, USA
- The RNA Institute, University at Albany, State University of New York, Albany, NY 12222, USA
| |
Collapse
|
42
|
Aldea D, Kamberov YG. En1 sweat we trust: How the evolution of an Engrailed 1 enhancer made humans the sweatiest ape. Temperature (Austin) 2022; 9:303-305. [PMID: 36339095 PMCID: PMC9629119 DOI: 10.1080/23328940.2021.2019548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 01/21/2023] Open
Affiliation(s)
- Daniel Aldea
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA USA
| | - Yana G. Kamberov
- Department of Genetics, Perelman School of Medicine, Philadelphia, PA USA
| |
Collapse
|
43
|
Song W, Yao B, Zhu D, Zhang Y, Li Z, Huang S, Fu X. 3D-bioprinted microenvironments for sweat gland regeneration. BURNS & TRAUMA 2022; 10:tkab044. [PMID: 35071651 PMCID: PMC8778592 DOI: 10.1093/burnst/tkab044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 09/23/2021] [Accepted: 11/15/2021] [Indexed: 12/22/2022]
Abstract
The development of 3D bioprinting in recent years has provided new insights into the creation of in vitro microenvironments for promoting stem cell-based regeneration. Sweat glands (SGs) are mainly responsible for thermoregulation and are a highly differentiated organ with limited regenerative ability. Recent studies have focused on stem cell-based therapies as strategies for repairing SGs after deep dermal injury. In this review, we highlight the recent trend in 3D bioprinted native-like microenvironments and emphasize recent advances in functional SG regeneration using this technology. Furthermore, we discuss five possible regulatory mechanisms in terms of biochemical factors and structural and mechanical cues from 3D bioprinted microenvironments, as well as the most promising regulation from neighbor cells and the vascular microenvironment.
Collapse
Affiliation(s)
- Wei Song
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
- Department of Cardiac Surgery, and Department of Medical Sciences, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510100, China
| | - Dongzhen Zhu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China
| | - Yijie Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department, PLA General Hospital and PLA Medical College, 28 Fu Xing Road, Beijing 100853, P. R. China
- PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, 51 Fu Cheng Road, Beijing 100048, P. R. China
| |
Collapse
|
44
|
Sun X, Xiang J, Chen R, Geng Z, Wang L, Liu Y, Ji S, Chen H, Li Y, Zhang C, Liu P, Yue T, Dong L, Fu X. Sweat Gland Organoids Originating from Reprogrammed Epidermal Keratinocytes Functionally Recapitulated Damaged Skin. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2103079. [PMID: 34569165 PMCID: PMC8596119 DOI: 10.1002/advs.202103079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Indexed: 05/03/2023]
Abstract
Restoration of sweat glands (SwGs) represents a great issue in patients with extensive skin defects. Recent methods combining organoid technology with cell fate reprogramming hold promise for developing new regenerative methods for SwG regeneration. Here, a practical strategy for engineering functional human SwGs in vitro and in vivo is provided. First, by forced expression of the ectodysplasin-A in human epidermal keratinocytes (HEKs) combined with specific SwG culture medium, HEKs are efficiently converted into SwG cells (iSwGCs). The iSwGCs show typical morphology, gene expression pattern, and functions resembling human primary SwG cells. Second, by culturing the iSwGCs in a special 3D culturing system, SwG organoids (iSwGOs) that exhibit structural and biological features characteristic of native SwGs are obtained. Finally, these iSwGOs are successfully transplanted into a mouse skin damage model and they develop into fully functioning SwGs in vivo. Regeneration of functional SwG organoids from reprogrammed HEKs highlights the great translational potential for personalized SwG regeneration in patients with large skin defects.
Collapse
Affiliation(s)
- Xiaoyan Sun
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical CenterPLA General Hospital and PLA Medical CollegePLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin InjuryRepair and RegenerationResearch Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
| | - Jiangbing Xiang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical CenterPLA General Hospital and PLA Medical CollegePLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin InjuryRepair and RegenerationResearch Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
- Bioengineering College of Chongqing UniversityChongqing400044P. R. China
| | - Runkai Chen
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical CenterPLA General Hospital and PLA Medical CollegePLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin InjuryRepair and RegenerationResearch Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
- Department of General SurgeryChinese PLA General Hospital28 Fu Xing RoadBeijing100853P. R. China
| | - Zhijun Geng
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical CenterPLA General Hospital and PLA Medical CollegePLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin InjuryRepair and RegenerationResearch Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
| | - Lintao Wang
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Yiqiong Liu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical CenterPLA General Hospital and PLA Medical CollegePLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin InjuryRepair and RegenerationResearch Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
| | - Shuaifei Ji
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical CenterPLA General Hospital and PLA Medical CollegePLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin InjuryRepair and RegenerationResearch Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
| | - Huating Chen
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical CenterPLA General Hospital and PLA Medical CollegePLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin InjuryRepair and RegenerationResearch Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
| | - Yan Li
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical CenterPLA General Hospital and PLA Medical CollegePLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin InjuryRepair and RegenerationResearch Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical CenterPLA General Hospital and PLA Medical CollegePLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin InjuryRepair and RegenerationResearch Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
| | - Peng Liu
- Department of Biomedical EngineeringSchool of MedicineTsinghua UniversityHaidian DistrictBeijing100084China
| | - Tao Yue
- School of Mechatronic Engineering and AutomationShanghai UniversityShanghai200444China
- Shanghai Institute of Intelligent Science and TechnologyTongji UniversityShanghai200092China
| | - Lei Dong
- State Key Laboratory of Pharmaceutical BiotechnologySchool of Life SciencesNanjing UniversityNanjingJiangsu210023China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and 4th Medical CenterPLA General Hospital and PLA Medical CollegePLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin InjuryRepair and RegenerationResearch Unit of Trauma CareTissue Repair and RegenerationChinese Academy of Medical Sciences2019RU051Beijing100048P. R. China
| |
Collapse
|
45
|
Lehnert BP, Santiago C, Huey EL, Emanuel AJ, Renauld S, Africawala N, Alkislar I, Zheng Y, Bai L, Koutsioumpa C, Hong JT, Magee AR, Harvey CD, Ginty DD. Mechanoreceptor synapses in the brainstem shape the central representation of touch. Cell 2021; 184:5608-5621.e18. [PMID: 34637701 PMCID: PMC8556359 DOI: 10.1016/j.cell.2021.09.023] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 08/10/2021] [Accepted: 09/15/2021] [Indexed: 10/20/2022]
Abstract
Mammals use glabrous (hairless) skin of their hands and feet to navigate and manipulate their environment. Cortical maps of the body surface across species contain disproportionately large numbers of neurons dedicated to glabrous skin sensation, in part reflecting a higher density of mechanoreceptors that innervate these skin regions. Here, we find that disproportionate representation of glabrous skin emerges over postnatal development at the first synapse between peripheral mechanoreceptors and their central targets in the brainstem. Mechanoreceptor synapses undergo developmental refinement that depends on proximity of their terminals to glabrous skin, such that those innervating glabrous skin make synaptic connections that expand their central representation. In mice incapable of sensing gentle touch, mechanoreceptors innervating glabrous skin still make more powerful synapses in the brainstem. We propose that the skin region a mechanoreceptor innervates controls the developmental refinement of its central synapses to shape the representation of touch in the brain.
Collapse
Affiliation(s)
- Brendan P Lehnert
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Celine Santiago
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Erica L Huey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alan J Emanuel
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Sophia Renauld
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Nusrat Africawala
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ilayda Alkislar
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Yang Zheng
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Ling Bai
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Charalampia Koutsioumpa
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Jennifer T Hong
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Alexandra R Magee
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - Christopher D Harvey
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA
| | - David D Ginty
- Department of Neurobiology, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA; Howard Hughes Medical Institute, Harvard Medical School, 220 Longwood Avenue, Boston, MA 02115, USA.
| |
Collapse
|
46
|
Cao M, Zhao J, Du L, Chen Z, Zhang L, Liu X, Cheng J, Yan Y, Zhang C, Li H. The combination of hair follicle-specific marker LHX2 and co-expressed marker can distinguish between sweat gland placodes and hair placodes in rat. J Mol Histol 2021; 52:1225-1232. [PMID: 34581932 DOI: 10.1007/s10735-021-10023-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 09/23/2021] [Indexed: 11/25/2022]
Abstract
Eccrine sweat gland (ESG) and hair follicle (HF) are different skin appendages but share many common development characteristics. Although the morphology of adult ESG and HF is obviously different, it is difficult to distinguish ESG placodes from HFs placodes morphologically. To study the fate determination of ESG and HF, specific antigen markers for ESG placodes and HF placodes must be found first to distinguish them. In the study, we detected the expression of commonly used keratins 4, 5, 7-10, 12, 14, 15, 17-20, 27 and 73, and the reported ESG and HF specific markers, P-cadherin, Lymphoid enhancer factor 1 (LEF1), LIM Homeobox gene 2 (LHX2), Na+/K+-ATPase (NKA) and Na+-K+-2Cl- cotransporter 1 (NKCC1) in ESG and HF placodes by single-immunofluorescence staining and double-immunofluorescence staining. To further verify the results of immunofluorescence staining, Western blot (WB) was used to detect the differential antigen and some co-expressed antigens of ESG and HF placodes. The results showed that both ESG and HF placodes expressed K4/5/14/1517/18, P-cadherin and LEF1, neither expressed K7/8/9/10/12/19/20/27/73, NKA or NKCC1. HF placodes specifically expressed LHX2. Combination of LHX2 and co-expressed antigen K14, can distinguish ESG placodes from HF placodes. We conclude that LHX2 is a specific marker for HF placodes, and ESG placodes and HF placodes can be distinguished by double immunofluorescence staining of the specific marker LHX2 and the co-expressed markers, such as K4, K5, K14, K15, K17, K18, P-cadherin and LEF1.
Collapse
Affiliation(s)
- Manxiu Cao
- Department of Wound Repair and Dermatologic Surgery, Jinzhou Medical University Graduate Training Base, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Junhong Zhao
- Department of Wound Repair and Dermatologic Surgery, Jinzhou Medical University Graduate Training Base, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China.,Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Lijie Du
- Department of Wound Repair and Dermatologic Surgery, Jinzhou Medical University Graduate Training Base, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China.,Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Zixiu Chen
- Department of Wound Repair and Dermatologic Surgery, Jinzhou Medical University Graduate Training Base, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Lei Zhang
- Mental Health Center, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Xiang Liu
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Jiaqi Cheng
- Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Yongjing Yan
- Department of Wound Repair and Dermatologic Surgery, Jinzhou Medical University Graduate Training Base, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China
| | - Cuiping Zhang
- Research Center for Tissue Repair and Regeneration affiliated to the Medical Innovation Research Department and Fourth Medical Center of PLA General Hospital, Beijing, 100048, China.
| | - Haihong Li
- Department of Wound Repair and Dermatologic Surgery, Jinzhou Medical University Graduate Training Base, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China. .,Department of Wound Repair and Dermatologic Surgery, Taihe Hospital, Hubei University of Medicine, 32 South Renmin Road, Shiyan, 442000, Hubei Province, China.
| |
Collapse
|
47
|
Zhang Y, Enhejirigala, Li Z, Song W, Yao B, Li J, Wang Y, Duan X, Yuan X, Huang S, Fu X. The role of CTHRC1 in hair follicle regenerative capacity restored by plantar dermis homogenate. Biochem Biophys Res Commun 2021; 571:14-19. [PMID: 34298337 DOI: 10.1016/j.bbrc.2021.07.056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/15/2021] [Indexed: 11/29/2022]
Abstract
Restoration of hair follicle (HF) regenerative capacity is the cornerstone in tissue engineering for the loss of regenerative capacity during in vitro expansion of skin-derived precursors (SKPs). Microenvironmental cues facilitated tissue or organ regeneration offers a potential strategy to overcome this difficulty. In our previous work, plantar dermis matrix homogenate (PD) has been proved to induce sweat glands regeneration both in vivo and in vitro. Here, we found PD also restore regenerative capacity of culture impaired HF spheroids (IHFS). Further, followed by our previous iTRAQ results, the CTHRC1 was identified as a potential regulator in PD facilitated restorative effects in HF regeneration. Knockout of Cthrc1 impaired HF regenerative capacity in spheroids, decreased the diameter of HF in 28 postnatal days mice and shortened invagination of HF bud in 18 days of gestation mice. In IHFS and Cthrc1-/- spheroids, PD partially restored HF regenerative capacity while Cthrc1-/- PD (PDKO) has less or no effect. Taken together, PD is an effective microenvironmental cues for HF regenerative capacity restoration and CTHRC1 played an important role in HF regeneration.
Collapse
Affiliation(s)
- Yijie Zhang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, Beijing, 100853, China
| | - Enhejirigala
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, Beijing, 100853, China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, Beijing, 100853, China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, Beijing, 100853, China
| | - Jianjun Li
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, Beijing, 100853, China
| | - Yuzhen Wang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xianlan Duan
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, Beijing, 100853, China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, Beijing, 100853, China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China.
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital, Beijing, 100048, China; PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital, Beijing, 100853, China; Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing, 100048, China.
| |
Collapse
|
48
|
Zhang Y, Enhejirigala, Yao B, Li Z, Song W, Li J, Zhu D, Wang Y, Duan X, Yuan X, Huang S, Fu X. Using bioprinting and spheroid culture to create a skin model with sweat glands and hair follicles. BURNS & TRAUMA 2021; 9:tkab013. [PMID: 34213515 PMCID: PMC8240535 DOI: 10.1093/burnst/tkab013] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 02/09/2021] [Indexed: 12/22/2022]
Abstract
Background Sweat glands (SGs) and hair follicles (HFs) are two important cutaneous appendages that play crucial roles in homeostatic maintenance and thermoregulation, and their interaction is involved in wound healing. SGs can be regenerated from mesenchymal stem cell-laden 3D bioprinted scaffolds, based on our previous studies, whereas regeneration of HFs could not be achieved in the same model. Due to the lack of an in vitro model, the underlying molecular mechanism of the interaction between SGs and HFs in regeneration could not be fully understood. The purpose of the present study was to establish an in vitro model of skin constructs with SGs and HFs and explore the interaction between these two appendages in regeneration. Methods To investigate the interaction effects between SGs and HFs during their regeneration processes, a combined model was created by seeding HF spheroids on 3D printed SG scaffolds. The interaction between SG scaffolds and HF spheroids was detected using RNA expression and immunofluorescence staining. The effects of microenvironmental cues on SG and HF regeneration were analysed by altering seed cell types and plantar dermis homogenate in the scaffold. Results According to this model, we overcame the difficulties in simultaneously inducing SG and HF regeneration and explored the interaction effects between SG scaffolds and HF spheroids. Surprisingly, HF spheroids promoted both SG and HF differentiation in SG scaffolds, while SG scaffolds promoted SG differentiation but had little effect on HF potency in HF spheroids. Specifically, microenvironmental factors (plantar dermis homogenate) in SG scaffolds effectively promoted SG and HF genesis in HF spheroids, no matter what the seed cell type in SG scaffolds was, and the promotion effects were persistent. Conclusions Our approach elucidated a new model for SG and HF formation in vitro and provided an applicable platform to investigate the interaction between SGs and HFs in vitro. This platform might facilitate 3D skin constructs with multiple appendages and unveil the spatiotemporal molecular program of multiple appendage regeneration.
Collapse
Affiliation(s)
- Yijie Zhang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China
| | - Enhejirigala
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,College of Graduate, Tianjin Medical University, Tianjin 300070, China.,Institute of Basic Medical Research, Inner Mongolia Medical University, Hohhot 010110, Inner Mongolia, China
| | - Bin Yao
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,The Shenzhen Key Laboratory of Health Sciences and Technology, Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, Guangdong, China
| | - Zhao Li
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China
| | - Wei Song
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China
| | - Jianjun Li
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,Department of General Surgery, the Sixth Medical Center, Chinese PLA General Hospital, Beijing 100048, China
| | - Dongzhen Zhu
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China
| | - Yuzhen Wang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,Department of Burn and Plastic Surgery, Air Force Hospital of Chinese PLA Central Theater Command, Datong 037000, Shanxi, China
| | - Xianlan Duan
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Xingyu Yuan
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,School of Medicine, Nankai University, Tianjin 300071, China
| | - Sha Huang
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China
| | - Xiaobing Fu
- Research Center for Tissue Repair and Regeneration, Medical Innovation Research Department and the Fourth Medical Center, Chinese PLA General Hospital and PLA Medical College, Beijing 100048, China.,PLA Key Laboratory of Tissue Repair and Regenerative Medicine and Beijing Key Research Laboratory of Skin Injury, Repair and Regeneration, Chinese PLA General Hospital and PLA Medical College, Beijing 100853, China.,Research Unit of Trauma Care, Tissue Repair and Regeneration, Chinese Academy of Medical Sciences, 2019RU051, Beijing 100048, China
| |
Collapse
|
49
|
Repeated mutation of a developmental enhancer contributed to human thermoregulatory evolution. Proc Natl Acad Sci U S A 2021; 118:2021722118. [PMID: 33850016 PMCID: PMC8072367 DOI: 10.1073/pnas.2021722118] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Humans sweat to cool their bodies and have by far the highest eccrine sweat gland density among primates. Humans' high eccrine gland density has long been recognized as a hallmark human evolutionary adaptation, but its genetic basis has been unknown. In humans, expression of the Engrailed 1 (EN1) transcription factor correlates with the onset of eccrine gland formation. In mice, regulation of ectodermal En1 expression is a major determinant of natural variation in eccrine gland density between strains, and increased En1 expression promotes the specification of more eccrine glands. Here, we show that regulation of EN1 has evolved specifically on the human lineage to promote eccrine gland formation. Using comparative genomics and validation of ectodermal enhancer activity in mice, we identified a human EN1 skin enhancer, hECE18. We showed that multiple epistatically interacting derived substitutions in the human ECE18 enhancer increased its activity compared with nonhuman ape orthologs in cultured keratinocytes. Repression of hECE18 in human cultured keratinocytes specifically attenuated EN1 expression, indicating this element positively regulates EN1 in this context. In a humanized enhancer knock-in mouse, hECE18 increased developmental En1 expression in the skin to induce the formation of more eccrine glands. Our study uncovers a genetic basis contributing to the evolution of one of the most singular human adaptations and implicates multiple interacting mutations in a single enhancer as a mechanism for human evolutionary change.
Collapse
|
50
|
Lee J, Koehler KR. Skin organoids: A new human model for developmental and translational research. Exp Dermatol 2021; 30:613-620. [PMID: 33507537 DOI: 10.1111/exd.14292] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/31/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
Culturing skin cells outside of the body has been a cornerstone of dermatological investigation for many years; however, human skin equivalent systems typically lack the full complexity of native skin. Notably, skin appendages, such as hair follicles and sweat glands, remain a challenge to generate or maintain in cell cultures and reconstruct in damaged skin. Recent work from our lab has demonstrated methods for generating appendage-bearing skin tissue-known as skin organoids-from pluripotent stem cells. Here, we will summarize this work and other related works, and then discuss the potential future applications of skin organoids in dermatological research.
Collapse
Affiliation(s)
- Jiyoon Lee
- Department of Otolaryngology, Boston Children's Hospital, Boston, Massachusetts, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| | - Karl R Koehler
- Department of Otolaryngology, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Plastic and Oral Surgery, Boston Children's Hospital, Boston, Massachusetts, USA.,F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|