1
|
Peng Y, Zhou L, Jin Y, Wu D, Chen N, Zhang C, Liu H, Li C, Ning R, Yang X, Mao Q, Liu J, Zhang P. Calcium bridges built by mitochondria-associated endoplasmic reticulum membranes: potential targets for neural repair in neurological diseases. Neural Regen Res 2025; 20:3349-3369. [PMID: 39589178 PMCID: PMC11974651 DOI: 10.4103/nrr.nrr-d-24-00630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/12/2024] [Accepted: 09/29/2024] [Indexed: 11/27/2024] Open
Abstract
The exchange of information and materials between organelles plays a crucial role in regulating cellular physiological functions and metabolic levels. Mitochondria-associated endoplasmic reticulum membranes serve as physical contact channels between the endoplasmic reticulum membrane and the mitochondrial outer membrane, formed by various proteins and protein complexes. This microstructural domain mediates several specialized functions, including calcium (Ca 2+ ) signaling, autophagy, mitochondrial morphology, oxidative stress response, and apoptosis. Notably, the dysregulation of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes is a critical factor in the pathogenesis of neurological diseases. Certain proteins or protein complexes within these membranes directly or indirectly regulate the distance between the endoplasmic reticulum and mitochondria, as well as the transduction of Ca 2+ signaling. Conversely, Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes influences other mitochondria-associated endoplasmic reticulum membrane-associated functions. These functions can vary significantly across different neurological diseases-such as ischemic stroke, traumatic brain injury, Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis, and Huntington's disease-and their respective stages of progression. Targeted modulation of these disease-related pathways and functional proteins can enhance neurological function and promote the regeneration and repair of damaged neurons. Therefore, mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling plays a pivotal role in the pathological progression of neurological diseases and represents a significant potential therapeutic target. This review focuses on the effects of protein complexes in mitochondria-associated endoplasmic reticulum membranes and the distinct roles of mitochondria-associated endoplasmic reticulum membranes-mediated Ca 2+ signaling in neurological diseases, specifically highlighting the early protective effects and neuronal damage that can result from prolonged mitochondrial Ca 2+ overload or deficiency. This article provides a comprehensive analysis of the various mechanisms of Ca 2+ signaling mediated by mitochondria-associated endoplasmic reticulum membranes in neurological diseases, contributing to the exploration of potential therapeutic targets for promoting neuroprotection and nerve repair.
Collapse
Affiliation(s)
- Yichen Peng
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Li Zhou
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Yaju Jin
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Danli Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Na Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chengcai Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Hongpeng Liu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Chunlan Li
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Rong Ning
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Xichen Yang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Qiuyue Mao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| | - Jiaxin Liu
- School of Medicine, Kunming University of Science and Technology, Kunming, Yunnan Province, China
| | - Pengyue Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Key Laboratory of Acupuncture and Massage for Treatment of Encephalopathy, College of Acupuncture, Tuina and Rehabilitation, Yunnan University of Chinese Medicine, Kunming, Yunnan Province, China
| |
Collapse
|
2
|
Diokmetzidou A, Scorrano L. Mitochondria-membranous organelle contacts at a glance. J Cell Sci 2025; 138:jcs263895. [PMID: 40357586 DOI: 10.1242/jcs.263895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025] Open
Abstract
Mitochondrial contact sites are specialized interfaces where mitochondria physically interact with other organelles. Stabilized by molecular tethers and defined by unique proteomic and lipidomic profiles, these sites enable direct interorganellar communication and functional coordination, playing crucial roles in cellular physiology and homeostasis. Recent advances have expanded our knowledge of contact site-resident proteins, illuminated the dynamic and adaptive nature of these interfaces, and clarified their contribution to pathophysiology. In this Cell Science at a Glance article and the accompanying poster, we summarize the mitochondrial contacts that have been characterized in mammals, the molecular mechanisms underlying their formation, and their principal functions.
Collapse
Affiliation(s)
- Antigoni Diokmetzidou
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| | - Luca Scorrano
- Department of Biology, University of Padova, 35121 Padova, Italy
- Veneto Institute of Molecular Medicine (VIMM), 35129 Padova, Italy
| |
Collapse
|
3
|
Umeda Y, Yamahira S, Nakamura K, Takagi T, Suzuki T, Sato K, Hirabayashi Y, Okamoto A, Yamaguchi S. Microfluidic cell unroofing for the in situ molecular analysis of organelles without membrane permeabilization. LAB ON A CHIP 2025; 25:2222-2233. [PMID: 40007234 DOI: 10.1039/d5lc00102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Molecular networks of organelle membranes are involved in many cell processes. However, the nature of plasma membrane as a barrier to various analytical tools, including antibodies, makes it challenging to examine intact organelle membranes without affecting their structure and functions via membrane permeabilization. Therefore, in this study, we aimed to develop a microfluidic method to unroof cells and observe the intrinsic membrane molecules in organelles. In our method, single cells were precisely arrayed on the bottom surface of microchannels in a light-guided manner using a photoactivatable cell-anchoring material. At sufficiently short cell intervals, horizontal stresses generated by the laminar flow instantly fractured the upper cell membranes, without significantly affecting some organelles inside the fractured cells. Subsequently, nucleus and other organelles in unroofed cells were observed via confocal fluorescence and scanning electron microscopy. Furthermore, distribution of the mitochondrial membrane protein, translocase of outer mitochondrial membrane 20, on the mitochondrial membrane was successfully observed via immunostaining without permeabilization. Overall, the established cell unroofing method shows great potential to examine the localization, functions, and affinities of proteins on intact organelle membranes.
Collapse
Affiliation(s)
- Yuki Umeda
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinya Yamahira
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.
| | - Koki Nakamura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Tomoko Takagi
- Department of Chemical and Biological Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Tomoko Suzuki
- Department of Chemical and Biological Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Kae Sato
- Department of Chemical and Biological Sciences, Japan Women's University, 2-8-1 Mejirodai, Bunkyo-ku, Tokyo 112-8681, Japan
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akimitsu Okamoto
- Department of Chemistry and Biotechnology, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Satoshi Yamaguchi
- SANKEN, Osaka University, 8-1 Mihogaoka, Ibaraki-shi, Osaka 567-0047, Japan.
| |
Collapse
|
4
|
Thakur RS, O'Connor-Giles KM. PDZD8 promotes autophagy at ER-lysosome membrane contact sites to regulate activity-dependent synaptic growth. Cell Rep 2025; 44:115483. [PMID: 40156832 DOI: 10.1016/j.celrep.2025.115483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 02/07/2025] [Accepted: 03/07/2025] [Indexed: 04/01/2025] Open
Abstract
Building synaptic connections requires coordinating a host of cellular activities from cell signaling to protein turnover, placing a high demand on intracellular communication. Membrane contact sites (MCSs) formed between organelles have emerged as key signaling hubs for coordinating diverse cellular activities, yet their roles in the developing nervous system remain obscure. We investigate the in vivo function of the endoplasmic reticulum (ER) MCS tethering and lipid-transfer protein PDZD8, which was recently linked to intellectual disability, in the nervous system. We find that PDZD8 is required for activity-dependent synaptic bouton formation in multiple paradigms. PDZD8 is sufficient to drive excess synaptic bouton formation through an autophagy-dependent mechanism and required for synapse development when autophagy is limited. PDZD8 accelerates autophagic flux by promoting lysosome maturation at ER-late endosome/lysosome MCSs. We propose that PDZD8 functions in the nervous system to increase autophagy during periods of high demand, including activity-dependent synaptic growth.
Collapse
Affiliation(s)
- Rajan S Thakur
- Department of Neuroscience, Brown University, Providence, RI, USA.
| | - Kate M O'Connor-Giles
- Department of Neuroscience, Brown University, Providence, RI, USA; Carney Institute for Brain Science, Providence, RI, USA.
| |
Collapse
|
5
|
Nakamura K, Aoyama-Ishiwatari S, Nagao T, Paaran M, Obara CJ, Sakurai-Saito Y, Johnston J, Du Y, Suga S, Tsuboi M, Nakakido M, Tsumoto K, Kishi Y, Gotoh Y, Kwak C, Rhee HW, Seo JK, Kosako H, Potter C, Carragher B, Lippincott-Schwartz J, Polleux F, Hirabayashi Y. Mitochondrial complexity is regulated at ER-mitochondria contact sites via PDZD8-FKBP8 tethering. Nat Commun 2025; 16:3401. [PMID: 40246839 PMCID: PMC12006300 DOI: 10.1038/s41467-025-58538-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 03/24/2025] [Indexed: 04/19/2025] Open
Abstract
Mitochondria-ER membrane contact sites (MERCS) represent a fundamental ultrastructural feature underlying unique biochemistry and physiology in eukaryotic cells. The ER protein PDZD8 is required for the formation of MERCS in many cell types, however, its tethering partner on the outer mitochondrial membrane (OMM) is currently unknown. Here we identify the OMM protein FKBP8 as the tethering partner of PDZD8 using a combination of unbiased proximity proteomics, CRISPR-Cas9 endogenous protein tagging, Cryo-electron tomography, and correlative light-electron microscopy. Single molecule tracking reveals highly dynamic diffusion properties of PDZD8 along the ER membrane with significant pauses and captures at MERCS. Overexpression of FKBP8 is sufficient to narrow the ER-OMM distance, whereas independent versus combined deletions of these two proteins demonstrate their interdependence for MERCS formation. Furthermore, PDZD8 enhances mitochondrial complexity in a FKBP8-dependent manner. Our results identify a novel ER-mitochondria tethering complex that regulates mitochondrial morphology in mammalian cells.
Collapse
Affiliation(s)
- Koki Nakamura
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Saeko Aoyama-Ishiwatari
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Takahiro Nagao
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Mohammadreza Paaran
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10028, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA, USA
| | - Christopher J Obara
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, 20147, USA
| | - Yui Sakurai-Saito
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Jake Johnston
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10028, USA
- Columbia University Medical Center, New York, NY, 10032, USA
| | - Yudan Du
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Shogo Suga
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Masafumi Tsuboi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Makoto Nakakido
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Kouhei Tsumoto
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Medical Proteomics Laboratory, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Yusuke Kishi
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
- Laboratory of Molecular Neurobiology, Institute for Quantitative Biosciences, The University of Tokyo, Tokyo, 113-0032, Japan
| | - Yukiko Gotoh
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, 113-0033, Japan
| | - Chulhwan Kwak
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, CA, 94304, USA
| | - Hyun-Woo Rhee
- School of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeong Kon Seo
- Graduate School of Semiconductor Materials and Devices Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea
- UNIST Central Research Facilities (UCRF), Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Korea
| | - Hidetaka Kosako
- Division of Cell Signaling, Fujii Memorial Institute of Medical Sciences, Institute of Advanced Medical Sciences, Tokushima University, Tokushima, 770-8503, Japan
| | - Clint Potter
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10028, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA, USA
| | - Bridget Carragher
- Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, 10028, USA
- Chan Zuckerberg Imaging Institute, Redwood City, CA, USA
| | | | - Franck Polleux
- Department of Neuroscience, Columbia University Medical Center, New York, NY, 10032, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, New York, NY, 10027, USA
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan.
| |
Collapse
|
6
|
Fourriere L, Gleeson PA. Organelle perturbation in Alzheimer's disease: do intracellular amyloid-ß and the fragmented Golgi mediate early intracellular neurotoxicity? Front Cell Dev Biol 2025; 13:1550211. [PMID: 40302938 PMCID: PMC12037564 DOI: 10.3389/fcell.2025.1550211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/17/2025] [Indexed: 05/02/2025] Open
Abstract
Alzheimer's disease is a devastating and incurable neurological disease. Most of the current research has focused on developing drugs to clear the extracellular amyloid plaques in the brain of Alzheimer's disease patients. However, this approach is limited as it does not treat the underlying cause of the disease. In this review, we highlight the evidence in the field showing that the accumulation of intracellular toxic amyloid-ß could underpin very early events in neuronal death in both familial early-onset and sporadic late-onset alzheimer's disease. Indeed, intracellular amyloid-ß, which is produced within intracellular compartments, has been shown to perturb endosomal and secretory organelles, in different neuronal models, and the brain of Alzheimer's patients, leading to membrane trafficking defects and perturbation of neuronal function associated with cognition defects. The Golgi apparatus is a central transport and signaling hub at the crossroads of the secretory and endocytic pathways and perturbation of the Golgi ribbon structure is a hallmark of Alzheimer's disease. Here, we discuss the role of the Golgi as a major player in the regulation of amyloid-β production and propose that the Golgi apparatus plays a key role in a cellular network which can seed the onset of Alzheimer's disease. Moreover, we propose that the Golgi is central in an intracellular feedback loop leading to an enhanced level of amyloid-β production resulting in early neuronal defects before the appearance of clinical symptoms. Further advances in defining the molecular pathways of this intracellular feedback loop could support the design of new therapeutic strategies to target a primary source of neuronal toxicity in this disease.
Collapse
|
7
|
Guyard V, Giordano F. Three's company: Membrane waltz among organelles. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149555. [PMID: 40180296 DOI: 10.1016/j.bbabio.2025.149555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 03/27/2025] [Accepted: 03/28/2025] [Indexed: 04/05/2025]
Abstract
The study of membrane contact sites (MCS) has profoundly transformed our understanding of inter-organelle communication. These sites, where the membranes of two organelles are closely apposed, facilitate the transfer of small molecules such as lipids and ions. They are especially crucial for the maintenance of the structure and function of organelles like mitochondria and lipid droplets, which are largely excluded from vesicular trafficking. The significant advancements in imaging techniques, and molecular and cell biology research have shown that MCS are more complex than what originally thought and can involve more than two organelles. This has revealed the intricate nature and critical importance of these subcellular connections. Here, we provide an overview of newly described three-way inter-organelles associations, and the proteins involved in these MCS. We highlight the roles these contacts play in key cellular processes such as lipid droplet biogenesis and mitochondrial division. Additionally, we discuss the latest advances in super-resolution imaging that enable the study of these complex three-way interactions. Ongoing research, driven by technological innovations, promises to uncover further insights into their roles in fundamental cellular processes and their implications for health and disease.
Collapse
Affiliation(s)
- Valentin Guyard
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; Inserm U1280, Gif-sur-Yvette cedex 91198, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex 91198, France; Inserm U1280, Gif-sur-Yvette cedex 91198, France.
| |
Collapse
|
8
|
Mohan AA, Talwar P. MAM kinases: physiological roles, related diseases, and therapeutic perspectives-a systematic review. Cell Mol Biol Lett 2025; 30:35. [PMID: 40148800 PMCID: PMC11951743 DOI: 10.1186/s11658-025-00714-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 03/05/2025] [Indexed: 03/29/2025] Open
Abstract
Mitochondria-associated membranes (MAMs) are tethering regions amid the membranes of the endoplasmic reticulum (ER) and mitochondria. They are a lipid raft-like structure occupied by various proteins that facilitates signal transduction between the two organelles. The MAM proteome participates in cellular functions such as calcium (Ca2+) homeostasis, lipid synthesis, ER stress, inflammation, autophagy, mitophagy, and apoptosis. The human kinome is a superfamily of homologous proteins consisting of 538 kinases. MAM-associated kinases participate in the aforementioned cellular functions and act as cell fate executors. Studies have proved the dysregulated kinase interactions in MAM as an etiology for various diseases including cancer, diabetes mellitus, neurodegenerative diseases, cardiovascular diseases (CVDs), and obesity. Several small kinase inhibitory molecules have been well explored as promising drug candidates in clinical trials with an accelerating impact in the field of precision medicine. This review narrates the physiological actions, pathophysiology, and therapeutic potential of MAM-associated kinases with recent updates in the field.
Collapse
Affiliation(s)
- A Anjana Mohan
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, 412G Pearl Research Park, Department of Biosciences, School of Biosciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
9
|
Uytiepo M, Zhu Y, Bushong E, Chou K, Polli FS, Zhao E, Kim KY, Luu D, Chang L, Yang D, Ma TC, Kim M, Zhang Y, Walton G, Quach T, Haberl M, Patapoutian L, Shahbazi A, Zhang Y, Beutter E, Zhang W, Dong B, Khoury A, Gu A, McCue E, Stowers L, Ellisman M, Maximov A. Synaptic architecture of a memory engram in the mouse hippocampus. Science 2025; 387:eado8316. [PMID: 40112060 DOI: 10.1126/science.ado8316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 12/17/2024] [Indexed: 03/22/2025]
Abstract
Memory engrams are formed through experience-dependent plasticity of neural circuits, but their detailed architectures remain unresolved. Using three-dimensional electron microscopy, we performed nanoscale reconstructions of the hippocampal CA3-CA1 pathway after chemogenetic labeling of cellular ensembles recruited during associative learning. Neurons with a remote history of activity coinciding with memory acquisition showed no strong preference for wiring with each other. Instead, their connectomes expanded through multisynaptic boutons independently of the coactivation state of postsynaptic partners. The rewiring of ensembles representing an initial engram was accompanied by input-specific, spatially restricted upscaling of individual synapses, as well as remodeling of mitochondria, smooth endoplasmic reticulum, and interactions with astrocytes. Our findings elucidate the physical hallmarks of long-term memory and offer a structural basis for the cellular flexibility of information coding.
Collapse
Affiliation(s)
- Marco Uytiepo
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Yongchuan Zhu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Eric Bushong
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Katherine Chou
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Filip Souza Polli
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Elise Zhao
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Keun-Young Kim
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Danielle Luu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Lyanne Chang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Dong Yang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Tsz Ching Ma
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Mingi Kim
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuting Zhang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Grant Walton
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Tom Quach
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Matthias Haberl
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Luca Patapoutian
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Arya Shahbazi
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Yuxuan Zhang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Elizabeth Beutter
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Weiheng Zhang
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Brian Dong
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Aureliano Khoury
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Alton Gu
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Elle McCue
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Lisa Stowers
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| | - Mark Ellisman
- National Center for Microscopy and Imaging Research, University of California, San Diego, San Diego, CA, USA
- Department of Neurosciences, University of California, San Diego, School of Medicine, La Jolla, CA, USA
| | - Anton Maximov
- Department of Neuroscience, The Scripps Research Institute, La Jolla, CA, USA
- The Dorris Neuroscience Center, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
10
|
Akhtar A, Shakir M, Ansari MS, Divya, Faizan MI, Chauhan V, Singh A, Alam R, Azmi I, Sharma S, Pracha M, Uddin IM, Bashir U, Shahni SN, Chaudhuri R, Albogami S, Ganguly R, Sagar S, Singh VP, Kharya G, Srivastava AK, Mabalirajan U, Roy SS, Rahman I, Ahmad T. Bioengineering the metabolic network of CAR T cells with GLP-1 and Urolithin A increases persistence and long-term anti-tumor activity. Cell Rep Med 2025; 6:102021. [PMID: 40107240 PMCID: PMC11970383 DOI: 10.1016/j.xcrm.2025.102021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/10/2024] [Accepted: 02/18/2025] [Indexed: 03/22/2025]
Abstract
Constant tumor antigen exposure disrupts chimeric antigen receptor (CAR) T cell metabolism, limiting their persistence and anti-tumor efficacy. To address this, we develop metabolically reprogrammed CAR (MCAR) T cells with enhanced autophagy and mitophagy. A compound screening identifies a synergy between GLP-1R agonist (semaglutide [SG]) and Urolithin A (UrA), which activate autophagy through mTOR (mechanistic target of rapamycin) inhibition and mitophagy via Atg4b activation, maintaining mitochondrial metabolism in CAR T cells (MCAR T-1). These changes increase CD8+ T memory cells (Tm), enhancing persistence and anti-tumor activity in vitro and in xenograft models. GLP-1R knockdown in CAR T cells diminishes autophagy/mitophagy induction, confirming its critical role. We further engineer GLP-1-secreting cells (MCAR T-2), which exhibited sustained memory, stemness, and long-term persistence, even under tumor re-challenge. MCAR T-2 cells also reduce cytokine release syndrome (CRS) risks while demonstrating potent anti-tumor effects. This strategy highlights the potential of metabolic reprogramming via targeting autophagy/mitophagy pathways to improve CAR T cell therapy outcomes, ensuring durability and efficacy.
Collapse
Affiliation(s)
- Areej Akhtar
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Md Shakir
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Sufyan Ansari
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Divya
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Md Imam Faizan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Varnit Chauhan
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Aashi Singh
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Ruquaiya Alam
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Iqbal Azmi
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Sheetal Sharma
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Mehak Pracha
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Insha Mohi Uddin
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Uzma Bashir
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Syeda Najidah Shahni
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India
| | - Rituparna Chaudhuri
- Indian Institute of Science, Centre for Brain Research, Bengaluru, Karnataka, India
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Rik Ganguly
- Department of Biotechnology & Bioinformatics, North-Eastern Hill University, Shillong, India
| | - Shakti Sagar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Vijay Pal Singh
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Gaurav Kharya
- Centre for Bone Marrow Transplant & Cellular Therapy, Indraprastha Apollo Hospital, New Delhi, India
| | | | | | - Soumya Sinha Roy
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, India
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Tanveer Ahmad
- Multidisciplinary Centre for Advanced Research and Studies, Jamia Millia Islamia, New Delhi, India.
| |
Collapse
|
11
|
Blair K, Martinez-Serra R, Gosset P, Martín-Guerrero SM, Mórotz GM, Atherton J, Mitchell JC, Markovinovic A, Miller CCJ. Structural and functional studies of the VAPB-PTPIP51 ER-mitochondria tethering proteins in neurodegenerative diseases. Acta Neuropathol Commun 2025; 13:49. [PMID: 40045432 PMCID: PMC11881430 DOI: 10.1186/s40478-025-01964-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/18/2025] [Indexed: 03/09/2025] Open
Abstract
Signaling between the endoplasmic reticulum (ER) and mitochondria regulates many of the seemingly disparate physiological functions that are damaged in neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS). A number of studies have now demonstrated that ER-mitochondria signaling is perturbed in these diseases and there is evidence that this may be a driving mechanism in disease onset and progression. VAPB and PTPIP51 are ER-mitochondria tethering proteins; VAPB is an ER protein and PTPIP51 is an outer mitochondrial membrane protein and the two proteins interact to enable inter-organelle signaling. The VAPB-PTPIP51 interaction is disrupted in Alzheimer's disease, Parkinson's disease, FTD and ALS. Here we review the roles of VAPB and PTPIP51 in ER-mitochondria signaling and the mechanisms by which neurodegenerative disease insults may disrupt the VAPB-PTPIP51 interaction.
Collapse
Affiliation(s)
- Kerry Blair
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, U.K
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, England, U.K
| | - Raquel Martinez-Serra
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, U.K
| | - Philippe Gosset
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, U.K
| | - Sandra M Martín-Guerrero
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, U.K
| | - Gábor M Mórotz
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, U.K
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, Budapest, H-1089, Hungary
| | - Joseph Atherton
- Randall Centre for Cell and Molecular Biophysics, School of Basic and Medical Biosciences, King's College London, London, England, U.K
| | - Jacqueline C Mitchell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, U.K
| | - Andrea Markovinovic
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, U.K..
| | - Christopher C J Miller
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, England, U.K..
| |
Collapse
|
12
|
Liu FF, Li K. Molecular characterization underlying IFN-α2 treatment in polycythemia vera: a transcriptomic overview. Mol Cell Biochem 2025:10.1007/s11010-025-05238-7. [PMID: 40029555 DOI: 10.1007/s11010-025-05238-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/19/2025] [Indexed: 03/05/2025]
Abstract
Polycythemia vera (PV) is the most common chronic myeloproliferative neoplasm (MPN) in adults. Pegylated interferon-α2 (IFN-α2) is an effective and safe drug for the treatment of PV. However, the mechanisms of its action in PV are still not fully understood. Using the WGCNA and Limma algorithm, we found a subset of IFN-α2 sensitive genes and four gene co-expression modules. Meanwhile, we also found 820 genes were differentially expressed in PV compared with healthy controls. By integrating the above results, several differentially expressed genes (DEGs) that were up- or down-regulated in PV but showed opposite alterations in the IFN-α2-treated group were found. These genes were mainly related to three types of biological processes (metal ion homeostasis, metabolic/catabolic process, and Jak-STAT signaling pathway), the dysfunctions of which were prevalent in PV. Moreover, we applied another threshold-free analysis method to compare global gene expression between IFN-α2 treated PV, PV, and control groups. Results showed the transcriptome changes of PV versus controls were negatively correlated with that of IFN-α2 treated versus untreated PV, indicating IFN-α2 treatment could partially reverse the dysregulated gene expression profile due to PV pathology. In summary, interferon may alleviate the progression of PV through multiple pathways. The findings may be of assistance in understanding the molecular basis underlying this treatment.
Collapse
Affiliation(s)
- Fang-Fang Liu
- Department of Pathology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430014, People's Republic of China
| | - Ke Li
- Department of Blood Transfusion, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Hankou District, Wuhan, 430030, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Ren WW, Kawahara R, Suzuki KG, Dipta P, Yang G, Thaysen-Andersen M, Fujita M. MYO18B promotes lysosomal exocytosis by facilitating focal adhesion maturation. J Cell Biol 2025; 224:e202407068. [PMID: 39751400 PMCID: PMC11697975 DOI: 10.1083/jcb.202407068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/17/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
Many cancer cells exhibit increased amounts of paucimannose glycans, which are truncated N-glycan structures rarely found in mammals. Paucimannosidic proteins are proposedly generated within lysosomes and exposed on the cell surface through a yet uncertain mechanism. In this study, we revealed that paucimannosidic proteins are produced by lysosomal glycosidases and secreted via lysosomal exocytosis. Interestingly, lysosomal exocytosis preferentially occurred in the vicinity of focal adhesions, protein complexes connecting the actin cytoskeleton to the extracellular matrix. Through genome-wide knockout screening, we identified that MYO18B, an actin crosslinker, is required for focal adhesion maturation, facilitating lysosomal exocytosis and the release of paucimannosidic lysosomal proteins to the extracellular milieu. Moreover, a mechanosensitive cation channel PIEZO1 locally activated at focal adhesions imports Ca2+ necessary for lysosome-plasma membrane fusion. Collectively, our study unveiled an intimate relationship between lysosomal exocytosis and focal adhesion, shedding light on the unexpected interplay between lysosomal activities and cellular mechanosensing.
Collapse
Affiliation(s)
- Wei-Wei Ren
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| | - Rebeca Kawahara
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
| | - Kenichi G.N. Suzuki
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
- Division of Advanced Bioimaging, National Cancer Center Research Institute, Tokyo, Japan
| | - Priya Dipta
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Ganglong Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Morten Thaysen-Andersen
- Institute for Glyco-core Research (iGCORE), Nagoya University, Aichi, Japan
- School of Natural Sciences, Macquarie University, Sydney, Australia
| | - Morihisa Fujita
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
- Institute for Glyco-core Research (iGCORE), Gifu University, Gifu, Japan
| |
Collapse
|
14
|
Liu X, Li T, Tu X, Xu M, Wang J. Mitochondrial fission and fusion in neurodegenerative diseases:Ca 2+ signalling. Mol Cell Neurosci 2025; 132:103992. [PMID: 39863029 DOI: 10.1016/j.mcn.2025.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca2+ signaling have long been considered to play important roles in the development of various NDs. Mitochondrial fission and fusion dynamics are important processes of mitochondrial quality control, ensuring the stability of mitochondrial structure and function. Mitochondrial fission and fusion imbalance and Ca2+ signaling disorders can aggravate the disease progression of NDs. In this review, we explore the relationship between mitochondrial dynamics and Ca2+ signaling in AD, PD, ALS, and HD, focusing on the roles of key regulatory proteins (Drp1, Fis1, Mfn1/2, and Opa1) and the association structures between mitochondria and the endoplasmic reticulum (MERCs/MAMs). We provide a detailed analysis of their involvement in the pathogenesis of these four NDs. By integrating these mechanisms, we aim to clarify their contributions to disease progression and offer insights into the development of therapeutic strategies that target mitochondrial dynamics and Ca2+ signaling. We also examine the progress in drug research targeting these pathways, highlighting their potential as therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Xinya Tu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
15
|
Pantiru AD, Van de Sompele S, Ligneul C, Chatelain C, Barrea C, Lerch JP, Filippi BM, Alkan S, De Baere E, Johnston J, Clapcote SJ. Autistic behavior is a common outcome of biallelic disruption of PDZD8 in humans and mice. Mol Autism 2025; 16:14. [PMID: 40016860 PMCID: PMC11866840 DOI: 10.1186/s13229-025-00650-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 02/10/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Intellectual developmental disorder with autism and dysmorphic facies (IDDADF) is a rare syndromic intellectual disability (ID) caused by homozygous disruption of PDZD8 (PDZ domain-containing protein 8), an integral endoplasmic reticulum (ER) protein. All four previously identified IDDADF cases exhibit autistic behavior, with autism spectrum disorder (ASD) diagnosed in three cases. To determine whether autistic behavior is a common outcome of PDZD8 disruption, we studied a third family with biallelic mutation of PDZD8 (family C) and further characterized PDZD8-deficient (Pdzd8tm1b) mice that exhibit stereotyped motor behavior relevant to ASD. METHODS Homozygosity mapping, whole-exome sequencing, and cosegregation analysis were used to identify the PDZD8 variant responsible for IDDADF, including diagnoses of ASD, in consanguineous family C. To assess the in vivo effect of PDZD8 disruption on social responses and related phenotypes, behavioral, structural magnetic resonance imaging, and microscopy analyses were conducted on the Pdzd8tm1b mouse line. Metabolic activity was profiled using sealed metabolic cages. RESULTS The discovery of a third family with IDDADF caused by biallelic disruption of PDZD8 permitted identification of a core clinical phenotype consisting of developmental delay, ID, autism, and facial dysmorphism. In addition to impairments in social recognition and social odor discrimination, Pdzd8tm1b mice exhibit increases in locomotor activity (dark phase only) and metabolic rate (both lights-on and dark phases), and decreased plasma triglyceride in males. In the brain, Pdzd8tm1b mice exhibit increased levels of accessory olfactory bulb volume, primary olfactory cortex volume, dendritic spine density, and ER stress- and mitochondrial fusion-related transcripts, as well as decreased levels of cerebellar nuclei volume and adult neurogenesis. LIMITATIONS The total number of known cases of PDZD8-related IDDADF remains low. Some mouse experiments in the study did not use balanced numbers of males and females. The assessment of ER stress and mitochondrial fusion markers did not extend beyond mRNA levels. CONCLUSIONS Our finding that the Pdzd8tm1b mouse model and all six known cases of IDDADF exhibit autistic behavior, with ASD diagnosed in five cases, identifies this trait as a common outcome of biallelic disruption of PDZD8 in humans and mice. Other abnormalities exhibited by Pdzd8tm1b mice suggest that the range of comorbidities associated with PDZD8 deficiency may be wider than presently recognized.
Collapse
Affiliation(s)
- Andreea D Pantiru
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
- Division of Neuroscience, School of Biological Sciences, University of Manchester, Manchester, M13 9PT, UK
| | - Stijn Van de Sompele
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Clemence Ligneul
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3SR, UK
| | - Camille Chatelain
- Department of Human Genetics, University Hospital of Liege, Liege, Belgium
| | - Christophe Barrea
- Autism Resource Centre of Liege, University of Liege, Liege, Belgium
| | - Jason P Lerch
- Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford, OX1 3SR, UK
| | | | - Serpil Alkan
- Department of Human Genetics, University Hospital of Liege, Liege, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University Hospital, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
| | - Jamie Johnston
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Steven J Clapcote
- School of Biomedical Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
16
|
Pérez-Sancho J, Smokvarska M, Dubois G, Glavier M, Sritharan S, Moraes TS, Moreau H, Dietrich V, Platre MP, Paterlini A, Li ZP, Fouillen L, Grison MS, Cana-Quijada P, Immel F, Wattelet V, Ducros M, Brocard L, Chambaud C, Luo Y, Ramakrishna P, Bayle V, Lefebvre-Legendre L, Claverol S, Zabrady M, Martin PGP, Busch W, Barberon M, Tilsner J, Helariutta Y, Russinova E, Taly A, Jaillais Y, Bayer EM. Plasmodesmata act as unconventional membrane contact sites regulating intercellular molecular exchange in plants. Cell 2025; 188:958-977.e23. [PMID: 39983675 DOI: 10.1016/j.cell.2024.11.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 06/06/2024] [Accepted: 11/26/2024] [Indexed: 02/23/2025]
Abstract
Membrane contact sites (MCSs) are fundamental for intracellular communication, but their role in intercellular communication remains unexplored. We show that in plants, plasmodesmata communication bridges function as atypical endoplasmic reticulum (ER)-plasma membrane (PM) tubular MCSs, operating at cell-cell interfaces. Similar to other MCSs, ER-PM apposition is controlled by a protein-lipid tethering complex, but uniquely, this serves intercellular communication. Combining high-resolution microscopy, molecular dynamics, and pharmacological and genetic approaches, we show that cell-cell trafficking is modulated through the combined action of multiple C2 domains transmembrane domain proteins (MCTPs) 3, 4, and 6 ER-PM tethers and phosphatidylinositol-4-phosphate (PI4P) lipid. Graded PI4P amounts regulate MCTP docking to the PM, their plasmodesmata localization, and cell-cell permeability. SAC7, an ER-localized PI4P-phosphatase, regulates MCTP4 accumulation at plasmodesmata and modulates cell-cell trafficking capacity in a cell-type-specific manner. Our findings expand MCS functions in information transmission from intracellular to intercellular cellular activities.
Collapse
Affiliation(s)
- Jessica Pérez-Sancho
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Marija Smokvarska
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Gwennogan Dubois
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France
| | - Marie Glavier
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Sujith Sritharan
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université Paris Cité, Paris, France
| | - Tatiana S Moraes
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Hortense Moreau
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Victor Dietrich
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Matthieu P Platre
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Andrea Paterlini
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France; The Sainsbury Laboratory, University of Cambridge, Cambridge, UK
| | - Ziqiang P Li
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Laetitia Fouillen
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Magali S Grison
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Pepe Cana-Quijada
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Françoise Immel
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Valerie Wattelet
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France
| | - Mathieu Ducros
- Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Lysiane Brocard
- Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Clément Chambaud
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France; Bordeaux Imaging Center, Plant Imaging Platform, UAR3420, CNRS-INSERM-University of Bordeaux-INRAE, Bordeaux, France
| | - Yongming Luo
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Priya Ramakrishna
- Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Vincent Bayle
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France
| | | | | | - Matej Zabrady
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Pascal G P Martin
- Université de Bordeaux, INRAE, UMR1332 Biologie du Fruit et Pathologie, 33882 Villenave d'Ornon, France
| | - Wolfgang Busch
- Salk Institute for Biological Studies, Plant Molecular and Cellular Biology Laboratory, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Marie Barberon
- Department of Plant Sciences, University of Geneva, 1211 Geneva, Switzerland
| | - Jens Tilsner
- Biomedical Sciences Research Complex, University of St Andrews, Fife KY16 9ST, UK; Cell and Molecular Sciences, The James Hutton Institute, Dundee DD2 5DA, UK
| | - Yrjö Helariutta
- The Sainsbury Laboratory, University of Cambridge, Cambridge, UK; Institute of Biotechnology, HiLIFE/Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, Viikki Plant Science Centre, University of Helsinki, Helsinki, Finland
| | - Eugenia Russinova
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium; Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Antoine Taly
- Laboratoire de Biochimie Théorique, UPR9080, CNRS, Université Paris Cité, Paris, France
| | - Yvon Jaillais
- Laboratoire Reproduction et Développement des Plantes, ENS de Lyon, CNRS, INRA, 69342 Lyon, France.
| | - Emmanuelle M Bayer
- Laboratoire de Biogenèse Membranaire, UMR5200, CNRS, Université de Bordeaux, Villenave-d'Ornon, France.
| |
Collapse
|
17
|
Shiiba I, Ito N, Oshio H, Ishikawa Y, Nagao T, Shimura H, Oh KW, Takasaki E, Yamaguchi F, Konagaya R, Kadowaki H, Nishitoh H, Tanzawa T, Nagashima S, Sugiura A, Fujikawa Y, Umezawa K, Tamura Y, Il Lee B, Hirabayashi Y, Okazaki Y, Sawa T, Inatome R, Yanagi S. ER-mitochondria contacts mediate lipid radical transfer via RMDN3/PTPIP51 phosphorylation to reduce mitochondrial oxidative stress. Nat Commun 2025; 16:1508. [PMID: 39929810 PMCID: PMC11811300 DOI: 10.1038/s41467-025-56666-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 01/24/2025] [Indexed: 02/13/2025] Open
Abstract
The proximal domains of mitochondria and the endoplasmic reticulum (ER) are linked by tethering factors on each membrane, allowing the efficient transport of substances, including lipids and calcium, between them. However, little is known about the regulation and function of mitochondria-ER contacts (MERCs) dynamics under mitochondrial damage. In this study, we apply NanoBiT technology to develop the MERBiT system, which enables the measurement of reversible MERCs formation in living cells. Analysis using this system suggests that induction of mitochondrial ROS increases MERCs formation via RMDN3 (also known as PTPIP51)-VAPB tethering driven by RMDN3 phosphorylation. Disruption of this tethering caused lipid radical accumulation in mitochondria, leading to cell death. The lipid radical transfer activity of the TPR domain in RMDN3, as revealed by an in vitro liposome assay, suggests that RMDN3 transfers lipid radicals from mitochondria to the ER. Our findings suggest a potential role for MERCs in cell survival strategy by facilitating the removal of mitochondrial lipid radicals under mitochondrial damage.
Collapse
Grants
- 23H02691,20H04911,20H03454 MEXT | Japan Society for the Promotion of Science (JSPS)
- 22K15399, 22H05574, 24H01327 MEXT | Japan Society for the Promotion of Science (JSPS)
- 23K14185, 22K20637 MEXT | Japan Society for the Promotion of Science (JSPS)
- 22H05532 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21H0207, 21H05267, 23K17979 MEXT | Japan Society for the Promotion of Science (JSPS)
- 21K06844 MEXT | Japan Society for the Promotion of Science (JSPS)
- JP17gm5010002, JP18gm5010002, JP19gm5010002, JP20gm5010002 Japan Agency for Medical Research and Development (AMED)
- JP19dm0207082 Japan Agency for Medical Research and Development (AMED)
- 23gm1610011h0001 Japan Agency for Medical Research and Development (AMED)
Collapse
Affiliation(s)
- Isshin Shiiba
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan.
| | - Naoki Ito
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Hijiri Oshio
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Yuto Ishikawa
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Takahiro Nagao
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Hiroki Shimura
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Kyu-Wan Oh
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Eiki Takasaki
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Fuya Yamaguchi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Ryoan Konagaya
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Hisae Kadowaki
- Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Hideki Nishitoh
- Laboratory of Biochemistry and Molecular Biology, Faculty of Medicine, University of Miyazaki, 5200 Kihara, Kiyotake, Miyazaki, 889-1692, Japan
| | - Takehito Tanzawa
- Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Shun Nagashima
- Laboratory of Regenerative Medicine, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo, 192-0392, Japan
| | - Ayumu Sugiura
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Yuuta Fujikawa
- School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Keitaro Umezawa
- Research Team for Mechanism of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakae-cho, Itabashi-ku, Tokyo, 173-0015, Japan
| | - Yasushi Tamura
- Faculty of Science, Yamagata University, 1-4-12 Kojirakawa-machi, Yamagata, Yamagata, 990-8560, Japan
| | - Byung Il Lee
- Research Institute, National Cancer Center, Goyang-si, Gyeonggi-do, Korea
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
- Department of Bioengineering, School of Engineering, The University of Tokyo, Tokyo, 113-8656, Japan
| | - Yasushi Okazaki
- Diagnostics and Therapeutics of Intractable Diseases, Intractable Disease Research Center, Juntendo University, Graduate School of Medicine, Bunkyo-ku, Tokyo, Japan
| | - Tomohiro Sawa
- Department of Microbiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Ryoko Inatome
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan
| | - Shigeru Yanagi
- Laboratory of Molecular Biochemistry, Department of Life Science, Faculty of Science, Gakushuin University, Toshima, Tokyo, 171-8588, Japan.
| |
Collapse
|
18
|
Khaliulin I, Hamoudi W, Amal H. The multifaceted role of mitochondria in autism spectrum disorder. Mol Psychiatry 2025; 30:629-650. [PMID: 39223276 PMCID: PMC11753362 DOI: 10.1038/s41380-024-02725-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 08/21/2024] [Accepted: 08/23/2024] [Indexed: 09/04/2024]
Abstract
Normal brain functioning relies on high aerobic energy production provided by mitochondria. Failure to supply a sufficient amount of energy, seen in different brain disorders, including autism spectrum disorder (ASD), may have a significant negative impact on brain development and support of different brain functions. Mitochondrial dysfunction, manifested in the abnormal activities of the electron transport chain and impaired energy metabolism, greatly contributes to ASD. The aberrant functioning of this organelle is of such high importance that ASD has been proposed as a mitochondrial disease. It should be noted that aerobic energy production is not the only function of the mitochondria. In particular, these organelles are involved in the regulation of Ca2+ homeostasis, different mechanisms of programmed cell death, autophagy, and reactive oxygen and nitrogen species (ROS and RNS) production. Several syndromes originated from mitochondria-related mutations display ASD phenotype. Abnormalities in Ca2+ handling and ATP production in the brain mitochondria affect synaptic transmission, plasticity, and synaptic development, contributing to ASD. ROS and Ca2+ regulate the activity of the mitochondrial permeability transition pore (mPTP). The prolonged opening of this pore affects the redox state of the mitochondria, impairs oxidative phosphorylation, and activates apoptosis, ultimately leading to cell death. A dysregulation between the enhanced mitochondria-related processes of apoptosis and the inhibited autophagy leads to the accumulation of toxic products in the brains of individuals with ASD. Although many mitochondria-related mechanisms still have to be investigated, and whether they are the cause or consequence of this disorder is still unknown, the accumulating data show that the breakdown of any of the mitochondrial functions may contribute to abnormal brain development leading to ASD. In this review, we discuss the multifaceted role of mitochondria in ASD from the various aspects of neuroscience.
Collapse
Affiliation(s)
- Igor Khaliulin
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Wajeha Hamoudi
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Haitham Amal
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
19
|
Cartes-Saavedra B, Ghosh A, Hajnóczky G. The roles of mitochondria in global and local intracellular calcium signalling. Nat Rev Mol Cell Biol 2025:10.1038/s41580-024-00820-1. [PMID: 39870977 DOI: 10.1038/s41580-024-00820-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/29/2025]
Abstract
Activation of Ca2+ channels in Ca2+ stores in organelles and the plasma membrane generates cytoplasmic calcium ([Ca2+]c) signals that control almost every aspect of cell function, including metabolism, vesicle fusion and contraction. Mitochondria have a high capacity for Ca2+ uptake and chelation, alongside efficient Ca2+ release mechanisms. Still, mitochondria do not store Ca2+ in a prolonged manner under physiological conditions and lack the capacity to generate global [Ca2+]c signals. However, mitochondria take up Ca2+ at high local [Ca2+]c signals that originate from neighbouring organelles, and also during sustained global elevations of [Ca2+]c. Accumulated Ca2+ in the mitochondria stimulates oxidative metabolism and upon return to the cytoplasm, can produce spatially confined rises in [Ca2+]c to exert control over processes that are sensitive to Ca2+. Thus, the mitochondrial handling of [Ca2+]c is of physiological relevance. Furthermore, dysregulation of mitochondrial Ca2+ handling can contribute to debilitating diseases. We discuss the mechanisms and relevance of mitochondria in local and global calcium signals.
Collapse
Affiliation(s)
- Benjamín Cartes-Saavedra
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - Arijita Ghosh
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA
| | - György Hajnóczky
- MitoCare Center, Department of Pathology and Genomic Medicine, Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
20
|
Kiraly S, Stanley J, Eden ER. Lysosome-Mitochondrial Crosstalk in Cellular Stress and Disease. Antioxidants (Basel) 2025; 14:125. [PMID: 40002312 PMCID: PMC11852311 DOI: 10.3390/antiox14020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 01/11/2025] [Indexed: 02/27/2025] Open
Abstract
The perception of lysosomes and mitochondria as entirely separate and independent entities that degrade material and produce ATP, respectively, has been challenged in recent years as not only more complex roles for both organelles, but also an unanticipated level of interdependence are being uncovered. Coupled lysosome and mitochondrial function and dysfunction involve complex crosstalk between the two organelles which goes beyond mitochondrial quality control and lysosome-mediated clearance of damaged mitochondria through mitophagy. Our understanding of crosstalk between these two essential metabolic organelles has been transformed by major advances in the field of membrane contact sites biology. We now know that membrane contact sites between lysosomes and mitochondria play central roles in inter-organelle communication. This importance of mitochondria-lysosome contacts (MLCs) in cellular homeostasis, evinced by the growing number of diseases that have been associated with their dysregulation, is starting to be appreciated. How MLCs are regulated and how their coordination with other pathways of lysosome-mitochondria crosstalk is achieved are the subjects of ongoing scrutiny, but this review explores the current understanding of the complex crosstalk governing the function of the two organelles and its impact on cellular stress and disease.
Collapse
Affiliation(s)
| | | | - Emily R. Eden
- UCL Institute of Ophthalmology, London EC1V 9EL, UK; (S.K.); (J.S.)
| |
Collapse
|
21
|
Strucinska K, Kneis P, Pennington T, Cizio K, Szybowska P, Morgan A, Weertman J, Lewis TL. Fis1 is required for the development of the dendritic mitochondrial network in pyramidal cortical neurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.07.631801. [PMID: 39829888 PMCID: PMC11741399 DOI: 10.1101/2025.01.07.631801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Mitochondrial ATP production and calcium buffering are critical for metabolic regulation and neurotransmission making the formation and maintenance of the mitochondrial network a critical component of neuronal health. Cortical pyramidal neurons contain compartment-specific mitochondrial morphologies that result from distinct axonal and dendritic mitochondrial fission and fusion profiles. We previously showed that axonal mitochondria are maintained at a small size as a result of high axonal mitochondrial fission factor (Mff) activity. However, loss of Mff activity had little effect on cortical dendritic mitochondria, raising the question of how fission/fusion balance is controlled in the dendrites. Thus, we sought to investigate the role of another fission factor, fission 1 (Fis1), on mitochondrial morphology, dynamics and function in cortical neurons. We knocked down Fis1 in cortical neurons both in primary culture and in vivo, and unexpectedly found that Fis1 depletion decreased mitochondrial length in the dendrites, without affecting mitochondrial size in the axon. Further, loss of Fis1 activity resulted in both increased mitochondrial motility and dynamics in the dendrites. These results argue Fis1 exhibits dendrite selectivity and plays a more complex role in neuronal mitochondrial dynamics than previously reported. Functionally, Fis1 loss resulted in reduced mitochondrial membrane potential, increased sensitivity to complex III blockade, and decreased mitochondrial calcium uptake during neuronal activity. The altered mitochondrial network culminated in elevated resting calcium levels that increased dendritic branching but reduced spine density. We conclude that Fis1 regulates morphological and functional mitochondrial characteristics that influence dendritic tree arborization and connectivity.
Collapse
Affiliation(s)
- Klaudia Strucinska
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Parker Kneis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Molecular Biology & Biochemistry Department, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Travis Pennington
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Katarzyna Cizio
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Patrycja Szybowska
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Abigail Morgan
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| | - Joshua Weertman
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Tommy L Lewis
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Molecular Biology & Biochemistry Department, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
- Neuroscience Program, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
- Physiology Department, Oklahoma University Health Sciences Campus, Oklahoma City, OK 73104
| |
Collapse
|
22
|
Larrañaga-SanMiguel A, Bengoa-Vergniory N, Flores-Romero H. Crosstalk between mitochondria-ER contact sites and the apoptotic machinery as a novel health meter. Trends Cell Biol 2025; 35:33-45. [PMID: 39379268 DOI: 10.1016/j.tcb.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024]
Abstract
Mitochondria-endoplasmic reticulum (ER) contact sites (MERCS) function as transient signaling platforms that regulate essential cellular functions. MERCS are enriched in specific proteins and lipids that connect mitochondria and the ER together and modulate their activities. Dysregulation of MERCS is associated with several human pathologies including Alzheimer's disease (AD), Parkinson's disease (PD), and cancer. BCL-2 family proteins can locate at MERCS and control essential cellular functions such as calcium signaling and autophagy in addition to their role in mitochondrial apoptosis. Moreover, the BCL-2-mediated apoptotic machinery was recently found to trigger cGAS-STING pathway activation and a proinflammatory response, a recognized hallmark of these diseases that requires mitochondria-ER interplay. This review underscores the pivotal role of MERCS in regulating essential cellular functions, focusing on their crosstalk with BCL-2 family proteins, and discusses how their dysregulation is linked to disease.
Collapse
Affiliation(s)
| | - Nora Bengoa-Vergniory
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain; Oxford Parkinson's Disease Centre and Department of Physiology, Anatomy, and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QU, UK; Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Hector Flores-Romero
- Achucarro Basque Center for Neuroscience, Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain.
| |
Collapse
|
23
|
Angara RK, Sadi A, Gilk SD. A novel bacterial effector protein mediates ER-LD membrane contacts to regulate host lipid droplets. EMBO Rep 2024; 25:5331-5351. [PMID: 39333627 PMCID: PMC11624262 DOI: 10.1038/s44319-024-00266-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/05/2024] [Accepted: 09/10/2024] [Indexed: 09/29/2024] Open
Abstract
Effective intracellular communication between cellular organelles occurs at dedicated membrane contact sites (MCSs). Tether proteins are responsible for the establishment of MCSs, enabling direct communication between organelles to ensure organelle function and host cell homeostasis. While recent research has identified tether proteins in several bacterial pathogens, their functions have predominantly been associated with mediating inter-organelle communication between the bacteria containing vacuole (BCV) and the host endoplasmic reticulum (ER). Here, we identify a novel bacterial effector protein, CbEPF1, which acts as a molecular tether beyond the confines of the BCV and facilitates interactions between host cell organelles. Coxiella burnetii, an obligate intracellular bacterial pathogen, encodes the FFAT motif-containing protein CbEPF1 which localizes to host lipid droplets (LDs). CbEPF1 establishes inter-organelle contact sites between host LDs and the ER through its interactions with VAP family proteins. Intriguingly, CbEPF1 modulates growth of host LDs in a FFAT motif-dependent manner. These findings highlight the potential for bacterial effector proteins to impact host cellular homeostasis by manipulating inter-organelle communication beyond conventional BCVs.
Collapse
Affiliation(s)
- Rajendra Kumar Angara
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Arif Sadi
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA
| | - Stacey D Gilk
- Department of Pathology, Microbiology, and Immunology, University of Nebraska Medical Center, Omaha, NE, USA.
| |
Collapse
|
24
|
Hamaï A, Drin G. Specificity of lipid transfer proteins: An in vitro story. Biochimie 2024; 227:85-110. [PMID: 39304019 DOI: 10.1016/j.biochi.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/06/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Lipids, which are highly diverse, are finely distributed between organelle membranes and the plasma membrane (PM) of eukaryotic cells. As a result, each compartment has its own lipid composition and molecular identity, which is essential for the functional fate of many proteins. This distribution of lipids depends on two main processes: lipid synthesis, which takes place in different subcellular regions, and the transfer of these lipids between and across membranes. This review will discuss the proteins that carry lipids throughout the cytosol, called LTPs (Lipid Transfer Proteins). More than the modes of action or biological roles of these proteins, we will focus on the in vitro strategies employed during the last 60 years to address a critical question: What are the lipid ligands of these LTPs? We will describe the extent to which these strategies, combined with structural data and investigations in cells, have made it possible to discover proteins, namely ORPs, Sec14, PITPs, STARDs, Ups/PRELIs, START-like, SMP-domain containing proteins, and bridge-like LTPs, which compose some of the main eukaryotic LTP families, and their lipid ligands. We will see how these approaches have played a central role in cell biology, showing that LTPs can connect distant metabolic branches, modulate the composition of cell membranes, and even create new subcellular compartments.
Collapse
Affiliation(s)
- Amazigh Hamaï
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France
| | - Guillaume Drin
- Université Côte d'Azur, CNRS and Inserm, Institut de Pharmacologie Moléculaire et Cellulaire, UMR 7275, 660 route des lucioles, 06560, Valbonne Sophia Antipolis, France.
| |
Collapse
|
25
|
Viollet B, Guigas B. Fueling metabolic adaptation: lysosomal AMPK ignites glutaminolysis. Cell Res 2024; 34:822-823. [PMID: 39402400 PMCID: PMC11615240 DOI: 10.1038/s41422-024-01040-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2024] Open
Affiliation(s)
- Benoit Viollet
- Université Paris Cité, CNRS, Inserm, Institut Cochin, Paris, France.
| | - Bruno Guigas
- Leiden University Center for Infectious Diseases, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
26
|
Feng L, Li B, Yong SS, Wen X, Tian Z. The emerging role of exercise in Alzheimer's disease: Focus on mitochondrial function. Ageing Res Rev 2024; 101:102486. [PMID: 39243893 DOI: 10.1016/j.arr.2024.102486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Alzheimer's disease (AD) is an age-related neurodegenerative disease characterized by memory impairment and cognitive dysfunction, which eventually leads to the disability and mortality of older adults. Although the precise mechanisms by which age promotes the development of AD remains poorly understood, mitochondrial dysfunction plays a central role in the development of AD. Currently, there is no effective treatment for this debilitating disease. It is well accepted that exercise exerts neuroprotective effects by ameliorating mitochondrial dysfunction in the neurons of AD, which involves multiple mechanisms, including mitochondrial dynamics, biogenesis, mitophagy, transport, and signal transduction. In addition, exercise promotes mitochondria communication with other organelles in AD neurons, which should receive more attentions in the future.
Collapse
Affiliation(s)
- Lili Feng
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Bowen Li
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Su Sean Yong
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China
| | - Xu Wen
- Department of Sports Science, College of Education, Zhejiang University, Hangzhou 310030, China.
| | - Zhenjun Tian
- Institute of Sports Biology, College of Physical Education, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
27
|
Liu Y, Wei Y, Jin X, Cai H, Chen Q, Zhang X. PDZD8 Augments Endoplasmic Reticulum-Mitochondria Contact and Regulates Ca2+ Dynamics and Cypd Expression to Induce Pancreatic β-Cell Death during Diabetes. Diabetes Metab J 2024; 48:1058-1072. [PMID: 39069376 PMCID: PMC11621647 DOI: 10.4093/dmj.2023.0275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 03/26/2024] [Indexed: 07/30/2024] Open
Abstract
BACKGRUOUND Diabetes mellitus (DM) is a chronic metabolic disease that poses serious threats to human physical and mental health worldwide. The PDZ domain-containing 8 (PDZD8) protein mediates mitochondria-associated endoplasmic reticulum (ER) membrane (MAM) formation in mammals. We explored the role of PDZD8 in DM and investigated its potential mechanism of action. METHODS High-fat diet (HFD)- and streptozotocin-induced mouse DM and palmitic acid (PA)-induced insulin 1 (INS-1) cell models were constructed. PDZD8 expression was detected using immunohistochemistry, quantitative real-time polymerase chain reaction (qRT-PCR), and Western blotting. MAM formation, interactions between voltage-dependent anion-selective channel 1 (VDAC1) and inositol 1,4,5-triphosphate receptor type 1 (IP3R1), pancreatic β-cell apoptosis and proliferation were detected using transmission electron microscopy (TEM), proximity ligation assay (PLA), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay, immunofluorescence staining, and Western blotting. The mitochondrial membrane potential, cell apoptosis, cytotoxicity, and subcellular Ca2+ localization in INS-1 cells were detected using a JC-1 probe, flow cytometry, and an lactate dehydrogenase kit. RESULTS PDZD8 expression was up-regulated in the islets of HFD mice and PA-treated pancreatic β-cells. PDZD8 knockdown markedly shortened MAM perimeter, suppressed the expression of MAM-related proteins IP3R1, glucose-regulated protein 75 (GRP75), and VDAC1, inhibited the interaction between VDAC1 and IP3R1, alleviated mitochondrial dysfunction and ER stress, reduced the expression of ER stress-related proteins, and decreased apoptosis while increased proliferation of pancreatic β-cells. Additionally, PDZD8 knockdown alleviated Ca2+ flow into the mitochondria and decreased cyclophilin D (Cypd) expression. Cypd overexpression alleviated the promoting effect of PDZD8 knockdown on the apoptosis of β-cells. CONCLUSION PDZD8 knockdown inhibited pancreatic β-cell death in DM by alleviated ER-mitochondria contact and the flow of Ca2+ into the mitochondria.
Collapse
Affiliation(s)
- Yongxin Liu
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
| | - Yongqing Wei
- Department of Obstetrics, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiaolong Jin
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Hongyu Cai
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qianqian Chen
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Xiujuan Zhang
- Department of Endocrinology, Shandong Provincial Hospital, Shandong University, Jinan, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| |
Collapse
|
28
|
Shirane M. Pathogenic contribution of cholesteryl ester accumulation in the brain to neurodegenerative disorders. Neural Regen Res 2024; 19:2099-2100. [PMID: 38488537 PMCID: PMC11034598 DOI: 10.4103/1673-5374.392878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 11/29/2023] [Accepted: 12/05/2023] [Indexed: 04/24/2024] Open
Affiliation(s)
- Michiko Shirane
- Department of Molecular Biology, Graduate School of Pharmaceutical Sciences, Nagoya City University, Nagoya, Japan
| |
Collapse
|
29
|
Li M, Wang Y, Wei X, Cai WF, Wu J, Zhu M, Wang Y, Liu YH, Xiong J, Qu Q, Chen Y, Tian X, Yao L, Xie R, Li X, Chen S, Huang X, Zhang C, Xie C, Wu Y, Xu Z, Zhang B, Jiang B, Wang ZC, Li Q, Li G, Lin SY, Yu L, Piao HL, Deng X, Han J, Zhang CS, Lin SC. AMPK targets PDZD8 to trigger carbon source shift from glucose to glutamine. Cell Res 2024; 34:683-706. [PMID: 38898113 PMCID: PMC11442470 DOI: 10.1038/s41422-024-00985-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/28/2024] [Indexed: 06/21/2024] Open
Abstract
The shift of carbon utilization from primarily glucose to other nutrients is a fundamental metabolic adaptation to cope with decreased blood glucose levels and the consequent decline in glucose oxidation. AMP-activated protein kinase (AMPK) plays crucial roles in this metabolic adaptation. However, the underlying mechanism is not fully understood. Here, we show that PDZ domain containing 8 (PDZD8), which we identify as a new substrate of AMPK activated in low glucose, is required for the low glucose-promoted glutaminolysis. AMPK phosphorylates PDZD8 at threonine 527 (T527) and promotes the interaction of PDZD8 with and activation of glutaminase 1 (GLS1), a rate-limiting enzyme of glutaminolysis. In vivo, the AMPK-PDZD8-GLS1 axis is required for the enhancement of glutaminolysis as tested in the skeletal muscle tissues, which occurs earlier than the increase in fatty acid utilization during fasting. The enhanced glutaminolysis is also observed in macrophages in low glucose or under acute lipopolysaccharide (LPS) treatment. Consistent with a requirement of heightened glutaminolysis, the PDZD8-T527A mutation dampens the secretion of pro-inflammatory cytokines in macrophages in mice treated with LPS. Together, we have revealed an AMPK-PDZD8-GLS1 axis that promotes glutaminolysis ahead of increased fatty acid utilization under glucose shortage.
Collapse
Affiliation(s)
- Mengqi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yu Wang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiaoyan Wei
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Wei-Feng Cai
- Xiamen Key Laboratory of Radiation Oncology, Xiamen Cancer Center, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Jianfeng Wu
- Laboratory Animal Research Centre, Xiamen University, Xiamen, Fujian, China
| | - Mingxia Zhu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yongliang Wang
- School of Basic Medical Sciences, Henan University, Kaifeng, Henan, China
| | - Yan-Hui Liu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jinye Xiong
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Qi Qu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yan Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xiao Tian
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Luming Yao
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Renxiang Xie
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaomin Li
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Siwei Chen
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Xi Huang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Cixiong Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Changchuan Xie
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Yaying Wu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zheni Xu
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Baoding Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Bin Jiang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Zhi-Chao Wang
- School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | - Qinxi Li
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Gang Li
- Xiamen Cardiovascular Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, China
| | - Shu-Yong Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Li Yu
- State Key Laboratory of Membrane Biology, Tsinghua University-Peking University Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, China
| | - Xianming Deng
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Jiahuai Han
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China
| | - Chen-Song Zhang
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Sheng-Cai Lin
- State Key Laboratory for Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
30
|
Yang Z, Chan DC. Development of a Signal-integrating Reporter to Monitor Mitochondria-ER Contacts. ACS Synth Biol 2024; 13:2791-2803. [PMID: 39162343 DOI: 10.1021/acssynbio.4c00098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Mitochondria-endoplasmic reticulum contact sites (MERCS) serve as hotspots for important cellular processes, including calcium homeostasis, phospholipid homeostasis, mitochondria dynamics, and mitochondrial quality control. MERCS reporters based on complementation of green fluorescent proteins (GFP) fragments have been designed to visualize MERCS in real-time, but we find that they do not accurately respond to changes in MERCS content. Here, we utilize split LacZ complementing fragments to develop the first MERCS reporter system (termed SpLacZ-MERCS) that continuously integrates the MERCS information within a cell and generates a fluorescent output. Our system exhibits good organelle targeting, no artifactual tethering, and effective, dynamic tracking of the MERCS level in single cells. The SpLacZ-MERCS reporter was validated by drug treatments and genetic perturbations known to affect mitochondria-ER contacts. The signal-integrating nature of SpLacZ-MERCS may enable systematic identification of genes and drugs that regulate mitochondria-ER interactions. Our successful application of the split LacZ complementation strategy to study MERCS may be extended to study other forms of interorganellar crosstalk.
Collapse
Affiliation(s)
- Zheng Yang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - David C Chan
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
31
|
Serangeli I, Diamanti T, De Jaco A, Miranda E. Role of mitochondria-endoplasmic reticulum contacts in neurodegenerative, neurodevelopmental and neuropsychiatric conditions. Eur J Neurosci 2024; 60:5040-5068. [PMID: 39099373 DOI: 10.1111/ejn.16485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 04/15/2024] [Accepted: 07/15/2024] [Indexed: 08/06/2024]
Abstract
Mitochondria-endoplasmic reticulum contacts (MERCs) mediate a close and continuous communication between both organelles that is essential for the transfer of calcium and lipids to mitochondria, necessary for cellular signalling and metabolic pathways. Their structural and molecular characterisation has shown the involvement of many proteins that bridge the membranes of the two organelles and maintain the structural stability and function of these contacts. The crosstalk between the two organelles is fundamental for proper neuronal function and is now recognised as a component of many neurological disorders. In fact, an increasing proportion of MERC proteins take part in the molecular and cellular basis of pathologies affecting the nervous system. Here we review the alterations in MERCs that have been reported for these pathologies, from neurodevelopmental and neuropsychiatric disorders to neurodegenerative diseases. Although mitochondrial abnormalities in these debilitating conditions have been extensively attributed to the high energy demand of neurons, a distinct role for MERCs is emerging as a new field of research. Understanding the molecular details of such alterations may open the way to new paths of therapeutic intervention.
Collapse
Affiliation(s)
- Ilaria Serangeli
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Tamara Diamanti
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Antonella De Jaco
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| | - Elena Miranda
- Department of Biology and Biotechnologies 'Charles Darwin', Sapienza University of Rome, Rome, Italy
| |
Collapse
|
32
|
Zhu J, Qiu W, Wei F, Zhang J, Yuan Y, Liu L, Cheng M, Xiong H, Xu R. Toll-like receptor 4 deficiency in Purkinje neurons drives cerebellar ataxia by impairing the BK channel-mediated after-hyperpolarization and cytosolic calcium homeostasis. Cell Death Dis 2024; 15:594. [PMID: 39147737 PMCID: PMC11327311 DOI: 10.1038/s41419-024-06988-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
Toll-like receptor (TLR) 4 contributes to be the induction of neuroinflammation by recognizing pathology-associated ligands and activating microglia. In addition, numerous physiological signaling factors act as agonists or antagonists of TLR4 expressed by non-immune cells. Recently, TLR4 was found to be highly expressed in cerebellar Purkinje neurons (PNs) and involved in the maintenance of motor coordination through non-immune pathways, but the precise mechanisms remain unclear. Here we report that mice with PN specific TLR4 deletion (TLR4PKO mice) exhibited motor impairments consistent with cerebellar ataxia, reduced PN dendritic arborization and spine density, fewer parallel fiber (PF) - PN and climbing fiber (CF) - PN synapses, reduced BK channel expression, and impaired BK-mediated after-hyperpolarization, collectively leading to abnormal PN firing. Moreover, the impaired PN firing in TLR4PKO mice could be rescued with BK channel opener. The PNs of TLR4PKO mice also exhibited abnormal mitochondrial structure, disrupted mitochondrial endoplasmic reticulum tethering, and reduced cytosolic calcium, changes that may underly abnormal PN firing and ultimately drive ataxia. These results identify a previously unknown role for TLR4 in regulating PN firing and maintaining cerebellar function.
Collapse
Affiliation(s)
- Jianwei Zhu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Wenqiao Qiu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Fan Wei
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Critical Care Medicine, Mianyang Orthopaedic Hospital, Mianyang, Sichuan Province, 621000, China
| | - Jin Zhang
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Ying Yuan
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Ling Liu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Meixiong Cheng
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Huan Xiong
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Ruxiang Xu
- Department of Neurosurgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
33
|
Hasegawa S, Nangaku M, Takenaka Y, Kitayama C, Li Q, Saipidin M, Hong YA, Shang J, Hirabayashi Y, Kubota N, Kadowaki T, Inagi R. Organelle communication maintains mitochondrial and endosomal homeostasis during podocyte lipotoxicity. JCI Insight 2024; 9:e182534. [PMID: 39115943 PMCID: PMC11457848 DOI: 10.1172/jci.insight.182534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
Organelle stress exacerbates podocyte injury, contributing to perturbed lipid metabolism. Simultaneous organelle stresses can occur in the kidney in the diseased state; therefore, a thorough analysis of organelle communication is crucial for understanding the progression of kidney diseases. Although organelles closely interact with one another at membrane contact sites, limited studies have explored their involvement in kidney homeostasis. The endoplasmic reticulum (ER) protein, PDZ domain-containing 8 (PDZD8), is implicated in multiple-organelle-tethering processes and cellular lipid homeostasis. In this study, we aimed to elucidate the role of organelle communication in podocyte injury using podocyte-specific Pdzd8-knockout mice. Our findings demonstrated that Pdzd8 deletion exacerbated podocyte injury in an accelerated obesity-related kidney disease model. Proteomic analysis of isolated glomeruli revealed that Pdzd8 deletion exacerbated mitochondrial and endosomal dysfunction during podocyte lipotoxicity. Additionally, electron microscopy revealed the accumulation of abnormal, fatty endosomes in Pdzd8-deficient podocytes during obesity-related kidney diseases. Lipidomic analysis indicated that glucosylceramide accumulated in Pdzd8-deficient podocytes, owing to accelerated production and decelerated degradation. Thus, the organelle-tethering factor, PDZD8, plays a crucial role in maintaining mitochondrial and endosomal homeostasis during podocyte lipotoxicity. Collectively, our findings highlight the importance of organelle communication at the 3-way junction among the ER, mitochondria, and endosomes in preserving podocyte homeostasis.
Collapse
Affiliation(s)
- Sho Hasegawa
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaomi Nangaku
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yuto Takenaka
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Chigusa Kitayama
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Qi Li
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Madina Saipidin
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yu Ah Hong
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Jin Shang
- Division of Chronic Kidney Disease Pathophysiology and
- Division of Nephrology and Endocrinology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Yusuke Hirabayashi
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Tokyo, Japan
| | - Naoto Kubota
- Department of Metabolic Medicine, Faculty of Life Science, Kumamoto University, Kumamoto, Japan
- Department of Diabetes and Metabolic Diseases, and
| | - Takashi Kadowaki
- Department of Diabetes and Metabolic Diseases, and
- Department of Prevention of Diabetes and Lifestyle-Related Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
- Toranomon Hospital, Tokyo, Japan
| | - Reiko Inagi
- Division of Chronic Kidney Disease Pathophysiology and
| |
Collapse
|
34
|
Sayehmiri F, Motamedi F, Batool Z, Naderi N, Shaerzadeh F, Zoghi A, Rezaei O, Khodagholi F, Pourbadie HG. Mitochondrial plasticity and synaptic plasticity crosstalk; in health and Alzheimer's disease. CNS Neurosci Ther 2024; 30:e14897. [PMID: 39097920 PMCID: PMC11298206 DOI: 10.1111/cns.14897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/19/2024] [Accepted: 07/18/2024] [Indexed: 08/06/2024] Open
Abstract
Synaptic plasticity is believed to underlie the cellular and molecular basis of memory formation. Mitochondria are one of the main organelles involved in metabolism and energy maintenance as plastic organelles that change morphologically and functionally in response to cellular needs and regulate synaptic function and plasticity through multiple mechanisms, including ATP generation, calcium homeostasis, and biogenesis. An increased neuronal activity enhances synaptic efficiency, during which mitochondria's spatial distribution and morphology change significantly. These organelles build up in the pre-and postsynaptic zones to produce ATP, which is necessary for several synaptic processes like neurotransmitter release and recycling. Mitochondria also regulate calcium homeostasis by buffering intracellular calcium, which ensures proper synaptic activity. Furthermore, mitochondria in the presynaptic terminal have distinct morphological properties compared to dendritic or postsynaptic mitochondria. This specialization enables precise control of synaptic activity and plasticity. Mitochondrial dysfunction has been linked to synaptic failure in many neurodegenerative disorders, like Alzheimer's disease (AD). In AD, malfunctioning mitochondria cause delays in synaptic vesicle release and recycling, ionic gradient imbalances, and mostly synaptic failure. This review emphasizes mitochondrial plasticity's contribution to synaptic function. It also explores the profound effect of mitochondrial malfunction on neurodegenerative disorders, focusing on AD, and provides an overview of how they sustain cellular health under normal conditions and how their malfunction contributes to neurodegenerative diseases, highlighting their potential as a therapeutic target for such conditions.
Collapse
Affiliation(s)
- Fatemeh Sayehmiri
- Neuroscience Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Fereshteh Motamedi
- Neuroscience Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
- Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Zehra Batool
- Dr. Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological SciencesUniversity of KarachiKarachiPakistan
| | - Nima Naderi
- Department of Pharmacology and Toxicology, Faculty of PharmacyShahid Beheshti University of Medical SciencesTehranIran
| | | | - Anahita Zoghi
- Department of Neurology, Loghman Hakim HospitalShahid Beheshti University of Medical SciencesTehranIran
| | - Omidvar Rezaei
- Skull Base Research CenterLoghman Hakim Hospital, Shahid Beheshti University of Medical SciencesTehranIran
| | - Fariba Khodagholi
- Neuroscience Research Center, Faculty of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | | |
Collapse
|
35
|
Woo MS, Mayer C, Binkle-Ladisch L, Sonner JK, Rosenkranz SC, Shaposhnykov A, Rothammer N, Tsvilovskyy V, Lorenz SM, Raich L, Bal LC, Vieira V, Wagner I, Bauer S, Glatzel M, Conrad M, Merkler D, Freichel M, Friese MA. STING orchestrates the neuronal inflammatory stress response in multiple sclerosis. Cell 2024; 187:4043-4060.e30. [PMID: 38878778 DOI: 10.1016/j.cell.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/08/2024] [Accepted: 05/16/2024] [Indexed: 07/28/2024]
Abstract
Inflammation-induced neurodegeneration is a defining feature of multiple sclerosis (MS), yet the underlying mechanisms remain unclear. By dissecting the neuronal inflammatory stress response, we discovered that neurons in MS and its mouse model induce the stimulator of interferon genes (STING). However, activation of neuronal STING requires its detachment from the stromal interaction molecule 1 (STIM1), a process triggered by glutamate excitotoxicity. This detachment initiates non-canonical STING signaling, which leads to autophagic degradation of glutathione peroxidase 4 (GPX4), essential for neuronal redox homeostasis and thereby inducing ferroptosis. Both genetic and pharmacological interventions that target STING in neurons protect against inflammation-induced neurodegeneration. Our findings position STING as a central regulator of the detrimental neuronal inflammatory stress response, integrating inflammation with glutamate signaling to cause neuronal cell death, and present it as a tractable target for treating neurodegeneration in MS.
Collapse
Affiliation(s)
- Marcel S Woo
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christina Mayer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Binkle-Ladisch
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jana K Sonner
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sina C Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Artem Shaposhnykov
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nicola Rothammer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Volodymyr Tsvilovskyy
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Svenja M Lorenz
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Lukas Raich
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas C Bal
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ingrid Wagner
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University and University Hospital of Geneva, Geneva, Switzerland
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Marcus Conrad
- Institute of Metabolism and Cell Death, Helmholtz Zentrum München, Neuherberg, Germany
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, Faculty of Medicine, University and University Hospital of Geneva, Geneva, Switzerland
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis, University Medical Center Hamburg-Eppendorf, Hamburg, Germany.
| |
Collapse
|
36
|
Agu I, José IR, Díaz-Muñoz SL. Influenza A defective viral genome production is altered by metabolites, metabolic signaling molecules, and cyanobacteria extracts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.04.602134. [PMID: 39005323 PMCID: PMC11245085 DOI: 10.1101/2024.07.04.602134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
RNA virus infections are composed of a diverse mix of viral genomes that arise from low fidelity in replication within cells. The interactions between "defective" and full-length viral genomes have been shown to shape pathogenesis, leading to intense research into employing these to develop novel antivirals. In particular, Influenza A defective viral genomes (DVGs) have been associated with milder clinical outcomes. Yet, the full potential of DVGs as broad-spectrum antivirals remains untapped due to the unknown mechanisms of their de novo production. Much of the research into the factors affecting defective viral genome production has focused on the virus, while the role of the host has been neglected. We recently showed that altering host cell metabolism away from pro-growth pathways using alpelisib increased the production of Influenza A defective viral genomes. To uncover other drugs that could induce infections to create more DVGs, we subjected active influenza infections of the two circulating human subtypes (A/H1N1 & A/H3N2) to a screen of metabolites, metabolic signaling molecules, and cyanobacteria-derived biologics, after which we quantified the defective viral genomes (specifically deletion-containing viral genomes, DelVGs) and total viral genomes using third generation long-read sequencing. Here we show that metabolites and signaling molecules of host cell central carbon metabolism can significantly alter DelVG production early in Influenza A infection. Adenosine, emerged as a potent inducer of defective viral genomes, significantly amplifying DelVG production across both subtypes. Insulin had similar effects, albeit subtype-specific, predominantly enhancing polymerase segment DVGs in TX12 infections. Tricarboxylic Acid (TCA) cycle inhibitors 4-octyl itaconate and UK5099, along with the purine analog favipiravir, increased total viral genome production across subtypes. Cyanobacterial extracts primarily affected DVG and total viral genome production in TX12, with a specific, almost complete shutdown of influenza antigenic segments. These results underscore the influence of host metabolic pathways on DVG production and suggest new avenues for antiviral intervention, including PI3K-AKT and Ras-MAPK signaling pathways, TCA cycle metabolism, purine-pyrimidine metabolism, polymerase inhibition, and cyanotherapeutic approaches. More broadly, our findings suggest that the social interactions observed between defective and full-length viral genomes, depend not only on the viral actors, but can be altered by the stage provided by the host. Our study advances our fundamental understanding of DVG production mechanisms and highlights the potential of targeting host metabolism to develop broad-spectrum influenza therapeutics.
Collapse
Affiliation(s)
- Ilechukwu Agu
- Department of Microbiology and Molecular Genetics University of California, Davis One Shields Ave Davis CA 95616
| | - Ivy R. José
- Department of Microbiology and Molecular Genetics University of California, Davis One Shields Ave Davis CA 95616
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics University of California, Davis One Shields Ave Davis CA 95616
- Genome Center University of California, Davis One Shields Ave Davis CA 95616
| |
Collapse
|
37
|
Ge WD, Du TT, Wang CY, Sun LN, Wang YQ. Calcium signaling crosstalk between the endoplasmic reticulum and mitochondria, a new drug development strategies of kidney diseases. Biochem Pharmacol 2024; 225:116278. [PMID: 38740223 DOI: 10.1016/j.bcp.2024.116278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/25/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Calcium (Ca2+) acts as a second messenger and constitutes a complex and large information exchange system between the endoplasmic reticulum (ER) and mitochondria; this process is involved in various life activities, such as energy metabolism, cell proliferation and apoptosis. Increasing evidence has suggested that alterations in Ca2+ crosstalk between the ER and mitochondria, including alterations in ER and mitochondrial Ca2+ channels and related Ca2+ regulatory proteins, such as sarco/endoplasmic reticulum Ca2+-ATPase (SERCA), inositol 1,4,5-trisphosphate receptor (IP3R), and calnexin (CNX), are closely associated with the development of kidney disease. Therapies targeting intracellular Ca2+ signaling have emerged as an emerging field in the treatment of renal diseases. In this review, we focused on recent advances in Ca2+ signaling, ER and mitochondrial Ca2+ monitoring methods and Ca2+ homeostasis in the development of renal diseases and sought to identify new targets and insights for the treatment of renal diseases by targeting Ca2+ channels or related Ca2+ regulatory proteins.
Collapse
Affiliation(s)
- Wen-Di Ge
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Tian-Tian Du
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Cao-Yang Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Lu-Ning Sun
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| | - Yong-Qing Wang
- Research Division of Clinical Pharmacology, the First Affiliated Hospital of Nanjing Medical University & Jiangsu Province Hospital, Nanjing, China; Department of Pharmacy, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
38
|
Zhang JR, Shen SY, Zhai MY, Shen ZQ, Li W, Liang LF, Yin SY, Han QQ, Li B, Zhang YQ, Yu J. Augmented microglial endoplasmic reticulum-mitochondria contacts mediate depression-like behavior in mice induced by chronic social defeat stress. Nat Commun 2024; 15:5199. [PMID: 38890305 PMCID: PMC11189428 DOI: 10.1038/s41467-024-49597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 06/07/2024] [Indexed: 06/20/2024] Open
Abstract
Extracellular ATP (eATP) signaling through the P2X7 receptor pathway is widely believed to trigger NLRP3 inflammasome assembly in microglia, potentially contributing to depression. However, the cellular stress responses of microglia to both eATP and stress itself remain largely unexplored. Mitochondria-associated membranes (MAMs) is a platform facilitating calcium transport between the endoplasmic reticulum (ER) and mitochondria, regulating ER stress responses and mitochondrial homeostasis. This study aims to investigate how MAMs influence microglial reaction and their involvement in the development of depression-like symptoms in response to chronic social defeat stress (CSDS). CSDS induced ER stress, MAMs' modifications, mitochondrial damage, and the formation of the IP3R3-GRP75-VDAC1 complex at the ER-mitochondria interface in hippocampal microglia, all concomitant with depression-like behaviors. Additionally, exposing microglia to eATP to mimic CSDS conditions resulted in analogous outcomes. Furthermore, knocking down GRP75 in BV2 cells impeded ER-mitochondria contact, calcium transfer, ER stress, mitochondrial damage, mitochondrial superoxide production, and NLRP3 inflammasome aggregation induced by eATP. In addition, reduced GRP75 expression in microglia of Cx3cr1CreER/+Hspa9f/+ mice lead to reduce depressive behaviors, decreased NLRP3 inflammasome aggregation, and fewer ER-mitochondria contacts in hippocampal microglia during CSDS. Here, we show the role of MAMs, particularly the formation of a tripartite complex involving IP3R3, GRP75, and VDAC1 within MAMs, in facilitating communication between the ER and mitochondria in microglia, thereby contributing to the development of depression-like phenotypes in male mice.
Collapse
Affiliation(s)
- Jia-Rui Zhang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shi-Yu Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Meng-Ying Zhai
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zu-Qi Shen
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Wei Li
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ling-Feng Liang
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Shu-Yuan Yin
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Qiu-Qin Han
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Bing Li
- Center Laboratories, Jinshan Hospital of Fudan University, Shanghai, 201508, China
| | - Yu-Qiu Zhang
- Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institutes of Brain Science, Fudan University, Shanghai, 200032, China
| | - Jin Yu
- Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, 200433, China.
| |
Collapse
|
39
|
Licini C, Morroni G, Lucarini G, Vitto VAM, Orlando F, Missiroli S, D'Achille G, Perrone M, Spadoni T, Graciotti L, Bigossi G, Provinciali M, Offidani A, Mattioli-Belmonte M, Cirioni O, Pinton P, Simonetti O, Marchi S. ER-mitochondria association negatively affects wound healing by regulating NLRP3 activation. Cell Death Dis 2024; 15:407. [PMID: 38862500 PMCID: PMC11167056 DOI: 10.1038/s41419-024-06765-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 05/21/2024] [Indexed: 06/13/2024]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is the most common causative agent of acute bacterial skin and skin-structure infections (ABSSSI), one of the major challenges to the health system worldwide. Although the use of antibiotics as the first line of intervention for MRSA-infected wounds is recommended, important side effects could occur, including cytotoxicity or immune dysregulation, thus affecting the repair process. Here, we show that the oxazolidinone antibiotic linezolid (LZD) impairs wound healing by aberrantly increasing interleukin 1 β (IL-1β) production in keratinocytes. Mechanistically, LZD triggers a reactive oxygen species (ROS)-independent mitochondrial damage that culminates in increased tethering between the endoplasmic reticulum (ER) and mitochondria, which in turn activates the NLR family pyrin domain-containing 3 (NLRP3) inflammasome complex by promoting its assembly to the mitochondrial surface. Downregulation of ER-mitochondria contact formation is sufficient to inhibit the LZD-driven NLRP3 inflammasome activation and IL-1β production, restoring wound closure. These results identify the ER-mitochondria association as a key factor for NLRP3 activation and reveal a new mechanism in the regulation of the wound healing process that might be clinically relevant.
Collapse
Affiliation(s)
- Caterina Licini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Gianluca Morroni
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Guendalina Lucarini
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Veronica Angela Maria Vitto
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Fiorenza Orlando
- Experimental Animal Models for Aging Research, Scientific Technological Area, IRCCS INRCA, 60121, Ancona, Italy
| | - Sonia Missiroli
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Gloria D'Achille
- Microbiology Unit, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Mariasole Perrone
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Tatiana Spadoni
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Laura Graciotti
- Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Giorgia Bigossi
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Annamaria Offidani
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
| | - Monica Mattioli-Belmonte
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy
| | - Oscar Cirioni
- Clinic of Infectious Diseases, Department of Biomedical Sciences and Public Health, Marche Polytechnic University, Ancona, Italy
| | - Paolo Pinton
- Department of Medical Sciences, Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Oriana Simonetti
- Clinic of Dermatology, Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
| | - Saverio Marchi
- Department of Clinical and Molecular Sciences, Marche Polytechnic University, Ancona, Italy.
- Advanced Technology Center for Aging Research, IRCCS INRCA, 60121, Ancona, Italy.
| |
Collapse
|
40
|
Nakamura K, Aoyama-Ishiwatari S, Nagao T, Paaran M, Obara CJ, Sakurai-Saito Y, Johnston J, Du Y, Suga S, Tsuboi M, Nakakido M, Tsumoto K, Kishi Y, Gotoh Y, Kwak C, Rhee HW, Seo JK, Kosako H, Potter C, Carragher B, Lippincott-Schwartz J, Polleux F, Hirabayashi Y. PDZD8-FKBP8 tethering complex at ER-mitochondria contact sites regulates mitochondrial complexity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.22.554218. [PMID: 38895210 PMCID: PMC11185567 DOI: 10.1101/2023.08.22.554218] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mitochondria-ER membrane contact sites (MERCS) represent a fundamental ultrastructural feature underlying unique biochemistry and physiology in eukaryotic cells. The ER protein PDZD8 is required for the formation of MERCS in many cell types, however, its tethering partner on the outer mitochondrial membrane (OMM) is currently unknown. Here we identified the OMM protein FKBP8 as the tethering partner of PDZD8 using a combination of unbiased proximity proteomics, CRISPR-Cas9 endogenous protein tagging, Cryo-Electron Microscopy (Cryo-EM) tomography, and correlative light-EM (CLEM). Single molecule tracking revealed highly dynamic diffusion properties of PDZD8 along the ER membrane with significant pauses and capture at MERCS. Overexpression of FKBP8 was sufficient to narrow the ER-OMM distance, whereas independent versus combined deletions of these two proteins demonstrated their interdependence for MERCS formation. Furthermore, PDZD8 enhances mitochondrial complexity in a FKBP8-dependent manner. Our results identify a novel ER-mitochondria tethering complex that regulates mitochondrial morphology in mammalian cells.
Collapse
|
41
|
Bao L, Liu Q, Wang J, Shi L, Pang Y, Niu Y, Zhang R. The interactions of subcellular organelles in pulmonary fibrosis induced by carbon black nanoparticles: a comprehensive review. Arch Toxicol 2024; 98:1629-1643. [PMID: 38536500 DOI: 10.1007/s00204-024-03719-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/29/2024] [Indexed: 05/21/2024]
Abstract
Owing to the widespread use and improper emissions of carbon black nanoparticles (CBNPs), the adverse effects of CBNPs on human health have attracted much attention. In toxicological research, carbon black is frequently utilized as a negative control because of its low toxicity and poor solubility. However, recent studies have indicated that inhalation exposure to CBNPs could be a risk factor for severe and prolonged pulmonary inflammation and fibrosis. At present, the pathogenesis of pulmonary fibrosis induced by CBNPs is still not fully elucidated, but it is known that with small particle size and large surface area, CBNPs are more easily ingested by cells, leading to organelle damage and abnormal interactions between organelles. Damaged organelle and abnormal organelles interactions lead to cell structure and function disorders, which is one of the important factors in the development and occurrence of various diseases, including pulmonary fibrosis. This review offers a comprehensive analysis of organelle structure, function, and interaction mechanisms, while also summarizing the research advancements in organelles and organelle interactions in CBNPs-induced pulmonary fibrosis.
Collapse
Affiliation(s)
- Lei Bao
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Qingping Liu
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Jingyuan Wang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Lili Shi
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Yaxian Pang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China
| | - Yujie Niu
- Department of Occupational Health and Environmental Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Rong Zhang
- Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China.
- Department of Toxicology, Hebei Medical University, 361 Zhongshan East Rd, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
42
|
Eom Y, Kim SR, Kim YK, Lee SH. Mitochondrial Calcium Waves by Electrical Stimulation in Cultured Hippocampal Neurons. Mol Neurobiol 2024; 61:3477-3489. [PMID: 37995079 DOI: 10.1007/s12035-023-03795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023]
Abstract
Mitochondria are critical to cellular Ca2+ homeostasis via the sequestering of cytosolic Ca2+ in the mitochondrial matrix. Mitochondrial Ca2+ buffering regulates neuronal activity and neuronal death by shaping cytosolic and presynaptic Ca2+ or controlling energy metabolism. Dysfunction in mitochondrial Ca2+ buffering has been implicated in psychological and neurological disorders. Ca2+ wave propagation refers to the spreading of Ca2+ for buffering and maintaining the associated rise in Ca2+ concentration. We investigated mitochondrial Ca2+ waves in hippocampal neurons using genetically encoded Ca2+ indicators. Neurons transfected with mito-GCaMP5G, mito-RCaMP1h, and CEPIA3mt exhibited evidence of mitochondrial Ca2+ waves with electrical stimulation. These waves were observed with 200 action potentials at 40 Hz or 20 Hz but not with lower frequencies or fewer action potentials. The application of inhibitors of mitochondrial calcium uniporter and oxidative phosphorylation suppressed mitochondrial Ca2+ waves. However, α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors and N-methyl-d-aspartate receptor blockade had no effect on mitochondrial Ca2+ wave were propagation. The Ca2+ waves were not observed in endoplasmic reticula, presynaptic terminals, or cytosol in association with electrical stimulation of 200 action potentials at 40 Hz. These results offer novel insights into the mechanisms underlying mitochondrial Ca2+ buffering and the molecular basis of mitochondrial Ca2+ waves in neurons in response to electrical stimulation.
Collapse
Affiliation(s)
- Yunkyung Eom
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Rae Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
- Brain Research Core Facilities of Korea Brain Research Institute (KBRI), Daegu, 41068, Republic of Korea
| | - Yeong-Kyeong Kim
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Sung Hoon Lee
- College of Pharmacy, Chung-Ang University, Seoul, 06974, Republic of Korea.
| |
Collapse
|
43
|
Zong Y, Li H, Liao P, Chen L, Pan Y, Zheng Y, Zhang C, Liu D, Zheng M, Gao J. Mitochondrial dysfunction: mechanisms and advances in therapy. Signal Transduct Target Ther 2024; 9:124. [PMID: 38744846 PMCID: PMC11094169 DOI: 10.1038/s41392-024-01839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 12/05/2023] [Accepted: 04/21/2024] [Indexed: 05/16/2024] Open
Abstract
Mitochondria, with their intricate networks of functions and information processing, are pivotal in both health regulation and disease progression. Particularly, mitochondrial dysfunctions are identified in many common pathologies, including cardiovascular diseases, neurodegeneration, metabolic syndrome, and cancer. However, the multifaceted nature and elusive phenotypic threshold of mitochondrial dysfunction complicate our understanding of their contributions to diseases. Nonetheless, these complexities do not prevent mitochondria from being among the most important therapeutic targets. In recent years, strategies targeting mitochondrial dysfunction have continuously emerged and transitioned to clinical trials. Advanced intervention such as using healthy mitochondria to replenish or replace damaged mitochondria, has shown promise in preclinical trials of various diseases. Mitochondrial components, including mtDNA, mitochondria-located microRNA, and associated proteins can be potential therapeutic agents to augment mitochondrial function in immunometabolic diseases and tissue injuries. Here, we review current knowledge of mitochondrial pathophysiology in concrete examples of common diseases. We also summarize current strategies to treat mitochondrial dysfunction from the perspective of dietary supplements and targeted therapies, as well as the clinical translational situation of related pharmacology agents. Finally, this review discusses the innovations and potential applications of mitochondrial transplantation as an advanced and promising treatment.
Collapse
Affiliation(s)
- Yao Zong
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia
| | - Hao Li
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Peng Liao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Long Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yao Pan
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Yongqiang Zheng
- Sixth People's Hospital Fujian, No. 16, Luoshan Section, Jinguang Road, Luoshan Street, Jinjiang City, Quanzhou, Fujian, China
| | - Changqing Zhang
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China
| | - Delin Liu
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| | - Minghao Zheng
- Centre for Orthopaedic Research, Medical School, The University of Western Australia, Nedlands, WA, 6009, Australia.
| | - Junjie Gao
- Department of Orthopaedics, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
- Institute of Microsurgery on Extremities, and Department of Orthopedic Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200233, China.
| |
Collapse
|
44
|
Lee J, Pye N, Ellis L, Vos KD, Mortiboys H. Evidence of mitochondrial dysfunction in ALS and methods for measuring in model systems. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:269-325. [PMID: 38802177 DOI: 10.1016/bs.irn.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Metabolic dysfunction is a hallmark of multiple amyotrophic lateral sclerosis (ALS) models with a majority of ALS patients exhibiting hypermetabolism. The central sites of metabolism in the cell are mitochondria, capable of utilising a multitude of cellular substrates in an array of ATP-generating reactions. With reactive oxygen species (ROS) production occurring during some of these reactions, mitochondria can contribute considerably to oxidative stress. Mitochondria are also very dynamic organelles, interacting with other organelles, undergoing fusion/fission in response to changing metabolic states and being turned over by the cell regularly. Disruptions to many of these mitochondrial functions and processes have been reported in ALS models, largely indicating compromised mitochondrial function, increased ROS production by mitochondria, disrupted interactions with the endoplasmic reticulum and reduced turnover. This chapter summarises methods routinely used to assess mitochondria in ALS models and the alterations that have been reported in these models.
Collapse
Affiliation(s)
- James Lee
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Natalie Pye
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Laura Ellis
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Kurt De Vos
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience, School of Medicine and Population Health, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
45
|
Wang Y, Yang J. ER-organelle contacts: A signaling hub for neurological diseases. Pharmacol Res 2024; 203:107149. [PMID: 38518830 DOI: 10.1016/j.phrs.2024.107149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/07/2024] [Accepted: 03/19/2024] [Indexed: 03/24/2024]
Abstract
Neuronal health is closely linked to the homeostasis of intracellular organelles, and organelle dysfunction affects the pathological progression of neurological diseases. In contrast to isolated cellular compartments, a growing number of studies have found that organelles are largely interdependent structures capable of communicating through membrane contact sites (MCSs). MCSs have been identified as key pathways mediating inter-organelle communication crosstalk in neurons, and their alterations have been linked to neurological disease pathology. The endoplasmic reticulum (ER) is a membrane-bound organelle capable of forming an extensive network of pools and tubules with important physiological functions within neurons. There are multiple MCSs between the ER and other organelles and the plasma membrane (PM), which regulate a variety of cellular processes. In this review, we focus on ER-organelle MCSs and their role in a variety of neurological diseases. We compared the biological effects between different tethering proteins and the effects of their respective disease counterparts. We also discuss how altered ER-organelle contacts may affect disease pathogenesis. Therefore, understanding the molecular mechanisms of ER-organelle MCSs in neuronal homeostasis will lay the foundation for the development of new therapies targeting ER-organelle contacts.
Collapse
Affiliation(s)
- Yunli Wang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China
| | - Jinghua Yang
- Key Laboratory of Environmental Stress and Chronic Disease Control & Prevention (China Medical University), Ministry of Education, PR China; Department of Toxicology, School of Public Health, China Medical University, Shenyang 110122, PR China.
| |
Collapse
|
46
|
Saukko-Paavola AJ, Klemm RW. Remodelling of mitochondrial function by import of specific lipids at multiple membrane-contact sites. FEBS Lett 2024; 598:1274-1291. [PMID: 38311340 DOI: 10.1002/1873-3468.14813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/14/2023] [Accepted: 12/28/2023] [Indexed: 02/08/2024]
Abstract
Organelles form physical and functional contact between each other to exchange information, metabolic intermediates, and signaling molecules. Tethering factors and contact site complexes bring partnering organelles into close spatial proximity to establish membrane contact sites (MCSs), which specialize in unique functions like lipid transport or Ca2+ signaling. Here, we discuss how MCSs form dynamic platforms that are important for lipid metabolism. We provide a perspective on how import of specific lipids from the ER and other organelles may contribute to remodeling of mitochondria during nutrient starvation. We speculate that mitochondrial adaptation is achieved by connecting several compartments into a highly dynamic organelle network. The lipid droplet appears to be a central hub in coordinating the function of these organelle neighborhoods.
Collapse
Affiliation(s)
| | - Robin W Klemm
- Department of Physiology, Anatomy and Genetics, University of Oxford, UK
| |
Collapse
|
47
|
Stevens TL, Cohen HM, Garbincius JF, Elrod JW. Mitochondrial calcium uniporter channel gatekeeping in cardiovascular disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:500-514. [PMID: 39185387 PMCID: PMC11343476 DOI: 10.1038/s44161-024-00463-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 03/18/2024] [Indexed: 08/27/2024]
Abstract
The mitochondrial calcium (mCa2+) uniporter channel (mtCU) resides at the inner mitochondrial membrane and is required for Ca2+ to enter the mitochondrial matrix. The mtCU is essential for cellular function, as mCa2+ regulates metabolism, bioenergetics, signaling pathways and cell death. mCa2+ uptake is primarily regulated by the MICU family (MICU1, MICU2, MICU3), EF-hand-containing Ca2+-sensing proteins, which respond to cytosolic Ca2+ concentrations to modulate mtCU activity. Considering that mitochondrial function and Ca2+ signaling are ubiquitously disrupted in cardiovascular disease, mtCU function has been a hot area of investigation for the last decade. Here we provide an in-depth review of MICU-mediated regulation of mtCU structure and function, as well as potential mtCU-independent functions of these proteins. We detail their role in cardiac physiology and cardiovascular disease by highlighting the phenotypes of different mutant animal models, with an emphasis on therapeutic potential and targets of interest in this pathway.
Collapse
Affiliation(s)
- Tyler L. Stevens
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Henry M. Cohen
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - Joanne F. Garbincius
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| | - John W. Elrod
- Aging + Cardiovascular Discovery Center, Department of Cardiovascular Sciences, Lewis Katz School of Medicine at Temple University, Philadelphia, PA, USA
| |
Collapse
|
48
|
Monteiro-Cardoso VF, Giordano F. Emerging functions of the mitochondria-ER-lipid droplet three-way junction in coordinating lipid transfer, metabolism, and storage in cells. FEBS Lett 2024; 598:1252-1273. [PMID: 38774950 DOI: 10.1002/1873-3468.14893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/18/2024] [Accepted: 04/05/2024] [Indexed: 05/25/2024]
Abstract
Over the past two decades, we have witnessed a growing appreciation for the importance of membrane contact sites (CS) in facilitating direct communication between organelles. CS are tiny regions where the membranes of two organelles meet but do not fuse and allow the transfer of metabolites between organelles, playing crucial roles in the coordination of cellular metabolic activities. The significant advancements in imaging techniques and molecular and cell biology research have revealed that CS are more complex than what originally thought, and as they are extremely dynamic, they can remodel their shape, composition, and functions in accordance with metabolic and environmental changes and can occur between more than two organelles. Here, we describe how recent studies led to the identification of a three-way mitochondria-ER-lipid droplet CS and discuss the emerging functions of these contacts in maintaining lipid storage, homeostasis, and balance. We also summarize the properties and functions of key protein components localized at the mitochondria-ER-lipid droplet interface, with a special focus on lipid transfer proteins. Understanding tripartite CS is essential for unraveling the complexities of inter-organelle communication and cooperation within cells.
Collapse
Affiliation(s)
- Vera Filipa Monteiro-Cardoso
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| | - Francesca Giordano
- Institute for Integrative Biology of the Cell (I2BC), CEA, CNRS, Université Paris-Saclay, Gif-sur-Yvette cedex, France
- Inserm U1280, Gif-sur-Yvette cedex, France
| |
Collapse
|
49
|
Uytiepo M, Zhu Y, Bushong E, Polli F, Chou K, Zhao E, Kim C, Luu D, Chang L, Quach T, Haberl M, Patapoutian L, Beutter E, Zhang W, Dong B, McCue E, Ellisman M, Maximov A. Synaptic architecture of a memory engram in the mouse hippocampus. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590812. [PMID: 38712256 PMCID: PMC11071366 DOI: 10.1101/2024.04.23.590812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Memory engrams are formed through experience-dependent remodeling of neural circuits, but their detailed architectures have remained unresolved. Using 3D electron microscopy, we performed nanoscale reconstructions of the hippocampal CA3-CA1 pathway following chemogenetic labeling of cellular ensembles with a remote history of correlated excitation during associative learning. Projection neurons involved in memory acquisition expanded their connectomes via multi-synaptic boutons without altering the numbers and spatial arrangements of individual axonal terminals and dendritic spines. This expansion was driven by presynaptic activity elicited by specific negative valence stimuli, regardless of the co-activation state of postsynaptic partners. The rewiring of initial ensembles representing an engram coincided with local, input-specific changes in the shapes and organelle composition of glutamatergic synapses, reflecting their weights and potential for further modifications. Our findings challenge the view that the connectivity among neuronal substrates of memory traces is governed by Hebbian mechanisms, and offer a structural basis for representational drifts.
Collapse
|
50
|
Sharma J, Khan S, Singh NC, Sahu S, Raj D, Prakash S, Bandyopadhyay P, Sarkar K, Bhosale V, Chandra T, Kumaravelu J, Barthwal MK, Gupta SK, Srivastava M, Guha R, Ammanathan V, Ghoshal UC, Mitra K, Lahiri A. ORMDL3 regulates NLRP3 inflammasome activation by maintaining ER-mitochondria contacts in human macrophages and dictates ulcerative colitis patient outcome. J Biol Chem 2024; 300:107120. [PMID: 38417794 PMCID: PMC11065740 DOI: 10.1016/j.jbc.2024.107120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 02/06/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024] Open
Abstract
Genome-wide association studies in inflammatory bowel disease have identified risk loci in the orosomucoid-like protein 3/ORMDL sphingolipid biosynthesis regulator 3 (ORMDL3) gene to confer susceptibility to ulcerative colitis (UC), but the underlying functional relevance remains unexplored. Here, we found that a subpopulation of the UC patients who had higher disease activity shows enhanced expression of ORMDL3 compared to the patients with lower disease activity and the non-UC controls. We also found that the patients showing high ORMDL3 mRNA expression have elevated interleukin-1β cytokine levels indicating positive correlation. Further, knockdown of ORMDL3 in the human monocyte-derived macrophages resulted in significantly reduced interleukin-1β release. Mechanistically, we report for the first time that ORMDL3 contributes to a mounting inflammatory response via modulating mitochondrial morphology and activation of the NLRP3 inflammasome. Specifically, we observed an increased fragmentation of mitochondria and enhanced contacts with the endoplasmic reticulum (ER) during ORMDL3 over-expression, enabling efficient NLRP3 inflammasome activation. We show that ORMDL3 that was previously known to be localized in the ER also becomes localized to mitochondria-associated membranes and mitochondria during inflammatory conditions. Additionally, ORMDL3 interacts with mitochondrial dynamic regulating protein Fis-1 present in the mitochondria-associated membrane. Accordingly, knockdown of ORMDL3 in a dextran sodium sulfate -induced colitis mouse model showed reduced colitis severity. Taken together, we have uncovered a functional role for ORMDL3 in mounting inflammation during UC pathogenesis by modulating ER-mitochondrial contact and dynamics.
Collapse
Affiliation(s)
- Jyotsna Sharma
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shaziya Khan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nishakumari C Singh
- Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shikha Sahu
- Department of Gastroenterology, Sanjay Gandhi postgraduate institute of medical sciences, Lucknow, India
| | - Desh Raj
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shakti Prakash
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | | | - Kabita Sarkar
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Vivek Bhosale
- Toxicology and Experimental Medicine Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Tulika Chandra
- Department of Transfusion Medicine, Kings George Medical University, Lucknow, India
| | - Jagavelu Kumaravelu
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Manoj Kumar Barthwal
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Shashi Kumar Gupta
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Mrigank Srivastava
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India; Molecular Parasitology and Immunology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Rajdeep Guha
- Lab Animal Facility, CSIR-Central Drug Research Institute, Lucknow, India
| | - Veena Ammanathan
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Uday C Ghoshal
- Department of Gastroenterology, Sanjay Gandhi postgraduate institute of medical sciences, Lucknow, India
| | - Kalyan Mitra
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India; Sophisticated Analytical Instrument Facility and Research Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amit Lahiri
- Pharmacology Division, CSIR-Central Drug Research Institute, Lucknow, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India.
| |
Collapse
|