1
|
Vetsika EK, Katsianou MA, Sarantis P, Palamaris K, Papavassiliou AG, Piperi C. Pediatric gliomas immunity challenges and immunotherapy advances. Cancer Lett 2025; 618:217640. [PMID: 40090572 DOI: 10.1016/j.canlet.2025.217640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025]
Abstract
Pediatric gliomas, the most frequent brain tumors in children, are characterized by heterogeneity and a unique tumor immune microenvironment. They are categorized into different subtypes, including low-grade gliomas like pilocytic astrocytomas and high-grade gliomas such as diffuse midline gliomas and diffuse intrinsic pontine gliomas, each exhibiting distinct immunological profiles. The tumor immune microenvironment in pediatric gliomas is shaped by cellular and non-cellular components, including immune cells, cytokines, and the extracellular matrix, involved in tumor progression, immune evasion, and response to therapy. While pediatric low-grade gliomas often display an immunosuppressed microenvironment, high-grade gliomas are characterized by complex immune infiltrates and intricate immunosuppressive mechanisms. The blood-brain barrier further obscures immune cell recruitment and therapeutic delivery. Despite advances in understanding adult gliomas, the immunobiology of pediatric tumors is poorly investigated, with limited data on the interactions between glioma cells and immune populations such as T and natural killer cells, as well as tumor-associated macrophages. Herein, we provide an update of the current knowledge on tumor immune microenvironment interactions in pediatric gliomas, highlighting the immunosuppressive mechanisms and emerging immunotherapeutic strategies aiming at overcoming these barriers to improve clinical outcomes for affected children.
Collapse
Affiliation(s)
- Eleni-Kyriaki Vetsika
- Centre of New Biotechnologies and Precision Medicine (CNBPM), School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Maria A Katsianou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Kostas Palamaris
- First Department of Pathology, School of Medicine, National and Kapodistrian University of Athens, 10679, Athens, Greece
| | - Athanasios G Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
2
|
Valenti G, Laise P, Wu F, Takahashi R, Ruan T, Vasciaveo A, Jiang Z, Kobayashi H, Sunagawa M, Middelhoff M, Nienhüser H, Fu N, Malagola E, Companioni O, Hayakawa Y, Iuga AC, Califano A, Wang TC. Regulatory network analysis of Dclk1 gene expression reveals a tuft cell-ILC2 axis that inhibits pancreatic tumor progression. Cell Rep 2025; 44:115734. [PMID: 40408246 DOI: 10.1016/j.celrep.2025.115734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 01/21/2025] [Accepted: 05/02/2025] [Indexed: 05/25/2025] Open
Abstract
Doublecortin-like kinase 1 (Dclk1) expression identifies cells that are rare in normal pancreas but occur with an increased frequency in pancreatic neoplasia. The identity of these cells has been a matter of debate. We employed Dclk1 reporter mouse models and single-cell RNA sequencing (scRNA-seq) to define Dclk1-expressing cells. In normal pancreas, Dclk1 identifies subsets of ductal, islet, and acinar cells. In pancreatic neoplasia, Dclk1 identifies several cell populations, among which acinar-to-ductal metaplasia (ADM)-like cells and tuft-like cells are predominant. These two populations play opposing roles, with Dclk1+ ADM-like cells sustaining and Dclk1+ tuft-like cells restraining tumor progression. The generation of Dclk1+ tuft-like cells requires the transcription factor SPIB and is sustained by a paracrine loop involving type 2 innate lymphoid cells (ILC2s) and cancer-associated fibroblasts (CAFs) that provide interleukin (IL)-13 and IL-33, respectively. Dclk1+ tuft-like cells release angiotensinogen to restrain tumor progression. Overall, our study defines pancreatic Dclk1+ cells and unveils a protective tuft cell-ILC2 axis against pancreatic neoplasia.
Collapse
Affiliation(s)
- Giovanni Valenti
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Pasquale Laise
- Department of Systems Biology, Columbia University, New York, NY, USA; DarwinHealth, Inc., New York, NY, USA
| | - Feijing Wu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Ryota Takahashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Tuo Ruan
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | | | - Zhengyu Jiang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Hiroki Kobayashi
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Masaki Sunagawa
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Moritz Middelhoff
- Klinik und Poliklinik für Innere Medizin II, Klinikum Rechts der Isar, TU Munich, Munich, Germany
| | - Henrik Nienhüser
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Na Fu
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Ermanno Malagola
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Osmel Companioni
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA
| | - Yoku Hayakawa
- Graduate School of Medicine, Department of Gastroenterology, The University of Tokyo, Tokyo, Japan
| | - Alina C Iuga
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Andrea Califano
- Department of Systems Biology, Columbia University, New York, NY, USA; DarwinHealth, Inc., New York, NY, USA; Chan Zuckerberg Biohub New York, New York, NY, USA; Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA; Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Biomedical Informatics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA; Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
| | - Timothy C Wang
- Division of Digestive and Liver Diseases, Department of Medicine, Columbia University, New York, NY, USA.
| |
Collapse
|
3
|
LaBelle JJ, Haase RD, Beck A, Haase J, Jiang L, Oliveira de Biagi CA, Neyazi S, Englinger B, Liu I, Trissal M, Jeong D, Hack OA, Nascimento A, Shaw ML, Nguyen CM, Castellani S, Mathewson ND, Ashenberg O, Veiga Cruzeiro GA, Rosenberg T, Vogelzang JR, Pyrdol J, Marx S, Luomo AM, Godicelj A, Baumgartner A, Rozowsky JS, Madlener S, Mayr L, Peyrl A, Geyeregger R, Loetsch D, Dorfer C, Haberler C, Stepien N, Slavc I, Davidson TB, Prins RM, Yeo KK, Cooney T, Ligon K, Lidov H, Alexandrescu S, Baird LC, Gojo J, Wucherpfennig KW, Filbin MG. Dissecting the immune landscape in pediatric high-grade glioma reveals cell state changes under therapeutic pressure. Cell Rep Med 2025; 6:102095. [PMID: 40315846 DOI: 10.1016/j.xcrm.2025.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/21/2024] [Accepted: 04/02/2025] [Indexed: 05/04/2025]
Abstract
Pediatric high-grade gliomas (pHGGs) are among the most lethal childhood tumors. While therapeutic approaches were largely adapted from adult treatment regime, significant biological differences between pediatric and adult gliomas exist, which influence the immune microenvironment and may contribute to the limited response to current pHGG treatment strategies. We provide a comprehensive transcriptomic analysis of the pHGG immune landscape using single-cell RNA sequencing and spatial transcriptomics. We analyze matched malignant, myeloid, and T cells from patients with pediatric diffuse high-grade glioma (HGG) or high-grade ependymoma, examining immune microenvironment distinctions after chemo-/radiotherapy, immune checkpoint inhibition treatment, and by age. Our analysis reveals differences in the proportions of pediatric myeloid subpopulations compared to adult counterparts. Additionally, we observe significant shifts toward immune-suppressive environments following cancer therapy. Our findings offer valuable insights into potential immunotherapy targets and serve as a robust resource for understanding immune microenvironmental variations across HGG age groups and treatment regimens.
Collapse
Affiliation(s)
- Jenna J LaBelle
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rebecca D Haase
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander Beck
- Center for Neuropathology, Ludwig-Maximilian-University, Munich, Germany
| | - Jacob Haase
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Li Jiang
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Carlos Alberto Oliveira de Biagi
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sina Neyazi
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bernhard Englinger
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Urology and Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Ilon Liu
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Neurology with Experimental Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin und Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, BIH Biomedical Innovation Academy, BIH Charité Digital Clinician Scientist Program, Berlin, Germany
| | - Maria Trissal
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Daeun Jeong
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Olivia A Hack
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrezza Nascimento
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - McKenzie L Shaw
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Cuong M Nguyen
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sophia Castellani
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Nathan D Mathewson
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Orr Ashenberg
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Gustavo Alencastro Veiga Cruzeiro
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Tom Rosenberg
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Jayne R Vogelzang
- Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason Pyrdol
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Sascha Marx
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Adrienne M Luomo
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Anze Godicelj
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA
| | - Alicia Baumgartner
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jacob S Rozowsky
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sibylle Madlener
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Lisa Mayr
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Andreas Peyrl
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Rene Geyeregger
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Department of Clinical Cell Biology and FACS Core Unit, St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria
| | - Daniela Loetsch
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Christian Dorfer
- Department of Neurosurgery, Medical University of Vienna, Vienna, Austria
| | - Christine Haberler
- Department of Neurology, Division of Neuropathology and Neurochemistry, Medical University of Vienna, Vienna, Austria
| | - Natalia Stepien
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Irene Slavc
- Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Tom Belle Davidson
- Cancer and Blood Disease Institute, Children's Hospital Los Angeles, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Robert M Prins
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Kee Kiat Yeo
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Tabitha Cooney
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Keith Ligon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Department of Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Hart Lidov
- Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Sanda Alexandrescu
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA; Department of Pathology, Boston Children's Hospital, Boston, MA, USA
| | - Lissa C Baird
- Department of Neurosurgery, Boston Children's Hospital and Harvard Medical School, Boston, MA, USA
| | - Johannes Gojo
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics and Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria; Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany; Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kai W Wucherpfennig
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Immunology, Harvard Medical School, Boston, MA, USA; Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Mariella G Filbin
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
4
|
Sankowski R, Prinz M. A dynamic and multimodal framework to define microglial states. Nat Neurosci 2025:10.1038/s41593-025-01978-3. [PMID: 40394327 DOI: 10.1038/s41593-025-01978-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 04/22/2025] [Indexed: 05/22/2025]
Abstract
The widespread use of single-cell RNA sequencing has generated numerous purportedly distinct and novel subsets of microglia. Here, we challenge this fragmented paradigm by proposing that microglia exist along a continuum rather than as discrete entities. We identify a methodological over-reliance on computational clustering algorithms as the fundamental issue, with arbitrary cluster numbers being interpreted as biological reality. Evidence suggests that the observed transcriptional diversity stems from a combination of microglial plasticity and technical noise, resulting in terminology describing largely overlapping cellular states. We introduce a continuous model of microglial states, where cell positioning along the continuum is determined by biological aging and cell-specific molecular contexts. The model accommodates the dynamic nature of microglia. We advocate for a parsimonious approach toward classification and terminology that acknowledges the continuous spectrum of microglial states, toward a robust framework for understanding these essential immune cells of the CNS.
Collapse
Affiliation(s)
- Roman Sankowski
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Marco Prinz
- Institute of Neuropathology, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
5
|
Steponaitis G, Dragunaite R, Stakaitis R, Sharma A, Tamasauskas A, Skiriute D. m6A-lncRNA landscape highlights reduced levels of m6A modification in glioblastoma as compared to low-grade glioma. Mol Med 2025; 31:195. [PMID: 40382536 DOI: 10.1186/s10020-025-01254-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 05/08/2025] [Indexed: 05/20/2025] Open
Abstract
BACKGROUND Efforts to understand the interplay between m6A (N6-methyladenosine) modification and long non-coding RNAs (lncRNAs) in the pathogenesis of various diseases, including cancer, have recently attracted considerable attention. METHODS Herein, we profiled epitranscriptome-wide m6A modifications within lncRNAs at single m6A site resolution across different grades of gliomas (Glioblastomas (GB): n = 17, Low grade gliomas (LGG): n = 9) using direct RNA long-read sequencing. RESULTS Our analysis demonstrated that, 1) 98.5% of m6A-modified RRACH motifs were present within mRNA transcripts, while only 1.16% were conspicuous within lncRNAs. Importantly, LGGs exhibited a higher m6A abundance (23.73%) compared to the GB transcriptome (15.84%). 2) The m6A profiles of lncRNAs differed significantly between gliomas, with unsupervised cluster analysis revealing two clusters (C1, C2). LGG dispersed between C1 and C2 clusters while GB stayed mainly in C1. Clinical feature association analysis between m6A clusters showed the tendency of m6A to be associated with higher malignancy grade (p = 0.053), while significant association was observed with higher Ki-67 proliferation index (p = 0.04), and tumor location (p < 0.01). Specifically, brain tumors located in cerebellum (n = 3) were highly m6A modified on lncRNAs as compared to tumors in other locations (frontal lobe, n = 5, p = 0.003; frontotemporal lobe, n = 2, p = 0.08; occipital, n = 2, p = 0.038; parietal, n = 2, p = 0.007; temporal, n = 11, p < 0.001). Cox regression analysis showed that the status of lncRNAs m6A modifications had no significant value in predicting post-surgical survival time in our GB or LGG cohorts. The trend of higher lncRNA expression in m6A methylated group was observed for the majority of lncRNAs, while only MIR9-1HG (r = 0.439, p = 0.028) and ZFAS1 (r = 0.609, p < 0.05) m6A showed statistically significant positive correlations in gliomas. A high-resolution m6A study revealed that mRNA levels of m6A writers and erasers in gliomas do not reflect global m6A methylation. CONCLUSIONS Overall, we provide evidence that m6A lncRNAs are strongly modulated in gliomas, representing biologically distinct subgroups. Ten novel differentially methylated lncRNAs were identified in gliomas, which might exert regulatory role in glioma cells. These findings may provide a basis for further deeper research on the role of m6A lncRNAs in gliomas.
Collapse
Affiliation(s)
- Giedrius Steponaitis
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rugile Dragunaite
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Rytis Stakaitis
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Amit Sharma
- Department of Stereotactic and Functional Neurosurgery, University Hospital of Bonn, Bonn, Germany
- Department of Integrated Oncology, Center for Integrated Oncology (CIO), University Hospital Bonn, Bonn, Germany
| | - Arimantas Tamasauskas
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania
| | - Daina Skiriute
- Laboratory of Molecular Neurooncology, Neuroscience Institute, Lithuanian University of Health Sciences, Kaunas, Lithuania.
| |
Collapse
|
6
|
Wang H, Mei Q, Mei P. Comprehensive analysis of the role of Caspases in glioma. Brain Res 2025; 1855:149529. [PMID: 40032044 DOI: 10.1016/j.brainres.2025.149529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 03/05/2025]
Abstract
Caspases (CASPs) are attractive targets for cancer therapy. Many prognostic models based on gene signatures include genes from the CASPs family in diffuse glioma. CASP3, CASP4 and CASP6 in glioma have been studied individually. However, specialized comprehensive analysis of the roles of CASPs family in glioma is lacking. Therefore, this study utilized bioinformatics methods to investigate this issue. CASP1-10 expressionlevels were significantly up-regulated in LGG and GBM and glioma, and varied significantly across different clinical subgroups of glioma and LGG and various cell types, and most of CASP1-10 members showed significant differences in recurrence status of LGG. 10 signatures (CASP1-10) were associated with poor overall survival (OS) in glioma and LGG and GBM. However, pan-cancer survival analysis showed that CASP1-10 were associated with the prognosis of LGG, but not GBM. CASP1-10 were related to poor prognosis of glioma and LGG, except for CASP9, which was the opposite of a protective factor. CASP1-10 were independent prognostic factors for OS in glioma and LGG, except for CASP5, and also for recurrence-free survival (RFS) in LGG. Most of CASP1-10 were also independent prognostic factors for disease-specific survival (DSS) and progression-free interval (PFI) and had diagnostic value in glioma and LGG. Genetic alterations of CASP1-10 genes set were associated with poor prognosis in LGG. CASP1-10 were involved in immune infiltration and programmed cell death in glioma and LGG and GBM, and might promote the apoptosis of immune cells. Compared to GBM, CASP1-10 had a more significant impact on the prognosis, cancer-related pathways, and immune infiltration in LGG, indicating that CASP1-10 might play important roles in the recurrence and progression of LGG, and might be promising therapeutic targets for LGG. Therefore, it is speculated that natural caspase inhibitor p35 may be a promising drug for the treatment of glioma, especially for LGG.
Collapse
Affiliation(s)
- Heming Wang
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, Hainan University, Haikou 570228, China
| | - Qunfang Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Pengying Mei
- Fujian Provincial Key Laboratory of Plant Functional Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
7
|
Sharma S, Rodems BJ, Baker CD, Kaszuba CM, Franco EI, Smith BR, Ito T, Swovick K, Welle K, Zhang Y, Rock P, Chaves FA, Ghaemmaghami S, Calvi LM, Ganguly A, Burack WR, Becker MW, Liesveld JL, Brookes PS, Munger JC, Jordan CT, Ashton JM, Bajaj J. Taurine from tumour niche drives glycolysis to promote leukaemogenesis. Nature 2025:10.1038/s41586-025-09018-7. [PMID: 40369079 DOI: 10.1038/s41586-025-09018-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 04/14/2025] [Indexed: 05/16/2025]
Abstract
Signals from the microenvironment are known to be critical for development, stem cell self-renewal and oncogenic progression. Although some niche-driven signals that promote cancer progression have been identified1-5, concerted efforts to map disease-relevant microenvironmental ligands of cancer stem cell receptors have been lacking. Here, we use temporal single-cell RNA-sequencing (scRNA-seq) to identify molecular cues from the bone marrow stromal niche that engage leukaemia stem-enriched cells (LSCs) during oncogenic progression. We integrate these data with our human LSC RNA-seq and in vivo CRISPR screen of LSC dependencies6 to identify LSC-niche interactions that are essential for leukaemogenesis. These analyses identify the taurine-taurine transporter (TAUT) axis as a critical dependency of aggressive myeloid leukaemias. We find that cysteine dioxygenase type 1 (CDO1)-driven taurine biosynthesis is restricted to osteolineage cells, and increases during myeloid disease progression. Blocking CDO1 expression in osteolineage cells impairs LSC growth and improves survival outcomes. Using TAUT genetic loss-of-function mouse models and patient-derived acute myeloid leukaemia (AML) cells, we show that TAUT inhibition significantly impairs in vivo myeloid leukaemia progression. Consistent with elevated TAUT expression in venetoclax-resistant AML, TAUT inhibition synergizes with venetoclax to block the growth of primary human AML cells. Mechanistically, our multiomic approaches indicate that the loss of taurine uptake inhibits RAG-GTP dependent mTOR activation and downstream glycolysis. Collectively, our work establishes the temporal landscape of stromal signals during leukaemia progression and identifies taurine as a key regulator of myeloid malignancies.
Collapse
Affiliation(s)
- Sonali Sharma
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Benjamin J Rodems
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Cameron D Baker
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Christina M Kaszuba
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Edgardo I Franco
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biomedical Engineering, University of Rochester, Rochester, NY, USA
| | - Bradley R Smith
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Takashi Ito
- Department of Bioscience and Technology, Graduate School of Bioscience and Technology, Fukui Prefectural University, Fukui, Japan
| | - Kyle Swovick
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Kevin Welle
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
| | - Yi Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Philip Rock
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Francisco A Chaves
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
| | - Sina Ghaemmaghami
- Mass Spectrometry Resource Laboratory, University of Rochester, Rochester, NY, USA
- Department of Biology, University of Rochester, Rochester, NY, USA
| | - Laura M Calvi
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Archan Ganguly
- Department of Neuroscience, University of Rochester Medical Center, Rochester, NY, USA
| | - W Richard Burack
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Michael W Becker
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Jane L Liesveld
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Paul S Brookes
- Department of Anesthesiology, University of Rochester Medical Center, Rochester, NY, USA
| | - Joshua C Munger
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Department of Biochemistry and Biophysics, University of Rochester Medical Center, Rochester, NY, USA
| | - Craig T Jordan
- Division of Hematology, Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - John M Ashton
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA
- Genomics Research Center, University of Rochester Medical Center, Rochester, NY, USA
| | - Jeevisha Bajaj
- Department of Biomedical Genetics, University of Rochester Medical Center, Rochester, NY, USA.
- Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY, USA.
| |
Collapse
|
8
|
Song KW, Lim M, Monje M. Complex neural-immune interactions shape glioma immunotherapy. Immunity 2025; 58:1140-1160. [PMID: 40324379 DOI: 10.1016/j.immuni.2025.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 05/07/2025]
Abstract
Rich neural-immune interactions in the central nervous system (CNS) shape its function and create a unique immunological microenvironment for immunotherapy in CNS malignancies. Far from the now-debunked concept of CNS "immune privilege," it is now understood that unique immunological niches and constant immune surveillance of the brain contribute in multifaceted ways to brain health and robustly influence immunotherapy approaches for CNS cancers. Challenges include immune-suppressive and neurotoxicity-promoting crosstalk between brain, immune, and tumor cells. Developing effective immunotherapies for cancers of the nervous system will require a deeper understanding of these neural-immune-malignant cell interactions. Here, we review progress and challenges in immunotherapy for gliomas of the brain and spinal cord in light of these unique neural-immune interactions and highlight future work needed to optimize promising immunotherapies for gliomas.
Collapse
Affiliation(s)
- Kun-Wei Song
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA
| | - Michael Lim
- Department of Neurosurgery, Stanford University, Palo Alto, CA, USA
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA, USA; Department of Neurosurgery, Stanford University, Palo Alto, CA, USA; Howard Hughes Medical Institute, Stanford University, Palo Alto, CA, USA.
| |
Collapse
|
9
|
Tyler M, Gavish A, Barbolin C, Tschernichovsky R, Hoefflin R, Mints M, Puram SV, Tirosh I. The Curated Cancer Cell Atlas provides a comprehensive characterization of tumors at single-cell resolution. NATURE CANCER 2025:10.1038/s43018-025-00957-8. [PMID: 40341230 DOI: 10.1038/s43018-025-00957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 03/24/2025] [Indexed: 05/10/2025]
Abstract
Recent years have seen a rapid proliferation of single-cell cancer studies, yet most of these studies profiled few tumors, limiting their statistical power. Combining data and results across studies holds great promise but also involves various challenges. We recently began to address these challenges by curating a large collection of cancer single-cell RNA-sequencing datasets, leveraging it for systematic analyses of tumor heterogeneity. Here we greatly extend this repository to 124 datasets for over 40 cancer types, together comprising 2,836 samples, with improved data annotations, visualizations and exploration. Using this vast cohort, we generate an updated map of recurrent expression programs in malignant cells and systematically quantify context-dependent gene expression and cell-cycle patterns across cell types and cancer types. These data, annotations and analysis results are all freely available for exploration and download through the Curated Cancer Cell Atlas, a central community resource that opens new avenues in cancer research.
Collapse
Affiliation(s)
- Michael Tyler
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
- Georg-Speyer-Haus, Institute for Tumor Biology and Experimental Therapy, Frankfurt, Germany.
| | - Avishai Gavish
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Chaya Barbolin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Roi Tschernichovsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Davidoff Cancer Center, Rabin Medical Center, Petah Tikva, Israel
| | - Rouven Hoefflin
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Michael Mints
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Oncology-Pathology, Karolinska Institute, Stockholm, Sweden
| | - Sidharth V Puram
- Department of Otolaryngology-Head and Neck Surgery and Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- The Robert Ebert and Greg Stubblefield Head and Neck Tumor Center at Siteman Cancer Center, St. Louis, MO, USA
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
10
|
Zhao Y, Yu Y, Chen W, Zhang X, Lv J, Zhao H. Oligodendroglioma: Advances in Molecular Mechanisms and Immunotherapeutic Strategies. Biomedicines 2025; 13:1133. [PMID: 40426960 PMCID: PMC12108979 DOI: 10.3390/biomedicines13051133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/21/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Oligodendroglioma is a central nervous system tumor defined by IDH1/2 mutations and 1p/19q co-deletion. Current management involves maximal resection followed by radiotherapy/chemotherapy, yielding a 20-year survival rate of 37% for grade 3 tumors according to the WHO 2021 classification. As these tumors primarily affect young to middle-aged patients, novel therapies are urgently needed to improve outcomes. Immunotherapy has revolutionized tumor treatment by modulating immune responses. However, its application in oligodendrogliomas faces two major hurdles, including the immunosuppressive tumor microenvironment (TME) and the blood-brain barrier's restrictive properties. This review first examines oligodendroglioma's molecular alterations to refine diagnosis and guide targeted therapies. Next, we focus on the oligodendroglioma TME to evaluate emerging immunotherapies, including oncolytic viruses, immune checkpoint blockade, chimeric antigen receptor (CAR) T-cell therapy, and cancer vaccines. Finally, we discuss current challenges and future directions to overcome therapeutic limitations and advance treatment strategies.
Collapse
Affiliation(s)
| | | | | | | | - Jing Lv
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (Y.Z.); (Y.Y.); (W.C.); (X.Z.)
| | - Heping Zhao
- Department of Clinical Laboratory, Honghui Hospital, Xi’an Jiaotong University, Xi’an 710054, China; (Y.Z.); (Y.Y.); (W.C.); (X.Z.)
| |
Collapse
|
11
|
Khan MAAK, Peel L, Sedgwick AJ, Sun Y, Vivian JP, Corbett AJ, Dolcetti R, Mantamadiotis T, Barrow AD. Reduced HLA-I Transcript Levels and Increased Abundance of a CD56 dim NK Cell Signature Are Associated with Improved Survival in Lower-Grade Gliomas. Cancers (Basel) 2025; 17:1570. [PMID: 40361496 PMCID: PMC12071263 DOI: 10.3390/cancers17091570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 05/02/2025] [Accepted: 05/02/2025] [Indexed: 05/15/2025] Open
Abstract
BACKGROUND Human leukocyte antigen class I (HLA-I) plays a pivotal role in shaping anti-tumour immunity by influencing the functionality of T cells and natural killer (NK) cells within the tumour microenvironment. METHODS Here, we explored the transcriptional landscape of HLA-I molecules across various solid cancer transcriptomes from The Cancer Genome Atlas (TCGA) database and assessed the impact of HLA-I expression on the clinical significance of tumour-infiltrating CD56dim and CD56bright NK cells. RESULTS Our analysis revealed that high HLA-I expression correlated with reduced patient survival in the TCGA lower-grade glioma (LGG) cohort, with this association varying by histopathological subtype. We then estimated the relative abundance of 23 immune and stromal cell signatures in LGG transcriptomes using a cellular deconvolution approach, which revealed that LGG patients with low HLA-I expression and high CD56dim NK cell abundance had better survival outcomes compared to those with high HLA-I expression and low CD56dim NK cell abundance. Furthermore, HLA-I expression was positively correlated with various inhibitory NK cell receptors and negatively correlated with activating NK cell receptors, particularly those within the killer cell lectin-like receptor (KLR) gene family. High co-expression of HLA-E and NKG2A predicted poor survival outcomes in LGG patients, whereas low HLA-E and high NKG2C/E abundance predicted more favourable outcomes, suggesting a potential modulatory role of HLA-I on the tumour-infiltrating cytotoxic CD56dim NK cell subset. CONCLUSIONS Overall, our study unveils a potential role for deregulated HLA-I expression in modulating the clinical impact of glioma-infiltrating CD56dim NK cells. These findings lay the foundation for future in-depth experimental studies to investigate the underlying mechanisms.
Collapse
Affiliation(s)
- Md Abdullah Al Kamran Khan
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Lorenza Peel
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Alexander J. Sedgwick
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Yuhan Sun
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Julian P. Vivian
- St. Vincent’s Institute of Medical Research, Melbourne, VIC 3065, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC 3000, Australia
- Australian Catholic University, Melbourne, VIC 3065, Australia
| | - Alexandra J. Corbett
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| | - Riccardo Dolcetti
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Theo Mantamadiotis
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Melbourne, VIC 3000, Australia
| | - Alexander D. Barrow
- Department of Microbiology and Immunology, The University of Melbourne at The Peter Doherty Institute for Infection and Immunity, Melbourne, VIC 3000, Australia
| |
Collapse
|
12
|
Mavuluri J, Dhungana Y, Jones LL, Bhatara S, Shi H, Yang X, Lim SE, Reyes N, Chi H, Yu J, Geiger TL. GPR65 Inactivation in Tumor Cells Drives Antigen-Independent CAR T-cell Resistance via Macrophage Remodeling. Cancer Discov 2025; 15:1018-1036. [PMID: 39998425 PMCID: PMC12046320 DOI: 10.1158/2159-8290.cd-24-0841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 11/28/2024] [Accepted: 02/05/2025] [Indexed: 02/26/2025]
Abstract
SIGNIFICANCE The study identifies GPR65 as an important determinant of B-cell acute lymphoblastic leukemia response to CAR T-cell therapy. Notably, GPR65 absence signals CAR T resistance. By emphasizing the therapeutic potential of targeting VEGFA or host macrophages, our study identifies routes to optimize CAR T-cell therapy outcomes in hematologic malignancies via tumor microenvironment manipulation.
Collapse
Affiliation(s)
- Jayadev Mavuluri
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Yogesh Dhungana
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Lindsay L. Jones
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Sheetal Bhatara
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Hao Shi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Xu Yang
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Song-Eun Lim
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Noemi Reyes
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, Tennessee
| | - Hongbo Chi
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
| | - Terrence L. Geiger
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital, Memphis, Tennessee
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, Tennessee
| |
Collapse
|
13
|
Spitzer A, Johnson KC, Nomura M, Garofano L, Nehar-Belaid D, Darnell NG, Greenwald AC, Bussema L, Oh YT, Varn FS, D'Angelo F, Gritsch S, Anderson KJ, Migliozzi S, Gonzalez Castro LN, Chowdhury T, Robine N, Reeves C, Park JB, Lipsa A, Hertel F, Golebiewska A, Niclou SP, Nusrat L, Kellet S, Das S, Moon HE, Paek SH, Bielle F, Laurenge A, Di Stefano AL, Mathon B, Picca A, Sanson M, Tanaka S, Saito N, Ashley DM, Keir ST, Ligon KL, Huse JT, Yung WKA, Lasorella A, Iavarone A, Verhaak RGW, Tirosh I, Suvà ML. Deciphering the longitudinal trajectories of glioblastoma ecosystems by integrative single-cell genomics. Nat Genet 2025; 57:1168-1178. [PMID: 40346362 PMCID: PMC12081298 DOI: 10.1038/s41588-025-02168-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 03/17/2025] [Indexed: 05/11/2025]
Abstract
The evolution of isocitrate dehydrogenase (IDH)-wildtype glioblastoma (GBM) after standard-of-care therapy remains poorly understood. Here we analyzed matched primary and recurrent GBMs from 59 patients using single-nucleus RNA sequencing and bulk DNA sequencing, assessing the longitudinal evolution of the GBM ecosystem across layers of cellular and molecular heterogeneity. The most consistent change was a lower malignant cell fraction at recurrence and a reciprocal increase in glial and neuronal cell types in the tumor microenvironment (TME). The predominant malignant cell state differed between most matched pairs, but no states were exclusive or highly enriched in either time point, nor was there a consistent longitudinal trajectory across the cohort. Nevertheless, specific trajectories were enriched in subsets of patients. Changes in malignant state abundances mirrored changes in TME composition and baseline profiles, reflecting the co-evolution of the GBM ecosystem. Our study provides a blueprint of GBM's diverse longitudinal trajectories and highlights the treatment and TME modifiers that shape them.
Collapse
Affiliation(s)
- Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kevin C Johnson
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Masashi Nomura
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Luciano Garofano
- Department of Public Health Sciences, Division of Biostatistics and Bioinformatics, University of Miami, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Noam Galili Darnell
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alissa C Greenwald
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lillian Bussema
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Young Taek Oh
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Frederick S Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Fulvio D'Angelo
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Simon Gritsch
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin J Anderson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Simona Migliozzi
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - L Nicolas Gonzalez Castro
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tamrin Chowdhury
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Nicolas Robine
- Department of Computational Biology, New York Genome Center, New York City, NY, USA
| | - Catherine Reeves
- Department of Sequencing Operations, New York Genome Center, New York City, NY, USA
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Anuja Lipsa
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Hertel
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology Laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- University of Luxembourg Faculty of Science, Technology and Medicine, Luxembourg, Luxembourg
| | - Labeeba Nusrat
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Sorcha Kellet
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Hyo-Eun Moon
- Department of Neurosurgery, Cancer Research Institute, Hypoxia/Ischemia Disease Institute, Seoul National University, Seoul, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Cancer Research Institute, Hypoxia/Ischemia Disease Institute, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si, Republic of Korea
| | - Franck Bielle
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuropathology, Paris, France
| | - Alice Laurenge
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-oncology, Paris, France
| | - Anna Luisa Di Stefano
- Neurology Department, Foch Hospital, Suresnes, France
- Neurosurgery Unit, Ospedali Riuniti di Livorno, Livorno, Italy
| | - Bertrand Mathon
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neurosurgery, Paris, France
| | - Alberto Picca
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-oncology, Paris, France
| | - Marc Sanson
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-oncology, Paris, France
- Brain Tumor Bank Onconeurotek (ONT), AP-HP, Paris, France
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - David M Ashley
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Stephen T Keir
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Lasorella
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Roel G W Verhaak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| | - Mario L Suvà
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| |
Collapse
|
14
|
Nomura M, Spitzer A, Johnson KC, Garofano L, Nehar-Belaid D, Galili Darnell N, Greenwald AC, Bussema L, Oh YT, Varn FS, D'Angelo F, Gritsch S, Anderson KJ, Migliozzi S, Gonzalez Castro LN, ChowdhFury T, Robine N, Reeves C, Park JB, Lipsa A, Hertel F, Golebiewska A, Niclou SP, Nusrat L, Kellet S, Das S, Moon HE, Paek SH, Bielle F, Laurenge A, Di Stefano AL, Mathon B, Picca A, Sanson M, Tanaka S, Saito N, Ashley DM, Keir ST, Ligon KL, Huse JT, Yung WKA, Lasorella A, Verhaak RGW, Iavarone A, Suvà ML, Tirosh I. The multilayered transcriptional architecture of glioblastoma ecosystems. Nat Genet 2025; 57:1155-1167. [PMID: 40346361 PMCID: PMC12081307 DOI: 10.1038/s41588-025-02167-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 03/17/2025] [Indexed: 05/11/2025]
Abstract
In isocitrate dehydrogenase wildtype glioblastoma (GBM), cellular heterogeneity across and within tumors may drive therapeutic resistance. Here we analyzed 121 primary and recurrent GBM samples from 59 patients using single-nucleus RNA sequencing and bulk tumor DNA sequencing to characterize GBM transcriptional heterogeneity. First, GBMs can be classified by their broad cellular composition, encompassing malignant and nonmalignant cell types. Second, in each cell type we describe the diversity of cellular states and their pathway activation, particularly an expanded set of malignant cell states, including glial progenitor cell-like, neuronal-like and cilia-like. Third, the remaining variation between GBMs highlights three baseline gene expression programs. These three layers of heterogeneity are interrelated and partially associated with specific genetic aberrations, thereby defining three stereotypic GBM ecosystems. This work provides an unparalleled view of the multilayered transcriptional architecture of GBM. How this architecture evolves during disease progression is addressed in the companion manuscript by Spitzer et al.
Collapse
Affiliation(s)
- Masashi Nomura
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
- Department of Oncology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Kevin C Johnson
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Luciano Garofano
- Department of Public Health Sciences, Division of Biostatistics and Bioinformatics, University of Miami, Miller School of Medicine, Miami, FL, USA
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | | | - Noam Galili Darnell
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Alissa C Greenwald
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel
| | - Lillian Bussema
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Young Taek Oh
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Frederick S Varn
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
- Department of Genetics and Genome Sciences, University of Connecticut Health Center, Farmington, CT, USA
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Fulvio D'Angelo
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - Simon Gritsch
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Kevin J Anderson
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Simona Migliozzi
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA
| | - L Nicolas Gonzalez Castro
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Tamrin ChowdhFury
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Nicolas Robine
- Department of Computational Biology, New York Genome Center, New York, NY, USA
| | - Catherine Reeves
- Department of Sequencing Operations, New York Genome Center, New York, NY, USA
| | - Jong Bae Park
- Department of Cancer Biomedical Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Republic of Korea
| | - Anuja Lipsa
- NORLUX Neuro-Oncology laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Frank Hertel
- NORLUX Neuro-Oncology laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Anna Golebiewska
- NORLUX Neuro-Oncology laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
| | - Simone P Niclou
- NORLUX Neuro-Oncology laboratory, Department of Cancer Research, Luxembourg Institute of Health, Luxembourg, Luxembourg
- University of Luxembourg; Faculty of Science, Technology and Medicine, Esch-sur-Alzette, Luxembourg
| | - Labeeba Nusrat
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Sorcha Kellet
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Sunit Das
- Division of Neurosurgery, St. Michael's Hospital, University of Toronto, Toronto, Ontario, Canada
| | - Hyo Eun Moon
- Department of Neurosurgery, Cancer Research Institute, Hypoxia Ischemia Disease Institute, Seoul National University, Seoul, Republic of Korea
| | - Sun Ha Paek
- Department of Neurosurgery, Cancer Research Institute, Hypoxia Ischemia Disease Institute, Seoul National University, Seoul, Republic of Korea
- Advanced Institutes of Convergence Technology, Seoul National University, Suwon-si, Republic of Korea
| | - Franck Bielle
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe Labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuropathology, Paris, France
| | - Alice Laurenge
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe Labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-oncology, Paris, France
| | - Anna Luisa Di Stefano
- Neurology Department, Foch Hospital, Suresnes, France
- Neurosurgery Unit, Ospedali Riuniti di Livorno, Livorno, Italy
| | - Bertrand Mathon
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neurosurgery, Paris, France
| | - Alberto Picca
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe Labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-oncology, Paris, France
| | - Marc Sanson
- Sorbonne Université, UMR S 1127, Inserm U 1127, CNRS UMR 7225, ICM-Paris Brain Institute, Equipe Labellisée LNCC, Paris, France
- AP-HP, Groupe Hospitalier Pitié-Salpêtrière, Neuro-oncology, Paris, France
- AP-HP, Brain Tumor Bank Onconeurotek (ONT), Paris, France
| | - Shota Tanaka
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Nobuhito Saito
- Department of Neurosurgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - David M Ashley
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Stephen T Keir
- Department of Neurosurgery, The Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
| | - Keith L Ligon
- Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
- Department of Pathology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jason T Huse
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - W K Alfred Yung
- Department of Neuro-Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anna Lasorella
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Department of Biochemistry and Molecular Biology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Roel G W Verhaak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Department of Neurosurgery, Amsterdam University Medical Center, Amsterdam, the Netherlands.
| | - Antonio Iavarone
- Sylvester Comprehensive Cancer Center, University of Miami, Miller School of Medicine, Miami, FL, USA.
- Department of Neurological Surgery, University of Miami, Miller School of Medicine, Miami, FL, USA.
| | - Mario L Suvà
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.
- Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
15
|
Yu KKH, Basu S, Baquer G, Ahn R, Gantchev J, Jindal S, Regan MS, Abou-Mrad Z, Prabhu MC, Williams MJ, D'Souza AD, Malinowski SW, Hopland K, Elhanati Y, Stopka SA, Stortchevoi A, Couturier C, He Z, Sun J, Chen Y, Espejo AB, Chow KH, Yerrum S, Kao PL, Kerrigan BP, Norberg L, Nielsen D, Puduvalli VK, Huse J, Beroukhim R, Kim BYS, Goswami S, Boire A, Frisken S, Cima MJ, Holdhoff M, Lucas CHG, Bettegowda C, Levine SS, Bale TA, Brennan C, Reardon DA, Lang FF, Chiocca EA, Ligon KL, White FM, Sharma P, Tabar V, Agar NYR. Investigative needle core biopsies support multimodal deep-data generation in glioblastoma. Nat Commun 2025; 16:3957. [PMID: 40295505 PMCID: PMC12037860 DOI: 10.1038/s41467-025-58452-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/19/2025] [Indexed: 04/30/2025] Open
Abstract
Glioblastoma (GBM) is an aggressive primary brain cancer with few effective therapies. Stereotactic needle biopsies are routinely used for diagnosis; however, the feasibility and utility of investigative biopsies to monitor treatment response remains ill-defined. Here, we demonstrate the depth of data generation possible from routine stereotactic needle core biopsies and perform highly resolved multi-omics analyses, including single-cell RNA sequencing, spatial transcriptomics, metabolomics, proteomics, phosphoproteomics, T-cell clonotype analysis, and MHC Class I immunopeptidomics on standard biopsy tissue obtained intra-operatively. We also examine biopsies taken from different locations and provide a framework for measuring spatial and genomic heterogeneity. Finally, we investigate the utility of stereotactic biopsies as a method for generating patient-derived xenograft (PDX) models. Multimodal dataset integration highlights spatially mapped immune cell-associated metabolic pathways and validates inferred cell-cell ligand-receptor interactions. In conclusion, investigative biopsies provide data-rich insight into disease processes and may be useful in evaluating treatment responses.
Collapse
Affiliation(s)
- Kenny K H Yu
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sreyashi Basu
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Gerard Baquer
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Ryuhjin Ahn
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jennifer Gantchev
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Sonali Jindal
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael S Regan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Zaki Abou-Mrad
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Michael C Prabhu
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Marc J Williams
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alicia D D'Souza
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Seth W Malinowski
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Kelsey Hopland
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Yuval Elhanati
- Department of Computational Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sylwia A Stopka
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alexei Stortchevoi
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Charles Couturier
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Zhong He
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jingjing Sun
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Yulong Chen
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Alexsandra B Espejo
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kin Hoe Chow
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Smitha Yerrum
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Pei-Lun Kao
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Brittany Parker Kerrigan
- Department of Neurosurgery, The Brain Tumor Center, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Lisa Norberg
- Department of Anatomic Pathology, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Douglas Nielsen
- Department of Anatomic Pathology, The Brain Tumor Center, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vinay K Puduvalli
- Department of Neuro-Oncology, The Brain Tumor Center, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Huse
- Department of Anatomic Pathology, Division of Pathology-Lab Medicine Division, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rameen Beroukhim
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Betty Y S Kim
- Department of Neurosurgery, The Brain Tumor Center, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sangeeta Goswami
- Department of Genitourinary Medical Oncology, Division of Cancer Medicine, and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Adrienne Boire
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Frisken
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Michael J Cima
- Department of Materials Science and Engineering, Koch Institute for Integrative Cancer Research, Cambridge, MA, USA
| | - Matthias Holdhoff
- The Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Calixto-Hope G Lucas
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Stuart S Levine
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biology, BioMicro Center, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Tejus A Bale
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cameron Brennan
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - David A Reardon
- Department of Medical Oncology, Center for Neuro-Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Frederick F Lang
- Department of Neurosurgery, The Brain Tumor Center, Division of Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - E Antonio Chiocca
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Keith L Ligon
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Forest M White
- MIT-Harvard Health Sciences and Technology, Cambridge, MA, USA
- Department of Biological Engineering, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Padmanee Sharma
- Immunotherapy Platform and James P. Allison Institute, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Viviane Tabar
- Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
16
|
Lucchini S, Nicholson JG, Zhang X, Househam J, Lim YM, Mossner M, Millner TO, Brandner S, Graham T, Marino S. A novel model of glioblastoma recurrence to identify therapeutic vulnerabilities. EMBO Mol Med 2025:10.1038/s44321-025-00237-z. [PMID: 40295888 DOI: 10.1038/s44321-025-00237-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 03/21/2025] [Accepted: 03/25/2025] [Indexed: 04/30/2025] Open
Abstract
Glioblastoma remains incurable and recurs in all patients. Here we design and characterize a novel induced-recurrence model in which mice xenografted with primary patient-derived glioma initiating/stem cells (GIC) are treated with a therapeutic regimen closely recapitulating patient standard of care, followed by monitoring until tumours recur (induced recurrence patient-derived xenografts, IR-PDX). By tracking in vivo tumour growth, we confirm the patient specificity and initial efficacy of treatment prior to recurrence. Availability of longitudinally matched pairs of primary and recurrent GIC enabled patient-specific evaluation of the fidelity with which the model recapitulated phenotypes associated with the true recurrence. Through comprehensive multi-omic analyses, we show that the IR-PDX model recapitulates aspects of genomic, epigenetic, and transcriptional state heterogeneity upon recurrence in a patient-specific manner. The accuracy of the IR-PDX enabled both novel biological insights, including the positive association between glioblastoma recurrence and levels of ciliated neural stem cell-like tumour cells, and the identification of druggable patient-specific therapeutic vulnerabilities. This proof-of-concept study opens the possibility for prospective precision medicine approaches to identify target-drug candidates for treatment at glioblastoma recurrence.
Collapse
Affiliation(s)
- Sara Lucchini
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - James G Nicholson
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Xinyu Zhang
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Jacob Househam
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Yau Mun Lim
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, and Department of Neurodegenerative Disease, Queen Square, Institute of Neurology, University College London, Queen Square, London, UK
| | - Maximilian Mossner
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Thomas O Millner
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
- Barts Brain Tumour Centre, Faculty of Medicine and Dentistry, Queen Mary University London, London, UK
| | - Sebastian Brandner
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, and Department of Neurodegenerative Disease, Queen Square, Institute of Neurology, University College London, Queen Square, London, UK
| | - Trevor Graham
- Centre for Evolution and Cancer, The Institute of Cancer Research, London, UK
| | - Silvia Marino
- Brain Tumour Research Centre, Blizard Institute, Faculty of Medicine and Dentistry, Queen Mary University London, London, UK.
- Barts Brain Tumour Centre, Faculty of Medicine and Dentistry, Queen Mary University London, London, UK.
| |
Collapse
|
17
|
Ernst KJ, Okonechnikov K, Bageritz J, Perera AA, Mallm JP, Wittmann A, Maaß KK, Leible S, Boutros M, Pfister SM, Zuckermann M, Jones DTW. A simplified preparation method for single-nucleus RNA-sequencing using long-term frozen brain tumor tissues. Sci Rep 2025; 15:12849. [PMID: 40229354 PMCID: PMC11997191 DOI: 10.1038/s41598-025-97053-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 04/02/2025] [Indexed: 04/16/2025] Open
Abstract
Single-cell RNA-sequencing has provided intriguing new insights into research areas such as developmental processes and tumor heterogeneity. Most approaches, however, rely on the availability of fresh surgical specimens, thereby dramatically reducing the ability to profile particularly rare tissue types. Here, we optimized a method to isolate intact nuclei from long-term frozen pediatric glioma tissues. We performed a technical comparison between different single-nucleus RNA-sequencing (snRNA-seq) systems and applied the established nucleus isolation method to analyze frozen primary glioma tissues. The results show that our fast, simple and low-cost nuclear isolation protocol provides intact nuclei, which can be used in both droplet- and plate-based single-cell sequencing platforms - allowing the identification of distinct tumor cell populations and infiltrating microglia. Additional optimization to include shorter RNA fragments in the 3' sequencing library improved gene detection and cell type annotation. Taken together, the method dramatically increases the potential of studying rare tumor entities and is specifically tailored for using frozen brain tumor tissue.
Collapse
Affiliation(s)
- Kati J Ernst
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Konstantin Okonechnikov
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
| | - Josephine Bageritz
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Ashwyn A Perera
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Heidelberg Medical Faculty, University of Heidelberg, Heidelberg, Germany
| | - Jan-Philipp Mallm
- Single-Cell Open Lab; German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Andrea Wittmann
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Kendra K Maaß
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
| | - Svenja Leible
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Michael Boutros
- Division of Signaling and Functional Genomics, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Stefan M Pfister
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
- Department of Pediatric Hematology and Oncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Marc Zuckermann
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Pediatric Neuro-Oncology, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany
| | - David T W Jones
- Division of Pediatric Glioma Research, Hopp Children'S Cancer Center Heidelberg (Kitz), Heidelberg, Germany.
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a Partnership Between DKFZ and Heidelberg University Hospital, Heidelberg, Germany.
- German Cancer Research Center (DKFZ), Heidelberg, Germany.
| |
Collapse
|
18
|
Gonzalez Castro LN, Gavish A, Bussema L, Mount CW, Neftel C, Nomura M, Chiocca EA, Bi WL, Arnaout O, Barker FG, Brown JM, Jordan JT, Batchelor TT, Stemmer-Rachamimov A, Plotkin SR, Tirosh I, Suvà ML. A single-cell atlas of Schwannoma across genetic backgrounds and anatomic locations. Genome Med 2025; 17:37. [PMID: 40217315 PMCID: PMC11992879 DOI: 10.1186/s13073-025-01462-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/20/2025] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Schwannomas are nerve sheath tumors arising at cranial and peripheral nerves, either sporadically or in patients with a schwannomatosis-predisposition syndrome. There is limited understanding of the transcriptional heterogeneity of schwannomas across genetic backgrounds and anatomic locations. METHODS Here, we prospectively profile by single-cell full-length transcriptomics tumors from 22 patients with NF2-related schwannomatosis, non-NF2-related schwannomatosis, and sporadic schwannomas, resected from cranial and peripheral nerves. We profiled 11,373 cells (after QC), including neoplastic cells, fibroblasts, T cells, endothelial cells, myeloid cells, and pericytes. RESULTS We characterize the intra-tumoral genetic and transcriptional heterogeneity of schwannoma, identifying six distinct transcriptional metaprograms, with gene signatures related to stress, myelin production, antigen presentation, interferon signaling, glycolysis, and extracellular matrix. We demonstrate the robustness of our findings with analysis of an independent cohort. CONCLUSIONS Overall, our atlas describes the spectrum of gene expression across schwannoma entities at the single-cell level and will serve as an important resource for the community.
Collapse
Affiliation(s)
- L Nicolas Gonzalez Castro
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | | | - Lillian Bussema
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | | | - Cyril Neftel
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Masashi Nomura
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - E Antonio Chiocca
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Wenya Linda Bi
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Omar Arnaout
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Fred G Barker
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Justin M Brown
- Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Justin T Jordan
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Tracy T Batchelor
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anat Stemmer-Rachamimov
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Scott R Plotkin
- Harvard Medical School, Boston, MA, USA
- Massachusetts General Hospital Cancer Center, Boston, MA, USA
| | - Itay Tirosh
- Weizmann Institute of Science, Rehovot, Israel.
| | - Mario L Suvà
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA.
- Center for Neuro-Oncology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute, Cambridge, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Krantz Family Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
19
|
Raleigh D, Mirchia K, Oten S, Picart T, Nguyen M, Ambati V, Vasudevan H, Young J, Taylor J, Krishna S, Brang D, Phillips J, Perry A, Berger M, Chang S, de Groot J, Hervey-Jumper S. Spatial synaptic connectivity underlies oligodendroglioma evolution and recurrence. RESEARCH SQUARE 2025:rs.3.rs-6299872. [PMID: 40235496 PMCID: PMC11998797 DOI: 10.21203/rs.3.rs-6299872/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Oligodendrogliomas are initially slow-growing brain tumors that are prone to malignant transformation despite surgery and cytotoxic therapy. Understanding of oligodendroglioma evolution and new treatments for patients have been encumbered by a paucity of patient-matched newly diagnosed and recurrent tumor samples for multiplatform analyses, and by a lack of preclinical models for interrogation of therapeutic vulnerabilities that drive oligodendroglioma growth. Here we integrate spatial and functional analyses of tumor samples and patient-derived organoid co-cultures to show that synaptic connectivity is a hallmark of oligodendroglioma evolution and recurrence. We find that patient-matched recurrent oligodendrogliomas are enriched in synaptic gene expression programs irrespective of previous therapy or histologic grade. Analyses of spatial, single-cell, and clinical data reveal epigenetic misactivation of synaptic genes that are concentrated in regions of cortical infiltration and can be used to predict eventual oligodendroglioma recurrence. To translate these findings to patients, we show that local field potentials from tumor-infiltrated cortex at the time of resection and neuronal hyperexcitability and synchrony in patient-derived organoid co-cultures are associated with oligodendroglioma proliferation and recurrence. In preclinical models, we find that neurophysiologic drugs block oligodendroglioma growth and pathologic electrophysiology. These results elucidate mechanisms underlying oligodendroglioma evolution from an indolent tumor to a fatal disease and shed light on new biomarkers and new treatments for patients.
Collapse
|
20
|
Yang J, Zheng Z, Jiao Y, Yu K, Bhatara S, Yang X, Natarajan S, Zhang J, Pan Q, Easton J, Yan KK, Peng J, Liu K, Yu J. Spotiphy enables single-cell spatial whole transcriptomics across an entire section. Nat Methods 2025; 22:724-736. [PMID: 40074951 PMCID: PMC11978521 DOI: 10.1038/s41592-025-02622-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 01/29/2025] [Indexed: 03/14/2025]
Abstract
Spatial transcriptomics (ST) has advanced our understanding of tissue regionalization by enabling the visualization of gene expression within whole-tissue sections, but current approaches remain plagued by the challenge of achieving single-cell resolution without sacrificing whole-genome coverage. Here we present Spotiphy (spot imager with pseudo-single-cell-resolution histology), a computational toolkit that transforms sequencing-based ST data into single-cell-resolved whole-transcriptome images. Spotiphy delivers the most precise cellular proportions in extensive benchmarking evaluations. Spotiphy-derived inferred single-cell profiles reveal astrocyte and disease-associated microglia regional specifications in Alzheimer's disease and healthy mouse brains. Spotiphy identifies multiple spatial domains and alterations in tumor-tumor microenvironment interactions in human breast ST data. Spotiphy bridges the information gap and enables visualization of cell localization and transcriptomic profiles throughout entire sections, offering highly informative outputs and an innovative spatial analysis pipeline for exploring complex biological systems.
Collapse
Affiliation(s)
- Jiyuan Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ziqian Zheng
- Department of Industrial & Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Yun Jiao
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Kaiwen Yu
- Center of Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sheetal Bhatara
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Xu Yang
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Sivaraman Natarajan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiahui Zhang
- Department of Industrial & Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Qingfei Pan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - John Easton
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Koon-Kiu Yan
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Junmin Peng
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| | - Kaibo Liu
- Department of Industrial & Systems Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
21
|
Miller TE, El Farran CA, Couturier CP, Chen Z, D'Antonio JP, Verga J, Villanueva MA, Gonzalez Castro LN, Tong YE, Saadi TA, Chiocca AN, Zhang Y, Fischer DS, Heiland DH, Guerriero JL, Petrecca K, Suva ML, Shalek AK, Bernstein BE. Programs, origins and immunomodulatory functions of myeloid cells in glioma. Nature 2025; 640:1072-1082. [PMID: 40011771 PMCID: PMC12018266 DOI: 10.1038/s41586-025-08633-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/10/2025] [Indexed: 02/28/2025]
Abstract
Gliomas are incurable malignancies notable for having an immunosuppressive microenvironment with abundant myeloid cells, the immunomodulatory phenotypes of which remain poorly defined1. Here we systematically investigate these phenotypes by integrating single-cell RNA sequencing, chromatin accessibility, spatial transcriptomics and glioma organoid explant systems. We discovered four immunomodulatory expression programs: microglial inflammatory and scavenger immunosuppressive programs, which are both unique to primary brain tumours, and systemic inflammatory and complement immunosuppressive programs, which are also expressed by non-brain tumours. The programs are not contingent on myeloid cell type, developmental origin or tumour mutational state, but instead are driven by microenvironmental cues, including tumour hypoxia, interleukin-1β, TGFβ and standard-of-care dexamethasone treatment. Their relative expression can predict immunotherapy response and overall survival. By associating the respective programs with mediating genomic elements, transcription factors and signalling pathways, we uncover strategies for manipulating myeloid-cell phenotypes. Our study provides a framework to understand immunomodulation by myeloid cells in glioma and a foundation for the development of more-effective immunotherapies.
Collapse
Affiliation(s)
- Tyler E Miller
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard Medical School, Boston, MA, USA
- Department of Pathology, Case Western Reserve University School of Medicine and Case Comprehensive Cancer Center, Cleveland, OH, USA
| | - Chadi A El Farran
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
- Ludwig Center at Harvard Medical School, Boston, MA, USA
| | - Charles P Couturier
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Sciences and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Neurosurgery, Brigham and Women's Hospital, Boston, MA, USA
- Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
- Brain Tumour Research Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada
| | - Zeyu Chen
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Joshua P D'Antonio
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Julia Verga
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Martin A Villanueva
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Sciences and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - L Nicolas Gonzalez Castro
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute and Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
| | - Yuzhou Evelyn Tong
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Sciences and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Tariq Al Saadi
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Andrew N Chiocca
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Yuanyuan Zhang
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Dieter Henrik Heiland
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jennifer L Guerriero
- Ludwig Center at Harvard Medical School, Boston, MA, USA
- Division of Breast Surgery, Department of Surgery, Brigham and Women's Hospital, Boston, MA, USA
| | - Kevin Petrecca
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, Quebec, Canada
| | - Mario L Suva
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Alex K Shalek
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Institute for Medical Engineering and Sciences and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, USA
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Ragon Institute of MGH, Massachusetts Institute of Technology and Harvard University, Cambridge, MA, USA
| | - Bradley E Bernstein
- Department of Cancer Biology, Dana Farber Cancer Institute, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA.
- Ludwig Center at Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
22
|
Zhang Y, Long J, Xu J, Zhong P, Wang B. Single-cell RNA sequencing reveals ECM remodeling-tumor stiffness-FAK as a key driver of vestibular schwannoma progression. Prog Neurobiol 2025; 247:102730. [PMID: 39988022 DOI: 10.1016/j.pneurobio.2025.102730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 12/17/2024] [Accepted: 02/18/2025] [Indexed: 02/25/2025]
Abstract
Vestibular schwannoma (VS), characterized by the absence of merlin expression, is the most prevalent benign tumor located at the cerebellopontine angle, lacking approved pharmaceutical interventions except for off-label utilization of bevacizumab. The role of Tumor stiffness-Focal adhesion kinase (FAK) activation in fueling tumor progression is well-established, with merlin deficiency serving as a biomarker for tumor sensitivity to FAK inhibitors. In this context, we investigated whether Tumor stiffness-FAK contributes to VS progression. Single-cell RNA sequencing revealed associations between VS progression and gene sets related to "Response to mechanical stimulus" and "Neurotrophin signaling pathway". Histological studies indicated a potential involvement of neurotrophins in early stages of VS tumorigenesis, while enhanced Extracellular matrix (ECM) remodeling-Tumor stiffness-FAK signaling accompanies later stages of VS progression. In vitro experiments demonstrated that elevated matrix stiffness induces cytoskeletal remodeling, cell proliferation, and metalloproteinase expression in VS cells by activating FAK. Conversely, FAK inhibition diminishes these effects. Collectively, this study suggests that ECM remodeling-Tumor stiffness contributes to VS progression via FAK activation, positioning FAK as a promising therapeutic target in treating VS.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Jianfei Long
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Jian Xu
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China
| | - Ping Zhong
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai 200032, China.
| | - Bin Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai 200032, China.
| |
Collapse
|
23
|
Shireman JM, Ammanuel SG, Dey M. Advancing Glioma Management: The Pivotal Role of Surgical Neuro-Oncology in Driving Innovation and Translational Research. Curr Oncol Rep 2025; 27:446-457. [PMID: 40138153 DOI: 10.1007/s11912-025-01662-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/06/2025] [Indexed: 03/29/2025]
Abstract
PURPOSE OF THE REVIEW This study aims to assess the evolution of the role of surgery in advancing the treatment paradigm of primary central nervous system malignancies, gliomas. RECENT FINDINGS Diagnostic and therapeutic surgical intervention is the cornerstone for management of all gliomas. Current treatment guidelines for all gliomas include maximal safe resection, with concurrent and adjuvant chemo/radiotherapy, or other targeted molecular therapies, for high-grade gliomas and subsets of low-grade gliomas dependent on mutation profiling and IDH status. The extent of surgical resection affects overall survival across all grades of gliomas. Recently, several technological advances have augmented a surgeon's ability to push the boundaries of extent of resection, while also opening the door for novel intraoperative diagnostic and therapeutic interventions. Increasingly surgery is playing a pivotal role in the management of gliomas from diagnosis to therapeutic intervention, to drug delivery and progression monitoring. Novel technological advances such as advanced image guidance, fluorescence markers, intraoperative functional mapping, histological identification, and intraoperative radiation and drug delivery, provide a fertile ground for combining innovative modalities together to drive better treatment strategies and outcomes for patients.
Collapse
Affiliation(s)
- Jack M Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, USA
| | - Simon G Ammanuel
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, USA
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine & Public Health, UW Carbone Cancer Center, Madison, WI, USA.
- University of Wisconsin School of Medicine & Public Health, 600 Highland Ave, Madison, WI, 53792, USA.
| |
Collapse
|
24
|
Song X, Tiek D, Lu M, Yu X, Wu R, Walker M, He Q, Sisbarro D, Hu B, Cheng SY. A Single-Cell Atlas of RNA Alternative Splicing in the Glioma-Immune Ecosystem. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645511. [PMID: 40196477 PMCID: PMC11974875 DOI: 10.1101/2025.03.26.645511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Single-cell analysis has refined our understanding of cellular heterogeneity in glioma, yet RNA alternative splicing (AS)-a critical layer of transcriptome regulation-remains underexplored at single-cell resolution. Here, we present a pan-glioma single-cell AS analysis in both tumor and immune cells through integrating seven SMART-seq2 datasets of human gliomas. Our analysis reveals lineage-specific AS across glioma cellular states, with the most divergent AS landscapes between mesenchymal- and neuronal-like glioma cells, exemplified by AS in TCF12 and PTBP2. Comparison between core and peripheral glioma cells highlights AS-redox co-regulation of cytoskeleton organization. Further analysis of glioma-infiltrating immune cells reveals potential isoform-level regulation of protein glycosylation in regulatory T cells and a link between MS4A7 AS in macrophages and clinical response to anti-PD-1 therapy. This study emphasizes the role of AS in glioma cellular heterogeneity, highlighting the importance of an isoform-centric approach to better understand the complex biological processes driving tumorigenesis.
Collapse
Affiliation(s)
- Xiao Song
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Deanna Tiek
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Minghui Lu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Xiaozhou Yu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Runxin Wu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Maya Walker
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Qiu He
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Derek Sisbarro
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, The Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
25
|
Asaka Y, Masumoto T, Uneda A, Chin VD, Otani Y, Peña T, Katayama H, Itano T, Ando T, Huang R, Fujimura A. Changes in adrenoceptor expression level contribute to the cellular plasticity of glioblastoma cells. J Physiol Sci 2025; 75:100016. [PMID: 40184918 PMCID: PMC12002996 DOI: 10.1016/j.jphyss.2025.100016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/07/2025]
Abstract
Glioblastoma cells are known to regulate their cellular plasticity in response to their surrounding microenvironment, but it is not fully understood what factors contribute to the cells' changing plasticity. Here, we found that glioblastoma cells alter the expression level of adrenoreceptors depending on their differentiation stage. Catecholamines are abundant in the central nervous system, and we found that noradrenaline, in particular, enhances the stemness of glioblastoma cells and promotes the dedifferentiation potential of already differentiated glioblastoma cells. Antagonist and RNAi experiments revealed that signaling through α1D-adrenoreceptor is important for noradrenaline action on glioblastoma cells. We also found that high α1D-adrenoreceptor expression was associated with poor prognosis in patients with gliomas. These data suggest that glioblastoma cells increase the expression level of their own adrenoreceptors to alter the surrounding tumor microenvironment favorably for survival. We believe that our findings will contribute to the development of new therapeutic strategies for glioblastoma.
Collapse
Affiliation(s)
- Yutaro Asaka
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Toshio Masumoto
- Division of Health Administration and Promotion, Department of Social Medicine, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori 683-8503, Japan
| | - Atsuhito Uneda
- Department of Neurosurgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Vanessa D Chin
- UMass Chan Medical School, UMass Memorial Medical Center, 55 Lake Ave. North, Worcester, MA 01655, USA
| | - Yusuke Otani
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Medical School, Boston, MA, USA
| | - Tirso Peña
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Harvard Medical School, Boston, MA, USA
| | - Haruyoshi Katayama
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Takuto Itano
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Teruhiko Ando
- Department of Orthopaedic Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Rongsheng Huang
- Department of Trauma Orthopedics, The Second Hospital of Dalian Medical University, 467 Zhongshan Rd, Shahekou district, Dalian, Liaoning 116000, China
| | - Atsushi Fujimura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; Neutron Therapy Research Center, Okayama University, Okayama, Okayama 700-8558, Japan.
| |
Collapse
|
26
|
Lu C, Kang T, Zhang J, Yang K, Liu Y, Song K, Lin Q, Dixit D, Gimple RC, Zhang Q, Shi Z, Fan X, Wu Q, Li D, Shan D, Gao J, Gu D, You H, Li Y, Yang J, Zhao L, Qiu Z, Yang H, Zhao N, Gao W, Tao W, Lu Y, Chen Y, Ji J, Zhu Z, Kang C, Man J, Agnihotri S, Wang Q, Lin F, Qian X, Mack SC, Hu Z, Li C, Taylor MD, Liu N, Zhang N, Lu M, You Y, Rich JN, Zhang W, Wang X. Combined targeting of glioblastoma stem cells of different cellular states disrupts malignant progression. Nat Commun 2025; 16:2974. [PMID: 40140646 PMCID: PMC11947120 DOI: 10.1038/s41467-025-58366-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 03/19/2025] [Indexed: 03/28/2025] Open
Abstract
Glioblastoma (GBM) is the most lethal primary brain tumor with intra-tumoral hierarchy of glioblastoma stem cells (GSCs). The heterogeneity of GSCs within GBM inevitably leads to treatment resistance and tumor recurrence. Molecular mechanisms of different cellular state GSCs remain unclear. Here, we find that classical (CL) and mesenchymal (MES) GSCs are enriched in reactive immune region and high CL-MES signature informs poor prognosis in GBM. Through integrated analyses of GSCs RNA sequencing and single-cell RNA sequencing datasets, we identify specific GSCs targets, including MEOX2 for the CL GSCs and SRGN for the MES GSCs. MEOX2-NOTCH and SRGN-NFκB axes play important roles in promoting proliferation and maintaining stemness and subtype signatures of CL and MES GSCs, respectively. In the tumor microenvironment, MEOX2 and SRGN mediate the resistance of CL and MES GSCs to macrophage phagocytosis. Using genetic and pharmacologic approaches, we identify FDA-approved drugs targeting MEOX2 and SRGN. Combined CL and MES GSCs targeting demonstrates enhanced efficacy, both in vitro and in vivo. Our results highlighted a therapeutic strategy for the elimination of heterogeneous GSCs populations through combinatorial targeting of MEOX2 and SRGN in GSCs.
Collapse
Affiliation(s)
- Chenfei Lu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Tao Kang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Yang Liu
- Department of Pharmacology, School of Medicine and Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China
| | - Kefan Song
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiankun Lin
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deobrat Dixit
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Ryan C Gimple
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, OH, USA
| | - Qian Zhang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao Fan
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiulian Wu
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Daqi Li
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danyang Shan
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jiancheng Gao
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danling Gu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao You
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqing Li
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Junlei Yang
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linjie Zhao
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Zhixin Qiu
- Department of Anesthesiology, Zhongshan Hospital, Institute for Translational Brain Research, State Key Laboratory of Medical Neurobiology, MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Ningwei Zhao
- Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Gao
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Weiwei Tao
- College of Biomedicine and Health & College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Yingmei Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yun Chen
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jing Ji
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhe Zhu
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, NY, USA
| | - Chunsheng Kang
- Laboratory of Neuro-oncology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical Analysis, Beijing, China
| | - Sameer Agnihotri
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA
| | - Qianghu Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Fan Lin
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Stephen C Mack
- Department of Developmental Neurobiology, Neurobiology and Brain Tumor Program, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Zhibin Hu
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chaojun Li
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Michael D Taylor
- Department of Pediatrics- Hematology/Oncology and Neurosurgery, Texas Children's Cancer Center, Hematology-Oncology Section, Baylor College of Medicine, Houston, Texas, USA
| | - Ning Liu
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Ming Lu
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
| | - Jeremy N Rich
- University of Pittsburgh Medical Center Hillman Cancer Center, Pittsburgh, PA, USA.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
| | - Xiuxing Wang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
- Department of Cell Biology, National Health Commission Key Laboratory of Antibody Techniques, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China.
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, Jiangsu, China.
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
27
|
Ordóñez-Rubiano EG, Rincón-Arias N, Shelton WJ, Salazar AF, Sierra MA, Bertani R, Gómez-Amarillo DF, Hakim F, Baldoncini M, Payán-Gómez C, Cómbita AL, Ordonez-Rubiano SC, Parra-Medina R. Current Applications of Single-Cell RNA Sequencing in Glioblastoma: A Scoping Review. Brain Sci 2025; 15:309. [PMID: 40149830 PMCID: PMC11940614 DOI: 10.3390/brainsci15030309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025] Open
Abstract
Background and Objective: The discovery of novel molecular biomarkers via next-generation sequencing technologies has revolutionized how glioblastomas (GBMs) are classified nowadays. This has resulted in more precise diagnostic, prognostic, and therapeutic approaches to address this malignancy. The present work examines the applications of single-cell RNA sequencing (scRNA-seq) in GBM, focusing on its potential to address tumor complexity and therapeutic resistance and improve patient outcomes. Methods: A scoping review of original studies published between 2009 and 2024 was conducted using the PUBMED and EMBASE databases. Studies in English or Spanish related to single-cell analysis and GBM were included. Key Findings: The database search yielded 453 publications. Themes related to scRNA-seq applied for the diagnosis, prognosis, treatment, and understanding of the cancer biology of GBM were used as criteria for article selection. Of the 24 studies that were included in the review, 11 focused on the tumor microenvironment and cell subpopulations in GBM samples, 5 investigated the use of sequencing to elucidate the GBM cancer biology, 3 examined disease prognosis using sequencing models, 3 applied translational research through scRNA-seq, and 2 addressed treatment-related problems in GBM elucidated by scRNA-seq. Conclusions: This scoping review explored the various clinical applications of scRNA-seq technologies in approaching GBM. The findings highlight the utility of this technology in unraveling the complex cellular and immune landscapes of GBM, paving the way for improved diagnosis and personalized treatments. This cutting-edge approach might strengthen treatment strategies against tumor progression and recurrence, setting the stage for multi-targeted interventions that could significantly improve outcomes for patients with aggressive, treatment-resistant GBMs.
Collapse
Affiliation(s)
- Edgar G. Ordóñez-Rubiano
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud—FUCS, Hospital de San José—Sociedad de Cirugía de Bogotá, Bogotá 110111, Colombia;
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia; (D.F.G.-A.)
| | - Nicolás Rincón-Arias
- Department of Neurosurgery, Fundación Universitaria de Ciencias de la Salud—FUCS, Hospital de San José—Sociedad de Cirugía de Bogotá, Bogotá 110111, Colombia;
| | - William J. Shelton
- School of Medicine, Universidad de los Andes, Bogotá 110111, Colombia; (W.J.S.); (A.F.S.)
| | - Andres F. Salazar
- School of Medicine, Universidad de los Andes, Bogotá 110111, Colombia; (W.J.S.); (A.F.S.)
| | | | - Raphael Bertani
- Division of Neurosurgery, University of São Paulo, São Paulo 01246-904, Brazil;
| | - Diego F. Gómez-Amarillo
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia; (D.F.G.-A.)
| | - Fernando Hakim
- Department of Neurosurgery, Fundación Santa Fe de Bogotá, Bogotá 111071, Colombia; (D.F.G.-A.)
| | - Matías Baldoncini
- Laboratory of Microsurgical Neuroanatomy, Second Chair of Gross Anatomy, School of Medicine, University of Buenos Aires, Buenos Aires B1430, Argentina;
| | - César Payán-Gómez
- Dirección Académica, Universidad Nacional de Colombia, Sede de La Paz, Cesar 202017, Colombia
| | - Alba Lucia Cómbita
- Department of Microbiology, School of Medicine, Universidad Nacional de Colombia, Bogotá 111321, Colombia
- Grupo de Investigación Traslacional en Oncología, Instituto Nacional de Cancerología, Bogotá 111321, Colombia
| | - Sandra C. Ordonez-Rubiano
- Department of Chemistry, School of Humanities and Sciences, Stanford University, Stanford, CA 94305, USA;
| | - Rafael Parra-Medina
- Department of Pathology, Instituto Nacional de Cancerología, Bogotá 111511, Colombia;
- Research Institute, Fundación Universitaria de Ciencias de la Salud—FUCS, Hospital de San José—Sociedad de Cirugía de Bogotá, Bogotá 111711, Colombia
| |
Collapse
|
28
|
Li S, Wang Z, Huang HD. Deciphering ovarian cancer heterogeneity through spatial transcriptomics, single-cell profiling, and copy number variations. PLoS One 2025; 20:e0317115. [PMID: 40036264 PMCID: PMC11878925 DOI: 10.1371/journal.pone.0317115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 12/21/2024] [Indexed: 03/06/2025] Open
Abstract
High-grade serous ovarian carcinoma (HGSOC) poses a formidable clinical challenge due to multidrug resistance (MDR) caused by tumor heterogeneity. To elucidate the intricate mechanisms underlying HGSOC heterogeneity, we conducted a comprehensive analysis of five single-cell transcriptomes and eight spatial transcriptomes derived from eight HGSOC patients. This study provides a comprehensive view of tumor heterogeneity across the spectrum of gene expression, copy number variation (CNV), and single-cell profiles. Our CNV analysis revealed intratumor heterogeneity by identifying distinct tumor clones, illuminating their evolutionary trajectories and spatial relationships. We further explored the homogeneity and heterogeneity of CNV across tumors to pinpoint the origin of heterogeneity. At the cellular level, single-cell RNA sequencing (scRNA seq) analysis identified three meta-programs that delineate the functional profile of tumor cells. The communication networks between tumor cell clusters exhibited unique patterns associated with the meta-programs governing these clusters. Notably, the ligand-receptor pair MDK - NCL emerged as a highly enriched interaction in tumor cell communication. To probe the functional significance of this interaction, we induced NCL overexpression in the SOVK3 cell line and observed enhanced tumor cell proliferation. These findings indicate that the MDK - NCL interaction plays a crucial role in promoting HGSOC tumor growth and may represent a promising therapeutic target. In conclusion, this study comprehensively unravels the multifaceted nature of HGSOC heterogeneity, providing potential therapeutic strategies for this challenging malignancy.
Collapse
Affiliation(s)
- Songyun Li
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, P.R. China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, P. R. China
| | - Zhuo Wang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, P.R. China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, P. R. China
| | - Hsien-Da Huang
- Warshel Institute for Computational Biology, The Chinese University of Hong Kong, Shenzhen, Guangdong, P.R. China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, P. R. China
| |
Collapse
|
29
|
Barron T, Yalçın B, Su M, Byun YG, Gavish A, Shamardani K, Xu H, Ni L, Soni N, Mehta V, Maleki Jahan S, Kim YS, Taylor KR, Keough MB, Quezada MA, Geraghty AC, Mancusi R, Vo LT, Castañeda EH, Woo PJ, Petritsch CK, Vogel H, Kaila K, Monje M. GABAergic neuron-to-glioma synapses in diffuse midline gliomas. Nature 2025; 639:1060-1068. [PMID: 39972132 PMCID: PMC11946904 DOI: 10.1038/s41586-024-08579-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/26/2024] [Indexed: 02/21/2025]
Abstract
High-grade gliomas (HGGs) are the leading cause of brain cancer-related death. HGGs include clinically, anatomically and molecularly distinct subtypes that stratify into diffuse midline gliomas (DMGs), such as H3K27M-altered diffuse intrinsic pontine glioma, and hemispheric HGGs, such as IDH wild-type glioblastoma. Neuronal activity drives glioma progression through paracrine signalling1,2 and neuron-to-glioma synapses3-6. Glutamatergic AMPA receptor-dependent synapses between neurons and glioma cells have been demonstrated in paediatric3 and adult4 high-grade gliomas, and early work has suggested heterogeneous glioma GABAergic responses7. However, neuron-to-glioma synapses mediated by neurotransmitters other than glutamate remain understudied. Using whole-cell patch-clamp electrophysiology, in vivo optogenetics and patient-derived orthotopic xenograft models, we identified functional, tumour-promoting GABAergic neuron-to-glioma synapses mediated by GABAA receptors in DMGs. GABAergic input has a depolarizing effect on DMG cells due to NKCC1 chloride transporter function and consequently elevated intracellular chloride concentration in DMG malignant cells. As membrane depolarization increases glioma proliferation3,6, we found that the activity of GABAergic interneurons promotes DMG proliferation in vivo. The benzodiazepine lorazepam enhances GABA-mediated signalling, increases glioma proliferation and growth, and shortens survival in DMG patient-derived orthotopic xenograft models. By contrast, only minimal depolarizing GABAergic currents were found in hemispheric HGGs and lorazepam did not influence the growth rate of hemispheric glioblastoma xenografts. Together, these findings uncover growth-promoting GABAergic synaptic communication between GABAergic neurons and H3K27M-altered DMG cells, underscoring a tumour subtype-specific mechanism of brain cancer neurophysiology.
Collapse
Affiliation(s)
- Tara Barron
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Belgin Yalçın
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Minhui Su
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Youkyeong Gloria Byun
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Avishai Gavish
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Kiarash Shamardani
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Haojun Xu
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Lijun Ni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Neeraj Soni
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Vilina Mehta
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Samin Maleki Jahan
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Yoon Seok Kim
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Kathryn R Taylor
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael B Keough
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Michael A Quezada
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Anna C Geraghty
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Rebecca Mancusi
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | - Linh Thuy Vo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Pamelyn J Woo
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Hannes Vogel
- Department of Pathology, Stanford University, Stanford, CA, USA
| | - Kai Kaila
- Faculty of Bio- and Environmental Sciences (MIBS), University of Helsinki, Helsinki, Finland
- Neuroscience Center (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Michelle Monje
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA.
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA.
- Department of Neurosurgery, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
30
|
Fathi Kazerooni A, Akbari H, Hu X, Bommineni V, Grigoriadis D, Toorens E, Sako C, Mamourian E, Ballinger D, Sussman R, Singh A, Verginadis II, Dahmane N, Koumenis C, Binder ZA, Bagley SJ, Mohan S, Hatzigeorgiou A, O'Rourke DM, Ganguly T, De S, Bakas S, Nasrallah MP, Davatzikos C. The radiogenomic and spatiogenomic landscapes of glioblastoma and their relationship to oncogenic drivers. COMMUNICATIONS MEDICINE 2025; 5:55. [PMID: 40025245 PMCID: PMC11873127 DOI: 10.1038/s43856-025-00767-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/12/2025] [Indexed: 03/04/2025] Open
Abstract
BACKGROUND Glioblastoma is a highly heterogeneous brain tumor, posing challenges for precision therapies and patient stratification in clinical trials. Understanding how genetic mutations influence tumor imaging may improve patient management and treatment outcomes. This study investigates the relationship between imaging features, spatial patterns of tumor location, and genetic alterations in IDH-wildtype glioblastoma, as well as the likely sequence of mutational events. METHODS We conducted a retrospective analysis of 357 IDH-wildtype glioblastomas with pre-operative multiparametric MRI and targeted genetic sequencing data. Radiogenomic signatures and spatial distribution maps were generated for key mutations in genes such as EGFR, PTEN, TP53, and NF1 and their corresponding pathways. Machine and deep learning models were used to identify imaging biomarkers and stratify tumors based on their genetic profiles and molecular heterogeneity. RESULTS Here, we show that glioblastoma mutations produce distinctive imaging signatures, which are more pronounced in tumors with less molecular heterogeneity. These signatures provide insights into how mutations affect tumor characteristics such as neovascularization, cell density, invasion, and vascular leakage. We also found that tumor location and spatial distribution correlate with genetic profiles, revealing associations between tumor regions and specific oncogenic drivers. Additionally, imaging features reflect the cross-sectionally inferred evolutionary trajectories of glioblastomas. CONCLUSIONS This study establishes clinically accessible imaging biomarkers that capture the molecular composition and oncogenic drivers of glioblastoma. These findings have potential implications for noninvasive tumor profiling, personalized therapies, and improved patient stratification in clinical trials.
Collapse
Affiliation(s)
- Anahita Fathi Kazerooni
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
- Center for Data-Driven Discovery in Biomedicine (D3b), Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hamed Akbari
- Department of Bioengineering, School of Engineering, Santa Clara University, Santa Clara, CA, USA
| | - Xiaoju Hu
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | - Vikas Bommineni
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
| | - Dimitris Grigoriadis
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
| | - Erik Toorens
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Chiharu Sako
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elizabeth Mamourian
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Dominique Ballinger
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robyn Sussman
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ashish Singh
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ioannis I Verginadis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nadia Dahmane
- Department of Neurological Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Zev A Binder
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen J Bagley
- Department of Radiation Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suyash Mohan
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Artemis Hatzigeorgiou
- Department of Computer Science and Biomedical Informatics, University of Thessaly, Lamia, Greece
- Hellenic Pasteur Institute, Athens, Greece
| | - Donald M O'Rourke
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Glioblastoma Translational Center of Excellence, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA, USA
| | - Tapan Ganguly
- Penn Genomic Analysis Core, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Subhajyoti De
- Rutgers Cancer Institute of New Jersey, Rutgers the State University of New Jersey, New Brunswick, NJ, USA
| | - Spyridon Bakas
- Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA
| | - MacLean P Nasrallah
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology & Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Christos Davatzikos
- AI2D Center for AI and Data Science for Integrated Diagnostics, University of Pennsylvania, Philadelphia, PA, USA.
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
31
|
Kwok DW, Stevers NO, Etxeberria I, Nejo T, Colton Cove M, Chen LH, Jung J, Okada K, Lakshmanachetty S, Gallus M, Barpanda A, Hong C, Chan GKL, Liu J, Wu SH, Ramos E, Yamamichi A, Watchmaker PB, Ogino H, Saijo A, Du A, Grishanina NR, Woo J, Diaz A, Hervey-Jumper SL, Chang SM, Phillips JJ, Wiita AP, Klebanoff CA, Costello JF, Okada H. Tumour-wide RNA splicing aberrations generate actionable public neoantigens. Nature 2025; 639:463-473. [PMID: 39972144 PMCID: PMC11903331 DOI: 10.1038/s41586-024-08552-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/19/2024] [Indexed: 02/21/2025]
Abstract
T cell-based immunotherapies hold promise in treating cancer by leveraging the immune system's recognition of cancer-specific antigens1. However, their efficacy is limited in tumours with few somatic mutations and substantial intratumoural heterogeneity2-4. Here we introduce a previously uncharacterized class of tumour-wide public neoantigens originating from RNA splicing aberrations in diverse cancer types. We identified T cell receptor clones capable of recognizing and targeting neoantigens derived from aberrant splicing in GNAS and RPL22. In cases with multi-site biopsies, we detected the tumour-wide expression of the GNAS neojunction in glioma, mesothelioma, prostate cancer and liver cancer. These neoantigens are endogenously generated and presented by tumour cells under physiologic conditions and are sufficient to trigger cancer cell eradication by neoantigen-specific CD8+ T cells. Moreover, our study highlights a role for dysregulated splicing factor expression in specific cancer types, leading to recurrent patterns of neojunction upregulation. These findings establish a molecular basis for T cell-based immunotherapies addressing the challenges of intratumoural heterogeneity.
Collapse
Affiliation(s)
- Darwin W Kwok
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nicholas O Stevers
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Iñaki Etxeberria
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Parker Institute for Cancer Immunotherapy, New York, NY, USA
| | - Takahide Nejo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Maggie Colton Cove
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Lee H Chen
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jangham Jung
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Kaori Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | | | - Marco Gallus
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University Hospital Muenster, Muenster, Germany
| | - Abhilash Barpanda
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chibo Hong
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Gary K L Chan
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Jerry Liu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Samuel H Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Emilio Ramos
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Akane Yamamichi
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Payal B Watchmaker
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Hirokazu Ogino
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Atsuro Saijo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aidan Du
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Nadia R Grishanina
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - James Woo
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Aaron Diaz
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Shawn L Hervey-Jumper
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Joanna J Phillips
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, CA, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub San Francisco, San Francisco, CA, USA
| | - Christopher A Klebanoff
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Parker Institute for Cancer Immunotherapy, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
| | - Hideho Okada
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
32
|
Teng F, Wei H, Che D, Miao K, Dong X. Identifying macrophage-associated subtypes in patients with serous ovarian cancer and exploring potential personalized therapeutic drugs using combined single-cell and bulk RNA sequencing omics. Heliyon 2025; 11:e42429. [PMID: 40028569 PMCID: PMC11870195 DOI: 10.1016/j.heliyon.2025.e42429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 01/14/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Purpose We aimed to analyze the sensitivity of patients to chemotherapy drugs and actively explore potential new intervention targets, providing an essential reference for personalized treatment. Methods Candidate markers with significant differential expression in macrophages were identified by analyzing gene expression at the single-cell level. A weighted gene co-expression network (WGCN) was constructed on the GSE26712 dataset to explore the modules most relevant to macrophages. Differentially expressed genes for specific markers were identified. A multi-factor regulatory network was constructed based on single-cell dataset markers screening, differentially expressed genes, and genes commonly present in WGCNA modules. Different macrophage subtypes were identified using this network. Machine learning was used to filter and predict the markers' drug sensitivity, and the potential therapeutic compounds for specific markers were screened. Results We identified 14 and 17 of M1 and M2 macrophage candidate markers, respectively. In the multi-factor regulatory network of M1 macrophages, 6 out of 14 markers recognized 159 transcription factors (TFs) and 48 micro RNAs (miRNAs), whereas 13 of 17 markers recognized 191 TFs and 182 miRNAs in the multi-factor regulatory network of M2 macrophages. Filtering of the identified differentially expressed genes using random forests yielded 15 M1 and M2 macrophage-specific markers. Drug sensitivity prediction analysis and in vitro experiments revealed the close association of these markers with common chemotherapy drug sensitivity. Conclusion We identified specific M1 and M2 macrophage markers and found potential therapeutic compounds (dasatinib and afatinib) in these specific markers. These potential therapeutic compounds provide insight into the underlying mechanisms of serous ovarian cancer (OC) and inspire more effective treatment methods.
Collapse
Affiliation(s)
- Fei Teng
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Hong Wei
- In-Patient Ultrasound Department, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Dehong Che
- Ultrasound Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Kuo Miao
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiaoqiu Dong
- Ultrasound Department, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
33
|
Zhang M, Zhou G, Xu Y, Wei B, Liu Q, Zhang G, Chang R. Immunogenic cell death signature predicts survival and reveals the role of VEGFA + Mast cells in lung adenocarcinoma. Sci Rep 2025; 15:7213. [PMID: 40021802 PMCID: PMC11871002 DOI: 10.1038/s41598-025-91401-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 02/20/2025] [Indexed: 03/03/2025] Open
Abstract
Lung cancer is prevalent worldwide and is a major cause of cancer-related mortality. Despite being the primary model for immunotherapy research, the response rates of lung cancer patients to immunotherapy are unsatisfactory. Furthermore, research on immunogenic cell death (ICD) in lung cancer is limited, which limits the development of strategies that combine ICD-related therapies with immunotherapy. In this study, we compiled and summarized 69 genes associated with ICD and developed an IRS. Across seven independent datasets, the IRS was identified as an independent prognostic factor. IRS was positively associated with multiple tumor proliferation pathways and negatively associated with immune-related pathways. Additionally, IRS negatively correlated with the infiltration of various immune cells, supporting its association with survival outcomes. Based on the correlation between IRS and immune activity, we validated the ability of IRS to predict immunotherapy efficacy across seven immunotherapy datasets and demonstrated that patients who respond to immunotherapy tend to have a lower IRS. Moreover, utilizing single-cell RNA sequencing, we revealed the role of mast cells in the TME with the highest IRS. Through interactions with various receptors on macrophages, endothelial cells, and tumor cells, mast cells promote tumor progression, providing a comprehensive explanation for poor prognosis and lack of response to immunotherapy in patients with high IRS. Our study offers new guidance for combination therapies in lung adenocarcinoma patients and elucidated the mechanism by which mast cells contribute to cancer development within the TME.
Collapse
Affiliation(s)
- Meng Zhang
- The Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
| | - Guowei Zhou
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yantao Xu
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Benliang Wei
- Big Data Institute, Central South University, Changsha, Hunan, China
| | - Qian Liu
- Big Data Institute, Central South University, Changsha, Hunan, China
| | - Guanxiong Zhang
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
- The Department of Dermatology, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- National Engineering Research Center of Personalized Diagnostic and Therapeutic Technology, Changsha, Hunan, China.
- Furong Laboratory, Changsha, Hunan, China.
| | - Ruimin Chang
- The Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
- Hunan Key Laboratory of Skin Cancer and Psoriasis, Hunan Engineering Research Center of Skin Health and Disease, Xiangya Hospital, Changsha, Hunan, China.
| |
Collapse
|
34
|
Jang HJ, Park JW. Microenvironmental Drivers of Glioma Progression. Int J Mol Sci 2025; 26:2108. [PMID: 40076738 PMCID: PMC11900340 DOI: 10.3390/ijms26052108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Gliomas, particularly glioblastoma (GBM), are among the most challenging brain tumors due to their complex and dynamic tumor microenvironment (TME). The TME plays a pivotal role in tumor progression, immune evasion, and resistance to therapy through intricate interactions among glioma cells, immune components, neurons, astrocytes, the extracellular matrix, and the blood-brain barrier. Targeting the TME has demonstrated potential, with immunotherapies such as checkpoint inhibitors and neoadjuvant therapies enhancing immune responses. Nonetheless, overcoming the immunosuppressive landscape and metabolic adaptations continues to pose significant challenges. This review explores the diverse cellular and molecular mechanisms that shape the glioma TME. A deeper understanding of these mechanisms holds promise for providing novel therapeutic opportunities to improve glioma treatment outcomes.
Collapse
Affiliation(s)
- Hyun Ji Jang
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
| | - Jong-Whi Park
- Department of Life Sciences, College of BioNano Technology, Gachon University, Seongnam 13120, Republic of Korea
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
35
|
Hei Yu KK, Abou-Mrad Z, Törkenczy K, Schulze I, Gantchev J, Baquer G, Hopland K, Bander ED, Tosi U, Brennan C, Moss NS, Hamard PJ, Koche R, Lareau C, Agar NYR, Merghoub T, Tabar V. A pathogenic subpopulation of human glioma associated macrophages linked to glioma progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.12.637857. [PMID: 40027797 PMCID: PMC11870419 DOI: 10.1101/2025.02.12.637857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
Malignant gliomas follow two distinct natural histories: de novo high grade tumors such as glioblastoma, or lower grade tumors with a propensity to transform into high grade disease. Despite differences in tumor genotype, both entities converge on a common histologically aggressive phenotype, and the basis for this progression is unknown. Glioma associated macrophages (GAM) have been implicated in this process, however GAMs are ontologically and transcriptionally diverse, rendering isolation of pathogenic subpopulations challenging. Since macrophage contextual gene programs are orchestrated by transcription factors acting on cis -acting promoters and enhancers in gene regulatory networks (GRN), we hypothesized that functional populations of GAMs can be resolved through GRN inference. Here we show via parallel single cell RNA and ATAC sequencing that a subpopulation of human GAMs can be defined by a GRN centered around the Activator Protein-1 transcription factor FOSL2 preferentially enriched in high grade tumors. Using this GRN we nominate ANXA1 and HMOX1 as surrogate cell surface markers for activation, thus permitting prospective isolation and functional validation in human GAMs. These cells, termed malignancy associated GAMs (mGAMs) are pro-invasive, pro-angiogenic, pro-proliferative, possess intact antigen presentation but skew T-cells towards a CD4+FOXP3+ phenotype under hypoxia. Ontologically, mGAMs share somatic mitochondrial mutations with peripheral blood monocytes, and their presence correlates with high grade disease irrespective of underlying tumor mutation status. Furthermore, spatio-temporally mGAMs occupy distinct metabolic niches; mGAMs directly induce proliferation and mesenchymal transition of low grade glioma cells and accelerate tumor growth in vivo upon co-culture. Finally mGAMs are preferentially enriched in patients with newly transformed regions in human gliomas, supporting the view that mGAMs play a pivotal role in glioma progression and may represent a plausible therapeutic target in human high-grade glioma.
Collapse
|
36
|
Yuan H, Liang X, Zhang X, Cao Y. Single-cell transcriptomes reveal cell-type-specific and sample-specific gene function in human cancer. Heliyon 2025; 11:e42218. [PMID: 39959484 PMCID: PMC11830296 DOI: 10.1016/j.heliyon.2025.e42218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 01/22/2025] [Accepted: 01/22/2025] [Indexed: 02/18/2025] Open
Abstract
Accurate annotation of gene function in individual samples and even in each cell type is essential for understanding the pathogenesis of cancers. Single-cell RNA-sequencing (scRNA-seq) provides unprecedented resolution to decipher gene function. In order to explore how scRNA-seq contributes to the understanding of gene function in cancers, we constructed an assessment framework based on co-expression network and neighbor-voting method using 116,814 cells. Compared with bulk transcriptome, scRNA-seq recalled more experimentally verified gene functions. Surprisingly, scRNA-seq revealed cell-type-specific functions, especially in immune cells, whose expression profile recalled immune-related functions that were not discovered in cancer cells. Furthermore, scRNA-seq discovered sample-specific functions, highlighting that it provided sample-specific information. We also explored factors affecting the performance of gene function prediction. We found that 500 or more cells should be considered in the prediction with scRNA-seq, and that scRNA-seq datasets generated from 10x Genomics platform had a better performance than those from Smart-seq2. Collectively, we compared the prediction performance of bulk data and scRNA-seq data from multiple perspectives, revealing the irreplaceable role of single-cell sequencing in decoding the biological progresses in which the gene involved.
Collapse
Affiliation(s)
- Huating Yuan
- College of Biology and Engineering, Guizhou Medical University, Guiyang, China
| | - Xin Liang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Xinxin Zhang
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, China
| | - Yu Cao
- Institute of Big Health, Guizhou Medical University, Guiyang, China
| |
Collapse
|
37
|
Robinson SD, Filippopoulou C, Besta S, Samuels M, Betrán AL, Abu Ajamieh M, Vella V, Jones W, Giamas G. Spatial biology - unravelling complexity within the glioblastoma microenvironment. Trends Mol Med 2025:S1471-4914(25)00014-0. [PMID: 39934022 DOI: 10.1016/j.molmed.2025.01.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/21/2025] [Accepted: 01/22/2025] [Indexed: 02/13/2025]
Abstract
The advent and refinement of state-of-the-art spatial biology technologies have facilitated analysis that combines the advantages of high-throughput single cell analysis with techniques that preserve tissue architecture. This combination of cellular phenotyping with retained spatial context provides a much greater understanding of cellular interactions within the tumour microenvironment (TME). For glioblastoma, with its significant intra-tumoural heterogeneity, cellular plasticity, and complex TME, appreciating and understanding these spatial patterns may prove key to improving patient outcomes. This review examines the advances in spatial biology techniques, discusses how these methodologies are being applied to study glioblastoma, and explores how spatial information improves understanding of the TME. Ultimately, it is this spatial context that will accelerate the identification of more effective treatments for glioblastoma.
Collapse
Affiliation(s)
- Stephen D Robinson
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK; Sussex Cancer Centre, University Hospitals Sussex NHS Foundation Trust, Brighton, BN2 5BD, UK.
| | - Chrysa Filippopoulou
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University, Oncology Department of the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Simoni Besta
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University, Oncology Department of the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Mark Samuels
- International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University, Oncology Department of the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China
| | - Andrea L Betrán
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Maha Abu Ajamieh
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Viviana Vella
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - William Jones
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK
| | - Georgios Giamas
- Department of Biochemistry and Biomedicine, School of Life Sciences, University of Sussex, Brighton, BN1 9QG, UK; International Oncology Institute, The First Affiliated Hospital of Zhejiang Chinese Medical University, Oncology Department of the First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou 310053, China.
| |
Collapse
|
38
|
Huang Y, Shan Y, Zhang W, Printzis C, Pesce L, Stover D, Stanhope C, Stranger BE, Huang RS. Sex differences in the molecular profile of adult diffuse glioma are shaped by IDH status and tumor microenvironment. Neuro Oncol 2025; 27:430-444. [PMID: 39367624 PMCID: PMC11812052 DOI: 10.1093/neuonc/noae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Sex differences in adult diffuse glioma (ADG) are well established clinically, yet the underlying molecular mechanisms remain inadequately understood. Here, we aim to reveal molecular features and cellular compositions unique to each sex in ADG to comprehend the role of sex in disease etiology. METHODS We quantified sex differences in the transcriptome of ADG using multiple independent glioma patient datasets. Next, we delved into the single-cell landscape to examine sex differences in gene expression and cellular composition. To explore how sex influences disease progression, we analyzed paired samples from primary and recurrent ADG cases, aiming to identify sex-specific differences in molecular and cellular features. RESULTS Our analysis revealed that mutations in isocitrate dehydrogenase (IDH) genes and the tumor microenvironment emerged as primary influencers of sex-differential molecular enrichments. In IDHwt tumors, genes in the neuronal signaling pathway are found to be enriched in male tumors, while genes in hypoxia and inflammatory response pathways are enriched in female tumors. This pattern was reversed in IDHmut gliomas. We hypothesized that these distinctions could be attributed to heterogeneous cellular composition between sexes. Using single-cell data, we observed distinctive patterns of sex differences in cell states, cell composition, and cell-cell interaction in IDHwt and IDHmut tumors separately. Further, by comparing molecular changes in paired primary and recurrent ADG samples, we identified sex-specific differences in molecular characteristics and cellular compositions of recurrent tumors. CONCLUSIONS Our results provide a comprehensive multilevel characterization of sex differences in ADG; such findings provide novel insights into glioma disease progression in each sex.
Collapse
Affiliation(s)
- Yingbo Huang
- Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuting Shan
- Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weijie Zhang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christina Printzis
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lorenzo Pesce
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Danielle Stover
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Catherine Stanhope
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Barbara E Stranger
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rong Stephanie Huang
- Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
39
|
Sojka C, Wang HLV, Bhatia TN, Li Y, Chopra P, Sing A, Voss A, King A, Wang F, Joseph K, Ravi VM, Olson J, Hoang K, Nduom E, Corces VG, Yao B, Sloan SA. Mapping the developmental trajectory of human astrocytes reveals divergence in glioblastoma. Nat Cell Biol 2025; 27:347-359. [PMID: 39779941 DOI: 10.1038/s41556-024-01583-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
Glioblastoma (GBM) is defined by heterogeneous and resilient cell populations that closely reflect neurodevelopmental cell types. Although it is clear that GBM echoes early and immature cell states, identifying the specific developmental programmes disrupted in these tumours has been hindered by a lack of high-resolution trajectories of glial and neuronal lineages. Here we delineate the course of human astrocyte maturation to uncover discrete developmental stages and attributes mirrored by GBM. We generated a transcriptomic and epigenomic map of human astrocyte maturation using cortical organoids maintained in culture for nearly 2 years. Through this approach, we chronicled a multiphase developmental process. Our time course of human astrocyte maturation includes a molecularly distinct intermediate period that serves as a lineage commitment checkpoint upstream of mature quiescence. This intermediate stage acts as a site of developmental deviation separating IDH-wild-type neoplastic astrocyte-lineage cells from quiescent astrocyte populations. Interestingly, IDH1-mutant tumour astrocyte-lineage cells are the exception to this developmental perturbation, where immature properties are suppressed as a result of D-2-hydroxyglutarate oncometabolite exposure. We propose that this defiance is a consequence of IDH1-mutant-associated epigenetic dysregulation, and we identified biased DNA hydroxymethylation (5hmC) in maturation genes as a possible mechanism. Together, this study illustrates a distinct cellular state aberration in GBM astrocyte-lineage cells and presents developmental targets for experimental and therapeutic exploration.
Collapse
Affiliation(s)
- Caitlin Sojka
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Hsiao-Lin V Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Tarun N Bhatia
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Yangping Li
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Pankaj Chopra
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anson Sing
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Anna Voss
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Alexia King
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Feng Wang
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Vidhya M Ravi
- Department of Neurosurgery, Medical Center and Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jeffrey Olson
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Kimberly Hoang
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Edjah Nduom
- Department of Neurosurgery, Emory University School of Medicine, Atlanta, GA, USA
| | - Victor G Corces
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Yao
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - Steven A Sloan
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA.
- Emory Center for Neurodegenerative Disease, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
40
|
Chih YC, Dietsch AC, Koopmann P, Ma X, Agardy DA, Zhao B, De Roia A, Kourtesakis A, Kilian M, Krämer C, Suwala AK, Stenzinger M, Boenig H, Blum A, Pienkowski VM, Aman K, Becker JP, Feldmann H, Bunse T, Harbottle R, Riemer AB, Liu HK, Etminan N, Sahm F, Ratliff M, Wick W, Platten M, Green EW, Bunse L. Vaccine-induced T cell receptor T cell therapy targeting a glioblastoma stemness antigen. Nat Commun 2025; 16:1262. [PMID: 39893177 PMCID: PMC11787355 DOI: 10.1038/s41467-025-56547-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 01/20/2025] [Indexed: 02/04/2025] Open
Abstract
T cell receptor-engineered T cells (TCR-T) could be advantageous in glioblastoma by allowing safe and ubiquitous targeting of the glioblastoma-derived peptidome. Protein tyrosine phosphatase receptor type Z1 (PTPRZ1), is a clinically targetable glioblastoma antigen associated with glioblastoma cell stemness. Here, we identify a therapeutic HLA-A*02-restricted PTPRZ1-reactive TCR retrieved from a vaccinated glioblastoma patient. Single-cell sequencing of primary brain tumors shows PTPRZ1 overexpression in malignant cells, especially in glioblastoma stem cells (GSCs) and astrocyte-like cells. The validated vaccine-induced TCR recognizes the endogenously processed antigen without off-target cross-reactivity. PTPRZ1-specific TCR-T (PTPRZ1-TCR-T) kill target cells antigen-specifically, and in murine experimental brain tumors, their combined intravenous and intracerebroventricular administration is efficacious. PTPRZ1-TCR-T maintain stem cell memory phenotype in vitro and in vivo and lyse all examined HLA-A*02+ primary glioblastoma cell lines with a preference for GSCs and astrocyte-like cells. In summary, we demonstrate the proof of principle to employ TCR-T to treat glioblastoma.
Collapse
MESH Headings
- Glioblastoma/immunology
- Glioblastoma/therapy
- Glioblastoma/pathology
- Glioblastoma/genetics
- Humans
- Animals
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Mice
- Brain Neoplasms/immunology
- Brain Neoplasms/therapy
- Brain Neoplasms/pathology
- Cell Line, Tumor
- Neoplastic Stem Cells/immunology
- Neoplastic Stem Cells/metabolism
- Cancer Vaccines/immunology
- T-Lymphocytes/immunology
- T-Lymphocytes/transplantation
- Antigens, Neoplasm/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/immunology
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/genetics
- Receptor-Like Protein Tyrosine Phosphatases, Class 5/metabolism
- HLA-A2 Antigen/immunology
- Immunotherapy, Adoptive/methods
- Xenograft Model Antitumor Assays
- Female
Collapse
Grants
- Swiss Cancer Foundation (Swiss Bridge Award), the Else Kröner Fresenius Foundation (2019_EKMS.49), the University Heidelberg Foundation (Hella Buühler Award), the DFG (German Research Foundation), project 404521405 (SFB1389 UNITE Glioblastoma B03), the DKFZ Hector institute (T-SIRE), the Hertie Foundation, the University of Heidelberg, ExploreTech! the DKTK Joint Funding AMI2GO, the Rolf Schwiete Foundation (2021-009), the HI-TRON strategy project PACESSETTING, the DKTK Joint Funding Program INNOVATION INVENT4GB.
- The DFG, project 404521405 (SFB1389 UNITE Glioblastoma B01) the DKTK Joint Funding AMI2GO, the Rolf Schwiete Foundation (2021-009), the HI-TRON strategy project PACESSETTING, the DKTK Joint Funding Program INNOVATION INVENT4GB.
Collapse
Affiliation(s)
- Yu-Chan Chih
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Amelie C Dietsch
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Philipp Koopmann
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Xiujian Ma
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Division of Molecular Neurogenetics, DKFZ, DKFZ-ZMBH alliance, Heidelberg, Germany
| | - Dennis A Agardy
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Binghao Zhao
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Alice De Roia
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- DNA Vector Laboratory, DKFZ, Heidelberg, Germany
| | - Alexandros Kourtesakis
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany
- CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Michael Kilian
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher Krämer
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Abigail K Suwala
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Institute for Pathology, Department of Neuropathology, Heidelberg University, Heidelberg, Germany
- CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Miriam Stenzinger
- Institute for Clinical Transfusion Medicine and Cell Therapy, Heidelberg, Germany
- Institute for Immunology, Heidelberg University Hospital, Heidelberg, Germany
| | - Halvard Boenig
- Faculty of Medicine, Goethe University, Frankfurt a.M., Frankfurt, Germany
- Institute for Transfusion Medicine and Immunohematology, German Red Cross Blood Service Baden-Württemberg-Hessen, Frankfurt a.M., Frankfurt, Germany
| | | | | | - Kuralay Aman
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Jonas P Becker
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Henrike Feldmann
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Faculty of Biosciences, Heidelberg University, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Theresa Bunse
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
| | - Richard Harbottle
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- DNA Vector Laboratory, DKFZ, Heidelberg, Germany
| | - Angelika B Riemer
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Division of Immunotherapy and Immunoprevention, DKFZ, Heidelberg, Germany
- Molecular Vaccine Design, German Center for Infection Research (DZIF), partner site Heidelberg, Heidelberg, Germany
| | - Hai-Kun Liu
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Division of Molecular Neurogenetics, DKFZ, DKFZ-ZMBH alliance, Heidelberg, Germany
| | - Nima Etminan
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Felix Sahm
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Institute for Pathology, Department of Neuropathology, Heidelberg University, Heidelberg, Germany
- CCU Neuropathology, DKFZ, Heidelberg, Germany
| | - Miriam Ratliff
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- CCU Neurooncology, DKFZ, Heidelberg, Germany
- Department of Neurosurgery, University Hospital Mannheim, Mannheim, Germany
| | - Wolfgang Wick
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Neurology Clinic, Heidelberg University Hospital, Heidelberg, Germany
- CCU Neurooncology, DKFZ, Heidelberg, Germany
| | - Michael Platten
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany
- Immune Monitoring Unit, National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Helmholtz Institute for Translational Oncology Mainz (HI-TRON Mainz) - A Helmholtz Institute of the DKFZ, Mainz, Germany
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany
| | - Edward W Green
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany
| | - Lukas Bunse
- Clinical Cooperation Unit (CCU) Neuroimmunology and Brain Tumor Immunology, German Cancer Research Center (DKFZ), Heidelberg, Germany.
- German Cancer Consortium (DKTK), DKFZ, core center Heidelberg, Heidelberg, Germany.
- Department of Neurology, Medical Faculty Mannheim, Mannheim Center for Translation Neuroscience (MCTN), Heidelberg University, Mannheim, Germany.
- DKFZ Hector Cancer Institute at the University Medical Center Mannheim, Mannheim, Germany.
| |
Collapse
|
41
|
Hamed AA, Hua K, Trinh QM, Simons BD, Marioni JC, Stein LD, Dirks PB. Gliomagenesis mimics an injury response orchestrated by neural crest-like cells. Nature 2025; 638:499-509. [PMID: 39743595 PMCID: PMC11821533 DOI: 10.1038/s41586-024-08356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Glioblastoma is an incurable brain malignancy. By the time of clinical diagnosis, these tumours exhibit a degree of genetic and cellular heterogeneity that provides few clues to the mechanisms that initiate and drive gliomagenesis1,2. Here, to explore the early steps in gliomagenesis, we utilized conditional gene deletion and lineage tracing in tumour mouse models, coupled with serial magnetic resonance imaging, to initiate and then closely track tumour formation. We isolated labelled and unlabelled cells at multiple stages-before the first visible abnormality, at the time of the first visible lesion, and then through the stages of tumour growth-and subjected cells of each stage to single-cell profiling. We identify a malignant cell state with a neural crest-like gene expression signature that is highly abundant in the early stages, but relatively diminished in the late stage of tumour growth. Genomic analysis based on the presence of copy number alterations suggests that these neural crest-like states exist as part of a heterogeneous clonal hierarchy that evolves with tumour growth. By exploring the injury response in wounded normal mouse brains, we identify cells with a similar signature that emerge following injury and then disappear over time, suggesting that activation of an injury response program occurs during tumorigenesis. Indeed, our experiments reveal a non-malignant injury-like microenvironment that is initiated in the brain following oncogene activation in cerebral precursor cells. Collectively, our findings provide insight into the early stages of glioblastoma, identifying a unique cell state and an injury response program tied to early tumour formation. These findings have implications for glioblastoma therapies and raise new possibilities for early diagnosis and prevention of disease.
Collapse
Affiliation(s)
- Akram A Hamed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Department, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kui Hua
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Benjamin D Simons
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge, UK.
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Lincoln D Stein
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Department, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
42
|
van Hijfte L, Geurts M, de Heer I, Ghisai SA, Balcioglu HE, Hoogstrate Y, Vallentgoed WR, Head R, Luning R, van den Bosch T, Westerman B, Wesseling P, Joyce JA, French P, Debets R. Gemistocytic tumor cells programmed for glial scarring characterize T cell confinement in IDH-mutant astrocytoma. Nat Commun 2025; 16:1156. [PMID: 39880824 PMCID: PMC11779865 DOI: 10.1038/s41467-025-56441-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Isocitrate dehydrogenase 1/2 mutant (IDHmt) astrocytoma is considered a T cell-deprived tumor, yet little is known regarding the phenotypes underlying T cell exclusion. Using bulk, single nucleus and spatial RNA and protein profiling, we demonstrate that a distinct spatial organization underlies T cell confinement to the perivascular space (T cell cuff) in IDHmt astrocytoma. T cell cuffs are uniquely characterized by a high abundance of gemistocytic tumor cells (GTC) in the surrounding stroma. Integrative analysis shows that GTC-high tumors are enriched for lymphocytes and tumor associated macrophages (TAM) and express immune cell migration and activation programs. Specifically, GTCs constitute a distinct sub-cluster of the astrocyte-like tumor cell state that co-localizes with immune reactive TAMs. Neighboring GTCs and TAMs express receptor-ligand pairs characteristic of reactive astrogliosis and glial scarring, such as SPP1/CD44 and IL-1β/IL1R1. Collectively, we reveal that T cell confinement in IDHmt astrocytomas associates with GTC-TAM networks that mimic glial scarring mechanisms.
Collapse
Affiliation(s)
- Levi van Hijfte
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Marjolein Geurts
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Iris de Heer
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Santoesha A Ghisai
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Hayri E Balcioglu
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Youri Hoogstrate
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wies R Vallentgoed
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rania Head
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Rosa Luning
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Bart Westerman
- Department of Neurosurgery, Amsterdam UMC/VUMC, Amsterdam, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, Amsterdam UMC/VUMC and Brain Tumour Center, Amsterdam, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Utrecht, The Netherlands
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, Lausanne, Switzerland
- Agora Cancer Center Lausanne and Swiss Cancer Center Léman, Lausanne, Switzerland
| | - Pim French
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Reno Debets
- Department of Medical Oncology, Laboratory of Tumor Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| |
Collapse
|
43
|
Han Y, Huang Y. Political economics in health and implications for neurosurgery diseases. Front Public Health 2025; 12:1444249. [PMID: 39935745 PMCID: PMC11811093 DOI: 10.3389/fpubh.2024.1444249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 12/30/2024] [Indexed: 02/13/2025] Open
Abstract
The field of political economics in health has a significant and far-reaching impact on public health. It encompasses a diverse range of interconnected domains, including the economy, welfare, the environment, food and drug safety, pollution emissions, occupational safety, the quality of medical services, consumer rights, public health policy, healthcare policy, scientific research, and marketing management. In this review, we examine the global influence of political economics on health outcomes and delineate the impact of prevalent neurosurgical conditions on individual and collective healthcare resources. This review will discuss the effects of political-economic factors on the prevalence and treatment of neurosurgical diseases, including stroke, traumatic brain injury (TBI), intracerebral hemorrhage (ICH), and brain malignant tumors. Furthermore, the current challenges and future directions will be discussed. We intend this review to facilitate the exchange and integration of political economics, public health, and neurosurgery, provide a foundation for policy development, enhance the prevention, diagnosis, and treatment of neurosurgical diseases, and ultimately promote public health.
Collapse
Affiliation(s)
- Yi Han
- School of Economics and Management, Leshan Normal University, Leshan, China
| | - Yutao Huang
- Department of Neurosurgery, West China Hospital, West China Medical School, Sichuan University, Chengdu, China
| |
Collapse
|
44
|
Greenberg SA. Anti-correlation of KLRG1 and PD-1 expression in human tumor CD8 T cells. Oncotarget 2025; 16:1-8. [PMID: 39832302 PMCID: PMC11745485 DOI: 10.18632/oncotarget.28679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/30/2024] [Indexed: 01/22/2025] Open
Abstract
Recently, combination checkpoint therapy of cancer has been recognized as producing additive as opposed to synergistic benefit due in part to positively correlated effects. The potential for uncorrelated or negatively correlated therapies to produce true synergistic benefits has been noted. Whereas the inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, and TIGIT have been collectively characterized as exhaustion receptors, another inhibitory receptor KLRG1 was historically characterized as a senescent receptor and received relatively little attention as a potential checkpoint inhibitor target. The anti-tumor effects of KLRG1 blockade has relatively recently been demonstrated in preclinical in vivo studies. Here, expression of the inhibitory receptors PD-1, CTLA-4, TIM-3, LAG-3, TIGIT, and KLRG1 was studied in publicly available gene expression datasets. Bulk RNA microarray and RNAseq, and single cell RNAseq data from healthy blood and tumor tissue samples were analyzed for Pearson correlation. CD8 T cell differentiation of memory T cells from the TEM to TEMRA states is characterized by PD-1/KLRG1 anti-correlation, with decreased PD-1 expression but increased KLRG1 expression. Single cell RNAseq analysis of tumor infiltrating CD8 T cells shows positive correlation of CTLA-4, TIM-3, LAG-3, TIGIT, GITR, 4-1BB, and OX40 with PD-1 but negative correlation of KLRG1 with PD-1. The anti-correlation of PD-1 and KLRG1 expression in human tumor infiltrating CD8 T cells suggests the potential for combination therapy supra-additive benefits of anti-PD-1 and anti-KLRG1 therapies.
Collapse
Affiliation(s)
- Steven A. Greenberg
- Department of Neurology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
45
|
Zhang L, Zhou Y, Yang Z, Jiang L, Yan X, Zhu W, Shen Y, Wang B, Li J, Song J. Lipid droplets in central nervous system and functional profiles of brain cells containing lipid droplets in various diseases. J Neuroinflammation 2025; 22:7. [PMID: 39806503 PMCID: PMC11730833 DOI: 10.1186/s12974-025-03334-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/02/2025] [Indexed: 01/16/2025] Open
Abstract
Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders. Additionally, we also emphasize the paradoxical role of LDs in post-cerebral ischemia inflammation and explore potential underlying mechanisms, aiming to identify novel therapeutic targets for this disease.
Collapse
Affiliation(s)
- Longxiao Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yunfei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Zhongbo Yang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Liangchao Jiang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xinyang Yan
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Wenkai Zhu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Yi Shen
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Bolong Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Jiaxi Li
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Jinning Song
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
46
|
Furth N, Cohen N, Spitzer A, Salame TM, Dassa B, Mehlman T, Brandis A, Moussaieff A, Friedmann-Morvinski D, Castro MG, Fortin J, Suvà ML, Tirosh I, Erez A, Ron G, Shema E. Oncogenic IDH1 mut drives robust loss of histone acetylation and increases chromatin heterogeneity. Proc Natl Acad Sci U S A 2025; 122:e2403862122. [PMID: 39793065 PMCID: PMC11725805 DOI: 10.1073/pnas.2403862122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2mut) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype. Yet, the complete depiction of the epigenetic alterations in IDHmut cells has not been thoroughly explored. Here, we applied an unbiased approach, leveraging epigenetic-focused cytometry by time-of-flight (CyTOF) analysis, to systematically profile the effect of mutant-IDH1 expression on a broad panel of histone modifications at single-cell resolution. This analysis revealed extensive remodeling of chromatin patterns by mutant-IDH1, with the most prominent being deregulation of histone acetylation marks. The loss of histone acetylation occurs rapidly following mutant-IDH1 induction and affects acetylation patterns over enhancers and intergenic regions. Notably, the changes in acetylation are not predominantly driven by 2-HG, can be rescued by pharmacological inhibition of mutant-IDH1, and reversed by acetate supplementations. Furthermore, cells expressing mutant-IDH1 show higher epigenetic and transcriptional heterogeneity and upregulation of oncogenes such as KRAS and MYC, highlighting its tumorigenic potential. Our study underscores the tight interaction between chromatin and metabolism dysregulation in glioma and highlights epigenetic and oncogenic pathways affected by mutant-IDH1-driven metabolic rewiring.
Collapse
Affiliation(s)
- Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Niv Cohen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
- Oncology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv6997801, Israel
| | - Tomer-Meir Salame
- Mass Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Tevie Mehlman
- Targeted Metabolomics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Alexander Brandis
- Targeted Metabolomics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Arieh Moussaieff
- The Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem9112102, Israel
| | - Dinorah Friedmann-Morvinski
- Sagol School of Neurobiology, Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI48109
| | - Jerome Fortin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QCH3A 2B4, Canada
| | - Mario L. Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
- Broad Institute of Harvard and MIT, Cambridge, MA02142
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Guy Ron
- Racah Institute of Physics, Hebrew University, Jerusalem9190401, Israel
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
47
|
Wu J, Gonzalez Castro LN, Battaglia S, El Farran CA, D'Antonio JP, Miller TE, Suvà ML, Bernstein BE. Evolving cell states and oncogenic drivers during the progression of IDH-mutant gliomas. NATURE CANCER 2025; 6:145-157. [PMID: 39572850 DOI: 10.1038/s43018-024-00865-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/18/2024] [Indexed: 01/31/2025]
Abstract
Isocitrate dehydrogenase (IDH) mutants define a class of gliomas that are initially slow-growing but inevitably progress to fatal disease. To characterize their malignant cell hierarchy, we profiled chromatin accessibility and gene expression across single cells from low-grade and high-grade IDH-mutant gliomas and ascertained their developmental states through a comparison to normal brain cells. We provide evidence that these tumors are initially fueled by slow-cycling oligodendrocyte progenitor cell-like cells. During progression, a more proliferative neural progenitor cell-like population expands, potentially through partial reprogramming of 'permissive' chromatin in progenitors. This transition is accompanied by a switch from methylation-based drivers to genetic ones. In low-grade IDH-mutant tumors or organoids, DNA hypermethylation appears to suppress interferon (IFN) signaling, which is induced by IDH or DNA methyltransferase 1 inhibitors. High-grade tumors frequently lose this hypermethylation and instead acquire genetic alterations that disrupt IFN and other tumor-suppressive programs. Our findings explain how these slow-growing tumors may progress to lethal malignancies and have implications for therapies that target their epigenetic underpinnings.
Collapse
Affiliation(s)
- Jingyi Wu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - L Nicolas Gonzalez Castro
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
- Department of Neurology, Brigham and Women's Hospital, Boston, MA, USA
- Center for Neuro-Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Sofia Battaglia
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Chadi A El Farran
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Joshua P D'Antonio
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
| | - Tyler E Miller
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Mario L Suvà
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pathology and Krantz Family Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Bradley E Bernstein
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Gene Regulation Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Departments of Cell Biology and Pathology, Harvard Medical School, Boston, MA, USA.
- The Novo Nordisk Foundation Center for Genomic Mechanisms of Disease, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
48
|
Wang S, Curry RN, McDonald MF, Koh HY, Erickson AW, Kleinman CL, Taylor MD, Rao G, Deneen B, Harmanci AO, Serin Harmanci A. Inferred developmental origins of brain tumors from single-cell RNA-sequencing data. Neurooncol Adv 2025; 7:vdaf016. [PMID: 40321621 PMCID: PMC12046312 DOI: 10.1093/noajnl/vdaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025] Open
Abstract
Background The reactivation of neurodevelopmental programs in cancer highlights parallel biological processes that occur in both normal development and brain tumors. Achieving a deeper understanding of how dysregulated developmental factors play a role in the progression of brain tumors is therefore crucial for identifying potential targets for therapeutic interventions. Single-cell RNA-sequencing (scRNA-Seq) provides an opportunity to understand how developmental programs are dysregulated and reinitiated in brain tumors at single-cell resolution. The aim of this study is to identify the developmental origins of brain tumors using scRNA-Seq data. Methods Here, we introduce COORS (Cell Of ORigin like CellS), a computational tool trained on developmental human brain single-cell datasets that annotates "developmental-like" cell states in brain tumors. COORS leverages cell type-specific multilayer perceptron models and incorporates a developmental cell type tree that reflects hierarchical relationships and models cell type probabilities. Results Applying COORS to various brain cancer datasets, including medulloblastoma (MB), glioma, and diffuse midline glioma (DMG), we identified developmental-like cells that represent putative cells of origin in these tumors. Our method provides both cell of origin classification and cell age regression, offering insights into the developmental cell types of tumor subgroups. COORS identified outer radial glia developmental cells within IDHWT glioma cells whereas oligodendrocyte precursor cells (OPCs) and neuronal-like cells in IDHMut. Interestingly, IDHMut subgroup cells that map to OPC show bimodal distributions that are both early and late weeks in development. Furthermore, COORS offers a valuable resource by providing novel markers linked to developmental states within MB, glioma, and DMG tumor subgroups. Conclusions Our work adds to our cumulative understanding of brain tumor heterogeneity and helps pave the way for tailored treatment strategies.
Collapse
Affiliation(s)
- Su Wang
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Rachel Naomi Curry
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Graduate School of Biomedical Sciences, Baylor College of Medicine, Houston, Texas, USA
| | - Malcolm F McDonald
- Program in Development, Disease Models, and Therapeutics, Baylor College of Medicine, Houston, Texas, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
| | - Hyun Yong Koh
- Department of Pediatrics and Neurology, Baylor College of Medicine, Houston, Texas, USA
| | - Anders W Erickson
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario, Canada
- The Arthur and Sonia Labatt Brain Tumor Research Center, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada
- Lady Davis Institute for Medical Research, Jewish General Hospital, Montreal, Quebec, Canada
| | - Michael D Taylor
- Department of Pediatrics, Hematology/Oncology and Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer Center, Hematology-Oncology Section, Texas Childeren’s Hospital, Houston, Texas, USA
| | - Ganesh Rao
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Benjamin Deneen
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| | - Arif O Harmanci
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, Texas, USA
| | - Akdes Serin Harmanci
- Center for Cancer Neuroscience, Baylor College of Medicine, Houston, Texas, USA
- Department of Neurosurgery, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
49
|
Arnold SA, Low WC, Pluhar GE. Breed-Associated Differences in Differential Gene Expression Following Immunotherapy-Based Treatment of Canine High-Grade Glioma. Animals (Basel) 2024; 15:28. [PMID: 39794971 PMCID: PMC11718890 DOI: 10.3390/ani15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Canine high-grade glioma (HGG) is among the deadliest and most treatment-resistant forms of canine cancer. Successful, widespread treatment is challenged by heterogeneity in tumor cells and the tumor microenvironment and tumor evolution following treatment. Immunotherapy is theoretically a strong novel therapy, since HGG-generated immunosuppression is a substantial malignancy mechanism. Immunotherapy has improved survival times overall, but has been associated with extremely poor outcomes in French bulldogs. Given this breed-specific observation, we hypothesized that within the French bulldog breed, there are key transcriptomic differences when compared to other breeds, and that their tumors change differently in response to immunotherapy. Using bulk RNA sequencing, French bulldog tumors were confirmed to differ substantially from boxer and Boston terrier tumors, with only 15.9% overlap in significant differentially expressed genes (DEGs). In upregulated DEGs, the magnitude of changes in expression post-treatment compared to pre-treatment was markedly greater in French bulldogs. Gene set enrichment analysis confirmed that following treatment, French bulldog tumors showed enrichment of key immune-associated pathways previously correlated with poor prognosis. Overall, this study confirmed that French bulldog HGG transcriptomes differ from boxer and Boston terrier transcriptomes, further refining description of the canine glioma transcriptome and providing important information to guide novel therapy development, both for specific dog breeds and for possible correlative variants of human glioblastoma.
Collapse
Affiliation(s)
- Susan A. Arnold
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Grace Elizabeth Pluhar
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| |
Collapse
|
50
|
Duan H, He Z, Chen Z, Chen Y, Hu W, Sai K, Zhang X, Xia J, Li Y, Liu R, Zou C, Chen Z, Mou Y. Long-term survival after local immunotherapy for malignant gliomas: a retrospective study with 20 years follow-up. BMC Immunol 2024; 25:83. [PMID: 39707189 DOI: 10.1186/s12865-024-00676-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 12/03/2024] [Indexed: 12/23/2024] Open
Abstract
PURPOSE Immunotherapy is a promising treatment for cancers but should be optimized for malignant gliomas. Because of immune privilege feature of the brain, local administration of immunotherapy may be a promising strategy for malignant glioma treatment. Identification of patients who may benefit from local immunotherapy is essential. METHODS We retrospectively reviewed the clinicopathological characteristics and outcomes of six malignant glioma patients who received local administration of autologous cytokine-induced killer (CIK) cells through Ommaya reservoirs implanted into the tumor resection cavity. Profiles of tumor genome, transcriptome and immune microenvironment were also investigated by genomic target sequencing, RNA sequencing, electrochemiluminescence assay and immunohistochemistry (IHC) staining. RESULTS Four patients died from tumor progression and the overall survival ranged from 10.0 to 33.9 months. Remarkably, two patients, including one diagnosed as diffuse hemispheric glioma H3 G34-mutant (G34-DHG, WHO grade 4) and the other diagnosed as astrocytoma (IDH1 mutation, WHO grade 3) survived more than 20 years without evidence of recurrence. The distinctive clinical feature of the two long-term survivors was tumor gross total resection (GTR) before CIK therapy. NTRK1 mutation was uniquely present and 353 genes were differentially expressed in the long-term survivors compared with the short-term survivors. These differential expression genes were highly associated with immune function. Electrochemiluminescence assay and IHC staining revealed higher expressions of cytokines and lower infiltrations of tumor-associated macrophages in the tumors of the long-term survivors. CONCLUSION These findings suggest that certain patients diagnosed as malignant gliomas, including G34-DHG (WHO grade 4), can acquire long-term survival after local immunotherapy. Tumor GTR before local immunotherapy and relatively weaker immunosuppressive tumor microenvironment are the favorable factors for long-term survival. Larger, controlled studies with standardized treatment protocols, including consistent use of GTR, are warranted to further evaluate the potential benefits of locally delivered immunotherapy.
Collapse
Affiliation(s)
- Hao Duan
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhenqiang He
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Zhenghe Chen
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yukun Chen
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Wanming Hu
- Department of Pathology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Ke Sai
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Xiangheng Zhang
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Jianchuan Xia
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yongqiang Li
- Department of Biotherapy, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Ranyi Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Chaowei Zou
- Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, People's Republic of China
| | - Zhongping Chen
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China
| | - Yonggao Mou
- Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
| |
Collapse
|