1
|
Cai D, Wang Y, Zhang Z, Huang E, Yang N, Yang X, Zhang T, Wen H, Wang Y, Chen Z, Wu H, Liu D. Droplet pairing-merging enabled digital RPA-CRISPR/Cas12a (DIMERIC) assay for rapid and precise quantification of Hepatitis B Virus DNA. Biosens Bioelectron 2025; 276:117256. [PMID: 39970723 DOI: 10.1016/j.bios.2025.117256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 02/21/2025]
Abstract
Recombinase polymerase amplification (RPA)-CRISPR/Cas12a assays have demonstrated remarkable potential for point-of-care detection of pathogens in resource-limited settings. Nevertheless, these assays fall short in delivering direct quantitative results due to the incompatibility between the RPA and CRISPR/Cas12a systems. To overcome this limitation, we developed a droplet pairing-merging enabled digital RPA-CRISPR/Cas12a (DIMERIC) assay in this study. By leveraging a microfluidic chip with a calabash-shaped microwell array, large-volume RPA droplets and small-volume CRISPR/Cas12a droplets were sequentially and size-selectively trapped, generating one-to-one droplet pairs. This spatial separation of the droplets eliminates the inhibitory effects of the CRISPR/Cas12a chemistry on RPA. Upon the completion of RPA, the CRISPR/Cas12a system can be activated by merging the paired droplets. This temporal separation of the RPA and CRISPR/Cas reactions allows for the accumulation of sufficient amplicons to efficiently unleash the collateral cleavage activity. The DIMERIC assay offers rapid quantification of nucleic acids, with the entire procedure being accomplished within 20 min. This assay was employed for the quantitative detection of Hepatitis B virus DNA from batched clinical serum samples, demonstrating a good correlation with qPCR (R2 = 0.92033) and ddPCR (R2 = 0.97337) outcomes. Consequently, the developed DIMERIC assay provides a valuable tool for rapid and precise quantification of pathogenic nucleic acids.
Collapse
Affiliation(s)
- Dongyang Cai
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou, 510180, China
| | - Yifan Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Ziyi Zhang
- Department of Urology, The Second Affiliated Hospital, Dalian Medical University, Dalian, 116021, China
| | - Enqi Huang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Na Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Xiao Yang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Ting Zhang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Hongting Wen
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Yu Wang
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Micro-Nano Tech Center, Bioland Laboratory, Guangzhou, 510005, China
| | - Zhenhua Chen
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China
| | - Hongkai Wu
- Department of Chemistry, Hong Kong University of Science and Technology, Hong Kong, China
| | - Dayu Liu
- Department of Laboratory Medicine, The Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, 510180, China; Guangdong Engineering Technology Research Center of Microfluidic Chip Medical Diagnosis, Guangzhou, 510180, China.
| |
Collapse
|
2
|
Cui S, Liu X, Zhang X, Wu R, Shi Y, Wang B, Zhang Q. DNA Reaction Networks Composed of Standardized Switchable Molecular Devices for Recording Temporal Molecular Events. Anal Chem 2025; 97:10000-10009. [PMID: 40304516 DOI: 10.1021/acs.analchem.5c00844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2025]
Abstract
The processing of temporal information plays a key supporting role in accurately perceiving molecular dynamic changes and making complex molecular decisions. As such, the development of artificial molecular networks that can efficiently process and record temporal molecular events (TMEs) has high scientific and practical value. Among them, DNA reaction networks (DRNs) have opened up an avenue for processing molecular temporal information, owing to their outstanding advantages. Therefore, we developed a standardized switchable molecular device, which is used to build DRNs that can handle temporal information on multiple types of biomolecules. Standardized molecular devices allow rapid network assembly, and their efficient state switching affords flexibility to the networks. The experimental findings show that the collaborative state switching network (CSSN) and cross-inhibition network (CIN) built from these molecular devices not only possess temporal resolution for DNA molecular events (MEs) but also show time sensitivity over specific time spans. Taking two microRNAs (miRNAs) as research subjects further confirms the temporal resolution ability of the CIN. Moreover, through an extended CIN, the perception of the temporal sequence of two proteins was realized, highlighting the proposed DRNs' application potential in fields including molecular information processing, biosensing, and disease diagnosis and treatment.
Collapse
Affiliation(s)
- Shuang Cui
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xun Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Ranfeng Wu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Yixuan Shi
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, Dalian University, Dalian 116622, China
| | - Qiang Zhang
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
3
|
Chen W, Choi J. Molecular circuits for genomic recording of cellular events. Trends Genet 2025:S0168-9525(25)00079-4. [PMID: 40335327 DOI: 10.1016/j.tig.2025.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 04/07/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
Advances in precise genome editing are enabling genomic recordings of cellular events. Since the initial demonstration of CRISPR-based genome editing, the field of genomic recording has witnessed key strides in lineage recording, where clonal lineage relationships among cells are indirectly recorded as synthetic mutations. However, methods for directly recording and reconstructing past cellular events are still limited, and their potential for revealing new insights into cell fate decisions has yet to be realized. The field needs new sensing modules and genetic circuit architectures that faithfully encode past cellular states into genomic DNA recordings to achieve such goals. Here we review recently developed strategies to construct diverse sensors and explore how emerging synthetic biology tools may help to build molecular circuits for genomic recording of diverse cellular events.
Collapse
Affiliation(s)
- Wei Chen
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA.
| | - Junhong Choi
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, NY 10065, USA.
| |
Collapse
|
4
|
Salaudeen AL, Mateyko N, de Boer CG. RAPID-DASH: Single-Day Assembly of Guide RNA Arrays for Multiplexed CRISPR-Cas9 Applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.09.648054. [PMID: 40291718 PMCID: PMC12027327 DOI: 10.1101/2025.04.09.648054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Guide RNA (gRNA) arrays can enable targeting multiple genomic loci simultaneously using CRISPR-Cas9. In this study, we present a streamlined and efficient method to rapidly construct gRNA arrays with up to 10 gRNA units in a single day. We demonstrate that gRNA arrays maintain robust functional activity across all positions, and can incorporate libraries of gRNAs, combining scalability and multiplexing. Our approach will streamline combinatorial perturbation research by enabling the economical and rapid construction, testing, and iteration of gRNA arrays.
Collapse
|
5
|
Chen C, Wang HH. Diary of a cell in DNA 'chyrons'. Nat Chem Biol 2025; 21:466-467. [PMID: 39762537 DOI: 10.1038/s41589-024-01814-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2025]
Affiliation(s)
- Chao Chen
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Biomedical Engineering, Fu Foundation School of Engineering and Applied Sciences, Columbia University, New York, NY, USA.
| |
Collapse
|
6
|
Loveless TB, Carlson CK, Dentzel Helmy CA, Hu VJ, Ross SK, Demelo MC, Murtaza A, Liang G, Ficht M, Singhai A, Pajoh-Casco MJ, Liu CC. Open-ended molecular recording of sequential cellular events into DNA. Nat Chem Biol 2025; 21:512-521. [PMID: 39543397 PMCID: PMC11952980 DOI: 10.1038/s41589-024-01764-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 09/29/2024] [Indexed: 11/17/2024]
Abstract
Genetically encoded DNA recorders noninvasively convert transient biological events into durable mutations in a cell's genome, allowing for the later reconstruction of cellular experiences by DNA sequencing. We present a DNA recorder, peCHYRON, that achieves high-information, durable, and temporally resolved multiplexed recording of multiple cellular signals in mammalian cells. In each step of recording, prime editor, a Cas9-reverse transcriptase fusion protein, inserts a variable triplet DNA sequence alongside a constant propagator sequence that deactivates the previous and activates the next step of insertion. Insertions accumulate sequentially in a unidirectional order, editing can continue indefinitely, and high information is achieved by coexpressing a variety of prime editing guide RNAs (pegRNAs), each harboring unique triplet DNA sequences. We demonstrate that the constitutive expression of pegRNA collections generates insertion patterns for the straightforward reconstruction of cell lineage relationships and that the inducible expression of specific pegRNAs results in the accurate recording of exposures to biological stimuli.
Collapse
Affiliation(s)
- Theresa B Loveless
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Center for Synthetic Biology, University of California, Irvine, CA, USA.
- NSF-Simons Center for Multiscale Cell Fate, University of California, Irvine, CA, USA.
- Department of BioSciences, Rice University, Houston, TX, USA.
| | - Courtney K Carlson
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
| | - Catalina A Dentzel Helmy
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Vincent J Hu
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
- Graduate Program in Mathematical, Computational and Systems Biology, University of California, Irvine, CA, USA
| | - Sara K Ross
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Matt C Demelo
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Ali Murtaza
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Guohao Liang
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
| | - Michelle Ficht
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
| | - Arushi Singhai
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
| | - Marcello J Pajoh-Casco
- Department of Biomedical Engineering, University of California, Irvine, CA, USA
- Center for Synthetic Biology, University of California, Irvine, CA, USA
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, CA, USA.
- Center for Synthetic Biology, University of California, Irvine, CA, USA.
- NSF-Simons Center for Multiscale Cell Fate, University of California, Irvine, CA, USA.
- Department of Chemistry, University of California, Irvine, CA, USA.
- Department of Molecular Biology and Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
7
|
Ganesh I, Karthiga I, Murugan M, Rangarajalu K, Ballambattu VB, Ravikumar S. CRISPR/Cas-Based Prenatal Screening for Aneuploidy: Challenges and Opportunities for Early Diagnosis. MEDICINA (KAUNAS, LITHUANIA) 2025; 61:610. [PMID: 40282900 PMCID: PMC12028914 DOI: 10.3390/medicina61040610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/22/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Aneuploidy is increasingly recognized globally as a common cause of miscarriage among expectant mothers. The existing prenatal screening techniques for detecting aneuploidy have several limitations. The ability to diagnose aneuploidy early in a non-invasive manner is not feasible with the current screening methods, as they may produce false positive or false negative results. Recently, the widely used gene editing tool CRISPR/Cas has shown great promise in diagnostics. This review summarizes the prenatal screening tests used in the first trimester to assess aneuploidy conditions. Additionally, we discuss the advantages and disadvantages of molecular diagnostic tests, including the benefits and challenges of CRISPR/Cas-based trisomy detection. Thus, the proposed prenatal screening using CRISPR/Cas could provide significant benefits to expectant mothers by potentially enabling the early diagnosis of trisomy, helping to prevent miscarriage and birth defects. Furthermore, it opens new avenues for research, allowing clinicians and researchers to develop, optimize, and implement CRISPR/Cas-based prenatal screening assays in the future.
Collapse
Affiliation(s)
- Irisappan Ganesh
- Department of Medical Biotechnology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry 607402, India; (I.G.); (M.M.)
| | - Ilangovan Karthiga
- Department of Biochemistry, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry 607402, India; (I.K.); (K.R.)
| | - Manoranjani Murugan
- Department of Medical Biotechnology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry 607402, India; (I.G.); (M.M.)
| | - Kumar Rangarajalu
- Department of Biochemistry, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry 607402, India; (I.K.); (K.R.)
| | - Vishnu Bhat Ballambattu
- Advisor—Medical Research & Publications, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry 607402, India;
| | - Sambandam Ravikumar
- Department of Medical Biotechnology, Aarupadai Veedu Medical College & Hospital, Vinayaka Mission’s Research Foundation (Deemed to be University), Puducherry 607402, India; (I.G.); (M.M.)
| |
Collapse
|
8
|
Kalvapalle PB, Staubus A, Dysart MJ, Gambill L, Reyes Gamas K, Lu LC, Silberg JJ, Stadler LB, Chappell J. Information storage across a microbial community using universal RNA barcoding. Nat Biotechnol 2025:10.1038/s41587-025-02593-0. [PMID: 40102641 DOI: 10.1038/s41587-025-02593-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 02/14/2025] [Indexed: 03/20/2025]
Abstract
Gene transfer can be studied using genetically encoded reporters or metagenomic sequencing but these methods are limited by sensitivity when used to monitor the mobile DNA host range in microbial communities. To record information about gene transfer across a wastewater microbiome, a synthetic catalytic RNA was used to barcode a highly conserved segment of ribosomal RNA (rRNA). By writing information into rRNA using a ribozyme and reading out native and modified rRNA using amplicon sequencing, we find that microbial community members from 20 taxonomic orders participate in plasmid conjugation with an Escherichia coli donor strain and observe differences in 16S rRNA barcode signal across amplicon sequence variants. Multiplexed rRNA barcoding using plasmids with pBBR1 or ColE1 origins of replication reveals differences in host range. This autonomous RNA-addressable modification provides information about gene transfer without requiring translation and will enable microbiome engineering across diverse ecological settings and studies of environmental controls on gene transfer and cellular uptake of extracellular materials.
Collapse
Affiliation(s)
- Prashant B Kalvapalle
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - August Staubus
- Department of BioSciences, Rice University, Houston, TX, USA
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, USA
| | - Matthew J Dysart
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Lauren Gambill
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
| | - Kiara Reyes Gamas
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of BioSciences, Rice University, Houston, TX, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA
| | - Li Chieh Lu
- Department of BioSciences, Rice University, Houston, TX, USA
- Biochemistry and Cell Biology Graduate Program, Rice University, Houston, TX, USA
| | - Jonathan J Silberg
- Department of BioSciences, Rice University, Houston, TX, USA.
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| | - Lauren B Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, TX, USA.
| | - James Chappell
- Department of BioSciences, Rice University, Houston, TX, USA.
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
9
|
Askary A, Chen W, Choi J, Du LY, Elowitz MB, Gagnon JA, Schier AF, Seidel S, Shendure J, Stadler T, Tran M. The lives of cells, recorded. Nat Rev Genet 2025; 26:203-222. [PMID: 39587306 DOI: 10.1038/s41576-024-00788-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2024] [Indexed: 11/27/2024]
Abstract
A paradigm for biology is emerging in which cells can be genetically programmed to write their histories into their own genomes. These records can subsequently be read, and the cellular histories reconstructed, which for each cell could include a record of its lineage relationships, extrinsic influences, internal states and physical locations, over time. DNA recording has the potential to transform the way that we study developmental and disease processes. Recent advances in genome engineering are driving the development of systems for DNA recording, and meanwhile single-cell and spatial omics technologies increasingly enable the recovery of the recorded information. Combined with advances in computational and phylogenetic inference algorithms, the DNA recording paradigm is beginning to bear fruit. In this Perspective, we explore the rationale and technical basis of DNA recording, what aspects of cellular biology might be recorded and how, and the types of discovery that we anticipate this paradigm will enable.
Collapse
Affiliation(s)
- Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Lucia Y Du
- Biozentrum, University of Basel, Basel, Switzerland
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA
| | - Michael B Elowitz
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA.
- Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, USA.
| | - James A Gagnon
- School of Biological Sciences, University of Utah, Salt Lake City, UT, USA.
| | - Alexander F Schier
- Biozentrum, University of Basel, Basel, Switzerland.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| | - Sophie Seidel
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
| | - Tanja Stadler
- Department of Biosystems Science and Engineering, ETH Zürich, Basel, Switzerland.
- Swiss Institute of Bioinformatics, Lausanne, Switzerland.
| | - Martin Tran
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
10
|
Liu X, Yu E, Zhao Q, Han H, Li Q. Enzymes as green and sustainable tools for DNA data storage. Chem Commun (Camb) 2025; 61:2891-2905. [PMID: 39834292 DOI: 10.1039/d4cc06351a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
DNA is considered as an ideal supramolecular material for information storage with high storage density and long-term stability. Enzymes, as green and sustainable tools, offer several unique advantages for DNA-based information storage. These advantages include low cost and reduced generation of hazardous wastes during DNA synthesis, as well as the improvements in data reading speed and data recovery accuracy. Moreover, enzymes could achieve scalable data steganography. In this review, we introduced the exciting application strategies of enzymatic tools in each step of DNA information storage (writing, storing, retrieval and reading). We further address the challenges and opportunities associated with enzymatic tools for DNA information storage, aiming at developing new techniques to overcome these obstacles.
Collapse
Affiliation(s)
- Xutong Liu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Enyang Yu
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Qixuan Zhao
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| |
Collapse
|
11
|
Peach LJ, Zhang H, Weaver BP, Boedicker JQ. Assessing spacer acquisition rates in E. coli type I-E CRISPR arrays. Front Microbiol 2025; 15:1498959. [PMID: 39902289 PMCID: PMC11788318 DOI: 10.3389/fmicb.2024.1498959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/19/2024] [Indexed: 02/05/2025] Open
Abstract
CRISPR/Cas is an adaptive defense mechanism protecting prokaryotes from viruses and other potentially harmful genetic elements. Through an adaptation process, short "spacer" sequences, captured from these elements and incorporated into a CRISPR array, provide target specificity for the immune response. CRISPR arrays and array expansion are also central to many emerging biotechnologies. The rates at which spacers integrate into native arrays within bacterial populations have not been quantified. Here, we measure naïve spacer acquisition rates in Escherichia coli Type I-E CRISPR, identify factors that affect these rates, and model this process fundamental to CRISPR/Cas defense. Prolonged Cas1-Cas2 expression produced fewer new spacers per cell on average than predicted by the model. Subsequent experiments revealed that this was due to a mean fitness reduction linked to array-expanded populations. In addition, the expression of heterologous non-homologous end-joining DNA-repair genes was found to augment spacer acquisition rates, translating to enhanced phage infection defense. Together, these results demonstrate the impact of intracellular factors that modulate spacer acquisition and identify an intrinsic fitness effect associated with array-expanded populations.
Collapse
Affiliation(s)
- Luke J. Peach
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
| | - Haoyun Zhang
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| | - Brian P. Weaver
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| | - James Q. Boedicker
- Department of Biological Sciences, University of Southern California, Los Angeles, CA, United States
- Department of Physics and Astronomy, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
12
|
Jin K, Huang Y, Che H, Wu Y. Engineered Bacteria for Disease Diagnosis and Treatment Using Synthetic Biology. Microb Biotechnol 2025; 18:e70080. [PMID: 39801378 PMCID: PMC11725985 DOI: 10.1111/1751-7915.70080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 12/18/2024] [Accepted: 12/26/2024] [Indexed: 01/16/2025] Open
Abstract
Using synthetic biology techniques, bacteria have been engineered to serve as microrobots for diagnosing diseases and delivering treatments. These engineered bacteria can be used individually or in combination as microbial consortia. The components within these consortia complement each other, enhancing diagnostic accuracy and providing synergistic effects that improve treatment efficacy. The application of microbial therapies in cancer, intestinal diseases, and metabolic disorders underscores their significant potential. The impact of these therapies on the host's native microbiota is crucial, as engineered microbes can modulate and interact with the host's microbial environment, influencing treatment outcomes and overall health. Despite numerous advancements, challenges remain. These include ensuring the long-term survival and safety of bacteria, developing new chassis microbes and gene editing techniques for non-model strains, minimising potential toxicity, and understanding bacterial interactions with the host microbiota. This mini-review examines the current state of engineered bacteria and microbial consortia in disease diagnosis and treatment, highlighting advancements, challenges, and future directions in this promising field.
Collapse
Affiliation(s)
- Kai Jin
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yi Huang
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Hailong Che
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| | - Yihan Wu
- Department of Environmental and Chemical EngineeringShanghai UniversityShanghaiChina
| |
Collapse
|
13
|
Siniscalco AM, Perera RP, Greenslade JE, Veeravenkatasubramanian H, Masters A, Doll HM, Raj B. Barcoding Notch signaling in the developing brain. Development 2024; 151:dev203102. [PMID: 39575683 DOI: 10.1242/dev.203102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 11/10/2024] [Indexed: 11/27/2024]
Abstract
Developmental signaling inputs are fundamental for shaping cell fates and behavior. However, traditional fluorescent-based signaling reporters have limitations in scalability and molecular resolution of cell types. We present SABER-seq, a CRISPR-Cas molecular recorder that stores transient developmental signaling cues as permanent mutations in cellular genomes for deconstruction at later stages via single-cell transcriptomics. We applied SABER-seq to record Notch signaling in developing zebrafish brains. SABER-seq has two components: a signaling sensor and a barcode recorder. The sensor activates Cas9 in a Notch-dependent manner with inducible control, while the recorder obtains mutations in ancestral cells where Notch is active. We combine SABER-seq with an expanded juvenile brain atlas to identify cell types derived from Notch-active founders. Our data reveal rare examples where differential Notch activities in ancestral progenitors are detected in terminally differentiated neuronal subtypes. SABER-seq is a novel platform for rapid, scalable and high-resolution mapping of signaling activity during development.
Collapse
Affiliation(s)
- Abigail M Siniscalco
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Roshan Priyarangana Perera
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jessie E Greenslade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | | | - Aiden Masters
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Hannah M Doll
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Bushra Raj
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
14
|
Wang M, Lv L, Liu R, Han Y, Luan M, Tang SY, Niu G. Engineering of tnaC-Based Tryptophan Biosensors for Dynamic Control of Violacein Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:24668-24676. [PMID: 39440815 DOI: 10.1021/acs.jafc.4c07638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Tryptophan not only serves as a fundamental building block for protein synthesis but also acts as a metabolic precursor for a diverse array of high-value chemicals. Although a few tryptophan-responsive biosensors are currently available, there is a growing interest in developing high-performance biosensors. In this study, we create a miniature toolkit of tryptophan biosensors based upon the leader regulatory region of the tnaCAB operon, which is responsible for tryptophan catabolism in Escherichia coli. Four variants are generated by engineering the tnaC leader sequence, which encodes a leader peptide composed of 24 amino acid residues. Subsequently, the performance of both the natural tnaC sequence and its engineered variants is assessed in a reporter strain based on the MazEF toxin-antitoxin system. The results demonstrate that two engineered variants exhibit increased sensitivity to low levels of tryptophan. Moreover, the engineered biosensors are further optimized by replacing the native promoter of tnaC with a phage-derived constitutive promoter. Intriguingly, the engineered biosensors can be reconstructed for extended application in Pseudomonas putida, a robust microbial chassis for metabolic engineering. In summary, our study expands the toolkit of tryptophan biosensors that can be broadly used for the bioproduction of many other high-value tryptophan-derived products.
Collapse
Affiliation(s)
- Meiyan Wang
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lanxin Lv
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Rong Liu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Scientific Utilization of Tobacco Resources, China Tobacco Chongqing Industrial Co., Ltd., Chongqing 400060, China
| | - Yiran Han
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Mengao Luan
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Shuang-Yan Tang
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Guoqing Niu
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| |
Collapse
|
15
|
Rycroft JA, Giorgio RT, Sargen M, Helaine S. Tracking the progeny of bacterial persisters using a CRISPR-based genomic recorder. Proc Natl Acad Sci U S A 2024; 121:e2405983121. [PMID: 39374386 PMCID: PMC11494289 DOI: 10.1073/pnas.2405983121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 08/11/2024] [Indexed: 10/09/2024] Open
Abstract
The rise of antimicrobial failure is a global emergency, and causes beyond typical genetic resistance must be determined. One probable factor is the existence of subpopulations of transiently growth-arrested bacteria, persisters, that endure antibiotic treatment despite genetic susceptibility to the drug. The presence of persisters in infected hosts has been successfully established, notably through the development of fluorescent reporters. It is proposed that infection relapse is caused by persisters resuming growth after cessation of the antibiotic treatment, but to date, there is no direct evidence for this. This is because no tool or reporter currently exists to track the extent to which infection relapse is initiated by regrowth of persisters in the host. Indeed, once they have transitioned out of the persister state, the progeny of persisters are genetically and phenotypically identical to susceptible bacteria in the population, making it virtually impossible to ascertain the source of relapse. We designed pSCRATCH (plasmid for Selective CRISPR Array expansion To Check Heritage), a molecular tool that functions to record the state of antibiotic persistence in the genome of Salmonella persisters. We show that pSCRATCH successfully marks persisters by adding spacers in their CRISPR arrays and the genomic label is stable in persister progeny after exit from persistence. We further show that in a Salmonella infection model the system enables the discrimination of treatment failure originating from persistence versus resistance. Thus, pSCRATCH provides proof of principle for stable marking of persisters and a prototype for applications to more complex infection models and other pathogens.
Collapse
Affiliation(s)
| | | | - Molly Sargen
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| | - Sophie Helaine
- Department of Microbiology, Harvard Medical School, Boston, MA02115
| |
Collapse
|
16
|
Hao K, Barrett M, Samadi Z, Zarezadeh A, McGrath Y, Askary A. Reconstructing signaling history of single cells with imaging-based molecular recording. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617908. [PMID: 39416000 PMCID: PMC11482953 DOI: 10.1101/2024.10.11.617908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
The intensity and duration of biological signals encode information that allows a few pathways to regulate a wide array of cellular behaviors. Despite the central importance of signaling in biomedical research, our ability to quantify it in individual cells over time remains limited. Here, we introduce INSCRIBE, an approach for reconstructing signaling history in single cells using endpoint fluorescence images. By regulating a CRISPR base editor, INSCRIBE generates mutations in genomic target sequences, at a rate proportional to signaling activity. The number of edits is then recovered through a novel ratiometric readout strategy, from images of two fluorescence channels. We engineered human cell lines for recording WNT and BMP pathway activity, and demonstrated that INSCRIBE faithfully recovers both the intensity and duration of signaling. Further, we used INSCRIBE to study the variability of cellular response to WNT and BMP stimulation, and test whether the magnitude of response is a stable, heritable trait. We found a persistent memory in the BMP pathway. Progeny of cells with higher BMP response levels are likely to respond more strongly to a second BMP stimulation, up to 3 weeks later. Together, our results establish a scalable platform for genetic recording and in situ readout of signaling history in single cells, advancing quantitative analysis of cell-cell communication during development and disease.
Collapse
Affiliation(s)
- Kai Hao
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Mykel Barrett
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Zainalabedin Samadi
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Amirhossein Zarezadeh
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Yuka McGrath
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| | - Amjad Askary
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, CA, USA
| |
Collapse
|
17
|
Zhang M, Zhou Y, Zhang H, Yin H, Duan J, Ai S. Cu 2O-Mediated Heterojunction Conversion from Dual Type II to Dual Z-Scheme: Its Application in Photoelectric-Colorimetric Dual-Mode Detection of Fat Mass and Obesity-Associated (FTO) Protein. Anal Chem 2024; 96:16080-16090. [PMID: 39323298 DOI: 10.1021/acs.analchem.4c03951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Although the construction of heterojunction has been used in photoelectrochemical (PEC) biosensors, their potential for tunable optical properties has not been deeply explored. Based on the fact that a type-II heterojunction and Z-scheme heterojunction have the same energy band structure, effective alteration of the electron transfer pathway has been achieved by introducing unique photoactive materials into the system and exploiting the interactions between the photomaterials. Based on this, we reported a novel polarity-switchable dual-mode sensor for fat mass and obesity-associated (FTO) protein analysis. Specifically, the MgIn2S4/Bi2MoO6/Bi2S3 dual type-II heterojunction was used as the sensing interface in concert with the rolling circle amplification, CRISPR/Cas12, and terminal DNA transfer enzyme multiamplification strategies, and finally, Cu2O was captured at the sensing interface. Due to the matched energy band, the introduction of Cu2O effectively changed the electron transfer pathway and realized the conversion from a dual type-II heterojunction to a dual Z-scheme heterojunction. It caused the switch of the photocurrent from the anode to the cathode. The developed PEC method showed high sensitivity and selectivity for FTO protein detection in the range of 0.0005-500 μg/L. In addition, based on the peroxidase-like activity of Cu2O to catalyze the oxidation of 3,3',5,5'-tetramethylbenzidine by H2O2, the electrode system also achieved the colorimetric detection of FTO protein using the naked eye with the change of the color of the detection solution from colorless to blue. The detection range was from 0.05 to 500 μg/L. This work developed a photoelectrochemical-colorimetric biosensing platform with consciously designed semiconductor structures, revealing the potential of semiconductor-structured transformations in future sensing fields.
Collapse
Affiliation(s)
- Miao Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Yunlei Zhou
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Haowei Zhang
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Huanshun Yin
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Jingrui Duan
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| | - Shiyun Ai
- College of Chemistry and Material Science, Food Safety Analysis and Test Engineering Technology Research Center of Shandong Province, Shandong Agricultural University, Tai'an, Shandong 271018, P. R. China
| |
Collapse
|
18
|
Liu P, Zeng J, Jiang C, Du J, Jiang L, Li S, Zeng F, Xiong E. Poly(vinylpyrrolidone)-Enhanced CRISPR-Cas System for Robust Nucleic Acid Diagnostics. Anal Chem 2024; 96:15797-15807. [PMID: 39285721 DOI: 10.1021/acs.analchem.4c04077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) technology has opened a new path for molecular diagnostics based on RNA programmed trans-cleavage activity. However, their accessibility for highly sensitive clinical diagnostics remains insufficient. In this study, we systematically investigated the impact of various surfactants on the CRISPR-Cas12a system and found that poly(vinylpyrrolidone) (PVP), a nonionic surfactant, showed the highest enhancement effect among these tested surfactants. Additionally, the enhancement effects of PVP are compatible and versatile to CRISPR-Cas12b and Cas13a systems, improving the sensitivity of these CRISPR-Cas systems toward synthetic targets by 1-2 orders of magnitude. By integrating the PVP-enhanced CRISPR system with isothermal nucleic acid amplification, both the two- and one-step assays exhibited comparable sensitivity and specificity to gold-standard quantitative polymerase chain reaction (qPCR) in the assay of clinical human papillomavirus (HPV) samples, thereby holding significant promise for advancing clinical diagnostics and biomedical research.
Collapse
Affiliation(s)
- Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Jiayu Zeng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Chengchuan Jiang
- Department of Cancer Center, Brain Hospital of Hunan Province & The Second People's Hospital of Hunan Province, Changsha 410007, China
| | - Jinlian Du
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Ling Jiang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Sheng Li
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| | - Fanxu Zeng
- Department of Cancer Center, Brain Hospital of Hunan Province & The Second People's Hospital of Hunan Province, Changsha 410007, China
| | - Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha 410081, China
| |
Collapse
|
19
|
Sundaresan S, Lavanya SK, Manickam M. Emerging Molecular Technology in Cancer Testing. EJIFCC 2024; 35:142-153. [PMID: 39507577 PMCID: PMC11536271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Affiliation(s)
- Sivapatham Sundaresan
- Department of Medical Research, SRM Medical College Hospital & Research Centre, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - S K Lavanya
- Department of Medical Research, SRM Medical College Hospital & Research Centre, Kattankulathur, Chengalpattu, Tamil Nadu, India
| | - Monika Manickam
- Department of Biotechnology, SRMIST, Kattankulathur, Chengalpattu, Tamil Nadu, India
| |
Collapse
|
20
|
Liao H, Choi J, Shendure J. Molecular recording using DNA Typewriter. Nat Protoc 2024; 19:2833-2862. [PMID: 38844553 DOI: 10.1038/s41596-024-01003-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/15/2024] [Indexed: 10/09/2024]
Abstract
Recording molecular information to genomic DNA is a powerful means of investigating topics ranging from multicellular development to cancer evolution. With molecular recording based on genome editing, events such as cell divisions and signaling pathway activity drive specific alterations in a cell's DNA, marking the genome with information about a cell's history that can be read out after the fact. Although genome editing has been used for molecular recording, capturing the temporal relationships among recorded events in mammalian cells remains challenging. The DNA Typewriter system overcomes this limitation by leveraging prime editing to facilitate sequential insertions to an engineered genomic region. DNA Typewriter includes three distinct components: DNA Tape as the 'substrate' to which edits accrue in an ordered manner, the prime editor enzyme, and prime editing guide RNAs, which program insertional edits to DNA Tape. In this protocol, we describe general design considerations for DNA Typewriter, step-by-step instructions on how to perform recording experiments by using DNA Typewriter in HEK293T cells, and example scripts for analyzing DNA Typewriter data ( https://doi.org/10.6084/m9.figshare.22728758 ). This protocol covers two main applications of DNA Typewriter: recording sequential transfection events with programmed barcode insertions by using prime editing and recording lineage information during the expansion of a single cell to many. Compared with other methods that are compatible with mammalian cells, DNA Typewriter enables the recording of temporal information with higher recording capacities and can be completed within 4-6 weeks with basic expertise in molecular cloning, mammalian cell culturing and DNA sequencing data analysis.
Collapse
Affiliation(s)
- Hanna Liao
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Molecular and Cellular Biology Program, University of Washington, Seattle, WA, USA
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
21
|
Jang H, Yim SS. Toward DNA-Based Recording of Biological Processes. Int J Mol Sci 2024; 25:9233. [PMID: 39273181 PMCID: PMC11394691 DOI: 10.3390/ijms25179233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Exploiting the inherent compatibility of DNA-based data storage with living cells, various cellular recording approaches have been developed for recording and retrieving biologically relevant signals in otherwise inaccessible locations, such as inside the body. This review provides an overview of the current state of engineered cellular memory systems, highlighting their design principles, advantages, and limitations. We examine various technologies, including CRISPR-Cas systems, recombinases, retrons, and DNA methylation, that enable these recording systems. Additionally, we discuss potential strategies for improving recording accuracy, scalability, and durability to address current limitations in the field. This emerging modality of biological measurement will be key to gaining novel insights into diverse biological processes and fostering the development of various biotechnological applications, from environmental sensing to disease monitoring and beyond.
Collapse
Affiliation(s)
- Hyeri Jang
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Sung Sun Yim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Graduate School of Engineering Biology, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
- Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| |
Collapse
|
22
|
Milisavljevic M, Rodriguez TR, Carlson CK, Liu CC, Tyo KEJ. Engineering the Activity of a Template-Independent DNA Polymerase. ACS Synth Biol 2024; 13:2492-2504. [PMID: 39083642 DOI: 10.1021/acssynbio.4c00255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
Enzymatic DNA writing technologies based on the template-independent DNA polymerase terminal deoxynucleotidyl transferase (TdT) have the potential to advance DNA information storage. TdT is unique in its ability to synthesize single-stranded DNA de novo but has limitations, including catalytic inhibition by ribonucleotide presence and slower incorporation rates compared to replicative polymerases. We anticipate that protein engineering can improve, modulate, and tailor the enzyme's properties, but there is limited information on TdT sequence-structure-function relationships to facilitate rational approaches. Therefore, we developed an easily modifiable screening assay that can measure the TdT activity in high-throughput to evaluate large TdT mutant libraries. We demonstrated the assay's capabilities by engineering TdT mutants that exhibit both improved catalytic efficiency and improved activity in the presence of an inhibitor. We screened for and identified TdT variants with greater catalytic efficiency in both selectively incorporating deoxyribonucleotides and in the presence of deoxyribonucleotide/ribonucleotide mixes. Using this information from the screening assay, we rationally engineered other TdT homologues with the same properties. The emulsion-based assay we developed is, to the best of our knowledge, the first high-throughput screening assay that can measure TdT activity quantitatively and without the need for protein purification.
Collapse
Affiliation(s)
- Marija Milisavljevic
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Teresa Rojas Rodriguez
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Courtney K Carlson
- Department of Biomedical Engineering, University of California, Irvine, California 92697, United States
- Center for Synthetic Biology, University of California, Irvine, California 92697, United States
| | - Chang C Liu
- Department of Biomedical Engineering, University of California, Irvine, California 92697, United States
- Center for Synthetic Biology, University of California, Irvine, California 92697, United States
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
23
|
Chen W, Choi J, Li X, Nathans JF, Martin B, Yang W, Hamazaki N, Qiu C, Lalanne JB, Regalado S, Kim H, Agarwal V, Nichols E, Leith A, Lee C, Shendure J. Symbolic recording of signalling and cis-regulatory element activity to DNA. Nature 2024; 632:1073-1081. [PMID: 39020177 PMCID: PMC11357993 DOI: 10.1038/s41586-024-07706-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 06/12/2024] [Indexed: 07/19/2024]
Abstract
Measurements of gene expression or signal transduction activity are conventionally performed using methods that require either the destruction or live imaging of a biological sample within the timeframe of interest. Here we demonstrate an alternative paradigm in which such biological activities are stably recorded to the genome. Enhancer-driven genomic recording of transcriptional activity in multiplex (ENGRAM) is based on the signal-dependent production of prime editing guide RNAs that mediate the insertion of signal-specific barcodes (symbols) into a genomically encoded recording unit. We show how this strategy can be used for multiplex recording of the cell-type-specific activities of dozens to hundreds of cis-regulatory elements with high fidelity, sensitivity and reproducibility. Leveraging signal transduction pathway-responsive cis-regulatory elements, we also demonstrate time- and concentration-dependent genomic recording of WNT, NF-κB and Tet-On activities. By coupling ENGRAM to sequential genome editing via DNA Typewriter1, we stably record information about the temporal dynamics of two orthogonal signalling pathways to genomic DNA. Finally we apply ENGRAM to integratively record the transient activity of nearly 100 transcription factor consensus motifs across daily windows spanning the differentiation of mouse embryonic stem cells into gastruloids, an in vitro model of early mammalian development. Although these are proof-of-concept experiments and much work remains to fully realize the possibilities, the symbolic recording of biological signals or states within cells, to the genome and over time, has broad potential to complement contemporary paradigms for how we make measurements in biological systems.
Collapse
Affiliation(s)
- Wei Chen
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, USA.
| | - Junhong Choi
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Howard Hughes Medical Institute, Seattle, WA, USA
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Xiaoyi Li
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Jenny F Nathans
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
- Medical Scientist Training Program, University of Washington, Seattle, WA, USA
| | - Beth Martin
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Wei Yang
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Nobuhiko Hamazaki
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
- Department of Obstetrics & Gynecology, University of Washington, Seattle, WA, USA
- Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, WA, USA
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA
| | - Chengxiang Qiu
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | | | - Samuel Regalado
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Haedong Kim
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Vikram Agarwal
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Eva Nichols
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Anh Leith
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Choli Lee
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
- Seattle Hub for Synthetic Biology, Seattle, WA, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, Seattle, WA, USA.
- Seattle Hub for Synthetic Biology, Seattle, WA, USA.
- Brotman Baty Institute for Precision Medicine, University of Washington, Seattle, WA, USA.
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA, USA.
| |
Collapse
|
24
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
25
|
Liu P, Lin Y, Zhuo X, Zeng J, Chen B, Zou Z, Liu G, Xiong E, Yang R. Universal crRNA Acylation Strategy for Robust Photo-Initiated One-Pot CRISPR-Cas12a Nucleic Acid Diagnostics. Angew Chem Int Ed Engl 2024; 63:e202401486. [PMID: 38563640 DOI: 10.1002/anie.202401486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Spatiotemporal regulation of clustered regularly interspaced short palindromic repeats (CRISPR) system is attractive for precise gene editing and accurate molecular diagnosis. Although many efforts have been made, versatile and efficient strategies to control CRISPR system are still desirable. Here, we proposed a universal and accessible acylation strategy to regulate the CRISPR-Cas12a system by efficient acylation of 2'-hydroxyls (2'-OH) on crRNA strand with photolabile agents (PLGs). The introduction of PLGs confers efficient suppression of crRNA function and rapid restoration of CRISPR-Cas12a reaction upon short light exposure regardless of crRNA sequences. Based on this strategy, we constructed a universal PhotO-Initiated CRISPR-Cas12a system for Robust One-pot Testing (POIROT) platform integrated with recombinase polymerase amplification (RPA), which showed two orders of magnitude more sensitive than the conventional one-step assay and comparable to the two-step assay. For clinical sample testing, POIROT achieved high-efficiency detection performance comparable to the gold-standard quantitative PCR (qPCR) in sensitivity and specificity, but faster than the qPCR method. Overall, we believe the proposed strategy will promote the development of many other universal photo-controlled CRISPR technologies for one-pot assay, and even expand applications in the fields of controllable CRISPR-based genomic editing, disease therapy, and cell imaging.
Collapse
Affiliation(s)
- Pengfei Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Yating Lin
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Xiaohua Zhuo
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Jiayu Zeng
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Bolin Chen
- The Second Department of Thoracic Oncology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, 410013, Changsha, P. R. China
| | - Zhen Zou
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Guhuan Liu
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Erhu Xiong
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| | - Ronghua Yang
- Key Laboratory of Chemical Biology & Traditional Chinese Medicine Research, Ministry of Education, College of Chemistry and Chemical Engineering, Hunan Normal University, 410081, Changsha, P. R. China
| |
Collapse
|
26
|
Siniscalco A, Perera RP, Greenslade JE, Masters A, Doll H, Raj B. Barcoding Notch signaling in the developing brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.10.593533. [PMID: 38766256 PMCID: PMC11100830 DOI: 10.1101/2024.05.10.593533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Developmental signaling inputs are fundamental for shaping cell fates and behavior. However, traditional fluorescent-based signaling reporters have limitations in scalability and molecular resolution of cell types. We present SABER-seq, a CRISPR-Cas molecular recorder that stores transient developmental signaling cues as permanent mutations in cellular genomes for deconstruction at later stages via single-cell transcriptomics. We applied SABER-seq to record Notch signaling in developing zebrafish brains. SABER-seq has two components: a signaling sensor and a barcode recorder. The sensor activates Cas9 in a Notch-dependent manner with inducible control while the recorder accumulates mutations that represent Notch activity in founder cells. We combine SABER-seq with an expanded juvenile brain atlas to define cell types whose fates are determined downstream of Notch signaling. We identified examples wherein Notch signaling may have differential impact on terminal cell fates. SABER-seq is a novel platform for rapid, scalable and high-resolution mapping of signaling activity during development.
Collapse
Affiliation(s)
- Abigail Siniscalco
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Roshan Priyarangana Perera
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Jessie E. Greenslade
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Aiden Masters
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Hannah Doll
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| | - Bushra Raj
- Department of Cell and Developmental Biology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
- Institute for Regenerative Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, 19104, USA
| |
Collapse
|
27
|
Qin Z, Wu Q, Bi C, Deng Y, Hu Q. The relationship between climate change anxiety and pro-environmental behavior in adolescents: the mediating role of future self-continuity and the moderating role of green self-efficacy. BMC Psychol 2024; 12:241. [PMID: 38678287 PMCID: PMC11056057 DOI: 10.1186/s40359-024-01746-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/24/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND Climate change is seriously affecting human survival and development, and the anxiety caused by it is becoming increasingly prominent. How to alleviate people's climate change anxiety, improve the ecological environment, and promote the formation of green lifestyles among people, especially young people, is an important topic that deserves to be explored. This study examined the relationship between climate change anxiety and pro-environmental behaviors and the underlying psychological mechanism in the adolescents. METHODS This study explored the crucial role of future self-continuity (FSC) between climate change anxiety (CCA) and pro-environmental behaviors (PEB) in adolescents and examined the moderating role of green self-efficacy (GSE). In this study, a total of 1,851 middle and high school students from five schools were selected for questionnaire survey. RESULTS The results showed that (1) in both middle and high school grades, there was a significant negative correlation between climate change anxiety and pro-environmental behaviors; future self-continuity was significantly positively correlated with pro-environmental behaviors; green self-efficacy was negatively correlated with climate change anxiety and positively correlated with pro-environmental behaviors; (2) climate change anxiety negatively predicted pro-environmental behaviors, and compared with middle school grades, high school grade adolescents' climate change anxiety was significantly predicted pro-environmental behaviors. Future self-continuity mediated the relationship between climate change anxiety and pro-environmental behaviors in both grades. (3) green self-efficacy moderated the second half of the pathway of the mediation model only in middle grades. Specifically in middle school, future self-continuity did not significantly predict pro-environmental behaviors at low green self-efficacy level, but positively predicted pro-environmental behaviors at high green self-efficacy level. In high school, future self-continuity did not significantly predict pro-environmental behaviors in either high or low green self-efficacy level. CONCLUSION This study suggests that there is a moderated mediation model between adolescents' climate change anxiety and pro-environmental behaviors, with different mediating and moderating effects among adolescents in various grades. This is of great significance in alleviating climate anxiety among adolescents and cultivating their pro-environmental behaviors.
Collapse
Affiliation(s)
- Ziqi Qin
- School of psychology, Sichuan Normal University, Sichuan, 610066, China
| | - Qi Wu
- School of psychology, Sichuan Normal University, Sichuan, 610066, China
| | - Cuihua Bi
- School of psychology, Sichuan Normal University, Sichuan, 610066, China.
| | - Yanwei Deng
- School of psychology, Sichuan Normal University, Sichuan, 610066, China
| | - Qiuyun Hu
- School of psychology, Sichuan Normal University, Sichuan, 610066, China
| |
Collapse
|
28
|
Kalvapalle PB, Sridhar S, Silberg JJ, Stadler LB. Long-duration environmental biosensing by recording analyte detection in DNA using recombinase memory. Appl Environ Microbiol 2024; 90:e0236323. [PMID: 38551351 PMCID: PMC11022584 DOI: 10.1128/aem.02363-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 02/20/2024] [Indexed: 04/18/2024] Open
Abstract
Microbial biosensors that convert environmental information into real-time visual outputs are limited in their sensing abilities in complex environments, such as soil and wastewater, due to optical inaccessibility. Biosensors that could record transient exposure to analytes within a large time window for later retrieval represent a promising approach to solve the accessibility problem. Here, we test the performance of recombinase-memory biosensors that sense a sugar (arabinose) and a microbial communication molecule (3-oxo-C12-L-homoserine lactone) over 8 days (~70 generations) following analyte exposure. These biosensors sense the analyte and trigger the expression of a recombinase enzyme which flips a segment of DNA, creating a genetic memory, and initiates fluorescent protein expression. The initial designs failed over time due to unintended DNA flipping in the absence of the analyte and loss of the flipped state after exposure to the analyte. Biosensor performance was improved by decreasing recombinase expression, removing the fluorescent protein output, and using quantitative PCR to read out stored information. Application of memory biosensors in wastewater isolates achieved memory of analyte exposure in an uncharacterized Pseudomonas isolate. By returning these engineered isolates to their native environments, recombinase-memory systems are expected to enable longer duration and in situ investigation of microbial signaling, cross-feeding, community shifts, and gene transfer beyond the reach of traditional environmental biosensors.IMPORTANCEMicrobes mediate ecological processes over timescales that can far exceed the half-lives of transient metabolites and signals that drive their collective behaviors. We investigated strategies for engineering microbes to stably record their transient exposure to a chemical over many generations through DNA rearrangements. We identify genetic architectures that improve memory biosensor performance and characterize these in wastewater isolates. Memory biosensors are expected to be useful for monitoring cell-cell signals in biofilms, detecting transient exposure to chemical pollutants, and observing microbial cross-feeding through short-lived metabolites within cryptic methane, nitrogen, and sulfur cycling processes. They will also enable in situ studies of microbial responses to ephemeral environmental changes, or other ecological processes that are currently challenging to monitor non-destructively using real-time biosensors and analytical instruments.
Collapse
Affiliation(s)
| | - Swetha Sridhar
- Systems, Synthetic, and Physical Biology Graduate Program, Rice University, Houston, Texas, USA
| | - Jonathan J. Silberg
- Department of BioSciences, Rice University, Houston, Texas, USA
- Department of Bioengineering, Rice University, Houston, Texas, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas, USA
| | - Lauren B. Stadler
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| |
Collapse
|
29
|
Zhang M, Yancey C, Zhang C, Wang J, Ma Q, Yang L, Schulman R, Han D, Tan W. A DNA circuit that records molecular events. SCIENCE ADVANCES 2024; 10:eadn3329. [PMID: 38578999 PMCID: PMC10997190 DOI: 10.1126/sciadv.adn3329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Characterizing the relative onset time, strength, and duration of molecular signals is critical for understanding the operation of signal transduction and genetic regulatory networks. However, detecting multiple such molecules as they are produced and then quickly consumed is challenging. A MER can encode information about transient molecular events as stable DNA sequences and are amenable to downstream sequencing or other analysis. Here, we report the development of a de novo molecular event recorder that processes information using a strand displacement reaction network and encodes the information using the primer exchange reaction, which can be decoded and quantified by DNA sequencing. The event recorder was able to classify the order at which different molecular signals appeared in time with 88% accuracy, the concentrations with 100% accuracy, and the duration with 75% accuracy. This simultaneous and highly programmable multiparameter recording could enable the large-scale deciphering of molecular events such as within dynamic reaction environments, living cells, or tissues.
Collapse
Affiliation(s)
- Mingzhi Zhang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Colin Yancey
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Chao Zhang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Intellinosis Biotech Co. Ltd., Shanghai, 201112, China
| | - Junyan Wang
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Qian Ma
- Intellinosis Biotech Co. Ltd., Shanghai, 201112, China
| | - Linlin Yang
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| | - Rebecca Schulman
- Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD 21218, USA
- Computer Science, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Da Han
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- Institute of Molecular Medicine (IMM), Shanghai Key Laboratory for Nucleic Acid Chemistry and Nanomedicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| |
Collapse
|
30
|
Wang G, Wang Q, Qi Q, Wang Q. Dynamic plasmid copy number control for synthetic biology. Trends Biotechnol 2024; 42:147-150. [PMID: 37689527 DOI: 10.1016/j.tibtech.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 09/11/2023]
Abstract
Plasmids that replicate independently from chromosomes are valuable genetic tools for biological research. Dynamic control of plasmid copy number facilitates flexible regulation of the gene of interest or the genetic circuit installed in the plasmid. This useful strategy is being integrated into synthetic biology for metabolic reprogramming and biosensing applications.
Collapse
Affiliation(s)
- Gege Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Qi Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Qingsheng Qi
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China
| | - Qian Wang
- National Glycoengineering Research Center, State Key Laboratory of Microbial Technology, Shandong University, Qingdao, PR China.
| |
Collapse
|
31
|
Wang S, Mao X, Wang F, Zuo X, Fan C. Data Storage Using DNA. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307499. [PMID: 37800877 DOI: 10.1002/adma.202307499] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 10/01/2023] [Indexed: 10/07/2023]
Abstract
The exponential growth of global data has outpaced the storage capacities of current technologies, necessitating innovative storage strategies. DNA, as a natural medium for preserving genetic information, has emerged as a highly promising candidate for next-generation storage medium. Storing data in DNA offers several advantages, including ultrahigh physical density and exceptional durability. Facilitated by significant advancements in various technologies, such as DNA synthesis, DNA sequencing, and DNA nanotechnology, remarkable progress has been made in the field of DNA data storage over the past decade. However, several challenges still need to be addressed to realize practical applications of DNA data storage. In this review, the processes and strategies of in vitro DNA data storage are first introduced, highlighting recent advancements. Next, a brief overview of in vivo DNA data storage is provided, with a focus on the various writing strategies developed to date. At last, the challenges encountered in each step of DNA data storage are summarized and promising techniques are discussed that hold great promise in overcoming these obstacles.
Collapse
Affiliation(s)
- Shaopeng Wang
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Xiuhai Mao
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Fei Wang
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunhai Fan
- Institute of Molecular Medicine, Shanghai Key Laboratory for Nucleic Acids Chemistry and Nanomedicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
- School of Chemistry and Chemical Engineering, New Cornerstone Science Laboratory, Frontiers Science Center for Transformative Molecules, Zhangjiang Institute for Advanced Study and National Center for Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
32
|
Oh GS, An S, Kim S. Harnessing CRISPR-Cas adaptation for RNA recording and beyond. BMB Rep 2024; 57:40-49. [PMID: 38053290 PMCID: PMC10828431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 12/07/2023] Open
Abstract
Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNAguided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies. [BMB Reports 2024; 57(1): 40-49].
Collapse
Affiliation(s)
- Gyeong-Seok Oh
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Seongjin An
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sungchul Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| |
Collapse
|
33
|
Oh GS, An S, Kim S. Harnessing CRISPR-Cas adaptation for RNA recording and beyond. BMB Rep 2024; 57:40-49. [PMID: 38053290 PMCID: PMC10828431 DOI: 10.5483/bmbrep.2023-0050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 04/04/2023] [Accepted: 04/04/2023] [Indexed: 03/09/2025] Open
Abstract
Prokaryotes encode clustered regularly interspaced short palindromic repeat (CRISPR) arrays and CRISPR-associated (Cas) genes as an adaptive immune machinery. CRISPR-Cas systems effectively protect hosts from the invasion of foreign enemies, such as bacteriophages and plasmids. During a process called 'adaptation', non-self-nucleic acid fragments are acquired as spacers between repeats in the host CRISPR array, to establish immunological memory. The highly conserved Cas1-Cas2 complexes function as molecular recorders to integrate spacers in a time course manner, which can subsequently be expressed as crRNAs complexed with Cas effector proteins for the RNAguided interference pathways. In some of the RNA-targeting type III systems, Cas1 proteins are fused with reverse transcriptase (RT), indicating that RT-Cas1-Cas2 complexes can acquire RNA transcripts for spacer acquisition. In this review, we summarize current studies that focus on the molecular structure and function of the RT-fused Cas1-Cas2 integrase, and its potential applications as a directional RNA-recording tool in cells. Furthermore, we highlight outstanding questions for RT-Cas1-Cas2 studies and future directions for RNA-recording CRISPR technologies. [BMB Reports 2024; 57(1): 40-49].
Collapse
Affiliation(s)
- Gyeong-Seok Oh
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| | - Seongjin An
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
- Department of Life Sciences, School of Life Sciences and Biotechnology, Korea University, Seoul 02841, Korea
| | - Sungchul Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea
| |
Collapse
|
34
|
Kim IS. DNA Barcoding Technology for Lineage Recording and Tracing to Resolve Cell Fate Determination. Cells 2023; 13:27. [PMID: 38201231 PMCID: PMC10778210 DOI: 10.3390/cells13010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/18/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
In various biological contexts, cells receive signals and stimuli that prompt them to change their current state, leading to transitions into a future state. This change underlies the processes of development, tissue maintenance, immune response, and the pathogenesis of various diseases. Following the path of cells from their initial identity to their current state reveals how cells adapt to their surroundings and undergo transformations to attain adjusted cellular states. DNA-based molecular barcoding technology enables the documentation of a phylogenetic tree and the deterministic events of cell lineages, providing the mechanisms and timing of cell lineage commitment that can either promote homeostasis or lead to cellular dysregulation. This review comprehensively presents recently emerging molecular recording technologies that utilize CRISPR/Cas systems, base editing, recombination, and innate variable sequences in the genome. Detailing their underlying principles, applications, and constraints paves the way for the lineage tracing of every cell within complex biological systems, encompassing the hidden steps and intermediate states of organism development and disease progression.
Collapse
Affiliation(s)
- Ik Soo Kim
- Department of Microbiology, Gachon University College of Medicine, Incheon 21999, Republic of Korea
| |
Collapse
|
35
|
Biggs BW, de Paz AM, Bhan NJ, Cybulski TR, Church GM, Tyo KEJ. Engineering Ca 2+-Dependent DNA Polymerase Activity. ACS Synth Biol 2023; 12:3301-3311. [PMID: 37856140 DOI: 10.1021/acssynbio.3c00302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
Advancements in synthetic biology have provided new opportunities in biosensing, with applications ranging from genetic programming to diagnostics. Next generation biosensors aim to expand the number of accessible environments for measurements, increase the number of measurable phenomena, and improve the quality of the measurement. To this end, an emerging area in the field has been the integration of DNA as an information storage medium within biosensor outputs, leveraging nucleic acids to record the biosensor state over time. However, slow signal transduction steps, due to the time scales of transcription and translation, bottleneck many sensing-DNA recording approaches. DNA polymerases (DNAPs) have been proposed as a solution to the signal transduction problem by operating as both the sensor and responder, but there is presently a lack of DNAPs with functional sensitivity to many desirable target ligands. Here, we engineer components of the Pol δ replicative polymerase complex of Saccharomyces cerevisiae to sense and respond to Ca2+, a metal cofactor relevant to numerous biological phenomena. Through domain insertion and binding site grafting to Pol δ subunits, we demonstrate functional allosteric sensitivity to Ca2+. Together, this work provides an important foundation for future efforts in the development of DNAP-based biosensors.
Collapse
Affiliation(s)
- Bradley W Biggs
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Alexandra M de Paz
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Namita J Bhan
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - Thaddeus R Cybulski
- Interdepartmental Neuroscience Program, Northwestern University, Chicago, Illinois 60611, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| | - George M Church
- Department of Genetics, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Keith E J Tyo
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States
- Center for Synthetic Biology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
36
|
Tanniche I, Behkam B. Engineered live bacteria as disease detection and diagnosis tools. J Biol Eng 2023; 17:65. [PMID: 37875910 PMCID: PMC10598922 DOI: 10.1186/s13036-023-00379-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/18/2023] [Indexed: 10/26/2023] Open
Abstract
Sensitive and minimally invasive medical diagnostics are essential to the early detection of diseases, monitoring their progression and response to treatment. Engineered bacteria as live sensors are being developed as a new class of biosensors for sensitive, robust, noninvasive, and in situ detection of disease onset at low cost. Akin to microrobotic systems, a combination of simple genetic rules, basic logic gates, and complex synthetic bioengineering principles are used to program bacterial vectors as living machines for detecting biomarkers of diseases, some of which cannot be detected with other sensing technologies. Bacterial whole-cell biosensors (BWCBs) can have wide-ranging functions from detection only, to detection and recording, to closed-loop detection-regulated treatment. In this review article, we first summarize the unique benefits of bacteria as living sensors. We then describe the different bacteria-based diagnosis approaches and provide examples of diagnosing various diseases and disorders. We also discuss the use of bacteria as imaging vectors for disease detection and image-guided surgery. We conclude by highlighting current challenges and opportunities for further exploration toward clinical translation of these bacteria-based systems.
Collapse
Affiliation(s)
- Imen Tanniche
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Bahareh Behkam
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, VA, 24061, USA.
- School of Biomedical Engineered and Sciences, Virginia Tech, Blacksburg, VA, 24061, USA.
- Center for Engineered Health, Institute for Critical Technology and Applied Science, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
37
|
Ou Y, Guo S. Safety risks and ethical governance of biomedical applications of synthetic biology. Front Bioeng Biotechnol 2023; 11:1292029. [PMID: 37941726 PMCID: PMC10628459 DOI: 10.3389/fbioe.2023.1292029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 10/13/2023] [Indexed: 11/10/2023] Open
Abstract
Background: In recent years, biomedicine has witnessed rapid advancements in applying synthetic biology. While these advancements have brought numerous benefits to patients, they have also given rise to a series of safety concerns. Methods: This article provides a succinct overview of the current research on synthetic biology's application in biomedicine and systematically analyzes the safety risks associated with this field. Based on this analysis, the article proposes fundamental principles for addressing these issues and presents practical recommendations for ethical governance. Results: This article contends that the primary safety risks associated with the application of synthetic biology in biomedicine include participant safety, biosafety risks, and biosecurity risks. In order to effectively address these risks, it is essential to adhere to the principles of human-centeredness, non-maleficence, sustainability, and reasonable risk control. Guided by these fundamental principles and taking into account China's specific circumstances, this article presents practical recommendations for ethical governance, which include strengthening ethical review, promoting the development and implementation of relevant policies, improving legal safeguards through top-level design, and enhancing technical capabilities for biocontainment. Conclusion: As an emerging field of scientific technology, synthetic biology presents numerous safety risks and challenges in its application within biomedicine. In order to address these risks and challenges, it is imperative that appropriate measures be implemented. From a Chinese perspective, the solutions we propose serve not only to advance the domestic development of synthetic biology but also to contribute to its global progress.
Collapse
Affiliation(s)
- Yakun Ou
- School of Marxism, Huazhong University of Science and Technology, Wuhan, China
- Center for Bioethics, Huazhong University of Science and Technology, Wuhan, China
| | - Shengjia Guo
- School of Marxism, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
38
|
Lebovich M, Zeng M, Andrews LB. Algorithmic Programming of Sequential Logic and Genetic Circuits for Recording Biochemical Concentration in a Probiotic Bacterium. ACS Synth Biol 2023; 12:2632-2649. [PMID: 37581922 PMCID: PMC10510703 DOI: 10.1021/acssynbio.3c00232] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Indexed: 08/16/2023]
Abstract
Through the implementation of designable genetic circuits, engineered probiotic microorganisms could be used as noninvasive diagnostic tools for the gastrointestinal tract. For these living cells to report detected biomarkers or signals after exiting the gut, the genetic circuits must be able to record these signals by using genetically encoded memory. Complex memory register circuits could enable multiplex interrogation of biomarkers and signals. A theory-based approach to create genetic circuits containing memory, known as sequential logic circuits, was previously established for a model laboratory strain of Escherichia coli, yet how circuit component performance varies for nonmodel and clinically relevant bacterial strains is poorly understood. Here, we develop a scalable computational approach to design robust sequential logic circuits in probiotic strain Escherichia coli Nissle 1917 (EcN). In this work, we used TetR-family transcriptional repressors to build genetic logic gates that can be composed into sequential logic circuits, along with a set of engineered sensors relevant for use in the gut environment. Using standard methods, 16 genetic NOT gates and nine sensors were experimentally characterized in EcN. These data were used to design and predict the performance of circuit designs. We present a set of genetic circuits encoding both combinational logic and sequential logic and show that the circuit outputs are in close agreement with our quantitative predictions from the design algorithm. Furthermore, we demonstrate an analog-like concentration recording circuit that detects and reports three input concentration ranges of a biochemical signal using sequential logic.
Collapse
Affiliation(s)
- Matthew Lebovich
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Min Zeng
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
| | - Lauren B. Andrews
- Department
of Chemical Engineering, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Biotechnology
Training Program, University of Massachusetts
Amherst, Amherst, Massachusetts 01003, United States
- Molecular
and Cellular Biology Graduate Program, University
of Massachusetts Amherst, Amherst, Massachusetts 01003, United States
| |
Collapse
|
39
|
Przybyszewska-Podstawka A, Czapiński J, Kałafut J, Rivero-Müller A. Synthetic circuits based on split Cas9 to detect cellular events. Sci Rep 2023; 13:14988. [PMID: 37696879 PMCID: PMC10495424 DOI: 10.1038/s41598-023-41367-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/25/2023] [Indexed: 09/13/2023] Open
Abstract
Synthetic biology involves the engineering of logic circuit gates that process different inputs to produce specific outputs, enabling the creation or control of biological functions. While CRISPR has become the tool of choice in molecular biology due to its RNA-guided targetability to other nucleic acids, it has not been frequently applied to logic gates beyond those controlling the guide RNA (gRNA). In this study, we present an adaptation of split Cas9 to generate logic gates capable of sensing biological events, leveraging a Cas9 reporter (EGxxFP) to detect occurrences such as cancer cell origin, epithelial to mesenchymal transition (EMT), and cell-cell fusion. First, we positioned the complementing halves of split Cas9 under different promoters-one specific to cancer cells of epithelial origin (phCEA) and the other a universal promoter. The use of self-assembling inteins facilitated the reconstitution of the Cas9 halves. Consequently, only cancer cells with an epithelial origin activated the reporter, exhibiting green fluorescence. Subsequently, we explored whether this system could detect biological processes such as epithelial to mesenchymal transition (EMT). To achieve this, we designed a logic gate where one half of Cas9 is expressed under the phCEA, while the other is activated by TWIST1. The results showed that cells undergoing EMT effectively activated the reporter. Next, we combined the two inputs (epithelial origin and EMT) to create a new logic gate, where only cancer epithelial cells undergoing EMT activated the reporter. Lastly, we applied the split-Cas9 logic gate as a sensor of cell-cell fusion, both in induced and naturally occurring scenarios. Each cell type expressed one half of split Cas9, and the induction of fusion resulted in the appearance of multinucleated syncytia and the fluorescent reporter. The simplicity of the split Cas9 system presented here allows for its integration into various cellular processes, not only as a sensor but also as an actuator.
Collapse
Affiliation(s)
| | - Jakub Czapiński
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland
| | - Joanna Kałafut
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland
| | - Adolfo Rivero-Müller
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 20-093, Lublin, Poland.
| |
Collapse
|
40
|
Yosef I, Mahata T, Goren MG, Degany OJ, Ben-Shem A, Qimron U. Highly active CRISPR-adaptation proteins revealed by a robust enrichment technology. Nucleic Acids Res 2023; 51:7552-7562. [PMID: 37326009 PMCID: PMC10415146 DOI: 10.1093/nar/gkad510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/24/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Natural prokaryotic defense via the CRISPR-Cas system requires spacer integration into the CRISPR array in a process called adaptation. To search for adaptation proteins with enhanced capabilities, we established a robust perpetual DNA packaging and transfer (PeDPaT) system that uses a strain of T7 phage to package plasmids and transfer them without killing the host, and then uses a different strain of T7 phage to repeat the cycle. We used PeDPaT to identify better adaptation proteins-Cas1 and Cas2-by enriching mutants that provide higher adaptation efficiency. We identified two mutant Cas1 proteins that show up to 10-fold enhanced adaptation in vivo. In vitro, one mutant has higher integration and DNA binding activities, and another has a higher disintegration activity compared to the wild-type Cas1. Lastly, we showed that their specificity for selecting a protospacer adjacent motif is decreased. The PeDPaT technology may be used for many robust screens requiring efficient and effortless DNA transduction.
Collapse
Affiliation(s)
- Ido Yosef
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tridib Mahata
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Moran G Goren
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Or J Degany
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Adam Ben-Shem
- Department of Integrated Structural Biology, Equipe labellisée Ligue Contre le Cancer, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch 67404, France
| | - Udi Qimron
- Department of Clinical Microbiology and Immunology, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
41
|
Zhang C, Liu H, Li X, Xu F, Li Z. Modularized synthetic biology enabled intelligent biosensors. Trends Biotechnol 2023; 41:1055-1065. [PMID: 36967259 DOI: 10.1016/j.tibtech.2023.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 02/27/2023] [Accepted: 03/06/2023] [Indexed: 03/29/2023]
Abstract
Biosensors that sense the concentration of a specified target and produce a specific signal output have become important technology for biological analysis. Recently, intelligent biosensors have received great interest due to their adaptability to meet sophisticated demands. Advances in developing standard modules and carriers in synthetic biology have shed light on intelligent biosensors that can implement advanced analytical processing to better accommodate practical applications. This review focuses on intelligent synthetic biology-enabled biosensors (SBBs). First, we illustrate recent progress in intelligent SBBs with the capability of computation, memory storage, and self-calibration. Then, we discuss emerging applications of SBBs in point-of-care testing (POCT) and wearable monitoring. Finally, future perspectives on intelligent SBBs are proposed.
Collapse
Affiliation(s)
- Chao Zhang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Hao Liu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China
| | - Xiujun Li
- Department of Chemistry and Biochemistry, University of Texas at El Paso, 500 West University Ave, El Paso, TX 79968, USA
| | - Feng Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China.
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, P.R. China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, P.R. China; TFX Group-Xi'an Jiaotong University Institute of Life Health, Xi'an 710049, P.R. China.
| |
Collapse
|
42
|
Jiao C, Reckstadt C, König F, Homberger C, Yu J, Vogel J, Westermann AJ, Sharma CM, Beisel CL. RNA recording in single bacterial cells using reprogrammed tracrRNAs. Nat Biotechnol 2023; 41:1107-1116. [PMID: 36604543 PMCID: PMC7614944 DOI: 10.1038/s41587-022-01604-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 11/07/2022] [Indexed: 01/07/2023]
Abstract
Capturing an individual cell's transcriptional history is a challenge exacerbated by the functional heterogeneity of cellular communities. Here, we leverage reprogrammed tracrRNAs (Rptrs) to record selected cellular transcripts as stored DNA edits in single living bacterial cells. Rptrs are designed to base pair with sensed transcripts, converting them into guide RNAs. The guide RNAs then direct a Cas9 base editor to target an introduced DNA target. The extent of base editing can then be read in the future by sequencing. We use this approach, called TIGER (transcribed RNAs inferred by genetically encoded records), to record heterologous and endogenous transcripts in individual bacterial cells. TIGER can quantify relative expression, distinguish single-nucleotide differences, record multiple transcripts simultaneously and read out single-cell phenomena. We further apply TIGER to record metabolic bet hedging and antibiotic resistance mobilization in Escherichia coli as well as host cell invasion by Salmonella. Through RNA recording, TIGER connects current cellular states with past transcriptional states to decipher complex cellular responses in single cells.
Collapse
Affiliation(s)
- Chunlei Jiao
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Claas Reckstadt
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Fabian König
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Christina Homberger
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Jiaqi Yu
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
| | - Jörg Vogel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
- Medical Faculty, University of Würzburg, Würzburg, Germany
| | - Alexander J Westermann
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany
- Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Cynthia M Sharma
- Department of Molecular Infection Biology II, Institute of Molecular Infection Biology, University of Würzburg, Würzburg, Germany
| | - Chase L Beisel
- Helmholtz Institute for RNA-based Infection Research (HIRI), Helmholtz Centre for Infection Research (HZI), Würzburg, Germany.
- Medical Faculty, University of Würzburg, Würzburg, Germany.
| |
Collapse
|
43
|
Doshi A, Shaw M, Tonea R, Moon S, Minyety R, Doshi A, Laine A, Guo J, Danino T. Engineered bacterial swarm patterns as spatial records of environmental inputs. Nat Chem Biol 2023; 19:878-886. [PMID: 37142806 DOI: 10.1038/s41589-023-01325-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/06/2023] [Indexed: 05/06/2023]
Abstract
A diverse array of bacteria species naturally self-organize into durable macroscale patterns on solid surfaces via swarming motility-a highly coordinated and rapid movement of bacteria powered by flagella. Engineering swarming is an untapped opportunity to increase the scale and robustness of coordinated synthetic microbial systems. Here we engineer Proteus mirabilis, which natively forms centimeter-scale bullseye swarm patterns, to 'write' external inputs into visible spatial records. Specifically, we engineer tunable expression of swarming-related genes that modify pattern features, and we develop quantitative approaches to decoding. Next, we develop a dual-input system that modulates two swarming-related genes simultaneously, and we separately show that growing colonies can record dynamic environmental changes. We decode the resulting multicondition patterns with deep classification and segmentation models. Finally, we engineer a strain that records the presence of aqueous copper. This work creates an approach for building macroscale bacterial recorders, expanding the framework for engineering emergent microbial behaviors.
Collapse
Affiliation(s)
- Anjali Doshi
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Marian Shaw
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Ruxandra Tonea
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Soonhee Moon
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Rosalía Minyety
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Anish Doshi
- Department of Electrical Engineering and Computer Sciences, University of California, Berkeley, CA, USA
| | - Andrew Laine
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA
| | - Jia Guo
- Department of Psychiatry, Columbia University, New York City, NY, USA
- Mortimer B. Zuckerman Mind Brain Behavior Institute, Columbia University, New York City, NY, USA
| | - Tal Danino
- Department of Biomedical Engineering, Columbia University, New York City, NY, USA.
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York City, NY, USA.
- Data Science Institute, Columbia University, New York City, NY, USA.
| |
Collapse
|
44
|
Lear SK, Lopez SC, González-Delgado A, Bhattarai-Kline S, Shipman SL. Temporally resolved transcriptional recording in E. coli DNA using a Retro-Cascorder. Nat Protoc 2023; 18:1866-1892. [PMID: 37059915 PMCID: PMC10631475 DOI: 10.1038/s41596-023-00819-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 02/09/2023] [Indexed: 04/16/2023]
Abstract
Biological signals occur over time in living cells. Yet most current approaches to interrogate biology, particularly gene expression, use destructive techniques that quantify signals only at a single point in time. A recent technological advance, termed the Retro-Cascorder, overcomes this limitation by molecularly logging a record of gene expression events in a temporally organized genomic ledger. The Retro-Cascorder works by converting a transcriptional event into a DNA barcode using a retron reverse transcriptase and then storing that event in a unidirectionally expanding clustered regularly interspaced short palindromic repeats (CRISPR) array via acquisition by CRISPR-Cas integrases. This CRISPR array-based ledger of gene expression can be retrieved at a later point in time by sequencing. Here we describe an implementation of the Retro-Cascorder in which the relative timing of transcriptional events from multiple promoters of interest is recorded chronologically in Escherichia coli populations over multiple days. We detail the molecular components required for this technology, provide a step-by-step guide to generate the recording and retrieve the data by Illumina sequencing, and give instructions for how to use custom software to infer the relative transcriptional timing from the sequencing data. The example recording is generated in 2 d, preparation of sequencing libraries and sequencing can be accomplished in 2-3 d, and analysis of data takes up to several hours. This protocol can be implemented by someone familiar with basic bacterial culture, molecular biology and bioinformatics. Analysis can be minimally run on a personal computer.
Collapse
Affiliation(s)
- Sierra K Lear
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- UCSF-UCB Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| | - Santiago C Lopez
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- UCSF-UCB Graduate Program in Bioengineering, University of California, Berkeley, CA, USA
| | | | - Santi Bhattarai-Kline
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- UCLA-Caltech Medical Scientist Training Program, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Seth L Shipman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
45
|
Yan X, Liu X, Zhao C, Chen GQ. Applications of synthetic biology in medical and pharmaceutical fields. Signal Transduct Target Ther 2023; 8:199. [PMID: 37169742 PMCID: PMC10173249 DOI: 10.1038/s41392-023-01440-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 03/15/2023] [Accepted: 03/24/2023] [Indexed: 05/13/2023] Open
Abstract
Synthetic biology aims to design or assemble existing bioparts or bio-components for useful bioproperties. During the past decades, progresses have been made to build delicate biocircuits, standardized biological building blocks and to develop various genomic/metabolic engineering tools and approaches. Medical and pharmaceutical demands have also pushed the development of synthetic biology, including integration of heterologous pathways into designer cells to efficiently produce medical agents, enhanced yields of natural products in cell growth media to equal or higher than that of the extracts from plants or fungi, constructions of novel genetic circuits for tumor targeting, controllable releases of therapeutic agents in response to specific biomarkers to fight diseases such as diabetes and cancers. Besides, new strategies are developed to treat complex immune diseases, infectious diseases and metabolic disorders that are hard to cure via traditional approaches. In general, synthetic biology brings new capabilities to medical and pharmaceutical researches. This review summarizes the timeline of synthetic biology developments, the past and present of synthetic biology for microbial productions of pharmaceutics, engineered cells equipped with synthetic DNA circuits for diagnosis and therapies, live and auto-assemblied biomaterials for medical treatments, cell-free synthetic biology in medical and pharmaceutical fields, and DNA engineering approaches with potentials for biomedical applications.
Collapse
Affiliation(s)
- Xu Yan
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Xu Liu
- PhaBuilder Biotech Co. Ltd., Shunyi District, Zhaoquan Ying, 101309, Beijing, China
| | - Cuihuan Zhao
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Guo-Qiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China.
- Center for Synthetic and Systems Biology, Tsinghua University, 100084, Beijing, China.
- MOE Key Lab for Industrial Biocatalysis, Dept Chemical Engineering, Tsinghua University, 100084, Beijing, China.
| |
Collapse
|
46
|
Kalamakis G, Platt RJ. CRISPR for neuroscientists. Neuron 2023:S0896-6273(23)00306-9. [PMID: 37201524 DOI: 10.1016/j.neuron.2023.04.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 03/14/2023] [Accepted: 04/18/2023] [Indexed: 05/20/2023]
Abstract
Genome engineering technologies provide an entry point into understanding and controlling the function of genetic elements in health and disease. The discovery and development of the microbial defense system CRISPR-Cas yielded a treasure trove of genome engineering technologies and revolutionized the biomedical sciences. Comprising diverse RNA-guided enzymes and effector proteins that evolved or were engineered to manipulate nucleic acids and cellular processes, the CRISPR toolbox provides precise control over biology. Virtually all biological systems are amenable to genome engineering-from cancer cells to the brains of model organisms to human patients-galvanizing research and innovation and giving rise to fundamental insights into health and powerful strategies for detecting and correcting disease. In the field of neuroscience, these tools are being leveraged across a wide range of applications, including engineering traditional and non-traditional transgenic animal models, modeling disease, testing genomic therapies, unbiased screening, programming cell states, and recording cellular lineages and other biological processes. In this primer, we describe the development and applications of CRISPR technologies while highlighting outstanding limitations and opportunities.
Collapse
Affiliation(s)
- Georgios Kalamakis
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Novartis Institutes for BioMedical Research, 4056 Basel, Switzerland
| | - Randall J Platt
- Department of Biosystems Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland; Department of Chemistry, University of Basel, Petersplatz 1, 4003 Basel, Switzerland; NCCR MSE, Mattenstrasse 24a, 4058 Basel, Switzerland; Botnar Research Center for Child Health, Mattenstrasse 24a, 4058 Basel, Switzerland.
| |
Collapse
|
47
|
Linghu C, An B, Shpokayte M, Celiker OT, Shmoel N, Zhang R, Zhang C, Park D, Park WM, Ramirez S, Boyden ES. Recording of cellular physiological histories along optically readable self-assembling protein chains. Nat Biotechnol 2023; 41:640-651. [PMID: 36593405 PMCID: PMC10188365 DOI: 10.1038/s41587-022-01586-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 10/21/2022] [Indexed: 01/03/2023]
Abstract
Observing cellular physiological histories is key to understanding normal and disease-related processes. Here we describe expression recording islands-a fully genetically encoded approach that enables both continual digital recording of biological information within cells and subsequent high-throughput readout in fixed cells. The information is stored in growing intracellular protein chains made of self-assembling subunits, human-designed filament-forming proteins bearing different epitope tags that each correspond to a different cellular state or function (for example, gene expression downstream of neural activity or pharmacological exposure), allowing the physiological history to be read out along the ordered subunits of protein chains with conventional optical microscopy. We use expression recording islands to record gene expression timecourse downstream of specific pharmacological and physiological stimuli in cultured neurons and in living mouse brain, with a time resolution of a fraction of a day, over periods of days to weeks.
Collapse
Affiliation(s)
- Changyang Linghu
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
- Department of Cell and Developmental Biology, Program in Single Cell Spatial Analysis, and Michigan Neuroscience Institute, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Bobae An
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Monika Shpokayte
- Graduate Program for Neuroscience, Boston University, Boston, MA, USA
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Orhan T Celiker
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Nava Shmoel
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Ruihan Zhang
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Chi Zhang
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Demian Park
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
- Biological Engineering, MIT, Cambridge, MA, USA
- Media Arts and Sciences, MIT, Cambridge, MA, USA
- McGovern Institute, MIT, Cambridge, MA, USA
| | - Won Min Park
- Chemical Engineering, Kansas State University, Manhattan, KS, USA
| | - Steve Ramirez
- Psychological and Brain Sciences, Boston University, Boston, MA, USA
| | - Edward S Boyden
- Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
- Biological Engineering, MIT, Cambridge, MA, USA.
- Media Arts and Sciences, MIT, Cambridge, MA, USA.
- McGovern Institute, MIT, Cambridge, MA, USA.
- Howard Hughes Medical Institute, MIT, Cambridge, MA, USA.
- K Lisa Yang Center for Bionics, MIT, Cambridge, MA, USA.
- Center for Neurobiological Engineering, MIT, Cambridge, MA, USA.
- Koch Institute, MIT, Cambridge, MA, USA.
| |
Collapse
|
48
|
de Olazarra AS, Wang SX. Advances in point-of-care genetic testing for personalized medicine applications. BIOMICROFLUIDICS 2023; 17:031501. [PMID: 37159750 PMCID: PMC10163839 DOI: 10.1063/5.0143311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 04/12/2023] [Indexed: 05/11/2023]
Abstract
Breakthroughs within the fields of genomics and bioinformatics have enabled the identification of numerous genetic biomarkers that reflect an individual's disease susceptibility, disease progression, and therapy responsiveness. The personalized medicine paradigm capitalizes on these breakthroughs by utilizing an individual's genetic profile to guide treatment selection, dosing, and preventative care. However, integration of personalized medicine into routine clinical practice has been limited-in part-by a dearth of widely deployable, timely, and cost-effective genetic analysis tools. Fortunately, the last several decades have been characterized by tremendous progress with respect to the development of molecular point-of-care tests (POCTs). Advances in microfluidic technologies, accompanied by improvements and innovations in amplification methods, have opened new doors to health monitoring at the point-of-care. While many of these technologies were developed with rapid infectious disease diagnostics in mind, they are well-suited for deployment as genetic testing platforms for personalized medicine applications. In the coming years, we expect that these innovations in molecular POCT technology will play a critical role in enabling widespread adoption of personalized medicine methods. In this work, we review the current and emerging generations of point-of-care molecular testing platforms and assess their applicability toward accelerating the personalized medicine paradigm.
Collapse
Affiliation(s)
- A. S. de Olazarra
- Department of Electrical Engineering, Stanford University, Stanford, California 94305, USA
| | - S. X. Wang
- Author to whom correspondence should be addressed:
| |
Collapse
|
49
|
Sen D, Mukhopadhyay P. Application of CRISPR Cas systems in DNA recorders and writers. Biosystems 2023; 225:104870. [PMID: 36842456 DOI: 10.1016/j.biosystems.2023.104870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/13/2023] [Accepted: 02/23/2023] [Indexed: 02/26/2023]
Abstract
The necessity to record and store biological data is increasing in due course of time. However, it is quite difficult to understand biological mechanisms and keep a track of these events in some storage mediums. DNA (deoxyribonucleic acid) is the best candidate for the storage of cellular events in the biological system. It is energy efficient as well as stable at the same time. DNA-based writers and memory devices are continually evolving and finding new avenues in terms of their wide range of applications. Among all the DNA-based storage devices that employ enzymes like recombinases, nucleases, integrases, and polymerases, one of the most popular tools used for these devices is the emerging and versatile CRISPR Cas technology. CRISPR Cas is a prokaryotic immune system that keeps a memory of viral attacks and protects prokaryotes from potential future infections. The main aim of this short review is to study such molecular recorders and writers that employ CRISPR Cas technologies and obtain an in-depth overview of the mechanisms involved and the applications of these molecular devices.
Collapse
Affiliation(s)
- Debmitra Sen
- Department of Microbiology, University of Kalyani, Nadia, West Bengal, 741235, India.
| | - Poulami Mukhopadhyay
- Department of Microbiology, Barrackpore Rastraguru Surendranath College, Barrackpore, Kolkata, West Bengal, 700120, India.
| |
Collapse
|
50
|
Sheets MB, Tague N, Dunlop MJ. An optogenetic toolkit for light-inducible antibiotic resistance. Nat Commun 2023; 14:1034. [PMID: 36823420 PMCID: PMC9950086 DOI: 10.1038/s41467-023-36670-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 02/13/2023] [Indexed: 02/25/2023] Open
Abstract
Antibiotics are a key control mechanism for synthetic biology and microbiology. Resistance genes are used to select desired cells and regulate bacterial populations, however their use to-date has been largely static. Precise spatiotemporal control of antibiotic resistance could enable a wide variety of applications that require dynamic control of susceptibility and survival. Here, we use light-inducible Cre recombinase to activate expression of drug resistance genes in Escherichia coli. We demonstrate light-activated resistance to four antibiotics: carbenicillin, kanamycin, chloramphenicol, and tetracycline. Cells exposed to blue light survive in the presence of lethal antibiotic concentrations, while those kept in the dark do not. To optimize resistance induction, we vary promoter, ribosome binding site, and enzyme variant strength using chromosome and plasmid-based constructs. We then link inducible resistance to expression of a heterologous fatty acid enzyme to increase production of octanoic acid. These optogenetic resistance tools pave the way for spatiotemporal control of cell survival.
Collapse
Affiliation(s)
- Michael B Sheets
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Nathan Tague
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA
- Biological Design Center, Boston University, Boston, MA, 02215, USA
| | - Mary J Dunlop
- Department of Biomedical Engineering, Boston University, Boston, MA, 02215, USA.
- Biological Design Center, Boston University, Boston, MA, 02215, USA.
| |
Collapse
|