1
|
Zhang Z, Shimizu T. Recent advances in structural studies of NLRP3 and NLRP1 inflammasome regulation. Curr Opin Struct Biol 2025; 92:103057. [PMID: 40334522 DOI: 10.1016/j.sbi.2025.103057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/09/2025]
Abstract
The NOD-like receptor (NLR) family comprises inflammasome sensors that are critical intracellular pattern recognition receptors of the innate immune system. The NLR family members NLRP3 and NLRP1 can be activated by a wide range of pathogenic, chemical, self-derived and stress-related stimuli. In recent years, remarkable progress in functional and structural studies of these two receptors have shed light on their complicated and entirely different activation and regulation mechanisms. This review focuses on recent structural studies of NLRP3 and NLRP1, emphasizing the regulatory steps mediated by various activation and inhibitory factors.
Collapse
Affiliation(s)
- Zhikuan Zhang
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Toshiyuki Shimizu
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
2
|
Erasha AM, EL-Gendy H, Aly AS, Fernández-Ortiz M, Sayed RKA. The Role of the Tumor Microenvironment (TME) in Advancing Cancer Therapies: Immune System Interactions, Tumor-Infiltrating Lymphocytes (TILs), and the Role of Exosomes and Inflammasomes. Int J Mol Sci 2025; 26:2716. [PMID: 40141358 PMCID: PMC11942452 DOI: 10.3390/ijms26062716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/10/2025] [Accepted: 03/14/2025] [Indexed: 03/28/2025] Open
Abstract
Understanding how different contributors within the tumor microenvironment (TME) function and communicate is essential for effective cancer detection and treatment. The TME encompasses all the surroundings of a tumor such as blood vessels, fibroblasts, immune cells, signaling molecules, exosomes, and the extracellular matrix (ECM). Subsequently, effective cancer therapy relies on addressing TME alterations, known drivers of tumor progression, immune evasion, and metastasis. Immune cells and other cell types act differently under cancerous conditions, either driving or hindering cancer progression. For instance, tumor-infiltrating lymphocytes (TILs) include lymphocytes of B and T cell types that can invade malignancies, bringing in and enhancing the ability of immune system to recognize and destroy cancer cells. Therefore, TILs display a promising approach to tackling the TME alterations and have the capability to significantly hinder cancer progression. Similarly, exosomes and inflammasomes exhibit a dual effect, resulting in either tumor progression or inhibition depending on the origin of exosomes, type of inflammasome and tumor. This review will explore how cells function in the presence of a tumor, the communication between cancer cells and immune cells, and the role of TILs, exosomes and inflammasomes within the TME. The efforts in this review are aimed at garnering interest in safer and durable therapies for cancer, in addition to providing a promising avenue for advancing cancer therapy and consequently improving survival rates.
Collapse
Affiliation(s)
- Atef M. Erasha
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sadat City University, Sadat City 32897, Egypt;
| | - Hanem EL-Gendy
- Department of Pharmacology, Faculty of Veterinary Medicine, Sadat City University, Sadat City 32897, Egypt;
| | - Ahmed S. Aly
- Department of Animal Production, Faculty of Agriculture, Ain Shams University, Cairo 11241, Egypt;
| | - Marisol Fernández-Ortiz
- Greehey Children’s Cancer Research Institute, University of Texas Health Science Center San Antonio, San Antonio, TX 78229, USA
| | - Ramy K. A. Sayed
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt;
| |
Collapse
|
3
|
Turcotte EA, Kim K, Eislmayr KD, Goers L, Mitchell PS, Lesser CF, Vance RE. Shigella OspF blocks rapid p38-dependent priming of the NAIP-NLRC4 inflammasome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.01.636075. [PMID: 39975412 PMCID: PMC11838452 DOI: 10.1101/2025.02.01.636075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
The NAIP-NLRC4 inflammasome senses pathogenic bacteria by recognizing the cytosolic presence of bacterial proteins such as flagellin and type III secretion system (T3SS) subunits. In mice, the NAIP-NLRC4 inflammasome provides robust protection against bacterial pathogens that infect intestinal epithelial cells, including the gastrointestinal pathogen Shigella flexneri. By contrast, humans are highly susceptible to Shigella, despite the ability of human NAIP-NLRC4 to robustly detect Shigella T3SS proteins. Why the NAIP-NLRC4 inflammasome protects mice but not humans against Shigella infection remains unclear. We previously found that human THP-1 cells infected with Shigella lose responsiveness to NAIP-NLRC4 stimuli, while retaining sensitivity to other inflammasome agonists. Using mT3Sf, a "minimal Shigella" system, to express individual secreted Shigella effector proteins, we found that the OspF effector specifically suppresses NAIP-NLRC4-dependent cell death during infection. OspF was previously characterized as a phosphothreonine lyase that inactivates p38 and ERK MAP kinases. We found that p38 was critical for rapid priming of NAIP-NLRC4 activity, particularly in cells with low NAIP-NLRC4 expression. Overall, our results provide a mechanism by which Shigella evades inflammasome activation in humans, and describe a new mechanism for rapid priming of the NAIP-NLRC4 inflammasome.
Collapse
Affiliation(s)
- Elizabeth A Turcotte
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, Berkeley, United States
| | - Kyungsub Kim
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Kevin D Eislmayr
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, Berkeley, United States
| | - Lisa Goers
- Department of Microbiology, Harvard Medical School, Boston, United States
| | - Patrick S Mitchell
- Department of Microbiology, University of Washington, Seattle, United States
- Howard Hughes Medical Institute, University of Washington, Seattle, United States
| | - Cammie F Lesser
- Department of Microbiology, Harvard Medical School, Boston, United States
- Broad Institute of Harvard and MIT, Cambridge, United States
- Department of Medicine, Division of Infectious Diseases, Massachusetts General Hospital, Boston, United States
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, United States
| | - Russell E Vance
- Division of Immunology & Molecular Medicine, Department of Molecular & Cell Biology, University of California, Berkeley, United States
- Center for Emerging and Neglected Disease, University of California, Berkeley, United States
- Cancer Research Laboratory, University of California, Berkeley, United States
- Howard Hughes Medical Institute, University of California, Berkeley, United States
| |
Collapse
|
4
|
Afzal H, Murtaza A, Cheng LT. Structural engineering of flagellin as vaccine adjuvant: quest for the minimal domain of flagellin for TLR5 activation. Mol Biol Rep 2025; 52:104. [PMID: 39775323 PMCID: PMC11706886 DOI: 10.1007/s11033-024-10146-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Flagellin stimulates Toll-like receptor 5 (TLR5), triggering both innate and adaptive immune responses, making it a potential vaccine adjuvant. On mucosal surfaces, flagellin induces a strong release of cytokines, chemokines, and immunoglobulins. When used in its free monomeric form, flagellin has been shown to enhance immune responses when combined with vaccine antigens. Further research demonstrated that genetically linking flagellin to the antigen provides a more consistent immune boost. However, the bulky structure of flagellin presents challenges in designing the antigen-adjuvant construct, leading to ongoing research to determine the minimal flagellin domain necessary for its adjuvant effect. Early findings suggest that only the D0 and D1 domains are required for immune enhancement. Functional analysis revealed that the TLR5-binding region is located in the D1 domain, while TLR5 dimerization and signaling require the presence of D0. Further reductions in the size of the D0 and D1 domains may be possible as deeper studies aim to identify the key residues responsible for TLR5 activation and immune enhancement. Additionally, flagellin is being tested as a hapten carrier alongside its established adjuvant role. Recently, significant advancements in flagellin application have been observed as it progresses through clinical studies as an adjuvant, anti-radiation, and anti-cancer agent.
Collapse
Affiliation(s)
- Haroon Afzal
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan
| | - Asad Murtaza
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UiT - The Arctic University of Norway, Tromsø, Norway.
| | - Li-Ting Cheng
- International Degree Program of Animal Vaccine Technology, International College, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
- Graduate Institute of Animal Vaccine Technology, College of Veterinary Medicine, National Pingtung University of Science and Technology, 1, Shuefu Road, Neipu, Pingtung, 91201, Taiwan.
| |
Collapse
|
5
|
Nandakumar M, Lundberg M, Carlsson F, Råberg L. Positive Selection on Mammalian Immune Genes-Effects of Gene Function and Selective Constraint. Mol Biol Evol 2025; 42:msaf016. [PMID: 39834162 PMCID: PMC11783303 DOI: 10.1093/molbev/msaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025] Open
Abstract
Genome-wide analyses of various taxa have repeatedly shown that immune genes are important targets of positive selection. However, little is known about what factors determine which immune genes are under positive selection. To address this question, we here focus on the mammalian immune system and investigate the importance of gene function and other factors such as gene expression, protein-protein interactions, and overall selective constraint as determinants of positive selection. We compiled a list of >1,100 immune genes that were divided into six functional categories and analyzed using data from rodents. Genes encoding proteins that are in direct interactions with pathogens, such as pattern recognition receptors (PRRs), are often expected to be key targets of positive selection. We found that categories containing cytokines, cytokine receptors, and other cell surface proteins involved in, for example, cell-cell interactions were at least as important targets as PRRs, with three times higher rate of positive selection than nonimmune genes. The higher rate of positive selection on cytokines and cell surface proteins was partly an effect of these categories having lower selective constraint. Nonetheless, cytokines had a higher rate of positive selection than nonimmune genes even at a given level of selective constraint, indicating that gene function per se can also be a determinant of positive selection. These results have broad implications for understanding the causes of positive selection on immune genes, specifically the relative importance of host-pathogen coevolution versus other processes.
Collapse
Affiliation(s)
| | - Max Lundberg
- Department of Biology, Lund University, Lund 223 62, Sweden
| | | | - Lars Råberg
- Department of Biology, Lund University, Lund 223 62, Sweden
| |
Collapse
|
6
|
Zeng ZJ, Lin X, Yang L, Li Y, Gao W. Activation of Inflammasomes and Relevant Modulators for the Treatment of Microglia-mediated Neuroinflammation in Ischemic Stroke. Mol Neurobiol 2024; 61:10792-10804. [PMID: 38789893 DOI: 10.1007/s12035-024-04225-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024]
Abstract
As the brain's resident immune patrol, microglia mediate endogenous immune responses to central nervous system injury in ischemic stroke, thereby eliciting either neuroprotective or neurotoxic effects. The association of microglia-mediated neuroinflammation with the progression of ischemic stroke is evident through diverse signaling pathways, notably involving inflammasomes. Within microglia, inflammasomes play a pivotal role in promoting the maturation of interleukin-1β (IL-1β) and interleukin-18 (IL-18), facilitating pyroptosis, and triggering immune infiltration, ultimately leading to neuronal cell dysfunction. Addressing the persistent and widespread inflammation holds promise as a breakthrough in enhancing the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Ze-Jie Zeng
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaobing Lin
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Liu Yang
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China
| | - Yi Li
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| | - Wen Gao
- State Key Laboratory of Natural Medicines, School of Traditional Chinese Pharmacy, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
7
|
Grayczyk JP, Liu L, Egan MS, Aunins E, Wynosky-Dolfi MA, Canna SW, Minn AJ, Shin S, Brodsky IE. TLR priming licenses NAIP inflammasome activation by immunoevasive ligands. Proc Natl Acad Sci U S A 2024; 121:e2412700121. [PMID: 39556752 PMCID: PMC11621624 DOI: 10.1073/pnas.2412700121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 08/14/2024] [Indexed: 11/20/2024] Open
Abstract
NLR family, apoptosis inhibitory proteins (NAIPs) detect bacterial flagellin and structurally related components of bacterial type III secretion systems (T3SS), and recruit NLR family CARD domain containing protein 4 (NLRC4) and caspase-1 into an inflammasome complex that induces pyroptosis. NAIP/NLRC4 inflammasome assembly is initiated by the binding of a single NAIP to its cognate ligand, but a subset of bacterial flagellins or T3SS structural proteins are thought to evade NAIP/NLRC4 inflammasome sensing by not binding to their cognate NAIPs. Unlike other inflammasome components such as NLRP3, AIM2, or some NAIPs, NLRC4 is constitutively present in resting macrophages and not known to be induced by inflammatory signals. Here, we demonstrate that Toll-like receptor (TLR)-dependent p38 mitogen-activated protein kinase signaling up-regulates NLRC4 transcription and protein expression in murine macrophages, which licenses NAIP detection of evasive ligands. In contrast, TLR priming in human macrophages did not up-regulate NLRC4 expression, and human macrophages remained unable to detect NAIP-evasive ligands even following priming. Critically, ectopic expression of either murine or human NLRC4 was sufficient to induce pyroptosis in response to immunoevasive NAIP ligands, indicating that increased levels of NLRC4 enable the NAIP/NLRC4 inflammasome to detect these normally evasive ligands. Altogether, our data reveal that TLR priming tunes the threshold for the murine NAIP/NLRC4 inflammasome to enable inflammasome responses against immunoevasive or suboptimal NAIP ligands. These findings provide insight into species-specific TLR regulation of NAIP/NLRC4 inflammasome activation.
Collapse
Affiliation(s)
- James P. Grayczyk
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA19104
| | - Luying Liu
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA19104
| | - Marisa S. Egan
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Emily Aunins
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA19104
| | - Meghan A. Wynosky-Dolfi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA19104
| | - Scott W. Canna
- Department of Pediatrics, Division of Rheumatology, Children’s Hospital of Philadelphia, Philadelphia, PA19104
| | - Andy J. Minn
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA19104
| | - Igor E. Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA19104
| |
Collapse
|
8
|
Zhang T, Cepauskas A, Nadieina A, Thureau A, Coppieters 't Wallant K, Martens C, Lim DC, Garcia-Pino A, Laub MT. A bacterial immunity protein directly senses two disparate phage proteins. Nature 2024; 635:728-735. [PMID: 39415022 PMCID: PMC11578894 DOI: 10.1038/s41586-024-08039-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 09/11/2024] [Indexed: 10/18/2024]
Abstract
Eukaryotic innate immune systems use pattern recognition receptors to sense infection by detecting pathogen-associated molecular patterns, which then triggers an immune response. Bacteria have similarly evolved immunity proteins that sense certain components of their viral predators, known as bacteriophages1-6. Although different immunity proteins can recognize different phage-encoded triggers, individual bacterial immunity proteins have been found to sense only a single trigger during infection, suggesting a one-to-one relationship between bacterial pattern recognition receptors and their ligands7-11. Here we demonstrate that the antiphage defence protein CapRelSJ46 in Escherichia coli can directly bind and sense two completely unrelated and structurally different proteins using the same sensory domain, with overlapping but distinct interfaces. Our results highlight the notable versatility of an immune sensory domain, which may be a common property of antiphage defence systems that enables them to keep pace with their rapidly evolving viral predators. We found that Bas11 phages harbour both trigger proteins that are sensed by CapRelSJ46 during infection, and we demonstrate that such phages can fully evade CapRelSJ46 defence only when both triggers are mutated. Our work shows how a bacterial immune system that senses more than one trigger can help prevent phages from easily escaping detection, and it may allow the detection of a broader range of phages. More generally, our findings illustrate unexpected multifactorial sensing by bacterial defence systems and complex coevolutionary relationships between them and their phage-encoded triggers.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Albinas Cepauskas
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Anastasiia Nadieina
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Aurelien Thureau
- Centre for Structural Biology and Bioinformatics, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | - Daniel C Lim
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Abel Garcia-Pino
- Cellular and Molecular Microbiology, Faculté des Sciences, Université Libre de Bruxelles (ULB), Brussels, Belgium.
- WELBIO, Brussels, Belgium.
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
9
|
Liu F, Yang Z, Wang C, You Z, Martin R, Qiao W, Huang J, Jacob P, Dangl JL, Carette JE, Luan S, Nogales E, Staskawicz BJ. Activation of the helper NRC4 immune receptor forms a hexameric resistosome. Cell 2024; 187:4877-4889.e15. [PMID: 39094568 PMCID: PMC11380581 DOI: 10.1016/j.cell.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 08/04/2024]
Abstract
Innate immune responses to microbial pathogens are regulated by intracellular receptors known as nucleotide-binding leucine-rich repeat receptors (NLRs) in both the plant and animal kingdoms. Across plant innate immune systems, "helper" NLRs (hNLRs) work in coordination with "sensor" NLRs (sNLRs) to modulate disease resistance signaling pathways. Activation mechanisms of hNLRs based on structures are unknown. Our research reveals that the hNLR, known as NLR required for cell death 4 (NRC4), assembles into a hexameric resistosome upon activation by the sNLR Bs2 and the pathogenic effector AvrBs2. This conformational change triggers immune responses by facilitating the influx of calcium ions (Ca2+) into the cytosol. The activation mimic alleles of NRC2, NRC3, or NRC4 alone did not induce Ca2+ influx and cell death in animal cells, suggesting that unknown plant-specific factors regulate NRCs' activation in plants. These findings significantly advance our understanding of the regulatory mechanisms governing plant immune responses.
Collapse
Affiliation(s)
- Furong Liu
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Zhenlin Yang
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA.
| | - Chao Wang
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Zhang You
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Raoul Martin
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA
| | - Wenjie Qiao
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Jian Huang
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Pierre Jacob
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L Dangl
- Department of Biology and Howard Hughes Medical Institute, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jan E Carette
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Sheng Luan
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, Berkeley, CA, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA; Molecular Biophysics and Integrative Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Brian J Staskawicz
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, USA; Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA, USA.
| |
Collapse
|
10
|
Fu J, Schroder K, Wu H. Mechanistic insights from inflammasome structures. Nat Rev Immunol 2024; 24:518-535. [PMID: 38374299 PMCID: PMC11216901 DOI: 10.1038/s41577-024-00995-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2024] [Indexed: 02/21/2024]
Abstract
Inflammasomes are supramolecular complexes that form in the cytosol in response to pathogen-associated and damage-associated stimuli, as well as other danger signals that perturb cellular homoeostasis, resulting in host defence responses in the form of cytokine release and programmed cell death (pyroptosis). Inflammasome activity is closely associated with numerous human disorders, including rare genetic syndromes of autoinflammation, cardiovascular diseases, neurodegeneration and cancer. In recent years, a range of inflammasome components and their functions have been discovered, contributing to our knowledge of the overall machinery. Here, we review the latest advances in inflammasome biology from the perspective of structural and mechanistic studies. We focus on the most well-studied components of the canonical inflammasome - NAIP-NLRC4, NLRP3, NLRP1, CARD8 and caspase-1 - as well as caspase-4, caspase-5 and caspase-11 of the noncanonical inflammasome, and the inflammasome effectors GSDMD and NINJ1. These structural studies reveal important insights into how inflammasomes are assembled and regulated, and how they elicit the release of IL-1 family cytokines and induce membrane rupture in pyroptosis.
Collapse
Affiliation(s)
- Jianing Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Kate Schroder
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Wiegand T, Hoffmann FT, Walker MWG, Tang S, Richard E, Le HC, Meers C, Sternberg SH. TnpB homologues exapted from transposons are RNA-guided transcription factors. Nature 2024; 631:439-448. [PMID: 38926585 PMCID: PMC11702177 DOI: 10.1038/s41586-024-07598-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 05/23/2024] [Indexed: 06/28/2024]
Abstract
Transposon-encoded tnpB and iscB genes encode RNA-guided DNA nucleases that promote their own selfish spread through targeted DNA cleavage and homologous recombination1-4. These widespread gene families were repeatedly domesticated over evolutionary timescales, leading to the emergence of diverse CRISPR-associated nucleases including Cas9 and Cas12 (refs. 5,6). We set out to test the hypothesis that TnpB nucleases may have also been repurposed for novel, unexpected functions other than CRISPR-Cas adaptive immunity. Here, using phylogenetics, structural predictions, comparative genomics and functional assays, we uncover multiple independent genesis events of programmable transcription factors, which we name TnpB-like nuclease-dead repressors (TldRs). These proteins use naturally occurring guide RNAs to specifically target conserved promoter regions of the genome, leading to potent gene repression in a mechanism akin to CRISPR interference technologies invented by humans7. Focusing on a TldR clade found broadly in Enterobacteriaceae, we discover that bacteriophages exploit the combined action of TldR and an adjacently encoded phage gene to alter the expression and composition of the host flagellar assembly, a transformation with the potential to impact motility8, phage susceptibility9, and host immunity10. Collectively, this work showcases the diverse molecular innovations that were enabled through repeated exaptation of transposon-encoded genes, and reveals the evolutionary trajectory of diverse RNA-guided transcription factors.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Florian T Hoffmann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W G Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Egill Richard
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hoang C Le
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Ledvina HE, Whiteley AT. Conservation and similarity of bacterial and eukaryotic innate immunity. Nat Rev Microbiol 2024; 22:420-434. [PMID: 38418927 PMCID: PMC11389603 DOI: 10.1038/s41579-024-01017-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Pathogens are ubiquitous and a constant threat to their hosts, which has led to the evolution of sophisticated immune systems in bacteria, archaea and eukaryotes. Bacterial immune systems encode an astoundingly large array of antiviral (antiphage) systems, and recent investigations have identified unexpected similarities between the immune systems of bacteria and animals. In this Review, we discuss advances in our understanding of the bacterial innate immune system and highlight the components, strategies and pathogen restriction mechanisms conserved between bacteria and eukaryotes. We summarize evidence for the hypothesis that components of the human immune system originated in bacteria, where they first evolved to defend against phages. Further, we discuss shared mechanisms that pathogens use to overcome host immune pathways and unexpected similarities between bacterial immune systems and interbacterial antagonism. Understanding the shared evolutionary path of immune components across domains of life and the successful strategies that organisms have arrived at to restrict their pathogens will enable future development of therapeutics that activate the human immune system for the precise treatment of disease.
Collapse
Affiliation(s)
- Hannah E Ledvina
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO, USA.
| |
Collapse
|
13
|
Mascarenhas DP, Zamboni DS. Innate immune responses and monocyte-derived phagocyte recruitment in protective immunity to pathogenic bacteria: insights from Legionella pneumophila. Curr Opin Microbiol 2024; 80:102495. [PMID: 38908045 DOI: 10.1016/j.mib.2024.102495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 04/18/2024] [Accepted: 05/24/2024] [Indexed: 06/24/2024]
Abstract
Legionella species are Gram-negative intracellular bacteria that evolved in soil and freshwater environments, where they infect and replicate within various unicellular protozoa. The primary virulence factor of Legionella is the expression of a type IV secretion system (T4SS), which contributes to the translocation of effector proteins that subvert biological processes of the host cells. Because of its evolution in unicellular organisms, T4SS effector proteins are not adapted to subvert specific mammalian signaling pathways and immunity. Consequently, Legionella pneumophila has emerged as an interesting infection model for investigating immune responses against pathogenic bacteria in multicellular organisms. This review highlights recent advances in our understanding of mammalian innate immunity derived from studies involving L. pneumophila. This includes recent insights into inflammasome-mediated mechanisms restricting bacterial replication in macrophages, mechanisms inducing cell death in response to infection, induction of effector-triggered immunity, activation of specific pulmonary cell types in mammalian lungs, and the protective role of recruiting monocyte-derived cells to infected lungs.
Collapse
Affiliation(s)
- Danielle Pa Mascarenhas
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14049-900, Brazil.
| |
Collapse
|
14
|
Zhang Y, Liang S, Deng Z, Zhao Z, Han X. High-glucose conditions attenuate the response of macrophages to Legionella pneumophila infection by inhibiting NOD1 and MAPK signaling. Int Immunopharmacol 2024; 134:112254. [PMID: 38749333 DOI: 10.1016/j.intimp.2024.112254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/08/2024] [Accepted: 05/09/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Patients with diabetes are particularly susceptible to Legionella pneumophila (LP) infection, but the exact pathogenesis of LP infection in diabetic patients is still not fully understood. Herein, we investigated the effect of diabetes on immune function during LP infection in vitro and in vivo. METHODS The time course of LP infection in macrophages under normal and high-glucose (HG) conditions was examined in vitro. Western blot was used to determine nucleotide-binding oligomerization domain 1 (NOD1), kinase 1/2 (ERK1/2), mitogen-activated protein kinase p38 (MAPK p38), and c-Jun N-terminal kinases (JNK). Enzyme-linked immunosorbent assay (ELISA) was used to assess the secretion of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). Cell Counting Kit-8 (CCK8) assay assessed U937 cell viability after treating cells with different concentrations of high sugar medium and ML130 (NOD1 inhibitor). For the in vivo study, normal and streptozocin-induced diabetic guinea pigs were infected with LP for 6, 24, and 72 h, after which NOD1, MAPK-related signals, TNF-α, and IL-6 expression in lung tissues were assessed using immunohistochemistry, western blot, and RT-PCR. RESULTS HG attenuated the upregulation of NOD1 expression and reduced TNF-α and IL-6 secretion caused by LP compared with LP-infected cells exposed to normal glucose levels (all p < 0.05). In diabetic guinea pigs, HG inhibited the upregulation of NOD1 expression in lung tissues and the activation of p38, ERK1/2, and cJNK caused by LP infection compared to control pigs (all p < 0.05). CONCLUSION HG attenuates the response of macrophages to LP infection by inhibiting NOD1 upregulation and the activation of MAPK signaling.
Collapse
Affiliation(s)
- Yuting Zhang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China
| | - Sicong Liang
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China
| | - Ze Deng
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China
| | - Zirui Zhao
- Department of Pulmonary and Critical Care Medicine, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China
| | - Xu Han
- Department of Emergency, Shengjing Hospital of China Medical University, Liaoning Province, Shenyang 110001, PR China.
| |
Collapse
|
15
|
Adams CS, Kim H, Burtner AE, Lee DS, Dobbins C, Criswell C, Coventry B, Kim HM, King NP. De novo design of protein minibinder agonists of TLR3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.17.589973. [PMID: 38659926 PMCID: PMC11042314 DOI: 10.1101/2024.04.17.589973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Toll-like Receptor 3 (TLR3) is a pattern recognition receptor that initiates antiviral immune responses upon binding double-stranded RNA (dsRNA). Several nucleic acid-based TLR3 agonists have been explored clinically as vaccine adjuvants in cancer and infectious disease, but present substantial manufacturing and formulation challenges. Here, we use computational protein design to create novel miniproteins that bind to human TLR3 with nanomolar affinities. Cryo-EM structures of two minibinders in complex with TLR3 reveal that they bind the target as designed, although one partially unfolds due to steric competition with a nearby N-linked glycan. Multimeric forms of both minibinders induce NF-κB signaling in TLR3-expressing cell lines, demonstrating that they may have therapeutically relevant biological activity. Our work provides a foundation for the development of specific, stable, and easy-to-formulate protein-based agonists of TLRs and other pattern recognition receptors.
Collapse
Affiliation(s)
- Chloe S. Adams
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Hyojin Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Abigail E. Burtner
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Dong Sun Lee
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
| | - Craig Dobbins
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Cameron Criswell
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Brian Coventry
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| | - Ho Min Kim
- Center for Biomolecular & Cellular Structure, Institute for Basic Science (IBS), Daejeon 34126, South Korea
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, South Korea
| | - Neil P. King
- Institute for Protein Design, University of Washington, Seattle, WA, 98195 USA
- Department of Biochemistry, University of Washington, Seattle, WA, 98195 USA
| |
Collapse
|
16
|
Sundaram B, Tweedell RE, Prasanth Kumar S, Kanneganti TD. The NLR family of innate immune and cell death sensors. Immunity 2024; 57:674-699. [PMID: 38599165 PMCID: PMC11112261 DOI: 10.1016/j.immuni.2024.03.012] [Citation(s) in RCA: 48] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/07/2024] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
Nucleotide-binding oligomerization domain (NOD)-like receptors, also known as nucleotide-binding leucine-rich repeat receptors (NLRs), are a family of cytosolic pattern recognition receptors that detect a wide variety of pathogenic and sterile triggers. Activation of specific NLRs initiates pro- or anti-inflammatory signaling cascades and the formation of inflammasomes-multi-protein complexes that induce caspase-1 activation to drive inflammatory cytokine maturation and lytic cell death, pyroptosis. Certain NLRs and inflammasomes act as integral components of larger cell death complexes-PANoptosomes-driving another form of lytic cell death, PANoptosis. Here, we review the current understanding of the evolution, structure, and function of NLRs in health and disease. We discuss the concept of NLR networks and their roles in driving cell death and immunity. An improved mechanistic understanding of NLRs may provide therapeutic strategies applicable across infectious and inflammatory diseases and in cancer.
Collapse
Affiliation(s)
- Balamurugan Sundaram
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Rebecca E Tweedell
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | | |
Collapse
|
17
|
Liu F, Yang Z, Wang C, Martin R, Qiao W, Carette JE, Luan S, Nogales E, Staskawicz B. The activated plant NRC4 immune receptor forms a hexameric resistosome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.18.571367. [PMID: 38187616 PMCID: PMC10769213 DOI: 10.1101/2023.12.18.571367] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Innate immune responses against microbial pathogens in both plants and animals are regulated by intracellular receptors known as Nucleotide-binding Leucine-rich Repeats (NLR) proteins. In plants, these NLRs play a crucial role in recognizing pathogen effectors, thereby initiating the activation of immune defense mechanisms. Notably, certain NLRs serve as "helper" NLR immune receptors (hNLR), working in tandem with "sensor" NLR immune receptors (sNLR) counterparts to orchestrate downstream signaling events to express disease resistance. In this study, we reconstituted and determined the cryo-EM structure of the hNLR required for cell death 4 (NRC4) resistosome. The auto-active NRC4 formed a previously unanticipated hexameric configuration, triggering immune responses associated with Ca 2+ influx into the cytosol. Furthermore, we uncovered a dodecameric state of NRC4, where the coil-coil (CC) domain is embedded within the complex, suggesting an inactive state, and expanding our understanding of the regulation of plant immune responses. One Sentence Summary The hexameric NRC4 resistosome mediates cell death associated with cytosolic Ca 2+ influx.
Collapse
|
18
|
Matico RE, Yu X, Miller R, Somani S, Ricketts MD, Kumar N, Steele RA, Medley Q, Berger S, Faustin B, Sharma S. Structural basis of the human NAIP/NLRC4 inflammasome assembly and pathogen sensing. Nat Struct Mol Biol 2024; 31:82-91. [PMID: 38177670 PMCID: PMC10803261 DOI: 10.1038/s41594-023-01143-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 09/28/2023] [Indexed: 01/06/2024]
Abstract
The NLR family caspase activation and recruitment domain-containing 4 (NLRC4) inflammasome is a critical cytosolic innate immune machine formed upon the direct sensing of bacterial infection and in response to cell stress during sterile chronic inflammation. Despite its major role in instigating the subsequent host immune response, a more complete understanding of the molecular events in the formation of the NLRC4 inflammasome in humans is lacking. Here we identify Bacillus thailandensis type III secretion system needle protein (Needle) as a potent trigger of the human NLR family apoptosis inhibitory protein (NAIP)/NLRC4 inflammasome complex formation and determine its structural features by cryogenic electron microscopy. We also provide a detailed understanding of how type III secretion system pathogen components are sensed by human NAIP to form a cascade of NLRC4 protomer through a critical lasso-like motif, a 'lock-key' activation model and large structural rearrangement, ultimately forming the full human NLRC4 inflammasome. These results shed light on key regulatory mechanisms specific to the NLRC4 inflammasome assembly, and the innate immune modalities of pathogen sensing in humans.
Collapse
Affiliation(s)
- Rosalie E Matico
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - Xiaodi Yu
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA.
| | - Robyn Miller
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - Sandeep Somani
- In Silico Discovery Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - M Daniel Ricketts
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - Nikit Kumar
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - Ruth A Steele
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - Quintus Medley
- Discovery Immunology, Johnson & Johnson Innovative Medicine, Cambridge, MA, USA
| | - Scott Berger
- Discovery Immunology, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| | - Benjamin Faustin
- Discovery Immunology, Johnson & Johnson Innovative Medicine, San Diego, CA, USA
| | - Sujata Sharma
- Structural and Protein Sciences, Johnson & Johnson Innovative Medicine, Spring House, PA, USA
| |
Collapse
|
19
|
Locci F, Parker JE. Plant NLR immunity activation and execution: a biochemical perspective. Open Biol 2024; 14:230387. [PMID: 38262605 PMCID: PMC10805603 DOI: 10.1098/rsob.230387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 12/15/2023] [Indexed: 01/25/2024] Open
Abstract
Plants deploy cell-surface and intracellular receptors to detect pathogen attack and trigger innate immune responses. Inside host cells, families of nucleotide-binding/leucine-rich repeat (NLR) proteins serve as pathogen sensors or downstream mediators of immune defence outputs and cell death, which prevent disease. Established genetic underpinnings of NLR-mediated immunity revealed various strategies plants adopt to combat rapidly evolving microbial pathogens. The molecular mechanisms of NLR activation and signal transmission to components controlling immunity execution were less clear. Here, we review recent protein structural and biochemical insights to plant NLR sensor and signalling functions. When put together, the data show how different NLR families, whether sensors or signal transducers, converge on nucleotide-based second messengers and cellular calcium to confer immunity. Although pathogen-activated NLRs in plants engage plant-specific machineries to promote defence, comparisons with mammalian NLR immune receptor counterparts highlight some shared working principles for NLR immunity across kingdoms.
Collapse
Affiliation(s)
- Federica Locci
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
| | - Jane E. Parker
- Department of Plant-Microbe Interactions, Max-Planck Institute for Plant Breeding Research, Carl-von-Linné-Weg 10, 50829 Cologne, Germany
- Cologne-Düsseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
20
|
Paidimuddala B, Cao J, Zhang L. Structural basis for flagellin-induced NAIP5 activation. SCIENCE ADVANCES 2023; 9:eadi8539. [PMID: 38055825 PMCID: PMC10699770 DOI: 10.1126/sciadv.adi8539] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 11/06/2023] [Indexed: 12/08/2023]
Abstract
The NAIP (NLR family apoptosis inhibitory protein)/NLRC4 (NLR family CARD containing protein 4) inflammasome senses Gram-negative bacterial ligand. In the ligand-bound state, the winged helix domain of NAIP forms a steric clash with NLRC4 to open it up. However, how ligand binding activates NAIP is less clear. Here, we investigated the dynamics of the ligand-binding region of inactive NAIP5 and solved the cryo-EM structure of NAIP5 in complex with its specific ligand, FliC from flagellin, at 2.9-Å resolution. The structure revealed a "trap and lock" mechanism in FliC recognition, whereby FliC-D0C is first trapped by the hydrophobic pocket of NAIP5, then locked in the binding site by ID (insertion domain) and C-terminal tail of NAIP5. The FliC-D0N domain further inserts into ID to stabilize the complex. According to this mechanism, FliC triggers the conformational change of NAIP5 by bringing multiple flexible domains together.
Collapse
Affiliation(s)
- Bhaskar Paidimuddala
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jianhao Cao
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
21
|
Wiegand T, Hoffmann FT, Walker MWG, Tang S, Richard E, Le HC, Meers C, Sternberg SH. Emergence of RNA-guided transcription factors via domestication of transposon-encoded TnpB nucleases. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.30.569447. [PMID: 38076855 PMCID: PMC10705468 DOI: 10.1101/2023.11.30.569447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
Transposon-encoded tnpB genes encode RNA-guided DNA nucleases that promote their own selfish spread through targeted DNA cleavage and homologous recombination1-4. This widespread gene family was repeatedly domesticated over evolutionary timescales, leading to the emergence of diverse CRISPR-associated nucleases including Cas9 and Cas125,6. We set out to test the hypothesis that TnpB nucleases may have also been repurposed for novel, unexpected functions other than CRISPR-Cas. Here, using phylogenetics, structural predictions, comparative genomics, and functional assays, we uncover multiple instances of programmable transcription factors that we name TnpB-like nuclease-dead repressors (TldR). These proteins employ naturally occurring guide RNAs to specifically target conserved promoter regions of the genome, leading to potent gene repression in a mechanism akin to CRISPRi technologies invented by humans7. Focusing on a TldR clade found broadly in Enterobacteriaceae, we discover that bacteriophages exploit the combined action of TldR and an adjacently encoded phage gene to alter the expression and composition of the host flagellar assembly, a transformation with the potential to impact motility8, phage susceptibility9, and host immunity10. Collectively, this work showcases the diverse molecular innovations that were enabled through repeated exaptation of genes encoded by transposable elements, and reveals that RNA-guided transcription factors emerged long before the development of dCas9-based editors.
Collapse
Affiliation(s)
- Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Florian T Hoffmann
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W G Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Egill Richard
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Hoang C Le
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Chance Meers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Samuel H Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|
22
|
Dai Y, Zhou J, Shi C. Inflammasome: structure, biological functions, and therapeutic targets. MedComm (Beijing) 2023; 4:e391. [PMID: 37817895 PMCID: PMC10560975 DOI: 10.1002/mco2.391] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammasomes are a group of protein complex located in cytoplasm and assemble in response to a wide variety of pathogen-associated molecule patterns, damage-associated molecule patterns, and cellular stress. Generally, the activation of inflammasomes will lead to maturation of proinflammatory cytokines and pyroptotic cell death, both associated with inflammatory cascade amplification. A sensor protein, an adaptor, and a procaspase protein interact through their functional domains and compose one subunit of inflammasome complex. Under physiological conditions, inflammasome functions against pathogen infection and endogenous dangers including mtROS, mtDNA, and so on, while dysregulation of its activation can lead to unwanted results. In recent years, advances have been made to clarify the mechanisms of inflammasome activation, the structural details of them and their functions (negative/positive) in multiple disease models in both animal models and human. The wide range of the stimuli makes the function of inflammasome diverse and complex. Here, we review the structure, biological functions, and therapeutic targets of inflammasomes, while highlight NLRP3, NLRC4, and AIM2 inflammasomes, which are the most well studied. In conclusion, this review focuses on the activation process, biological functions, and structure of the most well-studied inflammasomes, summarizing and predicting approaches for disease treatment and prevention with inflammasome as a target. We aim to provide fresh insight into new solutions to the challenges in this field.
Collapse
Affiliation(s)
- Yali Dai
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| | - Jing Zhou
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
- Institute of ImmunologyArmy Medical UniversityChongqingChina
| | - Chunmeng Shi
- Institute of Rocket Force MedicineState Key Laboratory of Trauma and Chemical PoisoningArmy Medical UniversityChongqingChina
| |
Collapse
|
23
|
Chou WC, Jha S, Linhoff MW, Ting JPY. The NLR gene family: from discovery to present day. Nat Rev Immunol 2023; 23:635-654. [PMID: 36973360 PMCID: PMC11171412 DOI: 10.1038/s41577-023-00849-x] [Citation(s) in RCA: 80] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2023] [Indexed: 03/29/2023]
Abstract
The mammalian NLR gene family was first reported over 20 years ago, although several genes that were later grouped into the family were already known at that time. Although it is widely known that NLRs include inflammasome receptors and/or sensors that promote the maturation of caspase 1, IL-1β, IL-18 and gasdermin D to drive inflammation and cell death, the other functions of NLR family members are less well appreciated by the scientific community. Examples include MHC class II transactivator (CIITA), a master transcriptional activator of MHC class II genes, which was the first mammalian NBD-LRR-containing protein to be identified, and NLRC5, which regulates the expression of MHC class I genes. Other NLRs govern key inflammatory signalling pathways or interferon responses, and several NLR family members serve as negative regulators of innate immune responses. Multiple NLRs regulate the balance of cell death, cell survival, autophagy, mitophagy and even cellular metabolism. Perhaps the least discussed group of NLRs are those with functions in the mammalian reproductive system. The focus of this Review is to provide a synopsis of the NLR family, including both the intensively studied and the underappreciated members. We focus on the function, structure and disease relevance of NLRs and highlight issues that have received less attention in the NLR field. We hope this may serve as an impetus for future research on the conventional and non-conventional roles of NLRs within and beyond the immune system.
Collapse
Affiliation(s)
- Wei-Chun Chou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Sushmita Jha
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Jodhpur, India
| | - Michael W Linhoff
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Jenny P-Y Ting
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
24
|
Zhou Y, Yu S, Zhang W. NOD-like Receptor Signaling Pathway in Gastrointestinal Inflammatory Diseases and Cancers. Int J Mol Sci 2023; 24:14511. [PMID: 37833958 PMCID: PMC10572711 DOI: 10.3390/ijms241914511] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/15/2023] Open
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are intracellular proteins with a central role in innate and adaptive immunity. As a member of pattern recognition receptors (PRRs), NLRs sense specific pathogen-associated molecular patterns, trigger numerous signaling pathways and lead to the secretion of various cytokines. In recent years, cumulative studies have revealed the significant impacts of NLRs in gastrointestinal (GI) inflammatory diseases and cancers. Deciphering the role and molecular mechanism of the NLR signaling pathways may provide new opportunities for the development of therapeutic strategies related to GI inflammatory diseases and GI cancers. This review presents the structures and signaling pathways of NLRs, summarizes the recent advances regarding NLR signaling in GI inflammatory diseases and GI cancers and describes comprehensive therapeutic strategies based on this signaling pathway.
Collapse
Affiliation(s)
- Yujie Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Songyan Yu
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, Shenzhen 518055, China; (Y.Z.); (S.Y.)
- Key University Laboratory of Metabolism and Health of Guangdong, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
25
|
Ivanov PA, Gasanova TV, Repina MN, Zamyatnin AA. Signaling and Resistosome Formation in Plant Innate Immunity to Viruses: Is There a Common Mechanism of Antiviral Resistance Conserved across Kingdoms? Int J Mol Sci 2023; 24:13625. [PMID: 37686431 PMCID: PMC10487714 DOI: 10.3390/ijms241713625] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/16/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Virus-specific proteins, including coat proteins, movement proteins, replication proteins, and suppressors of RNA interference are capable of triggering the hypersensitive response (HR), which is a type of cell death in plants. The main cell death signaling pathway involves direct interaction of HR-inducing proteins with nucleotide-binding leucine-rich repeats (NLR) proteins encoded by plant resistance genes. Singleton NLR proteins act as both sensor and helper. In other cases, NLR proteins form an activation network leading to their oligomerization and formation of membrane-associated resistosomes, similar to metazoan inflammasomes and apoptosomes. In resistosomes, coiled-coil domains of NLR proteins form Ca2+ channels, while toll-like/interleukin-1 receptor-type (TIR) domains form oligomers that display NAD+ glycohydrolase (NADase) activity. This review is intended to highlight the current knowledge on plant innate antiviral defense signaling pathways in an attempt to define common features of antiviral resistance across the kingdoms of life.
Collapse
Affiliation(s)
- Peter A. Ivanov
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Tatiana V. Gasanova
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Maria N. Repina
- Faculty of Biology, Lomonosov Moscow State University, Moscow 119234, Russia; (P.A.I.); (T.V.G.); (M.N.R.)
| | - Andrey A. Zamyatnin
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119234, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia
- Research Center for Translational Medicine, Sirius University of Science and Technology, Sirius 354340, Krasnodar Region, Russia
- Institute of Translational Medicine and Biotechnology, Sechenov First Moscow State Medical University, Moscow 119991, Russia
| |
Collapse
|
26
|
Chai J, Song W, Parker JE. New Biochemical Principles for NLR Immunity in Plants. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2023; 36:468-475. [PMID: 37697447 DOI: 10.1094/mpmi-05-23-0073-hh] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
While working for the United States Department of Agriculture on the North Dakota Agricultural College campus in Fargo, North Dakota, in the 1940s and 1950s, Harold H. Flor formulated the genetic principles for coevolving plant host-pathogen interactions that govern disease resistance or susceptibility. His 'gene-for-gene' legacy runs deep in modern plant pathology and continues to inform molecular models of plant immune recognition and signaling. In this review, we discuss recent biochemical insights to plant immunity conferred by nucleotide-binding domain/leucine-rich-repeat (NLR) receptors, which are major gene-for-gene resistance determinants in nature and cultivated crops. Structural and biochemical analyses of pathogen-activated NLR oligomers (resistosomes) reveal how different NLR subtypes converge in various ways on calcium (Ca2+) signaling to promote pathogen immunity and host cell death. Especially striking is the identification of nucleotide-based signals generated enzymatically by plant toll-interleukin 1 receptor (TIR) domain NLRs. These small molecules are part of an emerging family of TIR-produced cyclic and noncyclic nucleotide signals that steer immune and cell-death responses in bacteria, mammals, and plants. A combined genetic, molecular, and biochemical understanding of plant NLR activation and signaling provides exciting new opportunities for combatting diseases in crops. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Collapse
Affiliation(s)
- Jijie Chai
- Beijing Frontier Research Center for Biological Structure, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Institute of Biochemistry, University of Cologne, Cologne 50674, Germany
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- School of Life Sciences, Westlake University, Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Hangzhou 310024, Zhejiang, China
| | - Wen Song
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Jane E Parker
- Department of Plant-Microbe Interactions, Max Planck Institute for Plant Breeding Research, Carl-von-Linné Weg 10, 50829 Cologne, Germany
- Cologne-Duesseldorf Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Duesseldorf, Germany
| |
Collapse
|
27
|
Wu N, Zheng C, Xu J, Ma S, Jia H, Yan M, An F, Zhou Y, Qi J, Bian H. Race between virus and inflammasomes: inhibition or escape, intervention and therapy. Front Cell Infect Microbiol 2023; 13:1173505. [PMID: 37465759 PMCID: PMC10351387 DOI: 10.3389/fcimb.2023.1173505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 05/17/2023] [Indexed: 07/20/2023] Open
Abstract
The inflammasome is a multiprotein complex that further regulates cell pyroptosis and inflammation by activating caspase-1. The assembly and activation of inflammasome are associated with a variety of diseases. Accumulative studies have shown that inflammasome is a key modulator of the host's defense response to viral infection. Indeed, it has been established that activation of inflammasome occurs during viral infection. At the same time, the host has evolved a variety of corresponding mechanisms to inhibit unnecessary inflammasome activation. Therefore, here, we review and summarize the latest research progress on the interaction between inflammosomes and viruses, highlight the assembly and activation of inflammosome in related cells after viral infection, as well as the corresponding molecular regulatory mechanisms, and elucidate the effects of this activation on virus immune escape and host innate and adaptive immune defenses. Finally, we also discuss the potential therapeutic strategies to prevent and/or ameliorate viral infection-related diseases via targeting inflammasomes and its products.
Collapse
Affiliation(s)
- Nijin Wu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Chunzhi Zheng
- Shandong Provincial Hospital for Skin Diseases and Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Jiarui Xu
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Shujun Ma
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huimin Jia
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Meizhu Yan
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fuxiang An
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yi Zhou
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianni Qi
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongjun Bian
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
28
|
Paidimuddala B, Cao J, Zhang L. Structural basis for flagellin induced NAIP5 activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544801. [PMID: 37398004 PMCID: PMC10312664 DOI: 10.1101/2023.06.13.544801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The NAIP/NLRC4 inflammasome is activated when NAIP binds to a gram-negative bacterial ligand. Initially, NAIP exists in an inactive state with a wide-open conformation. Upon ligand binding, the winged helix domain (WHD) of NAIP is activated and forms steric clash with NLRC4 to open it up. However, how ligand binding induces the conformational change of NAIP is less clear. To understand this process, we investigated the dynamics of the ligand binding region of inactive NAIP5 and solved the cryo-EM structure of NAIP5 in complex with its specific ligand, FliC from flagellin, at 2.93 Å resolution. The structure revealed a "trap and lock" mechanism in FliC recognition, whereby FliC-D0C is first trapped by the hydrophobic pocket of NAIP5, then locked in the binding site by the insertion domain (ID) and C-terminal tail (CTT) of NAIP5. The FliC-D0N domain further inserts into the loop of ID to stabilize the complex. According to this mechanism, FliC activates NAIP5 by bringing multiple flexible domains together, particularly the ID, HD2, and LRR domains, to form the active conformation and support the WHD loop in triggering NLRC4 activation.
Collapse
Affiliation(s)
- Bhaskar Paidimuddala
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Jianhao Cao
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| | - Liman Zhang
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University, Portland, OR 97239, USA
| |
Collapse
|
29
|
Kibby EM, Conte AN, Burroughs AM, Nagy TA, Vargas JA, Whalen LA, Aravind L, Whiteley AT. Bacterial NLR-related proteins protect against phage. Cell 2023; 186:2410-2424.e18. [PMID: 37160116 PMCID: PMC10294775 DOI: 10.1016/j.cell.2023.04.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 11/15/2022] [Accepted: 04/07/2023] [Indexed: 05/11/2023]
Abstract
Bacteria use a wide range of immune pathways to counter phage infection. A subset of these genes shares homology with components of eukaryotic immune systems, suggesting that eukaryotes horizontally acquired certain innate immune genes from bacteria. Here, we show that proteins containing a NACHT module, the central feature of the animal nucleotide-binding domain and leucine-rich repeat containing gene family (NLRs), are found in bacteria and defend against phages. NACHT proteins are widespread in bacteria, provide immunity against both DNA and RNA phages, and display the characteristic C-terminal sensor, central NACHT, and N-terminal effector modules. Some bacterial NACHT proteins have domain architectures similar to the human NLRs that are critical components of inflammasomes. Human disease-associated NLR mutations that cause stimulus-independent activation of the inflammasome also activate bacterial NACHT proteins, supporting a shared signaling mechanism. This work establishes that NACHT module-containing proteins are ancient mediators of innate immunity across the tree of life.
Collapse
Affiliation(s)
- Emily M Kibby
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Amy N Conte
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - A Maxwell Burroughs
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Toni A Nagy
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Jose A Vargas
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - Lindsay A Whalen
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA
| | - L Aravind
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Aaron T Whiteley
- Department of Biochemistry, University of Colorado Boulder, Boulder, CO 80303, USA.
| |
Collapse
|
30
|
Grayczyk JP, Egan MS, Liu L, Aunins E, Wynosky-Dolfi MA, Canna S, Minn AJ, Shin S, Brodsky IE. TLR priming licenses NAIP inflammasome activation by immunoevasive ligands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.04.539437. [PMID: 37205371 PMCID: PMC10187295 DOI: 10.1101/2023.05.04.539437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
NLR family, apoptosis inhibitory proteins (NAIPs) detect bacterial flagellin and structurally related components of bacterial type III secretion systems (T3SS), and recruit NLR family, CARD domain containing protein 4 (NLRC4) and caspase-1 into an inflammasome complex that induces pyroptosis. NAIP/NLRC4 inflammasome assembly is initiated by the binding of a single NAIP to its cognate ligand, but a subset of bacterial flagellins or T3SS structural proteins are thought to evade NAIP/NLRC4 inflammasome sensing by not binding to their cognate NAIPs. Unlike other inflammasome components such as NLRP3, AIM2, or some NAIPs, NLRC4 is constitutively present in resting macrophages, and not thought to be regulated by inflammatory signals. Here, we demonstrate that Toll-like receptor (TLR) stimulation upregulates NLRC4 transcription and protein expression in murine macrophages, which licenses NAIP detection of evasive ligands. TLR-induced NLRC4 upregulation and NAIP detection of evasive ligands required p38 MAPK signaling. In contrast, TLR priming in human macrophages did not upregulate NLRC4 expression, and human macrophages remained unable to detect NAIP-evasive ligands even following priming. Critically, ectopic expression of either murine or human NLRC4 was sufficient to induce pyroptosis in response to immunoevasive NAIP ligands, indicating that increased levels of NLRC4 enable the NAIP/NLRC4 inflammasome to detect these normally evasive ligands. Altogether, our data reveal that TLR priming tunes the threshold for NAIP/NLRC4 inflammasome activation and enables inflammasome responses against immunoevasive or suboptimal NAIP ligands.
Collapse
Affiliation(s)
- James P Grayczyk
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Marisa S Egan
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Luying Liu
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Emily Aunins
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Meghan A Wynosky-Dolfi
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| | - Scott Canna
- Department of Pediatrics, Division of Rheumatology, Children's Hospital of Philadelphia, Philadelphia, PA
| | - Andy J Minn
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Abramson Family Cancer Research Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Parker Institute for Cancer Immunotherapy, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
- Mark Foundation Center for Immunotherapy, Immune Signaling, and Radiation, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Sunny Shin
- Department of Microbiology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Igor E Brodsky
- Department of Pathobiology, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA, USA
| |
Collapse
|
31
|
Lacrimal Gland Epithelial Cells Shape Immune Responses through the Modulation of Inflammasomes and Lipid Metabolism. Int J Mol Sci 2023; 24:ijms24054309. [PMID: 36901740 PMCID: PMC10001612 DOI: 10.3390/ijms24054309] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/13/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023] Open
Abstract
Lacrimal gland inflammation triggers dry eye disease through impaired tear secretion by the epithelium. As aberrant inflammasome activation occurs in autoimmune disorders including Sjögren's syndrome, we analyzed the inflammasome pathway during acute and chronic inflammation and investigated its potential regulators. Bacterial infection was mimicked by the intraglandular injection of lipopolysaccharide (LPS) and nigericin, known to activate the NLRP3 inflammasome. Acute injury of the lacrimal gland was induced by interleukin (IL)-1α injection. Chronic inflammation was studied using two Sjögren's syndrome models: diseased NOD.H2b compared to healthy BALBc mice and Thrombospondin-1-null (TSP-1-/-) compared to TSP-1WTC57BL/6J mice. Inflammasome activation was investigated by immunostaining using the R26ASC-citrine reporter mouse, by Western blotting, and by RNAseq. LPS/Nigericin, IL-1α and chronic inflammation induced inflammasomes in lacrimal gland epithelial cells. Acute and chronic inflammation of the lacrimal gland upregulated multiple inflammasome sensors, caspases 1/4, and interleukins Il1b and Il18. We also found increased IL-1β maturation in Sjögren's syndrome models compared with healthy control lacrimal glands. Using RNA-seq data of regenerating lacrimal glands, we found that lipogenic genes were upregulated during the resolution of inflammation following acute injury. In chronically inflamed NOD.H2b lacrimal glands, an altered lipid metabolism was associated with disease progression: genes for cholesterol metabolism were upregulated, while genes involved in mitochondrial metabolism and fatty acid synthesis were downregulated, including peroxisome proliferator-activated receptor alpha (PPARα)/sterol regulatory element-binding 1 (SREBP-1)-dependent signaling. We conclude that epithelial cells can promote immune responses by forming inflammasomes, and that sustained inflammasome activation, together with an altered lipid metabolism, are key players of Sjögren's syndrome-like pathogenesis in the NOD.H2b mouse lacrimal gland by promoting epithelial dysfunction and inflammation.
Collapse
|
32
|
Ataide MA, Manin GZ, Oliveira SS, Guerra RO, Zamboni DS. Inflammasome activation and CCR2-mediated monocyte-derived dendritic cell recruitment restrict Legionella pneumophila infection. Eur J Immunol 2023; 53:e2249985. [PMID: 36427489 DOI: 10.1002/eji.202249985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 09/22/2022] [Accepted: 11/24/2022] [Indexed: 11/27/2022]
Abstract
Flagellin-induced NAIP/NLRC4 inflammasome activation and pyroptosis are critical events restricting Legionella pneumophila infection. However, the cellular and molecular dynamics of the in vivo responses against this bacterium are still unclear. We have found temporal coordination of two independent innate immunity pathways in controlling Legionella infection, the inflammasome activation and the CCR2-mediated Mo-DC recruitment. Inflammasome activation was an important player at the early stage of infection by lowering the numbers of bacteria for an efficient bacterial clearance conferred by the Mo-DC at the late stage of the infection. Mo-DC emergence highly depended on CCR2-signaling and dispensed inflammasome activation and pyroptosis. Also, Mo-DC compartment did not rely on the inflammasome machinery to deliver proper immune responses and was the most abundant cytokine-producing among the monocyte-derived cells in the infected lung. Importantly, when the CCR2- and NLRC4-dependent axes of response were simultaneously ablated, we observed an aggravated bacterial burden in the lung of infected mice. Taken together, we showed that inflammasome activation and CCR2-mediated immune response interplay in distinct pathways to restrict pulmonary bacterial infection. These findings extend our understanding of the in vivo integration and cooperation of different innate immunity arms in controlling infectious agents.
Collapse
Affiliation(s)
- Marco A Ataide
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Graziele Z Manin
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Samuel S Oliveira
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Rhanoica O Guerra
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Dario S Zamboni
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| |
Collapse
|
33
|
Paidimuddala B, Cao J, Nash G, Xie Q, Wu H, Zhang L. Mechanism of NAIP-NLRC4 inflammasome activation revealed by cryo-EM structure of unliganded NAIP5. Nat Struct Mol Biol 2023; 30:159-166. [PMID: 36604500 PMCID: PMC10576962 DOI: 10.1038/s41594-022-00889-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 11/03/2022] [Indexed: 01/07/2023]
Abstract
The nucleotide-binding domain (NBD), leucine rich repeat (LRR) domain containing protein family (NLR family) apoptosis inhibitory proteins (NAIPs) are cytosolic receptors that play critical roles in the host defense against bacterial infection. NAIPs interact with conserved bacterial ligands and activate the NLR family caspase recruitment domain containing protein 4 (NLRC4) to initiate the NAIP-NLRC4 inflammasome pathway. Here we found the process of NAIP activation is completely different from NLRC4. Our cryo-EM structure of unliganded mouse NAIP5 adopts an unprecedented wide-open conformation, with the nucleating surface fully exposed and accessible to recruit inactive NLRC4. Upon ligand binding, the winged helix domain (WHD) of NAIP5 undergoes roughly 20° rotation to form a steric clash with the inactive NLRC4, which triggers the conformational change of NLRC4 from inactive to active state. We also show the rotation of WHD places the 17-18 loop at a position that directly bind the active NLRC4 and stabilize the NAIP5-NLRC4 complex. Overall, these data provide structural mechanisms of inactive NAIP5, the process of NAIP5 activation and NAIP-dependent NLRC4 activation.
Collapse
Affiliation(s)
- Bhaskar Paidimuddala
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Jianhao Cao
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Grady Nash
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Qing Xie
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Liman Zhang
- Department of Chemical Physiology and Biochemistry, Oregon Health and Science University (OHSU), Portland, OR, USA.
| |
Collapse
|
34
|
Keestra-Gounder AM, Nagao PE. Inflammasome activation by Gram-positive bacteria: Mechanisms of activation and regulation. Front Immunol 2023; 14:1075834. [PMID: 36761775 PMCID: PMC9902775 DOI: 10.3389/fimmu.2023.1075834] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 01/06/2023] [Indexed: 01/26/2023] Open
Abstract
The inflammasomes are intracellular multimeric protein complexes consisting of an innate immune sensor, the adapter protein ASC and the inflammatory caspases-1 and/or -11 and are important for the host defense against pathogens. Activaton of the receptor leads to formation of the inflammasomes and subsequent processing and activation of caspase-1 that cleaves the proinflammatory cytokines IL-1β and IL-18. Active caspase-1, and in some instances caspase-11, cleaves gasdermin D that translocates to the cell membrane where it forms pores resulting in the cell death program called pyroptosis. Inflammasomes can detect a range of microbial ligands through direct interaction or indirectly through diverse cellular processes including changes in ion fluxes, production of reactive oxygen species and disruption of various host cell functions. In this review, we will focus on the NLRP3, NLRP6, NLRC4 and AIM2 inflammasomes and how they are activated and regulated during infections with Gram-positive bacteria, including Staphylococcus spp., Streptococcus spp. and Listeria monocytogenes.
Collapse
Affiliation(s)
- A. Marijke Keestra-Gounder
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Prescilla Emy Nagao
- Laboratory of Molecular Biology and Physiology of Streptococci, Institute of Biology Roberto Alcantara Gomes, Rio de Janeiro State University (UERJ), Rio de Janeiro, Brazil
| |
Collapse
|
35
|
Wang J, Song W, Chai J. Structure, biochemical function, and signaling mechanism of plant NLRs. MOLECULAR PLANT 2023; 16:75-95. [PMID: 36415130 DOI: 10.1016/j.molp.2022.11.011] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/07/2022] [Accepted: 11/21/2022] [Indexed: 06/16/2023]
Abstract
To counter pathogen invasion, plants have evolved a large number of immune receptors, including membrane-resident pattern recognition receptors (PRRs) and intracellular nucleotide-binding and leucine-rich repeat receptors (NLRs). Our knowledge about PRR and NLR signaling mechanisms has expanded significantly over the past few years. Plant NLRs form multi-protein complexes called resistosomes in response to pathogen effectors, and the signaling mediated by NLR resistosomes converges on Ca2+-permeable channels. Ca2+-permeable channels important for PRR signaling have also been identified. These findings highlight a crucial role of Ca2+ in triggering plant immune signaling. In this review, we first discuss the structural and biochemical mechanisms of non-canonical NLR Ca2+ channels and then summarize our knowledge about immune-related Ca2+-permeable channels and their roles in PRR and NLR signaling. We also discuss the potential role of Ca2+ in the intricate interaction between PRR and NLR signaling.
Collapse
Affiliation(s)
- Jizong Wang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China; Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, Shandong 261000, China.
| | - Wen Song
- Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| | - Jijie Chai
- Tsinghua-Peking Joint Center for Life Sciences, Center for Plant Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Institute of Biochemistry, University of Cologne, 50674 Cologne, Germany; Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany.
| |
Collapse
|
36
|
Sušjan-Leite P, Hafner-Bratkovič I. Assessing the ATP Binding Ability of NLRP3 from Cell Lysates by a Pull-down Assay. Methods Mol Biol 2023; 2696:257-267. [PMID: 37578728 DOI: 10.1007/978-1-0716-3350-2_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
NACHT-, LRR-, and PYD-containing protein 3 (NLRP3) is a member of AAA+ ATPase family that upon activation forms inflammasomes. Several studies demonstrated that ATP binding and hydrolysis are important for NLRP3 function as an inflammasome sensor. Furthermore, compounds targeting ATP binding motifs and interfering with ATPase activity of NLRP3 inhibit NLRP3 inflammasome formation. Measuring ATPase activity of proteins and binding of radiolabeled ATP to specified proteins are well-established methods that require purified protein. Here, we describe a method for assessing NLRP3 binding to ATP using ATP-conjugated beads and lysates of cells that either express endogenous NLRP3 or are transfected with plasmids encoding NLRP3. Efficiency of binding is followed after elution from the beads and detection with Western blot and immunolabelling. The method can be used to evaluate the functionality of NLRP3 variants or to check whether compounds or NLRP3 binding partners interfere with binding of ATP.
Collapse
Affiliation(s)
- Petra Sušjan-Leite
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Iva Hafner-Bratkovič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia.
- EN-FIST Centre of Excellence, Ljubljana, Slovenia.
| |
Collapse
|
37
|
Xiao L, Magupalli VG, Wu H. Cryo-EM structures of the active NLRP3 inflammasome disc. Nature 2023; 613:595-600. [PMID: 36442502 PMCID: PMC10091861 DOI: 10.1038/s41586-022-05570-8] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 11/17/2022] [Indexed: 11/30/2022]
Abstract
Inflammasomes are cytosolic innate immune complexes that activate caspase-1 following detection of pathogenic and endogenous dangers1-5, and NACHT-, leucine-rich repeat (LRR)- and pyrin domain (PYD)-containing protein 3 (NLRP3) is an inflammasome sensor of membrane damage highly important in regard to the induction of inflammation2,6,7. Here we report cryogenic electron microscopy structures of disc-shaped active NLRP3 oligomers in complex with adenosine 5'-O-(3-thio)triphosphate, the centrosomal NIMA-related kinase 7 (NEK7) and the adaptor protein ASC, which recruits caspase-1. In these NLRP3-NEK7-ASC complexes, the central NACHT domain of NLRP3 assumes an ATP-bound conformation in which two of its subdomains rotate by about 85° relative to the ADP-bound inactive conformation8-12. The fish-specific NACHT-associated domain conserved in NLRP3 but absent in most NLRPs13 becomes ordered in its key regions to stabilize the active NACHT conformation and mediate most interactions in the disc. Mutations on these interactions compromise NLRP3-mediated caspase-1 activation. The N-terminal PYDs from all NLRP3 subunits combine to form a PYD filament that recruits ASC PYD to elicit downstream signalling. Surprisingly, the C-terminal LRR domain and the LRR-bound NEK7 do not participate in disc interfaces. Together with previous structures of an inactive NLRP3 cage in which LRR-LRR interactions play an important role8-11, we propose that the role of NEK7 is to break the inactive cage to transform NLRP3 into the active NLRP3 inflammasome disc.
Collapse
Affiliation(s)
- Le Xiao
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Venkat Giri Magupalli
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA.
- Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
38
|
Gupta S, Cassel SL, Sutterwala FS. Inflammasome-Independent Roles of NLR and ALR Family Members. Methods Mol Biol 2023; 2696:29-45. [PMID: 37578713 DOI: 10.1007/978-1-0716-3350-2_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Pattern recognition receptors, including members of the NLR and ALR families, are essential for recognition of both pathogen- and host-derived danger signals. Several members of these families, including NLRP1, NLRP3, NLRC4, and AIM2, are capable of forming multiprotein complexes, called inflammasomes, that result in the activation of pro-inflammatory caspase-1. However, in addition to the formation of inflammasomes, a number of these family members exert inflammasome-independent functions. Here, we will discuss inflammasome-independent functions of NLRC4, NLRP12, and AIM2 and examine their roles in regulating innate and adaptive immune processes.
Collapse
Affiliation(s)
- Suman Gupta
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Suzanne L Cassel
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Fayyaz S Sutterwala
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
- Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| |
Collapse
|
39
|
Ball DP, Tsamouri LP, Wang AE, Huang HC, Warren CD, Wang Q, Edmondson IH, Griswold AR, Rao SD, Johnson DC, Bachovchin DA. Oxidized thioredoxin-1 restrains the NLRP1 inflammasome. Sci Immunol 2022; 7:eabm7200. [PMID: 36332009 PMCID: PMC9850498 DOI: 10.1126/sciimmunol.abm7200] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The danger signals that activate the NLRP1 inflammasome have not been established. Here, we report that the oxidized, but not the reduced, form of thioredoxin-1 (TRX1) binds to NLRP1. We found that oxidized TRX1 associates with the NACHT-LRR region of NLRP1 in an ATP-dependent process, forming a stable complex that restrains inflammasome activation. Consistent with these findings, patient-derived and ATPase-inactivating mutations in the NACHT-LRR region that cause hyperactive inflammasome formation interfere with TRX1 binding. Overall, this work strongly suggests that reductive stress, the cellular perturbation that will eliminate oxidized TRX1 and abrogate the TRX1-NLRP1 interaction, is a danger signal that activates the NLRP1 inflammasome.
Collapse
Affiliation(s)
- Daniel P. Ball
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Lydia P. Tsamouri
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Alvin E. Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Hsin-Che Huang
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Charles D. Warren
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Qinghui Wang
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Isabelle H. Edmondson
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Andrew R. Griswold
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Weill Cornell/Rockefeller/Sloan Kettering Tri-Institutional MD-PhD Program, New York, New York 10065, USA
| | - Sahana D. Rao
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Darren C. Johnson
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Daniel A. Bachovchin
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Pharmacology Program of the Weill Cornell Graduate School of Medical Sciences, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
- Tri-Institutional PhD Program in Chemical Biology, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
40
|
Brinkschulte R, Fußhöller DM, Hoss F, Rodríguez-Alcázar JF, Lauterbach MA, Kolbe CC, Rauen M, Ince S, Herrmann C, Latz E, Geyer M. ATP-binding and hydrolysis of human NLRP3. Commun Biol 2022; 5:1176. [PMID: 36329210 PMCID: PMC9633759 DOI: 10.1038/s42003-022-04120-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
The innate immune system uses inflammasomal proteins to recognize danger signals and fight invading pathogens. NLRP3, a multidomain protein belonging to the family of STAND ATPases, is characterized by its central nucleotide-binding NACHT domain. The incorporation of ATP is thought to correlate with large conformational changes in NLRP3, leading to an active state of the sensory protein. Here we analyze the intrinsic ATP hydrolysis activity of recombinant NLRP3 by reverse phase HPLC. Wild-type NLRP3 appears in two different conformational states that exhibit an approximately fourteen-fold different hydrolysis activity in accordance with an inactive, autoinhibited state and an open, active state. The impact of canonical residues in the nucleotide binding site as the Walker A and B motifs and sensor 1 and 2 is analyzed by site directed mutagenesis. Cellular experiments show that reduced NLRP3 hydrolysis activity correlates with higher ASC specking after inflammation stimulation. Addition of the kinase NEK7 does not change the hydrolysis activity of NLRP3. Our data provide a comprehensive view on the function of conserved residues in the nucleotide-binding site of NLRP3 and the correlation of ATP hydrolysis with inflammasome activity. Analysis of the inflammasome-forming protein NLRP3 provides insights into the function of conserved residues in the ATP-binding site of NLRP3 and the correlation of ATP hydrolysis with inflammasome activation.
Collapse
Affiliation(s)
- Rebecca Brinkschulte
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - David M Fußhöller
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Florian Hoss
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | | | - Mario A Lauterbach
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Carl-Christian Kolbe
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Melanie Rauen
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Semra Ince
- Physical Chemistry I, Ruhr University Bochum, 44780, Bochum, Germany
| | | | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127, Bonn, Germany.
| |
Collapse
|
41
|
Kourelis J, Adachi H. Activation and Regulation of NLR Immune Receptor Networks. PLANT & CELL PHYSIOLOGY 2022; 63:1366-1377. [PMID: 35941738 DOI: 10.1093/pcp/pcac116] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/29/2022] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
Plants have many types of immune receptors that recognize diverse pathogen molecules and activate the innate immune system. The intracellular immune receptor family of nucleotide-binding domain leucine-rich repeat-containing proteins (NLRs) perceives translocated pathogen effector proteins and executes a robust immune response, including programmed cell death. Many plant NLRs have functionally specialized to sense pathogen effectors (sensor NLRs) or to execute immune signaling (helper NLRs). Sub-functionalized NLRs form a network-type receptor system known as the NLR network. In this review, we highlight the concept of NLR networks, discussing how they are formed, activated and regulated. Two main types of NLR networks have been described in plants: the ACTIVATED DISEASE RESISTANCE 1/N REQUIREMENT GENE 1 network and the NLR-REQUIRED FOR CELL DEATH network. In both networks, multiple helper NLRs function as signaling hubs for sensor NLRs and cell-surface-localized immune receptors. Additionally, the networks are regulated at the transcriptional and posttranscriptional levels, and are also modulated by other host proteins to ensure proper network activation and prevent autoimmunity. Plant pathogens in turn have converged on suppressing NLR networks, thereby facilitating infection and disease. Understanding the NLR immune system at the network level could inform future breeding programs by highlighting the appropriate genetic combinations of immunoreceptors to use while avoiding deleterious autoimmunity and suppression by pathogens.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Hiroaki Adachi
- Laboratory of Crop Evolution, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto, 617-0001 Japan
- JST-PRESTO, 4-1-8, Honcho, Kawaguchi, Saitama, 332-0012 Japan
| |
Collapse
|
42
|
Outram MA, Dodds PN. Wheeling in a new era in plant immunity. NATURE PLANTS 2022; 8:1142-1143. [PMID: 36241732 DOI: 10.1038/s41477-022-01257-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Affiliation(s)
- Megan A Outram
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Canberra, Australia
| | - Peter N Dodds
- Commonwealth Scientific and Industrial Research Organisation, Agriculture and Food, Canberra, Australian Capital Territory, Canberra, Australia.
| |
Collapse
|
43
|
Ohto U. Activation and regulation mechanisms of NOD-like receptors based on structural biology. Front Immunol 2022; 13:953530. [PMID: 36189327 PMCID: PMC9520476 DOI: 10.3389/fimmu.2022.953530] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
Innate immunity is a primary defense system against microbial infections. Innate immune pattern recognition receptors (PRRs) play pivotal roles in detection of invading pathogens. When pathogens, such as bacteria and viruses, invade our bodies, their components are recognized by PRRs as pathogen-associated molecular patterns (PAMPs), activating the innate immune system. Cellular components such as DNA and RNA, acting as damage-associated molecular patterns (DAMPs), also activate innate immunity through PRRs under certain conditions. Activation of PRRs triggers inflammatory responses, interferon-mediated antiviral responses, and the activation of acquired immunity. Research on innate immune receptors is progressing rapidly. A variety of these receptors has been identified, and their regulatory mechanisms have been elucidated. Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) constitute a major family of intracellular PRRs and are involved in not only combating pathogen invasion but also maintaining normal homeostasis. Some NLRs are known to form multi-protein complexes called inflammasomes, a process that ultimately leads to the production of inflammatory cytokines and induces pyroptosis through the proteolytic cascade. The aberrant activation of NLRs has been found to be associated with autoimmune diseases. Therefore, NLRs are considered targets for drug discovery, such as for antiviral drugs, immunostimulants, antiallergic drugs, and autoimmune disease drugs. This review summarizes our recent understanding of the activation and regulation mechanisms of NLRs, with a particular focus on their structural biology. These include NOD2, neuronal apoptosis inhibitory protein (NAIP)/NLRC4, NLR family pyrin domain containing 1 (NLRP1), NLRP3, NLRP6, and NLRP9. NLRs are involved in a variety of diseases, and their detailed activation mechanisms based on structural biology can aid in developing therapeutic agents in the future.
Collapse
|
44
|
Gao LA, Wilkinson ME, Strecker J, Makarova KS, Macrae RK, Koonin EV, Zhang F. Prokaryotic innate immunity through pattern recognition of conserved viral proteins. Science 2022; 377:eabm4096. [PMID: 35951700 PMCID: PMC10028730 DOI: 10.1126/science.abm4096] [Citation(s) in RCA: 130] [Impact Index Per Article: 43.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Many organisms have evolved specialized immune pattern-recognition receptors, including nucleotide-binding oligomerization domain-like receptors (NLRs) of the STAND superfamily that are ubiquitous in plants, animals, and fungi. Although the roles of NLRs in eukaryotic immunity are well established, it is unknown whether prokaryotes use similar defense mechanisms. Here, we show that antiviral STAND (Avs) homologs in bacteria and archaea detect hallmark viral proteins, triggering Avs tetramerization and the activation of diverse N-terminal effector domains, including DNA endonucleases, to abrogate infection. Cryo-electron microscopy reveals that Avs sensor domains recognize conserved folds, active-site residues, and enzyme ligands, allowing a single Avs receptor to detect a wide variety of viruses. These findings extend the paradigm of pattern recognition of pathogen-specific proteins across all three domains of life.
Collapse
Affiliation(s)
- Linyi Alex Gao
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research
- Department of Brain and Cognitive Sciences
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Society of Fellows, Harvard University, Cambridge, MA 02138, USA
- Correspondence: (F.Z.) or (L.A.G.)
| | - Max E. Wilkinson
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research
- Department of Brain and Cognitive Sciences
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jonathan Strecker
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research
- Department of Brain and Cognitive Sciences
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Rhiannon K. Macrae
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research
- Department of Brain and Cognitive Sciences
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Feng Zhang
- Howard Hughes Medical Institute, Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- McGovern Institute for Brain Research
- Department of Brain and Cognitive Sciences
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
- Correspondence: (F.Z.) or (L.A.G.)
| |
Collapse
|
45
|
Structural mechanisms of inflammasome regulation revealed by cryo-EM studies. Curr Opin Struct Biol 2022; 75:102390. [DOI: 10.1016/j.sbi.2022.102390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/15/2022] [Accepted: 04/22/2022] [Indexed: 11/20/2022]
|
46
|
Gonzales GA, Canton J. The Delivery of Extracellular “Danger” Signals to Cytosolic Sensors in Phagocytes. Front Immunol 2022; 13:944142. [PMID: 35911757 PMCID: PMC9329928 DOI: 10.3389/fimmu.2022.944142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/23/2022] [Indexed: 11/13/2022] Open
Abstract
Phagocytes, such as macrophages and dendritic cells, possess the ability to ingest large quantities of exogenous material into membrane-bound endocytic organelles such as macropinosomes and phagosomes. Typically, the ingested material, which consists of diverse macromolecules such as proteins and nucleic acids, is delivered to lysosomes where it is digested into smaller molecules like amino acids and nucleosides. These smaller molecules can then be exported out of the lysosomes by transmembrane transporters for incorporation into the cell’s metabolic pathways or for export from the cell. There are, however, exceptional instances when undigested macromolecules escape degradation and are instead delivered across the membrane of endocytic organelles into the cytosol of the phagocyte. For example, double stranded DNA, a damage associated molecular pattern shed by necrotic tumor cells, is endocytosed by phagocytes in the tumor microenvironment and delivered to the cytosol for detection by the cytosolic “danger” sensor cGAS. Other macromolecular “danger” signals including lipopolysaccharide, intact proteins, and peptidoglycans can also be actively transferred from within endocytic organelles to the cytosol. Despite the obvious biological importance of these processes, we know relatively little of how macromolecular “danger” signals are transferred across endocytic organelle membranes for detection by cytosolic sensors. Here we review the emerging evidence for the active cytosolic transfer of diverse macromolecular “danger” signals across endocytic organelle membranes. We will highlight developing trends and discuss the potential molecular mechanisms driving this emerging phenomenon.
Collapse
Affiliation(s)
- Gerone A. Gonzales
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Johnathan Canton
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, Canada
- Calvin, Joan and Phoebe Snyder Institute for Chronic Diseases, University of Calgary, Calgary, AB, Canada
- *Correspondence: Johnathan Canton,
| |
Collapse
|
47
|
A genetically linked pair of NLR immune receptors shows contrasting patterns of evolution. Proc Natl Acad Sci U S A 2022; 119:e2116896119. [PMID: 35771942 PMCID: PMC9271155 DOI: 10.1073/pnas.2116896119] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Throughout their evolution, plant nucleotide-binding leucine-rich-repeat receptors (NLRs) have acquired widely divergent unconventional integrated domains that enhance their ability to detect pathogen effectors. However, the functional dynamics that drive the evolution of NLRs with integrated domains (NLR-IDs) remain poorly understood. Here, we reconstructed the evolutionary history of an NLR locus prone to unconventional domain integration and experimentally tested hypotheses about the evolution of NLR-IDs. We show that the rice (Oryza sativa) NLR Pias recognizes the effector AVR-Pias of the blast fungal pathogen Magnaporthe oryzae. Pias consists of a functionally specialized NLR pair, the helper Pias-1 and the sensor Pias-2, that is allelic to the previously characterized Pia pair of NLRs: the helper RGA4 and the sensor RGA5. Remarkably, Pias-2 carries a C-terminal DUF761 domain at a similar position to the heavy metal-associated (HMA) domain of RGA5. Phylogenomic analysis showed that Pias-2/RGA5 sensor NLRs have undergone recurrent genomic recombination within the genus Oryza, resulting in up to six sequence-divergent domain integrations. Allelic NLRs with divergent functions have been maintained transspecies in different Oryza lineages to detect sequence-divergent pathogen effectors. By contrast, Pias-1 has retained its NLR helper activity throughout evolution and is capable of functioning together with the divergent sensor-NLR RGA5 to respond to AVR-Pia. These results suggest that opposite selective forces have driven the evolution of paired NLRs: highly dynamic domain integration events maintained by balancing selection for sensor NLRs, in sharp contrast to purifying selection and functional conservation of immune signaling for helper NLRs.
Collapse
|
48
|
Cheng F, Wang N. N-Lobe of TXNIP Is Critical in the Allosteric Regulation of NLRP3 via TXNIP Binding. Front Aging Neurosci 2022; 14:893919. [PMID: 35721021 PMCID: PMC9201253 DOI: 10.3389/fnagi.2022.893919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Inflammasomes are cytoplasmic complexes that form in response to exogenous microbial invasions and endogenous damage signals. Among the known inflammasomes, the activation of the NACHT (NAIP, CIITA, HET-E, and TP1 domain), leucine-rich repeat, and pyrin domain containing protein 3 (NLRP3) inflammasome is also primarily related to neuroinflammation and nerve cell damage. Previous studies reported that under the stimulation of dangerous signals like reactive oxygen species (ROS), the overexpression and interaction of thioredoxin-interacting protein (TXNIP) with NLRP3 may trigger the inflammatory response through the ROS/TXNIP/NLRP3 signaling pathway. This inflammatory response is the pathophysiological basis of some neurological and neurodegenerative diseases. The activation of inflammasome and apoptosis caused by TXNIP are widespread in brain diseases. Previous report has suggested the TXNIP/NLRP3 interaction interface. However, the comprehensive model of the TXNIP/NLRP3 interaction is still unclear. In this study, molecular docking experiments based on the existing crystal model of NLRP3 were performed to investigate the binding of TXNIP and NLRP3. Three in silico models of the TXNIP/NLRP3 complex were selected, and molecular dynamics simulations evaluated the binding stability of the possible interaction between the two proteins. The results revealed that the E690, E693, and D745 residues in NLRP3 and the K212 and R238 residues in TXNIP play a critical role in the TXNIP/NLRP3 interaction. N-terminal of TXNIP is essential in promoting the conformational changes of NLRP3, although it does not directly bind to NLRP3. Our findings reveal the possible binding mechanism between TXNIP and NLRP3 and the associated allosteric regulation of NLRP3. The constructed models may also be useful for inhibitor development targeting the TXNIP/NLRP3 interaction during inflammasome activation via the ROS/TXNIP/NLRP3 pathway.
Collapse
|
49
|
Hochheiser IV, Behrmann H, Hagelueken G, Rodríguez-Alcázar JF, Kopp A, Latz E, Behrmann E, Geyer M. Directionality of PYD filament growth determined by the transition of NLRP3 nucleation seeds to ASC elongation. SCIENCE ADVANCES 2022; 8:eabn7583. [PMID: 35559676 PMCID: PMC9106292 DOI: 10.1126/sciadv.abn7583] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 03/30/2022] [Indexed: 05/03/2023]
Abstract
Inflammasomes sense intrinsic and extrinsic danger signals to trigger inflammatory responses and pyroptotic cell death. Homotypic pyrin domain (PYD) interactions of inflammasome forming nucleotide-binding oligomerization domain (NOD)-like receptors with the adaptor protein ASC (apoptosis-associated speck-like protein containing a CARD) mediate oligomerization into filamentous assemblies. We describe the cryo-electron microscopy (cryo-EM) structure of the human NLRP3PYD filament and identify a pattern of highly polar interface residues that form the homomeric interactions leading to characteristic filament ends designated as A- and B-ends. Coupling a titration polymerization assay to cryo-EM, we demonstrate that ASC adaptor protein elongation on NLRP3PYD nucleation seeds is unidirectional, associating exclusively to the B-end of the filament. Notably, NLRP3 and ASC PYD filaments exhibit the same symmetry in rotation and axial rise per subunit, allowing a continuous transition between NLRP3 and ASC. Integrating the directionality of filament growth, we present a molecular model of the ASC speck consisting of active NLRP3, ASC, and Caspase-1 proteins.
Collapse
Affiliation(s)
- Inga V. Hochheiser
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Heide Behrmann
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Gregor Hagelueken
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | | | - Anja Kopp
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, 12 Parkville, VIC 3052, Australia
| | - Eicke Latz
- Institute of Innate Immunity, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| | - Elmar Behrmann
- Institute of Biochemistry, University of Cologne, Zülpicher Straße 47, 50674 Cologne, Germany
| | - Matthias Geyer
- Institute of Structural Biology, University of Bonn, Venusberg-Campus 1, 53127 Bonn, Germany
| |
Collapse
|
50
|
Lillo S, Saleh M. Inflammasomes in Cancer Progression and Anti-Tumor Immunity. Front Cell Dev Biol 2022; 10:839041. [PMID: 35517498 PMCID: PMC9065266 DOI: 10.3389/fcell.2022.839041] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
The inflammasomes are critical regulators of innate immunity, inflammation and cell death and have emerged as important regulators of cancer development and control. Inflammasomes are assembled by pattern recognition receptors (PRR) following the sensing of microbial- or danger-associated molecular patterns (MAMPs/DAMPs) and elicit inflammation through the oligomerization and activation of inflammatory caspases. These cysteinyl-aspartate proteases cleave the proinflammatory cytokines IL-1β and IL-18 into their biologically active mature form. The roles of the inflammasomes and associated pro-inflammatory cytokines vary greatly depending on the cancer type. Here we discuss recent studies highlighting contrasting roles of the inflammasome pathway in curbing versus promoting tumorigenesis. On one hand, the inflammasomes participate in stimulating anti-tumor immunity, but they have also been shown to contribute to immunosuppression or to directly promote tumor cell survival, proliferation, and metastasis. A better understanding of inflammasome functions in different cancers is thus critical for the design of novel cancer immunotherapies.
Collapse
Affiliation(s)
- Sebastian Lillo
- CNRS, ImmunoConcEpT, UMR 5164, University of Bordeaux, Bordeaux, France
| | - Maya Saleh
- CNRS, ImmunoConcEpT, UMR 5164, University of Bordeaux, Bordeaux, France
- >
Adjunct Professor, Department of Medicine, McGill University, Montreal, QC, Canada
- *Correspondence: Maya Saleh,
| |
Collapse
|