1
|
Xu W, Yang M, Wang J, Li J, Xiong M, Cao Z, Yang X. Artificial Cytotoxic T Lymphocytes Selectively Eliminate Tumor Cells for Effective Cancer Therapy. NANO LETTERS 2025. [PMID: 40492438 DOI: 10.1021/acs.nanolett.5c02019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2025]
Abstract
The highly selective ability of cytotoxic T lymphocytes (CTLs) to eliminate tumor cells has inspired the development of artificial nanomedicine for effective cancer therapy. Here, an artificial CTL (aCTL) that selectively recognizes and kills cancer cells is developed. The membrane target-binding moiety, membrane-perforating peptides, and therapeutic prodrugs are integrated into the aCTL through supramolecular interactions. Consequently, the prepared aCTL selectively binds cancer cells and perforates the surrounding membrane. Subsequently, the conjugated prodrug is cleaved and released by the overexpressed membrane transpeptidase, allowing entry into tumor cells through the perforated holes. Finally, the aCTL significantly suppresses the growth of HepG2 hepatocellular carcinoma, B16-F10 melanomas, and patient-derived xenograft (PDX) breast cancer models.
Collapse
Affiliation(s)
- Weijia Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Mingda Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Jihong Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Jie Li
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
| | - Menghua Xiong
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Ziyang Cao
- Department of General Surgery, Guangzhou First People's Hospital, the Second Affiliated Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong 510180, P. R. China
| | - Xianzhu Yang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction and Guangdong Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
2
|
Kota N, Gonzalez DD, Liu HC, Viswanath D, Vander Pol R, Wood A, Di Trani N, Chua CYX, Grattoni A. Prophylactic and therapeutic cancer vaccine with continuous localized immunomodulation. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2024; 62:102776. [PMID: 39102973 DOI: 10.1016/j.nano.2024.102776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 06/13/2024] [Accepted: 07/28/2024] [Indexed: 08/07/2024]
Abstract
Selective in vivo immune cell manipulation offers a promising strategy for cancer vaccines. In this context, spatiotemporal control over recruitment of specific cells, and their direct exposure to appropriate immunoadjuvants and antigens are key to effective cancer vaccines. We present an implantable 3D-printed cancer vaccine platform called the 'NanoLymph' that enables spatiotemporally-controlled recruitment and manipulation of immune cells in a subcutaneous site. Leveraging two reservoirs each for continuous immunoadjuvant release or antigen presentation, the NanoLymph attracts dendritic cells (DCs) on site and exposes them to tumor-associated antigens. Upon local antigen-specific activation, DCs are mobilized to initiate a systemic immune response. NanoLymph releasing granulocyte-macrophage colony-stimulating factor and CpG-oligodeoxynucleotides with irradiated whole cell tumor lysate inhibited tumor growth of B16F10 murine melanoma in a prophylactic and therapeutic vaccine setting. Overall, this study presents the NanoLymph as a versatile cancer vaccine development platform with replenishable and controlled local release of antigens and immunoadjuvants.
Collapse
Affiliation(s)
- Nikitha Kota
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Biosciences, Rice University, Houston, TX, USA
| | | | - Hsuan-Chen Liu
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Dixita Viswanath
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Robin Vander Pol
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Anthony Wood
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | - Nicola Di Trani
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA
| | | | - Alessandro Grattoni
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX, USA; Department of Surgery, Houston Methodist Hospital, Houston, TX, USA; Department of Radiation Oncology, Houston Methodist Hospital, Houston, TX, USA.
| |
Collapse
|
3
|
Upadhye A, Meza Landeros KE, Ramírez-Suástegui C, Schmiedel BJ, Woo E, Chee SJ, Malicki D, Coufal NG, Gonda D, Levy ML, Greenbaum JA, Seumois G, Crawford J, Roberts WD, Schoenberger SP, Cheroutre H, Ottensmeier CH, Vijayanand P, Ganesan AP. Intra-tumoral T cells in pediatric brain tumors display clonal expansion and effector properties. NATURE CANCER 2024; 5:791-807. [PMID: 38228835 DOI: 10.1038/s43018-023-00706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Brain tumors in children are a devastating disease in a high proportion of patients. Owing to inconsistent results in clinical trials in unstratified patients, the role of immunotherapy remains unclear. We performed an in-depth survey of the single-cell transcriptomes and clonal relationship of intra-tumoral T cells from children with brain tumors. Our results demonstrate that a large fraction of T cells in the tumor tissue are clonally expanded with the potential to recognize tumor antigens. Such clonally expanded T cells display enrichment of transcripts linked to effector function, tissue residency, immune checkpoints and signatures of neoantigen-specific T cells and immunotherapy response. We identify neoantigens in pediatric brain tumors and show that neoantigen-specific T cell gene signatures are linked to better survival outcomes. Notably, among the patients in our cohort, we observe substantial heterogeneity in the degree of clonal expansion and magnitude of T cell response. Our findings suggest that characterization of intra-tumoral T cell responses may enable selection of patients for immunotherapy, an approach that requires prospective validation in clinical trials.
Collapse
Affiliation(s)
- Aditi Upadhye
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kevin E Meza Landeros
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | | | | | - Edwin Woo
- Southampton University Hospitals NHS Trust, Southampton, UK
| | - Serena J Chee
- Department of Respiratory Medicine, Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Denise Malicki
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Nicole G Coufal
- Rady Children's Hospital, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - David Gonda
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA
| | - Michael L Levy
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA
| | | | | | - John Crawford
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Children's Hospital Orange County, Irvine, CA, USA
| | - William D Roberts
- Rady Children's Hospital, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | | | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Anusha-Preethi Ganesan
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
Padonou F, Vanhulst T, Langouo-Fontsa MD. Can we yet use tertiary lymphoid structures as predictive biomarkers for immunotherapy response in melanoma? Curr Opin Oncol 2024; 36:63-68. [PMID: 38441065 DOI: 10.1097/cco.0000000000001015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
PURPOSE OF REVIEW In this review, we explore the potential of tertiary lymphoid structures (TLS) as predictive biomarkers in the response to immunotherapy for melanoma patients. RECENT FINDINGS The significance of TLS as indicators predicting immunotherapy response becomes particularly pronounced. Melanoma, renowned for its aggressive characteristics, has undergone revolutionary transformations in treatment through immunotherapeutic interventions. Investigations have unveiled a compelling correlation between the presence of TLS in the melanoma tumor microenvironment and favorable responses to immunotherapy. These responses, characterized by heightened survival rates and improved clinical outcomes, imply that TLS might be pivotal in tailoring more efficient and personalized treatments for individuals with melanoma. The ongoing discourse regarding TLS as a predictive biomarker underscores the need for a meticulous examination of its potential in guiding clinical decisions and optimizing therapeutic strategies. SUMMARY TLS show great promises as potential biomarkers to melanoma patient's outcomes in ICI treatment; however, more studies are needed to understand their mechanisms of actions and the long-term impact of their functionality.
Collapse
Affiliation(s)
- Francine Padonou
- Molecular Immunology Laboratory, Institut Jules Bordet, Université Libre de Bruxelles, Brussels (Anderlecht), Belgium
| | | | | |
Collapse
|
5
|
Gusev A. Germline mechanisms of immunotherapy toxicities in the era of genome-wide association studies. Immunol Rev 2023; 318:138-156. [PMID: 37515388 PMCID: PMC11472697 DOI: 10.1111/imr.13253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023]
Abstract
Cancer immunotherapy has revolutionized the treatment of advanced cancers and is quickly becoming an option for early-stage disease. By reactivating the host immune system, immunotherapy harnesses patients' innate defenses to eradicate the tumor. By putatively similar mechanisms, immunotherapy can also substantially increase the risk of toxicities or immune-related adverse events (irAEs). Severe irAEs can lead to hospitalization, treatment discontinuation, lifelong immune complications, or even death. Many irAEs present with similar symptoms to heritable autoimmune diseases, suggesting that germline genetics may contribute to their onset. Recently, genome-wide association studies (GWAS) of irAEs have identified common germline associations and putative mechanisms, lending support to this hypothesis. A wide range of well-established GWAS methods can potentially be harnessed to understand the etiology of irAEs specifically and immunotherapy outcomes broadly. This review summarizes current findings regarding germline effects on immunotherapy outcomes and discusses opportunities and challenges for leveraging germline genetics to understand, predict, and treat irAEs.
Collapse
Affiliation(s)
- Alexander Gusev
- Division of Population Sciences, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
- Division of Genetics, Brigham & Women's Hospital, Boston, Massachusetts, USA
- The Broad Institute, Cambridge, Massachusetts, USA
| |
Collapse
|
6
|
Lin R, Chen X, Su F, Wang H, Han B, Chen Y, Zhang C, Ma M. The germline HLA-A02B62 supertype is associated with a PD-L1-positive tumour immune microenvironment and poor prognosis in stage I lung cancer. Heliyon 2023; 9:e18948. [PMID: 37600368 PMCID: PMC10432705 DOI: 10.1016/j.heliyon.2023.e18948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 07/29/2023] [Accepted: 08/03/2023] [Indexed: 08/22/2023] Open
Abstract
Background Germline HLA class I molecule supertypes are shown to correlate with response to anti-PD-1 therapy. Here, we investigate the significance of germline HLA-A and HLA-B supertypes in tumour microenvironment of non-small-cell lung cancer. Methods Totally 278 NSCLC patients were collected retrospectively. HLA genotyping was conducted using next-generation sequencing. The evaluation of tumour-infiltrating lymphocytes was performed by multiplex immunohistochemistry assay. Correlations among HLA supertypes, tumour infiltrating lymphocytes, and clinicopathological characteristics were assessed. Results HLA-A03 and HLA-B62 were the supertypes with the highest proportions, at 69.1% and 52.2%, respectively. HLA-A02 or HLA-B62, but not HLA-A03, associated with higher PD-L1+ tumour and stromal cells levels, CD68+ cells, and CD68+PD-L1+ cells. Patients with both HLA-A02 and HLA-B62 supertypes displayed significantly higher PD-L1+ cells, CD68+ cells, and CD8+ cells levels than patients with other supertypes (P = 0.0301, P = 0.0479, P = 0.0192). These cells collectively constitute a hot but immunosuppressive tumour microenvironment. Accordingly, patients with both HLA-A02 and HLA-B62 supertypes had short progression-free survival after surgery (HR = 2.27, P = 0.0373). Conclusions The HLA-A02B62 supertype could serve as a possible indicator of poor prognosis in early-stage lung cancer. However, it may also act as a favorable prognostic factor for immunotherapy, given its association with a PD-L1-positive tumour microenvironment.
Collapse
Affiliation(s)
- Ruijiang Lin
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Xiaohua Chen
- Department of Radiotherapy, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Fei Su
- Department of Oncology, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Hongbin Wang
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Biao Han
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| | - Yanhui Chen
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Cuixiang Zhang
- Genecast Precision Medicine Technology Institute, Beijing, China
| | - Minjie Ma
- Department of Thoracic Surgery, The First Hospital of Lanzhou University, Lanzhou, Gansu, China
| |
Collapse
|
7
|
Abstract
PURPOSE OF REVIEW Here, we reviewed the recent breakthroughs in the understanding of predictive biomarkers for immune checkpoint inhibitors (ICI) treatment. RECENT FINDINGS ICI have revolutionized cancer therapy enabling novel therapeutic indications in multiple tumor types and increasing the probability of survival in patients with metastatic disease. However, in every considered tumor types only a minority of patients exhibits clear and lasting benefice from ICI treatment, and due to their unique mechanism of action treatment with ICI is also associated with acute clinical toxicities called immune related adverse events (irAEs) that can be life threatening. The approval of the first ICI drug has prompted many exploratory strategies for a variety of biomarkers and have shown that several factors might affect the response to ICI treatment, including tumors intrinsic factors, tumor microenvironment and tumor extrinsic or systemic factor. Currently, only three biomarkers programmed death-ligand 1 (PD-L1), tumor microenvironment and microsatellite instability had the US Food and Drug Administration-approbation with some limitations. SUMMARY The establishment of valid predictive biomarkers of ICI sensitivity has become a priority to guide patient treatment to maximize the chance of benefit and prevent unnecessary toxicity.
Collapse
|
8
|
Goncharov MM, Bryushkova EA, Sharaev NI, Skatova VD, Baryshnikova AM, Sharonov GV, Karnaukhov V, Vakhitova MT, Samoylenko IV, Demidov LV, Lukyanov S, Chudakov DM, Serebrovskaya EO. Pinpointing the tumor-specific T-cells via TCR clusters. eLife 2022; 11:77274. [PMID: 35377314 PMCID: PMC9023053 DOI: 10.7554/elife.77274] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/04/2022] [Indexed: 11/13/2022] Open
Abstract
Adoptive cell transfer (ACT) is a promising approach to cancer immunotherapy, but its efficiency fundamentally depends on the extent of tumor-specific T cell enrichment within the graft. This can be estimated via activation with identifiable neoantigens, tumor-associated antigens (TAAs), or living or lysed tumor cells, but these approaches remain laborious, time-consuming, and functionally limited, hampering clinical development of ACT. Here, we demonstrate that homology cluster analysis of T cell receptor (TCR) repertoires efficiently identifies tumor-reactive TCRs allowing to: (1) detect their presence within the pool of tumor-infiltrating lymphocytes (TILs); (2) optimize TIL culturing conditions, with IL-2low/IL-21/anti-PD-1 combination showing increased efficiency; (3) investigate surface marker-based enrichment for tumor-targeting T cells in freshly isolated TILs (enrichment confirmed for CD4+ and CD8+ PD-1+/CD39+ subsets), or re-stimulated TILs (informs on enrichment in 4-1BB-sorted cells). We believe that this approach to the rapid assessment of tumor-specific TCR enrichment should accelerate T cell therapy development.
Collapse
Affiliation(s)
- Mikhail M Goncharov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | | | - Nikita I Sharaev
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Valeria D Skatova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Anastasiya M Baryshnikova
- Genomics of Adaptive Immunity Department, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - George V Sharonov
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Vadim Karnaukhov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Maria T Vakhitova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Igor V Samoylenko
- Oncodermatology Department, NN Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Lev V Demidov
- Oncodermatology Department, NN Blokhin Russian Cancer Research Center, Moscow, Russian Federation
| | - Sergey Lukyanov
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Dmitriy M Chudakov
- Department of genomics of adaptive immunity, Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | | |
Collapse
|
9
|
Rivero-Hinojosa S, Grant M, Panigrahi A, Zhang H, Caisova V, Bollard CM, Rood BR. Proteogenomic discovery of neoantigens facilitates personalized multi-antigen targeted T cell immunotherapy for brain tumors. Nat Commun 2021; 12:6689. [PMID: 34795224 PMCID: PMC8602676 DOI: 10.1038/s41467-021-26936-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Neoantigen discovery in pediatric brain tumors is hampered by their low mutational burden and scant tissue availability. Here we develop a proteogenomic approach combining tumor DNA/RNA sequencing and mass spectrometry proteomics to identify tumor-restricted (neoantigen) peptides arising from multiple genomic aberrations to generate a highly target-specific, autologous, personalized T cell immunotherapy. Our data indicate that aberrant splice junctions are the primary source of neoantigens in medulloblastoma, a common pediatric brain tumor. Proteogenomically identified tumor-specific peptides are immunogenic and generate MHC II-based T cell responses. Moreover, polyclonal and polyfunctional T cells specific for tumor-specific peptides effectively eliminate tumor cells in vitro. Targeting tumor-specific antigens obviates the issue of central immune tolerance while potentially providing a safety margin favoring combination with other immune-activating therapies. These findings demonstrate the proteogenomic discovery of immunogenic tumor-specific peptides and lay the groundwork for personalized targeted T cell therapies for children with brain tumors. Targeting tumor-associated antigens in paediatric medulloblastomas (MB) is challenging due to their low mutational burden. Here, the authors develop a sensitive proteogenomic approach to identify tumour specific neoantigens, which may enable personalised T cell immunotherapy in paediatric MB.
Collapse
Affiliation(s)
- Samuel Rivero-Hinojosa
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA
| | - Melanie Grant
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.,Emory University School of Medicine, Department of Pediatrics, Atlanta, GA, USA
| | - Aswini Panigrahi
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA
| | - Huizhen Zhang
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA
| | - Veronika Caisova
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA
| | - Catherine M Bollard
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA.,George Washington University Cancer Center, Washington, DC, USA
| | - Brian R Rood
- Center for Cancer and Immunology Research, Children's National Research Institute, Washington, DC, USA. .,George Washington University Cancer Center, Washington, DC, USA.
| |
Collapse
|
10
|
Vaccines for Non-Viral Cancer Prevention. Int J Mol Sci 2021; 22:ijms222010900. [PMID: 34681560 PMCID: PMC8535337 DOI: 10.3390/ijms222010900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 12/20/2022] Open
Abstract
Cancer vaccines are a type of immune therapy that seeks to modulate the host’s immune system to induce durable and protective immune responses against cancer-related antigens. The little clinical success of therapeutic cancer vaccines is generally attributed to the immunosuppressive tumor microenvironment at late-stage diseases. The administration of cancer-preventive vaccination at early stages, such as pre-malignant lesions or even in healthy individuals at high cancer risk could increase clinical efficacy by potentiating immune surveillance and pre-existing specific immune responses, thus eliminating de novo appearing lesions or maintaining equilibrium. Indeed, research focus has begun to shift to these approaches and some of them are yielding encouraging outcomes.
Collapse
|
11
|
Luo Z, Zhou X, Mandal K, He N, Wennerberg W, Qu M, Jiang X, Sun W, Khademhosseini A. Reconstructing the tumor architecture into organoids. Adv Drug Deliv Rev 2021; 176:113839. [PMID: 34153370 PMCID: PMC8560135 DOI: 10.1016/j.addr.2021.113839] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023]
Abstract
Cancer remains a leading health burden worldwide. One of the challenges hindering cancer therapy development is the substantial discrepancies between the existing cancer models and the tumor microenvironment (TME) of human patients. Constructing tumor organoids represents an emerging approach to recapitulate the pathophysiological features of the TME in vitro. Over the past decade, various approaches have been demonstrated to engineer tumor organoids as in vitro cancer models, such as incorporating multiple cellular populations, reconstructing biophysical and chemical traits, and even recapitulating structural features. In this review, we focus on engineering approaches for building tumor organoids, including biomaterial-based, microfabrication-assisted, and synthetic biology-facilitated strategies. Furthermore, we summarize the applications of engineered tumor organoids in basic cancer research, cancer drug discovery, and personalized medicine. We also discuss the challenges and future opportunities in using tumor organoids for broader applications.
Collapse
Affiliation(s)
- Zhimin Luo
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Xingwu Zhou
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Kalpana Mandal
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Na He
- School of Pharmacy, Xi'an Jiaotong University, Xi'an 710061, China
| | - Wally Wennerberg
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA
| | - Moyuan Qu
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, and Cancer Center of Zhejiang University, Hangzhou 310006, China
| | - Xing Jiang
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; School of Nursing, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Wujin Sun
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA.
| | - Ali Khademhosseini
- Department of Bioengineering, California NanoSystems Institute and Center for Minimally Invasive Therapeutics, University of California, Los Angeles, Los Angeles, CA 90095, USA; Terasaki Institute for Biomedical Innovation, Los Angeles, CA 90064, USA; Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA; Jonsson Comprehensive Cancer Center, Department of Radiology, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
12
|
Selecting the optimal immunotherapy regimen in driver-negative metastatic NSCLC. Nat Rev Clin Oncol 2021; 18:625-644. [PMID: 34168333 DOI: 10.1038/s41571-021-00520-1] [Citation(s) in RCA: 171] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/04/2021] [Indexed: 12/12/2022]
Abstract
The treatment landscape of driver-negative non-small-cell lung cancer (NSCLC) is rapidly evolving. Immune-checkpoint inhibitors, specifically those targeting PD-1 or PD-L1, have demonstrated durable efficacy in a subset of patients with NSCLC, and these agents have become the cornerstone of first-line therapy. Approved immunotherapeutic strategies for treatment-naive patients now include monotherapy, immunotherapy-exclusive regimens or chemotherapy-immunotherapy combinations. Decision making in this space is complex given the absence of head-to-head prospective comparisons, although a thorough analysis of long-term efficacy and safety data from pivotal clinical trials can provide insight into the optimal management of each subset of patients. Indeed, histological subtype and the extent of tumour cell PD-L1 expression are paramount to regimen selection, although other clinicopathological factors and patient preferences might also be relevant in certain scenarios. Finally, several emerging biomarkers and novel therapeutic strategies are currently under investigation, and these might further refine the current treatment paradigm. In this Review, we discuss the current treatment landscape and detail our approach to first-line immunotherapy regimen selection for patients with advanced-stage, driver-negative NSCLC.
Collapse
|
13
|
Gupta RG, Li F, Roszik J, Lizée G. Exploiting Tumor Neoantigens to Target Cancer Evolution: Current Challenges and Promising Therapeutic Approaches. Cancer Discov 2021; 11:1024-1039. [PMID: 33722796 PMCID: PMC8102318 DOI: 10.1158/2159-8290.cd-20-1575] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/16/2020] [Accepted: 12/28/2020] [Indexed: 11/16/2022]
Abstract
Immunotherapeutic manipulation of the antitumor immune response offers an attractive strategy to target genomic instability in cancer. A subset of tumor-specific somatic mutations can be translated into immunogenic and HLA-bound epitopes called neoantigens, which can induce the activation of helper and cytotoxic T lymphocytes. However, cancer immunoediting and immunosuppressive mechanisms often allow tumors to evade immune recognition. Recent evidence also suggests that the tumor neoantigen landscape extends beyond epitopes originating from nonsynonymous single-nucleotide variants in the coding exome. Here we review emerging approaches for identifying, prioritizing, and immunologically targeting personalized neoantigens using polyvalent cancer vaccines and T-cell receptor gene therapy. SIGNIFICANCE: Several major challenges currently impede the clinical efficacy of neoantigen-directed immunotherapy, such as the relative infrequency of immunogenic neoantigens, suboptimal potency and priming of de novo tumor-specific T cells, and tumor cell-intrinsic and -extrinsic mechanisms of immune evasion. A deeper understanding of these biological barriers could help facilitate the development of effective and durable immunotherapy for any type of cancer, including immunologically "cold" tumors that are otherwise therapeutically resistant.
Collapse
Affiliation(s)
- Ravi G Gupta
- Department of Hematology/Oncology, MD Anderson Cancer Center at Cooper, Camden, New Jersey.
| | - Fenge Li
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jason Roszik
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gregory Lizée
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
14
|
Loss of natural resistance to schistosome in T cell deficient rat. PLoS Negl Trop Dis 2020; 14:e0008909. [PMID: 33347431 PMCID: PMC7785244 DOI: 10.1371/journal.pntd.0008909] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 01/05/2021] [Accepted: 10/21/2020] [Indexed: 01/08/2023] Open
Abstract
Schistosomiasis is among the major neglected tropical diseases and effective prevention by boosting the immune system is still not available. T cells are key cellular components governing adaptive immune response to various infections. While common laboratory mice, such as C57BL/6, are highly susceptible to schistosomiasis, the SD rats are extremely resistant. However, whether adaptive immunity is necessary for such natural resistance to schistosomiasis in rats remains to be determined. Therefore, it is necessary to establish genetic model deficient in T cells and adaptive immunity on the resistant SD background, and to characterize liver pathology during schistosomiasis. In this study we compared experimental schistosomiasis in highly susceptible C57BL/6 (B6) mice and in resistant SD rats, using cercariae of Schistosoma japonicum. We observed a marked T cell expansion in the spleen of infected B6 mice, but not resistant SD rats. Interestingly, CD3e−/− B6 mice in which T cells are completely absent, the infectious burden of adult worms was significantly higher than that in WT mice, suggesting an anti-parasitic role for T cells in B6 mice during schistosome infection. In further experiments, we established Lck deficient SD rats by using CRISPR/Cas9 in which T cell development was completely abolished. Strikingly, we found that such Lck deficiency in SD rats severely impaired their natural resistance to schistosome infection, and fostered parasite growth. Together with an additional genetic model deficient in T cells, the CD3e−/− SD rats, we confirmed the absence of T cell resulted in loss of natural resistance to schistosome infection, but also mitigated liver immunopathology. Our further experiments showed that regulatory T cell differentiation in infected SD rats was significantly decreased during schistosomiasis, in contrast to significant increase of regulatory T cells in infected B6 mice. These data suggest that T cell mediated immune tolerance facilitates persistent infection in mice but not in SD rats. The demonstration of an important role for T cells in natural resistance of SD rats to schistosomiasis provides experimental evidences supporting the rationale to boost T cell responses in humans to prevent and treat schistosomiasis. Schistosomiasis is among the major neglected tropical diseases and affects mainly the developing countries. Although the role of the immune system in driving immunopathology in schistosomiasis has been extensively studied, how adaptive immunity contributes to disease resistance during schistosome infection is still not completely understood. Most livestock species as well as humans are susceptible to schistosomiasis, while some mammals are extremely resistant. The common laboratory C57BL/6 mice are highly susceptible to schistosomiasis; however, the SD rats are extremely resistant. In this study, we first used T cell deficient CD3e−/− C57BL/6 mice and experimental Schistosoma japonicum infection and further established novel T cell deficient models in SD rats to assess anti-parasite roles of T cells. Strikingly, we found that the natural resistance of SD rat to schistosomiasis was abolished in the absence of T cells, despite the fact that the liver pathology was mitigated following infection. Therefore, our study presented experimental support for the rationale to boost T cell function for clearance of schistosome parasites.
Collapse
|
15
|
Sun C, Xu S. Advances in personalized neoantigen vaccines for cancer immunotherapy. Biosci Trends 2020; 14:349-353. [PMID: 32908077 DOI: 10.5582/bst.2020.03267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Changbo Sun
- Department of Thoracic Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shun Xu
- Department of Thoracic Surgery, the First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
16
|
Zhou X, Qu M, Tebon P, Jiang X, Wang C, Xue Y, Zhu J, Zhang S, Oklu R, Sengupta S, Sun W, Khademhosseini A. Screening Cancer Immunotherapy: When Engineering Approaches Meet Artificial Intelligence. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001447. [PMID: 33042756 PMCID: PMC7539186 DOI: 10.1002/advs.202001447] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/16/2020] [Indexed: 02/05/2023]
Abstract
Immunotherapy is a class of promising anticancer treatments that has recently gained attention due to surging numbers of FDA approvals and extensive preclinical studies demonstrating efficacy. Nevertheless, further clinical implementation has been limited by high variability in patient response to different immunotherapeutic agents. These treatments currently do not have reliable predictors of efficacy and may lead to side effects. The future development of additional immunotherapy options and the prediction of patient-specific response to treatment require advanced screening platforms associated with accurate and rapid data interpretation. Advanced engineering approaches ranging from sequencing and gene editing, to tumor organoids engineering, bioprinted tissues, and organs-on-a-chip systems facilitate the screening of cancer immunotherapies by recreating the intrinsic and extrinsic features of a tumor and its microenvironment. High-throughput platform development and progress in artificial intelligence can also improve the efficiency and accuracy of screening methods. Here, these engineering approaches in screening cancer immunotherapies are highlighted, and a discussion of the future perspectives and challenges associated with these emerging fields to further advance the clinical use of state-of-the-art cancer immunotherapies are provided.
Collapse
Affiliation(s)
- Xingwu Zhou
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of Chemical and Biomolecular EngineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Moyuan Qu
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesWest China Hospital of StomatologySichuan UniversityChengdu610041China
| | - Peyton Tebon
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Xing Jiang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- School of NursingNanjing University of Chinese MedicineNanjing210023China
| | - Canran Wang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Yumeng Xue
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Jixiang Zhu
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of Biomedical EngineeringSchool of Basic Medical SciencesGuangzhou Medical UniversityGuangzhou511436China
| | - Shiming Zhang
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Rahmi Oklu
- Minimally Invasive Therapeutics LaboratoryDivision of Vascular and Interventional RadiologyMayo ClinicPhoenixAZ85054USA
| | - Shiladitya Sengupta
- Harvard–Massachusetts Institute of Technology Division of Health Sciences and TechnologyHarvard Medical SchoolBostonMA02115USA
| | - Wujin Sun
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
| | - Ali Khademhosseini
- Department of BioengineeringUniversity of California, Los AngelesLos AngelesCA90095USA
- Center for Minimally Invasive TherapeuticsCalifornia NanoSystems InstituteUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of Chemical and Biomolecular EngineeringHenry Samueli School of Engineering and Applied SciencesUniversity of California, Los AngelesLos AngelesCA90095USA
- Jonsson Comprehensive Cancer CenterUniversity of California, Los AngelesLos AngelesCA90095USA
- Department of RadiologyDavid Geffen School of MedicineUniversity of California, Los AngelesLos AngelesCA90095USA
- Terasaki Institute for Biomedical InnovationLos AngelesCA90064USA
| |
Collapse
|
17
|
Bai R, Lv Z, Xu D, Cui J. Predictive biomarkers for cancer immunotherapy with immune checkpoint inhibitors. Biomark Res 2020; 8:34. [PMID: 32864131 PMCID: PMC7450548 DOI: 10.1186/s40364-020-00209-0] [Citation(s) in RCA: 308] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/29/2020] [Indexed: 12/16/2022] Open
Abstract
Although the clinical development of immune checkpoint inhibitors (ICIs) therapy has ushered in a new era of anti-tumor therapy, with sustained responses and significant survival advantages observed in multiple tumors, most patients do not benefit. Therefore, more and more attention has been paid to the identification and development of predictive biomarkers for the response of ICIs, and more in-depth and comprehensive understanding has been continuously explored in recent years. Predictive markers of ICIs efficacy have been gradually explored from the expression of intermolecular interactions within tumor cells to the expression of various molecules and cells in tumor microenvironment, and been extended to the exploration of circulating and host systemic markers. With the development of high-throughput sequencing and microarray technology, a variety of biomarker strategies have been deeply explored and gradually achieved the process from the identification of single marker to the development of multifactorial synergistic predictive markers. Comprehensive predictive-models developed by integrating different types of data based on different components of tumor-host interactions is the direction of future research and will have a profound impact in the field of precision immuno-oncology. In this review, we deeply analyze the exploration course and research progress of predictive biomarkers as an adjunctive tool to tumor immunotherapy in effectively identifying the efficacy of ICIs, and discuss their future directions in achieving precision immuno-oncology.
Collapse
Affiliation(s)
- Rilan Bai
- Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021 China
| | - Zheng Lv
- Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021 China
| | - Dongsheng Xu
- Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021 China
| | - Jiuwei Cui
- Cancer Center, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, Jilin, 130021 China
| |
Collapse
|
18
|
Forsdyke DR. Metabolic optimization of adoptive T cell transfer cancer immunotherapy: A historical overview. Scand J Immunol 2020; 92:e12929. [PMID: 32640079 DOI: 10.1111/sji.12929] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/02/2020] [Indexed: 12/11/2022]
Abstract
After prolonged extracorporeal multiplication in physiological culture media, there can be curative infusions of a cancer patient's own cytotoxic T cells (adoptive T cell transfer; ACT), which must achieve efficient activation in potentially adverse tumour microenvironments. With spectacular, yet irregular, success, improvements are needed. Developing lymphoid cells are biologically selected, not only for 'near-self' reactivity (positive selection), but also to avoid self-reactivity (negative selection). Thus, success requires harnessing near-self cells while avoiding extreme autoimmune phenomena. Abrupt metabolic changes accompanying T cell activation to leave the G0 stage and enter the G1 stage of the cell cycle (eg enhanced glycolysis) are accompanied by increased transcription of the G0S9 gene that mediates salvage synthesis of NAD+ from nicotinamide; the latter has recently been shown to increase the efficiency of ACT. Despite theoretical and experimental advances, there has not been parallel progress in simulating in vivo conditions with culture media that were initially formulated for their positive benefits for tumour cell lines (cell survival and proliferation). Yet for lymphoid cells, inhibition or death (ie immunological tolerance) is as important as their activation and proliferation (immunological response). Thus, use of media optimized for the latter may mask the former. The resilience of established culture protocols may have been partly politically driven. However, unphysiological conditions have sometimes yielded fortuitous insights. Optimization of culture media for specific tissues must consider the nature of problems addressed in research settings and the need to avoid mishaps in clinical settings.
Collapse
Affiliation(s)
- Donald R Forsdyke
- Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada
| |
Collapse
|
19
|
Bellesoeur A, Torossian N, Amigorena S, Romano E. Advances in theranostic biomarkers for tumor immunotherapy. Curr Opin Chem Biol 2020; 56:79-90. [PMID: 32217357 DOI: 10.1016/j.cbpa.2020.02.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 01/05/2023]
Abstract
Cancer treatment has known a revolution with the emergence of immune checkpoint inhibitors. However, accurate theranostic biomarkers are lacking. In this review, we discuss different types of biomarkers currently under investigation. First, we focus on tissue biomarkers including PD-L1 expression by immunohistochemistry-the first Food and Drug Administration-approved biomarker-despite conflicting results. In addition, we report on novel biomarkers, including protein-based, molecular (tumor mutational load, immune signature…), circulating (neutrophil-to-lymphocyte ratio, serum cytokines…), and imaging-based biomarkers (radiomic signatures and positron-emission tomography using radiolabeled antibodies). We highlight the limitations of each candidate biomarker and finally discuss combinatorial approaches for their use and the opportunity to switch from a predictive strategy of biomarker research to an adaptive one in the field of cancer immunotherapy.
Collapse
Affiliation(s)
- Audrey Bellesoeur
- Dpt of Medical Oncology, Institut Curie, Paris, France; Dpt of Radio-pharmacology, Institut Curie-Hôpital René Huguenin, Saint-Cloud, France
| | | | - Sebastian Amigorena
- Center for Cancer Immunotherapy, INSERM U932, Institut Curie, PSL Research University, Paris, France
| | - Emanuela Romano
- Dpt of Medical Oncology, Institut Curie, Paris, France; Dpt of Drug Development and Innovation, Institut Curie, Paris, France; Center for Cancer Immunotherapy, INSERM U932, Institut Curie, PSL Research University, Paris, France.
| |
Collapse
|
20
|
Macromolecules and Antibody-Based Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020. [PMID: 32185723 DOI: 10.1007/978-981-15-3266-5_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2023]
Abstract
Macromolecule drugs particularly antibody drugs are very powerful therapies developing rapidly in the recent 20 years, providing hopes for many patients diagnosed with "incurable" diseases in the past. They also provide more effective and less side effects for many afflicting diseases, and greatly improve the survival rate and life quality of patients. In the last two decades, the proportion of US Food and Drug Administration (FDA) approved macromolecules and antibody drugs are increasing quickly, especially after the discovery of immune checkpoints. To crown all, the 2017 Nobel prize in physiology or medicine was given to immunotherapy. In this chapter, we would like to summarize the current situation of macromolecule and antibody drugs, and what effort scientists and pharmaceutical industry have made to discover and manufacture better antibody drugs.
Collapse
|
21
|
Li K, Lu L, Xue C, Liu J, He Y, Zhou J, Xia Z, Dai L, Luo Z, Mao Y, Cai K. Polarization of tumor-associated macrophage phenotype via porous hollow iron nanoparticles for tumor immunotherapy in vivo. NANOSCALE 2020; 12:130-144. [PMID: 31799577 DOI: 10.1039/c9nr06505a] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Tumor-associated macrophages (TAMs) are the most important components in the tumor immunosuppressive microenvironment, promoting tumor growth and metastasis. Although TAMs have become one of the hot topics of tumor immunotherapy, challenges still remain to achieve TAM-targeted re-polarization therapy. In this work, porous hollow iron oxide nanoparticles (PHNPs) were synthesized for loading a P13K γ small molecule inhibitor (3-methyladenine, 3-MA) and further modified by mannose to target TAMs. The delivery system named PHNPs@DPA-S-S-BSA-MA@3-MA showed good efficiency for targeting TAMs. The inflammatory factor NF-κB p65 of macrophages was activated by the combination of PHNPs and 3-MA, which synergistically switched TAMs to pro-inflammatory M1-type macrophages. As a result, it activated immune responses and inhibited tumor growth in vivo. The study provides an intracellular switch of the TAM phenotype for targeted TAM therapy.
Collapse
Affiliation(s)
- Ke Li
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Lu Lu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Chencheng Xue
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Ju Liu
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Ye He
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Jun Zhou
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Zengzilu Xia
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Liangliang Dai
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Zhong Luo
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Yulan Mao
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology of Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
22
|
Vizcaíno JA, Kubiniok P, Kovalchik KA, Ma Q, Duquette JD, Mongrain I, Deutsch EW, Peters B, Sette A, Sirois I, Caron E. The Human Immunopeptidome Project: A Roadmap to Predict and Treat Immune Diseases. Mol Cell Proteomics 2020; 19:31-49. [PMID: 31744855 PMCID: PMC6944237 DOI: 10.1074/mcp.r119.001743] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/18/2019] [Indexed: 12/11/2022] Open
Abstract
The science that investigates the ensembles of all peptides associated to human leukocyte antigen (HLA) molecules is termed "immunopeptidomics" and is typically driven by mass spectrometry (MS) technologies. Recent advances in MS technologies, neoantigen discovery and cancer immunotherapy have catalyzed the launch of the Human Immunopeptidome Project (HIPP) with the goal of providing a complete map of the human immunopeptidome and making the technology so robust that it will be available in every clinic. Here, we provide a long-term perspective of the field and we use this framework to explore how we think the completion of the HIPP will truly impact the society in the future. In this context, we introduce the concept of immunopeptidome-wide association studies (IWAS). We highlight the importance of large cohort studies for the future and how applying quantitative immunopeptidomics at population scale may provide a new look at individual predisposition to common immune diseases as well as responsiveness to vaccines and immunotherapies. Through this vision, we aim to provide a fresh view of the field to stimulate new discussions within the community, and present what we see as the key challenges for the future for unlocking the full potential of immunopeptidomics in this era of precision medicine.
Collapse
Affiliation(s)
- Juan Antonio Vizcaíno
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Peter Kubiniok
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | | | - Qing Ma
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; School of Electrical Engineering and Computer Science, University of Ottawa, Ottawa, ON K1N 6N5, Canada
| | | | - Ian Mongrain
- Université de Montréal Beaulieu-Saucier Pharmacogenomics Centre, Montreal, QC, Canada; Montreal Heart Institute, Montreal, QC, Canada
| | - Eric W Deutsch
- Institute for Systems Biology, Seattle, Washington, 98109
| | - Bjoern Peters
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Alessandro Sette
- La Jolla Institute for Allergy and Immunology, La Jolla, California, 92037
| | - Isabelle Sirois
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada
| | - Etienne Caron
- CHU Sainte-Justine Research Center, Montreal, QC H3T 1C5, Canada; Department of Pathology and Cellular Biology, Faculty of Medicine, Université de Montréal, QC H3T 1J4, Canada.
| |
Collapse
|
23
|
Xue G, Cui ZJ, Zhou XH, Zhu YX, Chen Y, Liang FJ, Tang DN, Huang BY, Zhang HY, Hu ZH, Yuan XY, Xiong J. DNA Methylation Biomarkers Predict Objective Responses to PD-1/PD-L1 Inhibition Blockade. Front Genet 2019; 10:724. [PMID: 31475034 PMCID: PMC6707807 DOI: 10.3389/fgene.2019.00724] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 07/10/2019] [Indexed: 12/11/2022] Open
Abstract
Immune checkpoint inhibitor (ICI) treatment could bring long-lasting clinical benefits to patients with metastatic cancer. However, only a small proportion of patients respond to PD-1/PD-L1 blockade, so predictive biomarkers are needed. Here, based on DNA methylation profiles and the objective response rates (ORRs) of PD-1/PD-L1 inhibition therapy, we identified 269 CpG sites and developed an initial CpG-based model by Lasso to predict ORRs. Notably, as measured by the area under the receiver operating characteristic curve (AUC), our model can produce better performance (AUC = 0.92) than both a model based on tumor mutational burden (TMB) (AUC = 0.77) and a previously reported TMB model (AUC = 0.71). In addition, most CpGs also have additional synergies with TMB, which can achieve a higher prediction accuracy when joined with TMB. Furthermore, we identified CpGs that are associated with TMB at the individual level. DNA methylation modules defined by protein networks, Kyoto Encylopedia of Genes and Genomes (KEGG) pathways, and ligand-receptor gene pairs are also associated with ORRs. This method suggested novel immuno-oncology targets that might be beneficial when combined with PD-1/PD-L1 blockade. Thus, DNA methylation studies might hold great potential for individualized PD1/PD-L1 blockade or combinatory therapy.
Collapse
Affiliation(s)
- Gang Xue
- SPACEnter Space Science and Technology Institute, Shenzhen, China.,College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Ze-Jia Cui
- College of Informatics, Huazhong Agricultural University, Wuhan, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiong-Hui Zhou
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Yue-Xing Zhu
- SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Ying Chen
- SPACEnter Space Science and Technology Institute, Shenzhen, China
| | - Feng-Ji Liang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Da-Nian Tang
- Gastro-Intestinal Surgery Department, Beijing Hospital, Beijing, China
| | - Bing-Yang Huang
- Department of Cardiothoracic Surgery, Strategic Support Force Medical Center of PLA. No. 9, Beijing, China
| | - Hong-Yu Zhang
- College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Huang Hu
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Xi-Yu Yuan
- Department of General Surgery, Dongguan People's Hospital affiliated to Southern Medical University, Dongguan, China
| | - Jianghui Xiong
- SPACEnter Space Science and Technology Institute, Shenzhen, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| |
Collapse
|
24
|
Nelson N, Lopez-Pelaez M, Palazon A, Poon E, De La Roche M, Barry S, Valge-Archer V, Wilkinson RW, Dovedi SJ, Smith PD. A cell-engineered system to assess tumor cell sensitivity to CD8 + T cell-mediated cytotoxicity. Oncoimmunology 2019; 8:1599635. [PMID: 31413906 PMCID: PMC6682348 DOI: 10.1080/2162402x.2019.1599635] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 02/08/2019] [Accepted: 03/18/2019] [Indexed: 01/23/2023] Open
Abstract
In vitro assays that evaluate CD8+ T cell-mediated cytotoxicity are important to aid in the development of novel therapeutic approaches to enhance anti-tumor immune responses. Here, we describe a novel cytotoxicity co-culture assay that circumvents the problem of highly variable allogeneic responses and obviates the constraints of HLA-restriction between effector and target cells. We show that this assay can be easily applied to a panel of tumor cell lines to provide additional insights into intrinsic drivers of sensitivity/resistance to T cell-mediated killing, and to evaluate the impact of targeted therapies on both tumor and T cell compartments.
Collapse
Affiliation(s)
- Nadine Nelson
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | | | | | - Maike De La Roche
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Simon Barry
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| | | | | | | | - Paul D. Smith
- Bioscience, Oncology, IMED Biotech Unit, AstraZeneca, Cambridge, UK
| |
Collapse
|
25
|
Gomez-Cambronero J. Lack of effective translational regulation of PLD expression and exosome biogenesis in triple-negative breast cancer cells. Cancer Metastasis Rev 2019; 37:491-507. [PMID: 30091053 DOI: 10.1007/s10555-018-9753-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype of breast cancer that is difficult to treat since cells lack the three receptors (ES, PR, or HER) that the most effective treatments target. We have used a well-established TNBC cell line (MDA-MB-231) from which we found evidence in support for a phospholipase D (PLD)-mediated tumor growth and metastasis: high levels of expression of PLD, as well as the absence of inhibitory miRs (such as miR-203) and 3'-mRNA PARN deadenylase activity in these cells. Such findings are not present in a luminal B cell line, MCF-7, and we propose a new miR•PARN•PLD node that is not uniform across breast cancer molecular subtypes and as such TNBC could be pharmacologically targeted differentially. We review the participation of PLD and phosphatidic acid (PA), its enzymatic product, as new "players" in breast cancer biology, with the aspects of regulation of the tumor microenvironment, macrophage polarization, regulation of PLD transcripts by specific miRs and deadenylases, and PLD-regulated exosome biogenesis. A new signaling miR•PARN•PLD node could serve as new biomarkers for TNBC abnormal signaling and metastatic disease staging, potentially before metastases are able to be visualized using conventional imaging.
Collapse
Affiliation(s)
- Julian Gomez-Cambronero
- Department of Biochemistry and Molecular Biology, Wright State University School of Medicine, 3640 Colonel Glenn Highway, Dayton, OH, 45435, USA.
| |
Collapse
|
26
|
Corrie BD, Marthandan N, Zimonja B, Jaglale J, Zhou Y, Barr E, Knoetze N, Breden FMW, Christley S, Scott JK, Cowell LG, Breden F. iReceptor: A platform for querying and analyzing antibody/B-cell and T-cell receptor repertoire data across federated repositories. Immunol Rev 2019; 284:24-41. [PMID: 29944754 DOI: 10.1111/imr.12666] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Next-generation sequencing allows the characterization of the adaptive immune receptor repertoire (AIRR) in exquisite detail. These large-scale AIRR-seq data sets have rapidly become critical to vaccine development, understanding the immune response in autoimmune and infectious disease, and monitoring novel therapeutics against cancer. However, at present there is no easy way to compare these AIRR-seq data sets across studies and institutions. The ability to combine and compare information for different disease conditions will greatly enhance the value of AIRR-seq data for improving biomedical research and patient care. The iReceptor Data Integration Platform (gateway.ireceptor.org) provides one implementation of the AIRR Data Commons envisioned by the AIRR Community (airr-community.org), an initiative that is developing protocols to facilitate sharing and comparing AIRR-seq data. The iReceptor Scientific Gateway links distributed (federated) AIRR-seq repositories, allowing sequence searches or metadata queries across multiple studies at multiple institutions, returning sets of sequences fulfilling specific criteria. We present a review of the development of iReceptor, and how it fits in with the general trend toward sharing genomic and health data, and the development of standards for describing and reporting AIRR-seq data. Researchers interested in integrating their repositories of AIRR-seq data into the iReceptor Platform are invited to contact support@ireceptor.org.
Collapse
Affiliation(s)
- Brian D Corrie
- The IRMACS Centre, Simon Fraser University, Burnaby, BC, Canada
| | - Nishanth Marthandan
- The IRMACS Centre, Simon Fraser University, Burnaby, BC, Canada.,Deptartment of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada
| | - Bojan Zimonja
- The IRMACS Centre, Simon Fraser University, Burnaby, BC, Canada
| | - Jerome Jaglale
- The IRMACS Centre, Simon Fraser University, Burnaby, BC, Canada
| | - Yang Zhou
- The IRMACS Centre, Simon Fraser University, Burnaby, BC, Canada
| | - Emily Barr
- The IRMACS Centre, Simon Fraser University, Burnaby, BC, Canada
| | - Nicole Knoetze
- The IRMACS Centre, Simon Fraser University, Burnaby, BC, Canada
| | | | - Scott Christley
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie K Scott
- Deptartment of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC, Canada.,Faculty of Health Sciences, Simon Fraser University, Burnaby, BC, Canada
| | - Lindsay G Cowell
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Felix Breden
- The IRMACS Centre, Simon Fraser University, Burnaby, BC, Canada.,Department of Biological Sciences, Simon Fraser University, Burnaby, BC, Canada
| |
Collapse
|
27
|
Abstract
Checkpoint inhibitor-based immunotherapies that target cytotoxic T lymphocyte antigen 4 (CTLA4) or the programmed cell death 1 (PD1) pathway have achieved impressive success in the treatment of different cancer types. Yet, only a subset of patients derive clinical benefit. It is thus critical to understand the determinants driving response, resistance and adverse effects. In this Review, we discuss recent work demonstrating that immune checkpoint inhibitor efficacy is affected by a combination of factors involving tumour genomics, host germline genetics, PD1 ligand 1 (PDL1) levels and other features of the tumour microenvironment, as well as the gut microbiome. We focus on recently identified molecular and cellular determinants of response. A better understanding of how these variables cooperate to affect tumour-host interactions is needed to optimize the implementation of precision immunotherapy.
Collapse
Affiliation(s)
- Jonathan J Havel
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Diego Chowell
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Timothy A Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Immunogenomics and Precision Oncology Platform, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
28
|
Abstract
Nanomaterials offer unique advantages as drug-delivery vehicles for cancer therapeutics. For immuno-oncology applications, cancer nanomedicine should be developed beyond drug-delivery platforms. A greater emphasis on actively modulating host anticancer immunity using nanomaterials provides new avenues for developing novel cancer therapeutics.
Collapse
Affiliation(s)
- Zhigang Liu
- Key
Laboratory of Translational Radiation Oncology, Department of Radiotherapy,
Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School
of Medicine, Central South University, Changsha, Hunan, 410013, P.R. China
- Department
of Radiation Oncology, The University of
Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Wen Jiang
- Department
of Radiation Oncology, The University of
Texas Southwestern Medical Center, Dallas, Texas 75390, United States
| | - Jutaek Nam
- Department of Pharmaceutical
Sciences, Biointerfaces Institute, and Department of
Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - James J. Moon
- Department of Pharmaceutical
Sciences, Biointerfaces Institute, and Department of
Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, United States
- E-mail:
| | - Betty Y. S. Kim
- Department of Neurosurgery, Department of Cancer Biology,
and Department of Neurosciences, Mayo Clinic, Jacksonville, Florida 32224, United States
- E-mail:
| |
Collapse
|