1
|
Li S, Li J, Zhang H, Zhang G, Guo R. Photoinduced Copper-Catalyzed Regio- and Diastereoselective Multicomponent [3 + 2 + 1] Radical Cyclization To Access Tetrahydropyridines. Org Lett 2025; 27:5057-5062. [PMID: 40356429 DOI: 10.1021/acs.orglett.5c00865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
The use of simple raw materials to construct complex piperidine scaffolds via multicomponent reactions is highly desirable from the perspectives of atom and step-economy. In this Letter, we present a photoinduced copper-catalyzed three- or four-component [3 + 2 + 1] radical cyclization, utilizing inexpensive and readily available feedstock amines, alkynes, and aldehydes, to synthesize multisubstituted bicyclic or spirocyclic tetrahydropyridines. This method is notable for its mild conditions, atom-economic approach, excellent regio- and diastereoselectivity, and the simultaneous activation of two α-amino C(sp3)-H bonds, resulting in the formation of three C-C bonds and one C-N bond in a single step. Mechanistic studies suggest that the α-aminoalkyl radical is the key intermediate in this reaction, which undergoes sequential radical addition, 1,5-HAT, and 6-exo-trig-type radical cyclization.
Collapse
Affiliation(s)
- Sijia Li
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Jianye Li
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - He Zhang
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Guozhu Zhang
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| | - Rui Guo
- CCNU-uOttawa Joint Research Centre, State Key Laboratory of Green Pesticide, Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University (CCNU), 152 Luoyu Road, Wuhan, Hubei 430079, P. R. China
| |
Collapse
|
2
|
Xie H, Yu S. Photoexcited Copper-Catalyzed Intramolecular [2+2] Cycloaddition To Construct Bicyclo[3.2.0]heptanes. Org Lett 2025; 27:5176-5180. [PMID: 40340496 DOI: 10.1021/acs.orglett.5c01331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2025]
Abstract
The bicyclo[3.2.0]heptane scaffold is frequently found in a wide range of bioactive molecules and plays a pivotal role in constructing key modules of these compounds. In this study, we present a strategy for the synthesis of bicyclo[3.2.0]heptanes using a copper/BINAP complex to facilitate an intramolecular [2+2] cycloaddition under visible light irradiation. This methodology offers several advantages, including the use of a cost-effective copper catalyst and the ability to achieve high yields (up to 98%) and diastereoselectivity (>20:1 dr). Our approach provides an efficient strategy for constructing the bicyclo[3.2.0]heptane framework.
Collapse
Affiliation(s)
- Hongling Xie
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), ChemBioMed Interdisciplinary Research Center at Nanjing University, Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Millward F, Zysman-Colman E. Mechanometallaphotoredox Catalysis: Utilizing Increased Throughput Mechanochemistry to Develop Solvent-Minimized Aryl Amination and C(sp2)-C(sp3) Cross-Coupling Reactions with Increased Tolerance to Aerobic Conditions. J Am Chem Soc 2025. [PMID: 40401648 DOI: 10.1021/jacs.5c05503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Photocatalysis as a tool used in organic synthesis has predominantly relied on the use of solvents, be it under homogeneous or heterogeneous conditions. In particular, metallaphotoredox catalysis reactions commonly use toxic organic solvents such as DMA and DMF. Herein, we demonstrate how mechanophotocatalysis, the synergistic union of mechanochemistry and photocatalysis, is compatible with this class of dual catalysis reactions involving both photocatalyst and nickel(II) cocatalysts. Using ball milling, these mechanistically complex reactions can be conducted in the absence of a bulk solvent and under air, affording high-yielding aryl aminations and C(sp2)-C(sp3) cross-couplings with alkyl carboxylic acids, alkyl trifluoroborate salts, and alkyl bromides. These advances are facilitated by the introduction of a novel reaction vessel design for conducting four mechanophotocatalysis reactions simultaneously. This work highlights the promise of solvent-minimized photocatalysis reactions, demonstrating that in these examples bulk solvent is redundant, thus significantly reducing this waste stream. Through time-resolved photoluminescence studies, we observed that the excited states of five different photocatalysts were quenched by oxygen more significantly in solution than in the solid state, providing evidence for the origin of the increased tolerance to aerobic conditions that these mechanophotocatalysis reactions experience.
Collapse
Affiliation(s)
- Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews KY16 9ST, U.K
| |
Collapse
|
4
|
Liberka M, Gas P, Chorazy S. Decanuclear {CuI6ReV4} clusters utilizing cyanido and nitrido molecular bridges as efficient ligand-modulated luminophores. Chem Commun (Camb) 2025. [PMID: 40375797 DOI: 10.1039/d5cc00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
The combination of cationic Cu(I)-(diphenyl-2-pyridylphosphine) complexes with tetracyanidonitrido-Re(V) anions is a synthetic route to strongly photoluminescent materials incorporating deca-nuclear {CuI6ReV4} molecules, utilizing both cyanido and nitrido molecular bridges. These clusters are functionalized by pyridine-based ligands coordinating to Re(V) centers, which results in the enhancement and tuning of the emission and its distinct variation upon changes in excitation wavelength and temperature.
Collapse
Affiliation(s)
- Michal Liberka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Piotr Gas
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| | - Szymon Chorazy
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland.
| |
Collapse
|
5
|
Kumar N, Sharma T, Thakur N, Jain R, Sinha N. Abundant Transition Metal Based Photocatalysts for Red Light-Driven Photocatalysis. Chemistry 2025; 31:e202500365. [PMID: 40135511 DOI: 10.1002/chem.202500365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/13/2025] [Accepted: 03/26/2025] [Indexed: 03/27/2025]
Abstract
Photocatalysis emerges as an efficient and versatile tool for the preparation of organic compounds via the development of new methodologies and new photosensitizers. Mostly UV and blue light irradiation are used for such reactions. Red light is low-energy light, it is less harmful and has more penetration depth. Hence red light-driven photocatalysis would be more suitable for preparing value-added products. Red-absorbing photosensitizers are mostly based on rare and expensive metals. In this review, we describe the recent developments on Earth-abundant transition metal-based photosensitizers (W(0), Mo(0), Cr(0), Fe(III), Cu(I), Zn(II)) and their applications in red light-driven photocatalysis. Photocatalysis using both electron transfer and energy transfer processes is discussed. Three different red light-induced reactions such as direct monophotonic excitation, sensitized triplet-triplet annihilation upconversion (sTTA-UC), and dual red light photocatalysis are presented. Various organic transformations such as reductive dehalogenation and detosylation, reduction of diazonium salts, C─C coupling via C─H activation, oxidation of aryl boronic acids to phenols, polymerization reactions, cross dehydrogenative couplings, α-cyanation of tertiary amines, Barton decarboxylation have been carried out using abundant photosensitizers and red light.
Collapse
Affiliation(s)
- Nitish Kumar
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Tanu Sharma
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Nirbhay Thakur
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Rahul Jain
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| | - Narayan Sinha
- School of Chemical Sciences, Indian Institute of Technology Mandi, Mandi, Himachal Pradesh, 175075, India
| |
Collapse
|
6
|
Villegas-Menares A, Hansmann YS, Bayas M, Verdugo C, Erazo I, Zuñiga C, Gonzalez I, Galdámez A, Villa L, Natali M, Cabrera AR. Exploring catalytic activity modulations: photoredox catalysis with substituted copper(I)-dipyridylamine derivatives. Dalton Trans 2025; 54:7306-7314. [PMID: 40202459 DOI: 10.1039/d4dt03337j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
In this work, we have successfully synthesized five new heteroleptic copper(I) complexes (C1-5), bearing N,N ligands derived from dipyridylamine and S-BINAP as the P,P auxiliary ligand. All complexes were structurally characterized using NMR, FT-IR, and elemental analysis. Furthermore, the molecular structures of C1, C4, and C5 were determined via X-ray diffraction analysis. The photophysical properties of all complexes were assessed using UV-Vis spectroscopy and spectrofluorometric measurements in dichloromethane solution and the solid state. All complexes displayed absorption bands at lower energies, attributed to spin-allowed MLCT transitions. In degassed dichloromethane solution at room temperature, all complexes exhibited broad luminescence in the visible spectrum, mainly assigned to MLCT/LLCT phosphorescence, with excited state lifetimes in the μs time regime. Besides, all complexes were assessed as photoredox catalysts in chlorosulfonylation and bromonitromethylation reactions of styrene, showing remarkable performances, thus highlighting the privileged role of the dpa ligand for the design of Earth-abundant metal photocatalysts.
Collapse
Affiliation(s)
- Alondra Villegas-Menares
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| | - Yannik Sebastian Hansmann
- Institute for Organic Chemistry II and Advanced Materials, Ulm University, Albert-Einstein-Allee 11, Ulm 89081, Germany
| | - Max Bayas
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| | - Camilo Verdugo
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| | - Ignacio Erazo
- Departamento de Ingeniería Mecánica y Metalúrgica, Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Cesar Zuñiga
- Departamento de Química de los Materiales, Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago 9170022, Chile
| | - Iván Gonzalez
- Departamento de Química, Facultad de Ciencias Naturales, Matemática y del Medio Ambiente, Universidad Tecnológica Metropolitana, Las Palmeras 3360, Ñuñoa, Santiago 7800003, Chile
| | - Antonio Galdámez
- Departamento de Química, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7500008, Chile
| | - Lucrezia Villa
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Mirco Natali
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, via L. Borsari 46, Ferrara 44121, Italy
| | - Alan R Cabrera
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| |
Collapse
|
7
|
Gordon AT, Hosten EC, van Vuuren S, Ogunlaja AS. Copper(II)-photocatalyzed Hydrocarboxylation of Schiff bases with CO 2: antimicrobial evaluation and in silico studies of Schiff bases and unnatural α-amino acids. J Biomol Struct Dyn 2025; 43:4201-4214. [PMID: 38192072 DOI: 10.1080/07391102.2024.2301765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/30/2023] [Indexed: 01/10/2024]
Abstract
We synthesized and characterized two copper(II) complexes: [CuL2Cl]Cl and [CuL'2Cl]Cl, where L = 2,2'-bipyridine and L' = 4,4'-dimethyl-2,2'-bipyridine. We evaluated their photocatalytic hydrocarboxylation properties on a series of synthesized Schiff bases (SBs): (E)-1-(4-((5-bromo-2-hydroxybenzylidene)amino)phenyl)ethanone (SB1), (E)-N-(4-(dimethylamino)benzylidene)benzo[d]thiazol-2-amine (SB2), (E)-4-Bromo-2-((thiazol-2-ylimino)methyl)phenol (SB3), and (E)-4-((5-bromo-2-hydroxybenzylidene)amino)-1,5-dimethyl-2-phenyl-1H-pyrazol-3(2H)-one (SB4). Under mild photocatalytic reaction conditions (room temperature, 1 atm CO2, 30-watt Blue LED light), the derivatives of α-amino acids UAA1-4 were obtained with yields ranging from 5% to 44%. Experimental results demonstrated that [CuL2Cl]Cl exhibited superior photocatalytic efficiency compared to [CuL'2Cl]Cl, attributed to favourable electronic properties. In silico studies revealed strong binding strengths with E. faecalis DHFR (4M7U) for docked Schiff bases (SB) and unnatural α-amino acids (UAAs). In vitro studies further demonstrated significant antimicrobial and antifungal activity for SB2, SB3, and SB4, while none of the synthesized UAAs exhibited such properties, primarily due to the electronic and binding properties of these molecules.
Collapse
Affiliation(s)
- Allen T Gordon
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Eric C Hosten
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| | - Sandy van Vuuren
- Department of Pharmacy and Pharmacology, Faculty of Health Sciences, University of the Witwatersrand, Parktown, South Africa
| | - Adeniyi S Ogunlaja
- Department of Chemistry, Nelson Mandela University, Port Elizabeth, South Africa
| |
Collapse
|
8
|
Han L, Zhou H, Hou J, Shi X, Li Q. The formation reaction of a carbon-carbon bond promoted by Eosin-Y under visible light. Org Biomol Chem 2025; 23:3741-3799. [PMID: 40159809 DOI: 10.1039/d5ob00141b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
In recent years, photochemical organic conversion promoted by visible light has attracted the interest of many organic chemists. Compared with traditional methods, visible light for the photoredox catalysis of renewable energy has been proved to be a mild and powerful tool that can promote the activation of organic molecules through the single electron transfer (SET) process. Therefore, the formation reaction of a C-C bond can be achieved by activating these molecules with visible light, which can effectively modify the structure of these compounds and obtain compounds with multiple structures and functions. At present, this research has become an important research field in organic synthesis. Eosin-Y, a cheap and widely-used organic dye, has been employed as an economically and environmentally friendly substitute for many transition-metal-based photocatalysts. In recent years, it has gained much more attention due to its ease of handling and eco-friendliness, and it has great potential for applications in visible-light-mediated organic synthesis. This article reviews the research results on the formation of carbon-carbon bonds promoted by the organic photocatalyst Eosin-Y under visible light in recent years, and discusses representative examples and their different mechanistic pathways (such as SET, HAT, and energy transfer).
Collapse
Affiliation(s)
- Lirong Han
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Hui Zhou
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Jinsong Hou
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Xiaohao Shi
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| | - Qinghan Li
- College of Chemistry and Environment, Southwest Minzu University, Chengdu, 610041, P. R. China.
- Key Laboratory of General Chemistry of the National Ethnic Affairs Commission, College of Chemistry and Environment, Southwest Minzu University, Chengdu 610041, P. R. China
| |
Collapse
|
9
|
Xu Y, Luo H, Hu D, Gao L, Yu F, Li S, Li CY, Li YL, Gao M, Lin L. Photoinduced Copper-Catalyzed Radical Mizoroki-Heck Reaction with Unactivated Alkyl Iodide. Org Lett 2025; 27:3566-3570. [PMID: 40160179 DOI: 10.1021/acs.orglett.5c00602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Herein, we present a method for copper-catalyzed photoinduced radical Mizoroki-Heck (M-H) reactions utilizing unactivated alkyl iodides and styrene. This approach enables the smooth generation of (E)-olefin products with a good functional group tolerance, demonstrating broad applicability. The mechanism involves the in situ formation of a copper complex that binds to the alkyl iodide, leading to radical fragmentation under visible-light irradiation. This process generates alkyl radicals and a persistent copper(II) radical complex, both of which are crucial for subsequent olefin formation. Primary mechanistic studies support the photoinduced cleavage of the C(sp3)-I bond via an inner-sphere electron transfer (ISET) process involving an excited Cu(I) complex associated with the alkyl iodide. Finally, the formation of the M-H product occurs via a base-assisted β-H elimination process.
Collapse
Affiliation(s)
- Yongjie Xu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Hang Luo
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Dan Hu
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
| | - Lei Gao
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Fangnian Yu
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Sijia Li
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Chen-Yi Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
| | - Yu-Long Li
- College of Chemistry and Environmental Engineering, Sichuan University of Science and Engineering, Zigong, Sichuan 643000, China
| | - Min Gao
- Institute for Chemical Reaction Design and Discovery (ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
| | - Luqing Lin
- School of Chemistry, Dalian University of Technology, Dalian, Liaoning 116024, China
| |
Collapse
|
10
|
Morselli G, Reber C, Wenger OS. Molecular Design Principles for Photoactive Transition Metal Complexes: A Guide for "Photo-Motivated" Chemists. J Am Chem Soc 2025; 147:11608-11624. [PMID: 40147007 PMCID: PMC11987026 DOI: 10.1021/jacs.5c02096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/10/2025] [Accepted: 03/11/2025] [Indexed: 03/29/2025]
Abstract
Luminescence and photochemistry involve electronically excited states that are inherently unstable and therefore spontaneously decay to electronic ground states, in most cases by nonradiative energy release that generates heat. This energy dissipation can occur on a time scale of 100 fs (∼10-13 s) and usually needs to be slowed down to at least the nanosecond (∼10-9 s) time scale for luminescence and intermolecular photochemistry to occur. This is a challenging task with many different factors to consider. An alternative emerging strategy is to target dissociative excited states that lead to metal-ligand bond homolysis on the subnanosecond time scale to access synthetically useful radicals. Based on a thorough review at the most recent advances in the field, this article aims to provide a concise guide to obtaining luminescent and photochemically useful coordination compounds with d-block elements. We hope to encourage "photo-motivated" chemists who have been reluctant to apply their synthetic and other knowledge to photophysics and photochemistry, and we intend to stimulate new approaches to the synthetic control of excited state behavior.
Collapse
Affiliation(s)
- Giacomo Morselli
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Christian Reber
- Département
de chimie, Université de Montréal, Montréal QC H3C
3J7, Canada
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Müller L, Poll J, Nuernberger P, Ghosh I, König B. Quinones as Multifunctional Scaffolds for Oxidative, Reductive, and HAT Photocatalysis. Chemistry 2025; 31:e202404707. [PMID: 39961015 PMCID: PMC11973854 DOI: 10.1002/chem.202404707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 02/17/2025] [Indexed: 03/04/2025]
Abstract
Photoredox catalysis, which enables both electron and hydrogen atom transfer, has become a powerful tool for activating chemical bonds and synthesizing complex molecules under mild conditions. Typically, photocatalysts are optimized either for oxidative or reductive reactions within a limited redox window (less than 3.1 V) and for hydrogen atom transfer (HAT) reactions, with few frameworks capable of mediating both pathways for high redox-demanding reactions (covering more than a 5 V redox window) without requiring special conditions. Herein, we report the use of quinones as multifunctional scaffolds in light-driven redox transformations, offering access to a redox window of approximately 5 V using visible light. The quinone scaffold's versatility facilitates a wide range of radical and ionic processes under both oxidative and reductive conditions, in addition to enabling HAT reactions. By keeping the parameters, i. e. the reaction partners, constant, such transformations can be carried out under just two reaction conditions. Oxidative transformations and HAT reactions occur under ambient air, while activation of the chromophore for reductive transformations can be achieved using an inorganic base (Cs2CO3) via a simple acid-base deprotonation event. This dual capability highlights the potential of quinones as scaffolds to extend their utility in photoredox catalysis.
Collapse
Affiliation(s)
- Lea Müller
- Fakultät für Chemie und PharmazieUniversität Regensburg93053RegensburgGermany
| | - Jonas Poll
- Institut für Physikalische und Theoretische ChemieUniversität Regensburg93053RegensburgGermany
| | - Patrick Nuernberger
- Institut für Physikalische und Theoretische ChemieUniversität Regensburg93053RegensburgGermany
| | - Indrajit Ghosh
- Fakultät für Chemie und PharmazieUniversität Regensburg93053RegensburgGermany
- Nanotechnology CentreCentre for Energy and Environmental TechnologiesVSB - Technical University of Ostrava708 00Ostrava-PorubaCzech Republic
| | - Burkhard König
- Fakultät für Chemie und PharmazieUniversität Regensburg93053RegensburgGermany
| |
Collapse
|
12
|
Barreto S, Binette R, Murza A, Legault J, Pichette A, Boudreault PL, Couve-Bonnaire S, Castanheiro T. Cu-catalyzed photoredox chlorotrifluoromethylation of polysubstituted alkenes and pharmacological evaluation. Org Biomol Chem 2025; 23:3416-3422. [PMID: 40079070 DOI: 10.1039/d5ob00056d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
A visible-light-mediated chlorotrifluoromethylation catalyzed by a copper-based photo-redox catalyst of internal alkenes is reported. The reaction proceeds with complete regioselectivity under mild reaction conditions using commercially available F3CSO2Cl as both the trifluoromethyl and chlorine source, leading to the synthesis of added-value chemicals with atom-economy. A vast array of internal alkenes were functionalized in decent to good yields, highlighting a great tolerance to various functional groups. A radical process starting from a single electron reduction of F3CSO2Cl with an excited copper catalyst was evidenced, and the synthetic utility of our products was showcased by the synthesis of valuable molecules such as α-trifluoromethylated amides, α-trifluoromethylated-β-aminoamides, and trifluoromethyl alkenes. In addition, the library was evaluated in vitro for its cytotoxicity against lung carcinoma (A549) and colorectal adenocarcinoma (DLD-1) cell lines, and for its antifungal and antibacterial activities against C. albicans, E. coli and S. aureus strains, respectively. Compounds 2a, 2m, 2n, and 2o demonstrated anticancer activities, while compounds 2a, 6g, and 6h exhibited weak antibacterial activities, underscoring the therapeutic potential of this class of molecules and suggesting opportunities for further optimization.
Collapse
Affiliation(s)
- Shauna Barreto
- Univ Rouen Normandie, INSA Rouen Normandie, Univ Caen Normandie, ENSICAEN, CNRS, Institut CARMeN UMR 6064, F-76000 Rouen, France.
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrook, Sherbrooke, J1H5N4, QC, Canada.
| | - Renaud Binette
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrook, Sherbrooke, J1H5N4, QC, Canada.
| | - Alexandre Murza
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrook, Sherbrooke, J1H5N4, QC, Canada.
| | - Jean Legault
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, G7H2B1, QC, Canada
| | - André Pichette
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, G7H2B1, QC, Canada
| | - Pierre-Luc Boudreault
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, and Institut de Pharmacologie de Sherbrooke, Université de Sherbrook, Sherbrooke, J1H5N4, QC, Canada.
| | - Samuel Couve-Bonnaire
- Univ Rouen Normandie, INSA Rouen Normandie, Univ Caen Normandie, ENSICAEN, CNRS, Institut CARMeN UMR 6064, F-76000 Rouen, France.
| | - Thomas Castanheiro
- Univ Rouen Normandie, INSA Rouen Normandie, Univ Caen Normandie, ENSICAEN, CNRS, Institut CARMeN UMR 6064, F-76000 Rouen, France.
| |
Collapse
|
13
|
Juliá F. Catalysis in the Excited State: Bringing Innate Transition Metal Photochemistry into Play. ACS Catal 2025; 15:4665-4680. [PMID: 40144674 PMCID: PMC11934144 DOI: 10.1021/acscatal.4c07962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/11/2025] [Accepted: 02/11/2025] [Indexed: 03/28/2025]
Abstract
Transition metal catalysis is an indispensable tool for organic synthesis that has been harnessed, modulated, and perfected for many decades by careful selection of metal centers and ligands, giving rise to synthetic methods with unparalleled efficiency and chemoselectivity. Recent developments have demonstrated how light irradiation can also be recruited as a powerful tool to dramatically alter the outcome of catalytic reactions, providing access to innovative pathways with remarkable synthetic potential. In this context, the adoption of photochemical conditions as a mainstream strategy to drive organic reactions has unveiled exciting opportunities to exploit the rich excited-state framework of transition metals for catalytic applications. This Perspective examines advances in the application of transition metal complexes as standalone photocatalysts, exploiting the innate reactivity of their excited states beyond their common use as photoredox catalysts. An account of relevant examples is dissected to provide a discussion on the electronic reorganization, the orbitals involved, and the associated reactivity of different types of excited states. This analysis aims to provide practitioners with fundamental principles and guiding strategies to understand, design, and apply light-activation strategies to homogeneous transition metal catalysis for organic synthesis.
Collapse
Affiliation(s)
- Fabio Juliá
- Facultad de Química,
Centro de Investigación Multidisciplinar Pleiades-Vitalis, Universidad de Murcia, Campus de Espinardo, 30100 Murcia, Spain
| |
Collapse
|
14
|
Pal A, De S, Thakur A. Cobalt-based Photocatalysis: From Fundamental Principles to Applications in the Generation of C-X (X=C, O, N, H, Si) Bond. Chemistry 2025; 31:e202403667. [PMID: 39838597 DOI: 10.1002/chem.202403667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/20/2025] [Accepted: 01/21/2025] [Indexed: 01/23/2025]
Abstract
Over the past few decades, the merger of photocatalysis and transition metal-based catalysis or self-photoexcitation of transition metals has emerged as a useful tool in organic transformations. In this context, cobalt-based systems have attracted significant attention as sustainable alternatives to the widely explored platinum group heavy metals (iridium, rhodium, ruthenium) for photocatalytic chemical transformations. This review encompasses the basic types of cobalt-based homogeneous photocatalytic systems, their working principles, and the recent developments (2018-2024) in C-X (X=C, N, O, H, Si) bond formations. Noteworthy to mention that cobalt-based heterogeneous photocatalysis is beyond the scope of the present review. An elaborate presentation on the mechanistic intricacies of cobalt-based photocatalysis, without any external photocatalyst, and cobalt-based dual organophotoredox catalysis have been provided in this comprehensive review, excluding the dual-metal photoredox catalysis. To the best of our knowledge, this is the only contemporary review encompassing the aforementioned two major types of cobalt-based photocatalysis, in general synthetic chemistry, covering all types of C-X bond formations spanning a range of the last six years.
Collapse
Affiliation(s)
- Adwitiya Pal
- Department of Chemistry, Jadavpur University, Kolkata-, 700032, West Bengal, India
| | - Soumita De
- Department of Chemistry, Jadavpur University, Kolkata-, 700032, West Bengal, India
| | - Arunabha Thakur
- Department of Chemistry, Jadavpur University, Kolkata-, 700032, West Bengal, India
| |
Collapse
|
15
|
Thillman A, Kill EC, Erickson AN, Wang D. Visible-Light-Driven Catalytic Dehalogenation of Trichloroacetic Acid and α-Halocarbonyl Compounds: Multiple Roles of Copper. ACS Catal 2025; 15:3873-3881. [PMID: 40078408 PMCID: PMC11894595 DOI: 10.1021/acscatal.4c07845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/16/2025] [Accepted: 01/21/2025] [Indexed: 03/14/2025]
Abstract
Herein, we report the reaction development and mechanistic studies of visible-light-driven Cu-catalyzed dechlorination of trichloroacetic acid for the highly selective formation of monochloroacetic acid. Visible-light-driven transition metal catalysis via an inner-sphere pathway features the dual roles of transition metal species in photoexcitation and substrate activation steps, and a detailed mechanistic understanding of their roles is crucial for the further development of light-driven catalysis. This catalytic method, which features environmentally desired ascorbic acid as the hydrogen atom source and water/ethanol as the solvent, can be further applied to the dehalogenation of a variety of halocarboxylic acids and amides. Spectroscopic, X-ray crystallographic, and kinetic studies have revealed the detailed mechanism of the roles of copper in photoexcitation, thermal activation of the first C-Cl bond, and excited-state activation of the second C-Cl bond via excited-state chlorine atom transfer.
Collapse
Affiliation(s)
- Abigail
J. Thillman
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Erin C. Kill
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Alexander N. Erickson
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| | - Dian Wang
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201, United States
| |
Collapse
|
16
|
Matsukuma K, Tayu M, Ogino T, Ohrui S, Noji M, Hayashi S, Saito N. Photoredox/Sulfide Dual Catalysis for Modular Synthesis of Multi-substituted Furan Rings via Catalytic Indirect Reductive Quenching. Chem Asian J 2025; 20:e202401442. [PMID: 39762156 DOI: 10.1002/asia.202401442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/06/2025] [Indexed: 01/18/2025]
Abstract
The catalytic indirect reductive quenching method is facilitated by a combination of Ir(III) photoredox and sulfide dual-catalysis system. This study demonstrated a method for synthesizing multi-substituted furans by using a photoredox/sulfide dual-catalysis system. This method enables the synthesis of various furan derivatives, including spirofurans and phthalans. The utility of this system was demonstrated through gram-scale synthesis of the pharmaceutical molecule talopram. Mechanistic studies and density functional theory calculations suggested the formation of sulfonium species via sulfide radical cations, followed by intramolecular cyclization to produce the desired furan derivatives.
Collapse
Affiliation(s)
- Kakeru Matsukuma
- Department Laboratory of Organic and Medicinal Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Masanori Tayu
- Department Laboratory of Organic and Medicinal Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Takumi Ogino
- Department Laboratory of Organic and Medicinal Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Sayaka Ohrui
- Department Laboratory of Organic and Medicinal Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Masahiro Noji
- Department Laboratory of Physical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Satoshi Hayashi
- Department Laboratory of Physical Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| | - Nozomi Saito
- Department Laboratory of Organic and Medicinal Chemistry, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose, Tokyo, 204-8588, Japan
| |
Collapse
|
17
|
Xu JC, Yue JP, Pan M, Chen YC, Wang W, Zhou X, Zhang W, Ye JH, Yu DG. Metallaphotoredox-catalyzed alkynylcarboxylation of alkenes with CO 2 and alkynes for expedient access to β-alkynyl acids. Nat Commun 2025; 16:1850. [PMID: 39984439 PMCID: PMC11845457 DOI: 10.1038/s41467-025-57060-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025] Open
Abstract
Carboxylation with CO2 offers an attractive and sustainable access to valuable carboxylic acids. Among these methods, direct C-H carboxylation of terminal alkynes with CO2 has attracted much attention for one-carbon homologation of alkynes, enabling rapid synthesis of propiolic acids. In contrast, the multi-carbons homologation of alkynes with CO2 to construct important non-conjugated alkynyl-containing acids has not been reported. Herein, we present alkynylcarboxylation of alkenes with CO2 via photoredox and copper dual catalysis. This protocol provides a direct and practical method to form valuable non-conjugated alkynyl acids from readily available alkynes, alkenes and CO2. Additionally, this approach also features mild (room temperature, 1 atm of CO2) and redox-neutral conditions, high atom and step economy, good functional group tolerance, and high selectivities. Moreover, diverse transformations of the β-alkynyl acid products and the rapid synthesis of bioactive molecule (GPR40/FFA1 agonist) further illustrate the synthetic utility of this methodology.
Collapse
Affiliation(s)
- Jin-Cheng Xu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Jun-Ping Yue
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Min Pan
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Yi-Chi Chen
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Wei Wang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Xi Zhou
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Wei Zhang
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, PR China.
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu, PR China.
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, PR China.
| |
Collapse
|
18
|
Wang S, Wang L, Cui J, Zhang L, Zhang Q, Ke C, Huang S. Recent progress in C-S bond formation via electron donor-acceptor photoactivation. Org Biomol Chem 2025; 23:1794-1808. [PMID: 39831472 DOI: 10.1039/d4ob01951b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Recent advancements in C-S bond formation via electron donor-acceptor (EDA) complex photoactivation have been remarkable. EDA complexes, which are composed of electron donors and acceptors, facilitate C-S bond construction under mild conditions through single-electron transfer events upon visible light irradiation. This review highlights the utilization of various sulfur-containing substrates, including diacetoxybenzenesulfonyl (DABSO), sulfonic acids, sodium sulfinates, sulfonyl chlorides, and thiophenols, in EDA-promoted sulfonylation and thiolation reactions, covering the works published since 2017 to date. These reactions offer novel, environmentally friendly pathways for the synthesis of sulfur-containing compounds.
Collapse
Affiliation(s)
- Sichang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Liting Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Jin Cui
- Low Permeability Oil and Gas Field Exploration and Development of the National Engineering Laboratory, Xi'an Changqing Chemical Group Co. Ltd of Changqing Oilfield Company, Xi'An, Shaanxi, 710021, China
| | - Liying Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Qunzheng Zhang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Congyu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
| | - Shenlin Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
19
|
Saha P, Jin M, Huang DCY. Defluorinative C-O Coupling between Trifluoromethylarenes and Alcohols via Copper Photoredox Catalysis. Angew Chem Int Ed Engl 2025; 64:e202419591. [PMID: 39743826 DOI: 10.1002/anie.202419591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/19/2024] [Accepted: 01/01/2025] [Indexed: 01/04/2025]
Abstract
Fluorine-containing compounds have shown unparalleled impacts in the realm of functional molecules, and the ability to prepare novel structures has been crucial in unlocking new properties for applications in pharmaceutical and materials science. Herein, we report a copper-catalyzed, photoinduced defluorinative C-O coupling between trifluoromethylarenes and alcohols. This method allows for direct access to a wide selection of difluorobenzylether (ArCF2OR) molecules, including a compound displaying liquid crystal behavior. Through slight modification of the protocol, we were able to generate difluorobenzyliodide (ArCF2I) products, another class of synthetically useful fluorine-bearing molecules. Mechanistic investigations first suggested that ArCF2I can serve as a reservoir to steadily supply the key ArCF2⋅ radical species. Furthermore, experimental evidence supported a mechanism consisting of two collaborative cycles: C-F activation operated by a homoleptic Cu(I) coordinated by two bisphosphine ligands as the photocatalyst and C-O coupling promoted by a Cu(I) ligated by a single bisphosphine ligand. The critical roles of the two salt additives, lithium iodide and zinc acetate, in orchestrating the two cycles were also elucidated. This dual-role copper catalyst demonstrates the power of base metal photoredox catalysis in achieving both substrate activation and chemical bond formation via a single catalytic system.
Collapse
Affiliation(s)
- Priya Saha
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Mingoo Jin
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
- List Sustainable Digital Transformation Catalyst Collaboration Research Platform, Institute for Chemical Reaction Design and Discovery (ICReDD List-PF), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| | - Dennis Chung-Yang Huang
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21, Nishi 10, Kita-ku, Sapporo, Hokkaido, 001-0021, Japan
| |
Collapse
|
20
|
Beaucage N, Singh Z, Bourdon J, Collins SK. Tuning Co-Operative Energy Transfer in Copper(I) Complexes Using Two-Photon Absorbing Diimine-Based Ligand Sensitizers. Angew Chem Int Ed Engl 2025; 64:e202412606. [PMID: 39292148 PMCID: PMC11833277 DOI: 10.1002/anie.202412606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/19/2024]
Abstract
Photocatalysis mediated by low energy light wavelengths has potential to enable safer, sustainable synthetic methods. A phenanthroline-derived ligand bathocupSani, with a large two-photon absorption (TPA) cross section was used to construct a heteroleptic complex [Cu(bathocupSani)(DPEPhos)]BF4 and a homoleptic complex [Cu(bathocupSani)2]BF4. The ligand and the respective homoleptic complex with copper exhibit two-photon upconversion with an anti-Stokes shift of 1.2 eV using red light. The complex [Cu(bathocupSani)2]BF4 promoted energy transfer photocatalysis enabling oxidative dimerization of benzylic amines, sulfide oxidation, phosphine oxidation, boronic acid oxidation and atom-transfer radical addition.
Collapse
Affiliation(s)
- Noémie Beaucage
- Noémie BeaucageDr. Zujhar SinghJérémie Bourdon and Prof. Dr. Shawn K. CollinsDepartment of Chemistry and Centre for Green Chemistry and CatalysisUniversité de Montréal1375 Avenue Thérèse-Lavoie-RouxMontréal
| | - Zujhar Singh
- Noémie BeaucageDr. Zujhar SinghJérémie Bourdon and Prof. Dr. Shawn K. CollinsDepartment of Chemistry and Centre for Green Chemistry and CatalysisUniversité de Montréal1375 Avenue Thérèse-Lavoie-RouxMontréal
| | - Jérémie Bourdon
- Noémie BeaucageDr. Zujhar SinghJérémie Bourdon and Prof. Dr. Shawn K. CollinsDepartment of Chemistry and Centre for Green Chemistry and CatalysisUniversité de Montréal1375 Avenue Thérèse-Lavoie-RouxMontréal
| | - Shawn K. Collins
- Noémie BeaucageDr. Zujhar SinghJérémie Bourdon and Prof. Dr. Shawn K. CollinsDepartment of Chemistry and Centre for Green Chemistry and CatalysisUniversité de Montréal1375 Avenue Thérèse-Lavoie-RouxMontréal
| |
Collapse
|
21
|
Jin T, Sinha N, Wagner DS, Prescimone A, Häussinger D, Wenger OS. Making Mo(0) a Competitive Alternative to Ir(III) in Phosphors and Photocatalysts. J Am Chem Soc 2025; 147:4587-4594. [PMID: 39847344 PMCID: PMC11803708 DOI: 10.1021/jacs.4c16672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
Iridium is used in commercial light-emitting devices and in photocatalysis but is among the rarest stable chemical elements. Therefore, replacing iridium(III) in photoactive molecular complexes with abundant metals is of great interest. First-row transition metals generally tend to yield poorer luminescence behavior, and it remains difficult to obtain excited states with redox properties that exceed those of noble-metal-based photocatalysts. Here, we overcome these challenges with a nonprecious second-row transition metal. Tailored coordination spheres for molybdenum(0) lead to photoluminescence quantum yields that rival those of iridium(III) complexes and photochemical reduction reactions not normally achievable with iridium(III) become possible. These developments open new perspectives for replacing noble metals in lighting applications with Earth-abundant metals and for advancing metal-based photocatalysis beyond current limits.
Collapse
Affiliation(s)
- Tao Jin
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | | | - Dorothee S. Wagner
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Daniel Häussinger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
22
|
Xu E, Liu T, Xie F, He J, Zhang Y. Aerobic oxidation of alkylarenes and polystyrene waste to benzoic acids via a copper-based catalyst. Chem Sci 2025; 16:2004-2014. [PMID: 39759934 PMCID: PMC11696680 DOI: 10.1039/d4sc03269a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 12/03/2024] [Indexed: 01/07/2025] Open
Abstract
The chemical recycling of polystyrene (PS) waste to value-added aromatic compounds is an attractive but formidable challenge due to the inertness of the C-C bonds in the polymer backbone. Here we develop a light-driven, copper-catalyzed protocol to achieve aerobic oxidation of various alkylarenes or real-life PS waste to benzoic acid and oxidized styrene oligomers. The resulting oligomers can be further transformed under heating conditions, thus achieving benzoic acid in up to 65% total yield through an integrated one-pot two-step procedure. Mechanistic studies show that the CuCl2 catalyst undergoes Ligand-to-Metal Charge Transfer (LMCT) to generate a chlorine radical, which triggers activation of the C-H bond and subsequent oxidative cleavage of C-C bonds. The practicality and scalability of this strategy are demonstrated by depolymerization of real-life PS foam on a gram scale, thus showing promising application potential in chemical recycling of PS waste.
Collapse
Affiliation(s)
- Enjie Xu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Tianwei Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Fuyu Xie
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University Changchun Jilin 130012 China
| |
Collapse
|
23
|
Kim Y, Jang WJ. Recent advances in electrochemical copper catalysis for modern organic synthesis. Beilstein J Org Chem 2025; 21:155-178. [PMID: 39834892 PMCID: PMC11744695 DOI: 10.3762/bjoc.21.9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/23/2024] [Indexed: 01/22/2025] Open
Abstract
In recent decades, organic electrosynthesis has emerged as a practical, sustainable, and efficient approach that facilitates valuable transformations in synthetic chemistry. Combining electrochemistry with transition-metal catalysis is a promising and rapidly growing methodology for effectively forming challenging C-C and C-heteroatom bonds in complex molecules in a sustainable manner. In this review, we summarize the recent advances in the combination of electrochemistry and copper catalysis for various organic transformations.
Collapse
Affiliation(s)
- Yemin Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| | - Won Jun Jang
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
24
|
Pham LN, Olding A, Ho CC, Bissember AC, Coote ML. Investigating Competing Inner- and Outer-Sphere Electron-Transfer Pathways in Copper Photoredox-Catalyzed Atom-Transfer Radical Additions: Closing the Cycle. Angew Chem Int Ed Engl 2025; 64:e202415792. [PMID: 39317646 DOI: 10.1002/anie.202415792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 09/12/2024] [Accepted: 09/24/2024] [Indexed: 09/26/2024]
Abstract
This integrated computational and experimental study comprehensively examines the viability of competing inner-sphere electron transfer (ISET) and outer-sphere electron transfer (OSET) processes in [Cu(dap)2]+-mediated atom-transfer radical additions (ATRA) of olefins and CF3SO2Cl that can deliver both R-SO2Cl and R-Cl products. Five sterically- and electronically-varied representative alkenes were selected from which to explore and reconcile a range of experimentally observed outcomes. Findings are consistent with photoexcited [Cu(dap)2]+ initiating photoelectron transfer via ISET and the subsequent regeneration of the oxidized catalyst via ISET in the ground state to close the catalytic cycle and liberate products. R-SO2Cl/R-Cl product ratios appear to be primarily governed by the relative rates of direct catalyst regeneration {i.e., [Cu(dap)2SO2Cl]⋅++R⋅} and ligand exchange {i.e., [Cu(dap)2SO2Cl]⋅++Cl- }. Through this work, a more consistent and more complete conceptual framework has been developed to better understand this chemistry and how catalyst regeneration occurs. It is this important ground state process, which closes the catalytic cycle, and ultimately controls the enantioselectivity of ATRA reactions employing chiral copper photocatalysts.
Collapse
Affiliation(s)
- Le Nhan Pham
- Institute for Nanoscale Science and Technology, Flinders University, South Australia, Australia
| | - Angus Olding
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Curtis C Ho
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, Australia
| | - Michelle L Coote
- Institute for Nanoscale Science and Technology, Flinders University, South Australia, Australia
| |
Collapse
|
25
|
Wang J, Zhou F, Xu Y, Zhang L. Organometallic Photocatalyst-Promoted Synthesis and Modification of Carbohydrates under Photoirradiation. CHEM REC 2025; 25:e202400161. [PMID: 39727226 DOI: 10.1002/tcr.202400161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/25/2024] [Indexed: 12/28/2024]
Abstract
Carbohydrates are natural, renewable, chemical compounds that play crucial roles in biological systems. Thus, efficient and stereoselective glycosylation is an urgent task for the preparation of pure and structurally well-defined carbohydrates. Photoredox catalysis has emerged as a powerful tool in carbohydrate chemistry, providing an alternative for addressing some of the challenges of glycochemistry. Over the last few decades, Ir- and Ru-based organometallic photocatalysts have attracted significant interest because of their high stability, high-energy triplet state, strong visible-light absorption, long luminescence lifetime, and amenability to ligand modification. This review highlights the recent progress in the organometallic photocatalyst-promoted synthesis and modification of carbohydrates under photoirradiation, as well as the related benefits and drawbacks.
Collapse
Affiliation(s)
- Jing Wang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Fan Zhou
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Yuping Xu
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| | - Lei Zhang
- Qiandongnan Traditional Medicine Research & Development Center, School of Life and Health Science, Kaili University, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
- Key Laboratory for Modernization of Qiandongnan Miao & Dong Medicine, Higher Education Institutions in Guizhou Province, 3 Kaiyuan Road, Qiandongnan Miao and Dong Autonomous Prefecture, Kaili, 556011, China
| |
Collapse
|
26
|
Laohapaisan P, Roy I, Nagib DA. Chiral pyrrolidines via an enantioselective Hofmann-Löffler-Freytag reaction. CHEM CATALYSIS 2024; 4:101149. [PMID: 39897703 PMCID: PMC11785401 DOI: 10.1016/j.checat.2024.101149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Radical C-H aminations enable rapid access to the most common heterocycles in medicines (e.g. pyrrolidines), yet stereocontrol of these powerful transformations remains a challenge. Here, we report the discovery of the first enantio- and regio- selective C-H imination, which readily converts ketones to enantioenriched pyrrolidines. This enantioselective Hofmann-Löffler-Freytag reaction mechanism entails iminyl radical generation from an oxime by a chiral Cu catalyst that facilitates 1,5-H-atom transfer (HAT) to form a remote C-radical, regioselectively. The selective capture of this alkyl radical as an organocopper(III) complex then mediates highly stereoselective reductive elimination to unprotected pyrrolines. The broad steric and electronic scope of this remote C-H amination has been probed systematically, along with key mechanistic aspects of enantiodetermination, radical intermediacy, and atypical Cu(III) ligands that enable this uniquely selective C-N coupling. Importantly, either (1) reductions or (2) nucleophilic additions to these enantioenriched pyrrolines provide the most rapid syntheses of chiral pyrrolidines to date.
Collapse
Affiliation(s)
| | | | - David A Nagib
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
27
|
Chen M, Guo C, Qin L, Wang L, Qiao L, Chi K, Tang Z. Atomically Precise Cu Nanoclusters: Recent Advances, Challenges, and Perspectives in Synthesis and Catalytic Applications. NANO-MICRO LETTERS 2024; 17:83. [PMID: 39625605 PMCID: PMC11615184 DOI: 10.1007/s40820-024-01555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Accepted: 09/30/2024] [Indexed: 12/06/2024]
Abstract
Atomically precise metal nanoclusters are an emerging type of nanomaterial which has diverse interfacial metal-ligand coordination motifs that can significantly affect their physicochemical properties and functionalities. Among that, Cu nanoclusters have been gaining continuous increasing research attentions, thanks to the low cost, diversified structures, and superior catalytic performance for various reactions. In this review, we first summarize the recent progress regarding the synthetic methods of atomically precise Cu nanoclusters and the coordination modes between Cu and several typical ligands and then discuss the catalytic applications of these Cu nanoclusters with some explicit examples to explain the atomical-level structure-performance relationship. Finally, the current challenges and future research perspectives with some critical thoughts are elaborated. We hope this review can not only provide a whole picture of the current advances regarding the synthesis and catalytic applications of atomically precise Cu nanoclusters, but also points out some future research visions in this rapidly booming field.
Collapse
Affiliation(s)
- Mengyao Chen
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Chengyu Guo
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lubing Qin
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Lei Wang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China
| | - Liang Qiao
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, People's Republic of China
| | - Kebin Chi
- Petrochemical Research Institute, PetroChina Company Limited, Beijing, 102206, People's Republic of China
| | - Zhenghua Tang
- New Energy Research Institute, School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, People's Republic of China.
- Key Laboratory of Functional Inorganic Material Chemistry (Heilongjiang University), Ministry of Education, Harbin, 150001, People's Republic of China.
| |
Collapse
|
28
|
Pradhan S, Satav D, Dutta S, Maity B, Cavallo L, Sundararaju B. Reductive coupling of allenyl/allyl carbonate with alkyne under dual cobalt-photoredox catalysis. Nat Commun 2024; 15:10421. [PMID: 39613777 DOI: 10.1038/s41467-024-54718-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Skipped dienes are among the most prevalent motifs in a vast array of natural products, medicinal compounds, and fatty acids. Herein, we disclose a straightforward one-step reductive protocol under Co/PC for the synthesis of diverse 1,4-dienes with excellent regio- and stereoselectivity. The protocol employs allenyl or allyl carbonate as π-allyl source, allowing for the direct synthesis of skipped diene with a broad range of alkynes including terminal alkynes, propargylic alcohols, and internal alkynes. The method also demonstrated the biomimetic homologation of natural terpenols into synthetic counterparts via iterative allylation of three-carbon allyl units, employing propargylic alcohol as a readily available alkyne source. Experimental studies, control experiments, and DFT calculations suggest the dual catalytic process generates 1,3-diene from allenyl carbonate, followed by proton and electron transfer leading to Co(II)-π-allyl species prior to the alkyne coupling. The catalytic cycle transitions through Co(II), Co(I), and Co(III).
Collapse
Affiliation(s)
- Subhankar Pradhan
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Dhananjay Satav
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Sayan Dutta
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Bholanath Maity
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| | - Basker Sundararaju
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
| |
Collapse
|
29
|
Sagadevan A, Murugesan K, Bakr OM, Rueping M. Copper nanoclusters: emerging photoredox catalysts for organic bond formations. Chem Commun (Camb) 2024; 60:13858-13866. [PMID: 39530552 DOI: 10.1039/d4cc04774e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Advancements in fine chemical synthesis and drug discovery continuously demand the development of new and more efficient catalytic systems. In this regard, numerous transition metal-based catalysts have been developed and successfully applied in industrial processes. However, the need for innovative catalyst systems to further enhance the efficiency of chemical transformations and industrial applications persists. Metal nanoclusters (NCs) represent a distinct class of ultra-small nanoparticles (<3 nm) characterized by a precise number of metal atoms coordinated with a defined number of ligands. This structure confers abundant unsaturated active sites and unique electronic and optical properties, setting them apart from conventional nanoparticles or bulk metals. The well-defined structure and monodisperse nature of NCs make them particularly attractive for catalytic applications. Among these, copper-based nanoclusters have emerged as versatile and sustainable catalysts for challenging organic bond-forming reactions. Their unique properties, including natural abundance, accessible oxidation states, diverse ligand architectures, and strong photophysical characteristics, contribute to their growing prominence in this field. In this review, we discuss the photocatalytic activities of Cu-based nanoclusters, focusing on their applications in cross-coupling reactions (C-C and C-N), click reactions, multicomponent couplings, and oxidation reactions.
Collapse
Affiliation(s)
- Arunachalam Sagadevan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Kathiravan Murugesan
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Osman M Bakr
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Magnus Rueping
- KAUST Catalysis Center (KCC), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| |
Collapse
|
30
|
Mukherjee U, Shah JA, Ngai MY. Visible Light-Driven Excited-State Copper-BINAP Catalysis for Accessing Diverse Chemical Reactions. CHEM CATALYSIS 2024; 4:101184. [PMID: 39735819 PMCID: PMC11671124 DOI: 10.1016/j.checat.2024.101184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2024]
Abstract
The use of visible light to drive chemical transformations has a history spanning over a century. However, the development of photo-redox catalysts to efficiently harness light energy is a more recent advancement, evolving over the past two decades. While ruthenium and iridium-based photocatalysts dominate due to their photostability, long excited-state lifetimes, and high redox potentials, concerns about sustainability and cost have shifted attention to first-row transition metals. Luminescent Cu(I) complexes have emerged as promising alternatives, offering open-shell reactivity and tunable photoelectrochemical properties. This review (i) provides an overview of the structural, photophysical, and electrochemical properties governing copper(I) complexes; (ii) highlights advances in Cu(I)-BINAP catalysis for carbon-carbon and carbon-heteroatom bond formations under mild conditions; and (iii) analyzes the trajectory of this catalytic system, addressing challenges and identifying opportunities for further development.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Jagrut A. Shah
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
31
|
Chen S, Ding D, Yin L, Wang X, Krause JA, Liu W. Overcoming Copper Reduction Limitation in Asymmetric Substitution: Aryl-Radical-Enabled Enantioconvergent Cyanation of Alkyl Iodides. J Am Chem Soc 2024; 146:31982-31991. [PMID: 39505711 PMCID: PMC11955248 DOI: 10.1021/jacs.4c11888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
Cu-catalyzed enantioconvergent cross-coupling of alkyl halides has emerged as a powerful strategy for synthesizing enantioenriched molecules. However, this approach is intrinsically limited by the weak reducing power of copper(I) species, which restricts the scope of compatible nucleophiles and necessitates extensive ligand optimization or the use of complex chiral scaffolds. To overcome these challenges, we introduce an aryl-radical-enabled strategy that decouples the alkyl halide activation step from the chiral Cu center. We demonstrate that merging aryl-radical-enabled iodine abstraction with Cu-catalyzed asymmetric radical functionalization enables the conversion of racemic α-iodoamides to enantioenriched alkyl nitrile products with good yield and enantioselectivity. The rational design of chiral ligands identified a new class of carboxamide-containing BOX ligands. Mechanistic studies support an aryl-radical-enabled pathway and the unique hydrogen-bonding ability in the newly designed BOX ligands. This aryl-radical-enabled asymmetric substitution reaction has the potential to significantly expand the scope of Cu-catalyzed enantioconvergent cross-coupling reactions.
Collapse
Affiliation(s)
- Su Chen
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Decai Ding
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Lingfeng Yin
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Xiao Wang
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Jeanette A Krause
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| | - Wei Liu
- Department of Chemistry, University of Cincinnati, Cincinnati, Ohio 45221, United States
| |
Collapse
|
32
|
Wang PZ, Zhang B, Xiao WJ, Chen JR. Photocatalysis Meets Copper Catalysis: A New Opportunity for Asymmetric Multicomponent Radical Cross-Coupling Reactions. Acc Chem Res 2024. [PMID: 39535732 DOI: 10.1021/acs.accounts.4c00638] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
ConspectusIn recent years, radical-mediated cross-coupling reactions have emerged as a compelling strategy for achieving a rich diversity in molecular topologies under benign conditions. However, the inherent high reactivity of radicals presents considerable challenges in controlling reaction pathways and selectivity, which often results in a limited range of substrates and a constrained reaction profile. Given the capacity of visible-light photoredox catalysis to generate a wide variety of reactive radicals and radical ions in a controlled manner and the propensity of copper complexes toward radical species, we envisaged that the synergy between chiral copper catalysts and photoactive catalysts would pave the way for developing innovative strategies. This integration is poised to unlock a broad spectrum of enantioselective multicomponent radical cross-coupling reactions.In this Account, we describe our insights and recent efforts in the realm of enantioselective multicomponent radical cross-coupling reactions. These advancements have been achieved through the innovative application of dual photoredox/copper catalysis or bifunctional copper catalysis under visible light irradiation. Our work is systematically divided into two sections based on the activation modes. The first section focuses on photoinduced copper-catalyzed chiral C-C and C-O bond formation through a radical addition/nucleophilic trap sequence. Our discussion of chiral C-C bond formation is particularly concentrated on the asymmetric carbocyanation and carboarylation of vinylarenes, 1,3-enynes, and 1,3-dienes. Our findings underscore that irradiation with visible light can adeptly modulate the pace of radical generation, thus orchestrating consecutive reaction stages and ensuring the attainment of both chemo- and stereoselectivity. In the domain of chiral C-O bond formation, leveraging carboxylic acids as a nucleophilic oxygen source, we introduce a suite of esterification reactions of benzylic, allylic, and propargylic radicals. These radicals are derived from a variety of radical precursors, showcasing the versatility of our approach. The following section highlights our innovative discovery in the field of dual photoredox/copper catalysis, which enables enantioselective three-component radical transformations via the direct activation of aromatic alkenes. This methodology begins with the generation of formal distonic radical anions through the photocatalytic single-electron reduction of aromatic alkenes, thus, enabling orthogonal reactivity. Employing H2O, D2O, and CO2 as external electrophile agents, we have developed three types of radical cyanofunctionalization reactions: hydrocyanation, deuteriocyanation, and cyanocarboxylation. These reactions provide practical access to diversely functionalized chiral nitriles with high enantiomeric excess.Collectively, these synthetic methodologies highlight the immense potential inherent in the synergistic integration of photocatalysis and asymmetric copper catalysis. This Account aspires to deepen our comprehension of the advantages conferred by these catalytic systems, elucidating the crucial role of photocatalysis in facilitating enantioselective multicomponent radical cross-couplings. We anticipate that this Account will provide valuable insights and stimulate the evolution of innovative methodologies within this rapidly expanding field.
Collapse
Affiliation(s)
- Peng-Zi Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Bin Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| | - Jia-Rong Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, China
| |
Collapse
|
33
|
Zhu S, Sun C, Zhu Z, Qu J, Fang Z, Chen Y, Lin J, Xu X, Cheng M, Jiang M, Zheng H. Copper-based photocatalysts with natural organic ligands for efficient removal of tetracycline under visible light. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 370:123052. [PMID: 39447352 DOI: 10.1016/j.jenvman.2024.123052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 10/17/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
The excessive use of broad-spectrum antibiotics, such as tetracycline, presents a significant challenge to human survival and development. Oxygen vacancies (OVs) metal-organic framework (MOF) materials were synthesized using natural organic acids (L-malic acid, L-aspartic acid, and L-asparagine) with similar structures but different charge densities, along with copper as the metal linking agent. The presence of oxygen vacancies in the catalyst provides abundant active sites for photocatalytic reactions. The employment of flexible straight-chain organic ligands devoid of rigid polycyclic rings, combined with the incorporation of different substituents to induce variations in charge density, the resulting catalysts exhibit distinct photocatalytic activities under visible light. Density functional theory calculations confirm that L-asparagine exhibits the largest electron density difference, and the Cu-based MOF (Cu-ASU) synthesized as an organic ligand exhibits the highest photocatalytic activity under visible light excitation. The catalyst displayed remarkable photocatalytic activity against tetracycline antibiotics under identical conditions (with removal rates of 93.5 % for tetracycline, 81.4 % for terramycin, and 95.6 % for chloramphenicol hydrochloride). This provides a novel approach for the design and synthesis of photocatalysts for the removal of antibiotics from water.
Collapse
Affiliation(s)
- Shouxin Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Can Sun
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zhexiao Zhu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jingyi Qu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Zijie Fang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Yangben Chen
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Jiahui Lin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Xiaolu Xu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Miaoyan Cheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China
| | - Min Jiang
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China.
| | - Hui Zheng
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 311121, PR China.
| |
Collapse
|
34
|
Ma F, Lin HW, Li Z, Li WJ, Wang JW, Ouyang G. Electronic Effects in Cobalt Phthalocyanine Catalysts Towards Noble-Metal-Free, Photocatalytic CO 2-to-CO Reduction. Molecules 2024; 29:4994. [PMID: 39519635 PMCID: PMC11547791 DOI: 10.3390/molecules29214994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/17/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Noble-metal-free CO2 reduction systems based on cobalt phthalocyanine (CoPc) and its derivatives have demonstrated remarkable photocatalytic performances; however, their structure-activity relationship with electronic tuning remains unexplored. Herein, we now provide a systematic study to investigate the electron effects of substituents on the CoPc family in photocatalytic CO2 reduction, where a Cu(I) heteroleptic photosensitizer is utilized. The highest performance can be achieved using cobalt tetracarboxylphthalocyanine in light-driven CO2-to-CO reduction, with a maximum turnover number of 2950 at 450 nm and an outstanding apparent quantum yield of 63.5% at 425 nm, over ten times the activity with the tetra-dimethylamino-substituted CoPc derivative. The favorable electron-withdrawing effects have been further verified by DFT calculations and cyclic voltammetry, which reduces the overpotential required for CO2 reduction and decreases the Gibbs free energy of the catalyst active intermediates, particularly the CO-desorption energetics.
Collapse
Affiliation(s)
- Fan Ma
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (F.M.); (H.-W.L.); (Z.L.); (W.-J.L.); (G.O.)
| | - Hong-Wei Lin
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (F.M.); (H.-W.L.); (Z.L.); (W.-J.L.); (G.O.)
| | - Zizi Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (F.M.); (H.-W.L.); (Z.L.); (W.-J.L.); (G.O.)
| | - Wen-Jing Li
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (F.M.); (H.-W.L.); (Z.L.); (W.-J.L.); (G.O.)
| | - Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (F.M.); (H.-W.L.); (Z.L.); (W.-J.L.); (G.O.)
| | - Gangfeng Ouyang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China; (F.M.); (H.-W.L.); (Z.L.); (W.-J.L.); (G.O.)
- Chemistry College, Center of Advanced Analysis and Gene Sequencing, Zhengzhou University, Zhengzhou 450001, China
- Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, Guangdong Institute of Analysis (China National Analytical Center Guangzhou), Guangzhou 510070, China
| |
Collapse
|
35
|
Wang PZ, Zhang Z, Jiang M, Chen JR, Xiao WJ. A General Copper-Box System for the Asymmetric Arylative Functionalization of Benzylic, Propargylic or Allenylic Radicals. Angew Chem Int Ed Engl 2024; 63:e202411469. [PMID: 39073195 DOI: 10.1002/anie.202411469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
Radical-involved arylative cross-coupling reactions have recently emerged as an attractive strategy to access valuable aryl-substituted motifs. However, there still exist several challenges such as limited scope of radical precursors/acceptors, and lack of general asymmetric catalytic systems, especially regarding the multicomponent variants. Herein, we reported a general copper-Box system for asymmetric three-component arylative radical cross-coupling of vinylarenes and 1,3-enynes, with oxime carbonates and aryl boronic acids. The reactions proceed under practical conditions in the absence or presence of visible-light irradiation, affording chiral 1,1-diarylalkanes, benzylic alkynes and allenes with good enantioselectivities. Mechanistic studies imply that the copper/Box complexes play a dual role in both radical generation and ensuing asymmetric cross-coupling. In the cases of 1,3-enynes, visible-light irradiation could improve the activity of copper/Box complex toward the initial radical generation, enabling better efficiency match between radical formation and cross-coupling.
Collapse
Affiliation(s)
- Peng-Zi Wang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Jia-Rong Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, Ministry of Education; College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| |
Collapse
|
36
|
Li J, Zhang D, Tan L, Li CJ. Direct Excitation Strategy for Deacylative Couplings of Ketones. Angew Chem Int Ed Engl 2024; 63:e202410363. [PMID: 39043558 DOI: 10.1002/anie.202410363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/23/2024] [Accepted: 07/23/2024] [Indexed: 07/25/2024]
Abstract
The homolysis of chemical bonds represents one of the most fundamental reactivities of excited molecules. Historically, it has been exploited to generate radicals under ultraviolet (UV) light irradiation. However, unlike most contemporary radical-generating mechanisms, the direct excitation to homolyze chemical bonds and produce aliphatic carbon-centered radicals under visible light remains rare, especially in metallaphotoredox cross couplings. Herein, we present our design of the dihydropyrimidoquinolinone (DHPQ) reagents derived from ketones, which can undergo formal deacylation and homolytic C-C bond cleavage to release alkyl radicals without external photocatalysts. Spectroscopic and computational analysis reveal unique optical and structural features of DHPQs, rationalizing their faster kinetics in alkyl radical generation than a structurally similar but visible-light transparent radical precursor. Such a capability allows DHPQ to facilitate a wide range of Ni-metallaphotoredox cross couplings with aryl, alkynyl and acyl halides. Other catalytic and non-catalyzed alkylative transformations of DHPQs are also feasible with various radical acceptors. We believe this work would be of broad interest, aiding the synthetic planning with simplified operation and expanding the synthetic reach of photocatalyst-free approaches in cutting-edge research.
Collapse
Affiliation(s)
- Jianbin Li
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Longgang District, Shenzhen, Guangdong, 518172, China
| | - Ding Zhang
- School of Science and Engineering, The Chinese University of Hong Kong, Shenzhen, 2001 Longxiang Road, Longgang District, Shenzhen, Guangdong, 518172, China
| | - Lida Tan
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3 A 0B8, Canada
| | - Chao-Jun Li
- Department of Chemistry, McGill University, 801 Sherbrooke St. West, Montréal, Québec, H3 A 0B8, Canada
| |
Collapse
|
37
|
Xin S, Liao J, Tang Q, Feng X, Liu X. Photoinduced copper-catalyzed asymmetric cyanoalkylalkynylation of alkenes, terminal alkynes, and oximes. Chem Sci 2024:d4sc05642f. [PMID: 39444560 PMCID: PMC11494415 DOI: 10.1039/d4sc05642f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 10/13/2024] [Indexed: 10/25/2024] Open
Abstract
The asymmetric dicarbofunctionalization of alkenes via a radical relay process can provide routes to diverse hydrocarbon derivatives. Three-component carboalkynylation, limited to particular alkyl halides and using readily available cycloketone oxime esters as redox-active precursors, is restricted by the available pool of suitable chiral ligands for broadening the redox potential window of copper complexes and simultaneously creating the enantiocontrol environment. Herein, we report a new hybrid tridentate ligand bearing a guanidine-amide-pyridine unit for photoinduced copper-catalyzed cyanoalkylalkynylation of alkenes. Leveraging the copper catalyst's redox capability is achieved via merging the electron-rich ligand with a readily organized configuration and enhanced absorption in the visible light range, which also facilitates the enantioselectivity. The generality of the catalyst system is exemplified by the efficacy across a number of alkenes, terminal alkynes and cycloketone oxime esters, working smoothly to give alkyne-bearing nitriles with good yields and excellent enantioselectivity. A mechanistic study reveals that the chiral copper catalyst meets the requirements of possessing sufficient reduction ability, good light absorption properties, and appropriate steric hindrance.
Collapse
Affiliation(s)
- Shuang Xin
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Jibang Liao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Qi Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University Chengdu 610064 P. R. China
| |
Collapse
|
38
|
Wu Y, Wang X, Wang Z, Chen C. Redox-neutral decarboxylative coupling of fluoroalkyl carboxylic acids via dual metal photoelectrocatalysis. Chem Sci 2024:d4sc06057a. [PMID: 39430939 PMCID: PMC11485129 DOI: 10.1039/d4sc06057a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024] Open
Abstract
Given the importance and beneficial characteristics of aliphatic CF3 chiral compounds in modern chemistry, efficient strategies for their synthesis are highly sought after. While α-CF3 carboxylic acid is an emerging and easily accessible CF3-containing synthon, its use as a source of fluoroalkyl is highly challenging due to its high oxidation potential. Herein, we disclose a photoelectrocatalytic method for the direct and enantioselective decarboxylative cross-coupling of α-CF3 carboxylic acids. Key to our approach is the strategic integration of the LMCT-induced decarboxylative process with classical nickel catalysis. This strategy enables the efficient synthesis of aliphatic chiral CF3 compounds with a broad range of substrates.
Collapse
Affiliation(s)
- Yaxing Wu
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University China
| | - Xiuling Wang
- Key Laboratory of Systems Bioengineering, Ministry of Education, Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University China
| | - Zhenyu Wang
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University China
| | - Chao Chen
- Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education), Department of Chemistry, Tsinghua University China
| |
Collapse
|
39
|
Gao CJ, Li ZX, Mou WL, Li YY, Jin GY, Fan SJ, Pan X, Han HL, Li ZF, Liu JM, Wang G, Yang W, Jin QH. Synthesis of Silver(I) Complexes through In Situ Reactions of dppeda with dmp in the Presence of Silver Halides for Photocatalysis. Inorg Chem 2024; 63:18689-18698. [PMID: 39303191 DOI: 10.1021/acs.inorgchem.4c02158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Due to the unique photosensitivity of silver compounds, they exhibit good photocatalytic activity as photocatalysts in the degradation of water pollutants. However, silver compounds have poor cycling stability and are prone to decomposition and reaction under light to form metallic silver, which greatly limits their practical application. Herein, a (2-(2-(diphenylphosphaneyl)ethyl)-9-methyl-1.10-phenanthroline (PSNNP)) pincer ligand was designed for stabilizing the central metal. The in situ-formed PSNNP ligand could be readily generated in one pot with the participation of silver halides. The reaction of silver halides with dppeda (N,N,N',N'-tetra(diphenylphosphanylmethyl)ethylene diamine) in the presence of dmp (2,9-dimethyl-1,10-phenanthroline) in acetonitrile afforded complexes Ag2X2 (PSNNP)2 (complexes 1, 2) (X = Cl, Br). Single-crystal X-ray diffraction shows that the tridentate coordination of the pincer ligand provides strong binding with metal centers and leads to high stability of the pincer metal unit. The removal rate of rhodamine B (RhB) by complexes 1 and 2 can reach up to 100%, demonstrating an excellent photocatalytic degradation performance for organic dyes. The important effect of PSNNP ligands on photocatalytic properties after coordination with central metals was studied through experiments and discrete Fourier transform (DFT) calculations. The photocatalytic reaction mechanism of complexes 1 and 2 was also studied. This result provides an effective pathway for the first synthesis of PSNNP and interesting insights into photocatalytic degradation chemistry.
Collapse
Affiliation(s)
- Cheng-Jie Gao
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zi-Xi Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wen-Long Mou
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Ying-Yu Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Guan-Yu Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Si-Jie Fan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Xun Pan
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Hong-Liang Han
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Zhong-Feng Li
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Jian-Ming Liu
- Mathematical Sciences, Peking University, Beijing 100871, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing 100048, China
| | - Wei Yang
- Faculty of Food Science and Technology, Suzhou Polytechnical Institute of Agriculture, Suzhou 215008, China
| | - Qiong-Hua Jin
- Department of Chemistry, Capital Normal University, Beijing 100048, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
- The State Key Laboratory of Rare Earth Resource Utilization, Changchun, Jilin 130000, China
| |
Collapse
|
40
|
Tang S, Xu H, Dang Y, Yu S. Photoexcited Copper-Catalyzed Enantioselective Allylic C(sp 3)-H Acyloxylation of Acyclic Internal Alkenes. J Am Chem Soc 2024; 146:27196-27203. [PMID: 39288447 DOI: 10.1021/jacs.4c11145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The functionalization of C-H bonds streamlines the synthesis of complex molecules by eliminating the need for substrate preactivation. Traditionally, the Kharasch-Sosnovsky reaction, which directly oxidizes allylic C-H bonds into allylic esters under copper catalysis, has been hampered by long reaction times, limited substrate scope, and low enantioselectivity with acyclic olefins. Herein, we present a novel, visible light-driven, copper-catalyzed asymmetric Kharasch-Sosnovsky reaction that overcomes these challenges. This method expands the substrate scope to include acyclic internal alkenes and improves reaction conditions using eco-friendly visible light catalysis. It enhances radical reactivity and achieves superior enantioselectivity and regioselectivity in producing allylic C-H acyloxylation products. This breakthrough significantly advances direct C-H functionalization techniques, offering a more efficient and sustainable approach to synthesizing chiral molecules.
Collapse
Affiliation(s)
- Sheng Tang
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hui Xu
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Yanfeng Dang
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University, Tianjin 300072, China
| | - Shouyun Yu
- State Key Laboratory of Analytical Chemistry for Life Science, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
41
|
Li S, Li X, Zhao K, Yang X, Xu J, Xu HJ. Defluorinative Haloalkylation of Unactivated Alkenes Enabled by Dual Photoredox and Copper Catalysis. J Org Chem 2024; 89:13518-13529. [PMID: 39253778 DOI: 10.1021/acs.joc.4c01707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
A three-component defluorinative haloalkylation of alkenes with trifluoromethyl compounds and TBAX (X = Cl, Br) via dual photoredox/copper catalysis is reported. The mild conditions are compatible with a wide array of activated trifluoromethyl aromatics bearing diverse substituents, and various nonactivated terminal and internal alkenes, enabling straightforward access to synthetically valuable γ-gem-difluoroalkyl halides with high efficiency. Mechanistic studies indicate that the [Cu] complexes not only serve as XAT catalysts but also facilitate the SET reduction of trifluoromethyl groups by photocatalysts. Additionally, the resulting alkyl halide products can serve as versatile conversion intermediates for the synthesis of a diverse range of γ-gem-difluoroalkyl compounds.
Collapse
Affiliation(s)
- Shiyu Li
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinguang Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Kuikui Zhao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Xinyu Yang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Jun Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Hua-Jian Xu
- School of Chemistry and Chemical Engineering, Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009, P. R. China
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
42
|
Nair AM, Rahaman R, Patra J, Volla CMR. Dual Copper Photoredox C-H Alkynylation with Arylacetylenes. Org Lett 2024; 26:7822-7827. [PMID: 39255343 DOI: 10.1021/acs.orglett.4c02578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
In the realm of organic synthesis, direct C-H alkynylation with arylacetylenes has remained a daunting challenge due to competing annulations or alkenylation. Addressing this long-standing issue, herein we demonstrate the merging of copper and photocatalysis to achieve the elusive C-H alkynylation of benzamides using arylacetylenes or arylpropiolic acids. Unlike conventional copper-mediated C-H activations, our protocol circumvents the need for high temperatures and stoichiometric amounts of copper salts or metal/non-metal oxidants. The versatility of the developed dual copper photoredox system is underscored by performing other diverse C-H functionalizations such as amination, selenylation, arylation, sulfonylation, and nitration under slightly modified conditions.
Collapse
Affiliation(s)
- Akshay M Nair
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Rajjakfur Rahaman
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Jatin Patra
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Chandra M R Volla
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| |
Collapse
|
43
|
Wang X, He J, Wang YN, Zhao Z, Jiang K, Yang W, Zhang T, Jia S, Zhong K, Niu L, Lan Y. Strategies and Mechanisms of First-Row Transition Metal-Regulated Radical C-H Functionalization. Chem Rev 2024; 124:10192-10280. [PMID: 39115179 DOI: 10.1021/acs.chemrev.4c00188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Radical C-H functionalization represents a useful means of streamlining synthetic routes by avoiding substrate preactivation and allowing access to target molecules in fewer steps. The first-row transition metals (Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) are Earth-abundant and can be employed to regulate radical C-H functionalization. The use of such metals is desirable because of the diverse interaction modes between first-row transition metal complexes and radical species including radical addition to the metal center, radical addition to the ligand of metal complexes, radical substitution of the metal complexes, single-electron transfer between radicals and metal complexes, hydrogen atom transfer between radicals and metal complexes, and noncovalent interaction between the radicals and metal complexes. Such interactions could improve the reactivity, diversity, and selectivity of radical transformations to allow for more challenging radical C-H functionalization reactions. This review examines the achievements in this promising area over the past decade, with a focus on the state-of-the-art while also discussing existing limitations and the enormous potential of high-value radical C-H functionalization regulated by these metals. The aim is to provide the reader with a detailed account of the strategies and mechanisms associated with such functionalization.
Collapse
Affiliation(s)
- Xinghua Wang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Ya-Nan Wang
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
| | - Zhenyan Zhao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Wei Yang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Tao Zhang
- Institute of Intelligent Innovation, Henan Academy of Sciences, Zhengzhou, Henan 451162, P. R. China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
| | - Kangbao Zhong
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan 450001, P. R. China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing 401331, P. R. China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan 453007, P. R. China
| |
Collapse
|
44
|
Caliskanyürek V, Riabchunova A, Kupfer S, Ma F, Wang JW, Karnahl M. Exploring the Potential of Al(III) Photosensitizers for Energy Transfer Reactions. Inorg Chem 2024; 63:15829-15840. [PMID: 39132844 DOI: 10.1021/acs.inorgchem.4c01922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Three homoleptic Al(III) complexes (Al1-Al3) with different degrees of methylation at the 2-pyridylpyrrolide ligand were systematically tested for their function as photosensitizers (PS) in two types of energy transfer reactions. First, in the generation of reactive singlet oxygen (1O2), and second, in the isomerization of (E)- to (Z)-stilbene. 1O2 was directly evidenced by its characteristic NIR emission at around 1276 nm and indirectly by the reaction with an organic substrate [e.g. 2,5-diphenylfuran (DPF)] using in situ UV/vis spectroscopy. In a previous study, the presence of additional methyl groups was found to be beneficial for the photocatalytic reduction of CO2 to CO, but here Al1 without any methyl groups exhibits superior performance. To rationalize this behavior, a combination of photophysical experiments (absorption, emission and excited state lifetimes) together with photostability measurements and scalar-relativistic time-dependent density functional theory calculations was applied. As a result, Al1 exhibited the highest emission quantum yield (64%), the longest emission lifetime (8.7 ns) and the best photostability under the reaction conditions required for the energy transfer reactions (e.g. in aerated chloroform). Moreover, Al1 provided the highest rate constant (0.043 min-1) for the photocatalytic oxygenation of DPF, outperforming even noble metal-based competitors such as [Ru(bpy)3]2+. Finally, its superior photostability enabled a long-term test (7 h), in which Al1 was successfully recycled seven times, underlining the high potential of this new class of earth-abundant PSs.
Collapse
Affiliation(s)
- Volkan Caliskanyürek
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Anastasiia Riabchunova
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| | - Stephan Kupfer
- Institute of Physical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Fan Ma
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Jia-Wei Wang
- School of Chemical Engineering and Technology, Sun Yat-sen University, Zhuhai 519082, China
| | - Michael Karnahl
- Department of Energy Conversion, Institute of Physical and Theoretical Chemistry, Technische Universität Braunschweig, Rebenring 31, 38106 Braunschweig, Germany
| |
Collapse
|
45
|
Beil SB, Bonnet S, Casadevall C, Detz RJ, Eisenreich F, Glover SD, Kerzig C, Næsborg L, Pullen S, Storch G, Wei N, Zeymer C. Challenges and Future Perspectives in Photocatalysis: Conclusions from an Interdisciplinary Workshop. JACS AU 2024; 4:2746-2766. [PMID: 39211583 PMCID: PMC11350580 DOI: 10.1021/jacsau.4c00527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 07/25/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024]
Abstract
Photocatalysis is a versatile and rapidly developing field with applications spanning artificial photosynthesis, photo-biocatalysis, photoredox catalysis in solution or supramolecular structures, utilization of abundant metals and organocatalysts, sustainable synthesis, and plastic degradation. In this Perspective, we summarize conclusions from an interdisciplinary workshop of young principal investigators held at the Lorentz Center in Leiden in March 2023. We explore how diverse fields within photocatalysis can benefit from one another. We delve into the intricate interplay between these subdisciplines, by highlighting the unique challenges and opportunities presented by each field and how a multidisciplinary approach can drive innovation and lead to sustainable solutions for the future. Advanced collaboration and knowledge exchange across these domains can further enhance the potential of photocatalysis. Artificial photosynthesis has become a promising technology for solar fuel generation, for instance, via water splitting or CO2 reduction, while photocatalysis has revolutionized the way we think about assembling molecular building blocks. Merging such powerful disciplines may give rise to efficient and sustainable protocols across different technologies. While photocatalysis has matured and can be applied in industrial processes, a deeper understanding of complex mechanisms is of great importance to improve reaction quantum yields and to sustain continuous development. Photocatalysis is in the perfect position to play an important role in the synthesis, deconstruction, and reuse of molecules and materials impacting a sustainable future. To exploit the full potential of photocatalysis, a fundamental understanding of underlying processes within different subfields is necessary to close the cycle of use and reuse most efficiently. Following the initial interactions at the Lorentz Center Workshop in 2023, we aim to stimulate discussions and interdisciplinary approaches to tackle these challenges in diverse future teams.
Collapse
Affiliation(s)
- Sebastian B. Beil
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- Max Planck
Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mulheim an der Ruhr, Germany
| | - Sylvestre Bonnet
- Leiden Institute
of Chemistry, Leiden University, Gorlaeus
Laboratories, PO Box 9502, 2300 RA Leiden, The Netherlands
| | - Carla Casadevall
- Department
of Physical and Inorganic Chemistry, University
Rovira i Virgili (URV), C/Marcel.lí Domingo, 1, 43007 Tarragona, Spain
- Institute
of Chemical Research of Catalonia (ICIQ), The Barcelona Institute
of Science and Technology, Avinguda dels Països Catalans, 16, 43007 Tarragona, Spain
| | - Remko J. Detz
- Energy Transition
Studies (ETS), Netherlands Organization
for Applied Scientific Research (TNO), Radarweg 60, 1043
NT Amsterdam, The
Netherlands
| | - Fabian Eisenreich
- Department
of Chemical Engineering and Chemistry & Institute for Complex
Molecular Systems, Eindhoven University
of Technology, 5600 MB Eindhoven, The Netherlands
| | - Starla D. Glover
- Department
of Chemistry, Ångström Laboratory, Uppsala University, Box 523, 75120 Uppsala, Sweden
| | - Christoph Kerzig
- Department
of Chemistry, Johannes Gutenberg University
Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Line Næsborg
- Department
of Organic Chemistry, University of Münster, Correnstr. 40, 48149 Münster, Germany
| | - Sonja Pullen
- Homogeneous
and Supramolecular Catalysis, Van ’t Hoff Institute for Molecular
Sciences, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
| | - Golo Storch
- Technical
University of Munich (TUM), Lichtenbergstr. 4, 85747 Garching, Germany
| | - Ning Wei
- Stratingh
Institute for Chemistry, University of Groningen, 9747 AG Groningen, The Netherlands
- Max Planck
Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mulheim an der Ruhr, Germany
| | - Cathleen Zeymer
- Center for
Functional Protein Assemblies & Department of Bioscience, TUM
School of Natural Sciences, Technical University
of Munich, 85748 Garching, Germany
| |
Collapse
|
46
|
Weng Y, Jin Y, Wu J, Leng X, Lou X, Geng F, Hu B, Wu B, Shen Q. Oxidative Substitution of Organocopper(II) by a Carbon-Centered Radical. J Am Chem Soc 2024; 146:23555-23565. [PMID: 39116098 DOI: 10.1021/jacs.4c07552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Copper-catalyzed coupling reactions of alkyl halides are believed to prominently involve copper(II) species and alkyl radicals as pivotal intermediates, with their exact interaction mechanism being the subject of considerable debate. In this study, a visible light-responsive fluoroalkylcopper(III) complex, [(terpy)Cu(CF3)2(CH2CO2tBu)] Trans-1, was designed to explore the mechanism. Upon exposure to blue LED irradiation, Trans-1 undergoes copper-carbon bond homolysis, generating Cu(II) species and carbon-centered radicals, where the carbon-centered radical then recombines with the Cu(II) intermediate, resulting in the formation of Cis-1, the Cis isomer of Trans-1. Beyond this, a well-defined fluoroalkylcopper(II) intermediate ligated with a sterically hindered ligand was isolated and underwent full characterization and electronic structure studies. The collective experimental, computational, and spectroscopic findings in this work strongly suggest that organocopper(II) engages with carbon-centered radicals via an "oxidative substitution" mechanism, which is likely the operational pathway for copper-catalyzed C-H bond trifluoromethylation reactions.
Collapse
Affiliation(s)
- Yuecheng Weng
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Yuxuan Jin
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Jian Wu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xuebing Leng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Xiaobing Lou
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Fushan Geng
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Bingwen Hu
- Shanghai Key Laboratory of Magnetic Resonance, School of Physics and Electronic Science, East China Normal University, Shanghai 200241, P. R. China
| | - Botao Wu
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| | - Qilong Shen
- State Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, P. R. China
| |
Collapse
|
47
|
Meng F, Cui Y, Xu W, Yang WC. Visible-Light-Induced Domino Perfluoroalkylation/Cyclization to Access Perfluoroalkylated Quinazolinones by an EDA Complex. Org Lett 2024; 26:6884-6888. [PMID: 39087724 DOI: 10.1021/acs.orglett.4c02465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024]
Abstract
The electron donor-acceptor (EDA) complexes have been extensively studied, which formed an electronically excited state, obviating the need for an exogenous photocatalyst. Herein, we report a mild and efficient strategy for photoinduced radical domino perfluoroalkylation/cyclization using N,N,N',N'-tetramethylethane-1,2-diamine (TMEDA) as an electron donor. This protocol could be well expanded to access various polycyclic quinazolinones containing perfluoroalkyl groups, exhibiting photocatalyst-free, good functional group tolerance, and environmentally friendly features.
Collapse
Affiliation(s)
- Fei Meng
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Yangyang Cui
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wen Xu
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| | - Wen-Chao Yang
- Institute of Pesticide, College of Plant Protection, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
48
|
Mukherjee U, Shah JA, Musaev DG, Ngai MY. Harnessing Bromo/Acyloxy Transposition (BrAcT) and Excited-State Copper Catalysis for Styrene Difunctionalization. J Am Chem Soc 2024; 146:21271-21279. [PMID: 39042434 PMCID: PMC11542872 DOI: 10.1021/jacs.4c08984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
1,2-Difunctionalization of styrenes, adding two distinct functional groups across the C═C double bond, has emerged as a powerful tool for enhancing molecular complexity. Herein, we report the development of a regioconvergent β-acyloxylation-α-ketonylation of styrenes through bromo/acyloxy transposition (BrAcT) and excited-state copper catalysis. This approach is amenable to gram-scale synthesis and tolerates a wide range of functional groups and complex molecular frameworks, including derivatives of natural products and marketed drugs. Our experimental and computational studies suggest a unique mechanism featuring a dynamic, ionic BrAcT process and excited-state copper-catalyzed redox reactions. We anticipate that this BrAcT process could serve as a broadly applicable and versatile strategy for β-acyloxylation-α-functionalization of styrenes, creating valuable intermediates for preparing new pharmaceuticals, agrochemicals, and functional materials.
Collapse
Affiliation(s)
- Upasana Mukherjee
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jagrut A Shah
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| | - Djamaladdin G Musaev
- Cherry L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ming-Yu Ngai
- Department of Chemistry, Purdue University, West Lafayette, Indiana 47906, United States
- Department of Chemistry, State University of New York, Stony Brook, New York 11794, United States
| |
Collapse
|
49
|
Li GQ, Li ZQ, Jiang M, Zhang Z, Qian Y, Xiao WJ, Chen JR. Photoinduced Copper-Catalyzed Asymmetric Three-Component Radical 1,2-Azidooxygenation of 1,3-Dienes. Angew Chem Int Ed Engl 2024; 63:e202405560. [PMID: 38787342 DOI: 10.1002/anie.202405560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/22/2024] [Accepted: 05/24/2024] [Indexed: 05/25/2024]
Abstract
Radical-involved multicomponent difunctionalization of 1,3-dienes has recently emerged as a promising strategy for rapid synthesis of valuable allylic compounds in one-pot operation. However, the expansion of radical scope and enantiocontrol remain two major challenges. Herein, we describe an unprecedented photoinduced copper-catalyzed highly enantioselective three-component radical 1,2-azidooxygenation of 1,3-dienes with readily available azidobenziodazolone reagent and carboxylic acids. This mild protocol exhibits a broad substrate scope, high functional group tolerance, and exceptional control over chemo-, regio- and enantioselectivity, providing practical access to diverse valuable azidated chiral allylic esters. Mechanistic studies imply that the chiral copper complex is implicated as a bifunctional catalyst in both the photoredox catalyzed azidyl radical generation and enantioselective radical C-O cross-coupling.
Collapse
Affiliation(s)
- Guo-Qing Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Zi-Qing Li
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Min Jiang
- College of Materials, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Zhihan Zhang
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Yu Qian
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
| | - Wen-Jing Xiao
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
| | - Jia-Rong Chen
- Engineering Research Center of Photoenergy Utilization for Pollution Control and Carbon Reduction, College of Chemistry, Central China Normal University, 152 Luoyu Road, Wuhan, Hubei, 430079, China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei, 430083, China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
50
|
Märsch J, Reiter S, Rittner T, Rodriguez-Lugo RE, Whitfield M, Scott DJ, Kutta RJ, Nuernberger P, de Vivie-Riedle R, Wolf R. Cobalt-Mediated Photochemical C-H Arylation of Pyrroles. Angew Chem Int Ed Engl 2024; 63:e202405780. [PMID: 38693673 DOI: 10.1002/anie.202405780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/03/2024]
Abstract
Precious metal complexes remain ubiquitous in photoredox catalysis (PRC) despite concerted efforts to find more earth-abundant catalysts and replacements based on 3d metals in particular. Most otherwise plausible 3d metal complexes are assumed to be unsuitable due to short-lived excited states, which has led researchers to prioritize the pursuit of longer excited-state lifetimes through careful molecular design. However, we report herein that the C-H arylation of pyrroles and related substrates (which are benchmark reactions for assessing the efficacy of photoredox catalysts) can be achieved using a simple and readily accessible octahedral bis(diiminopyridine) cobalt complex, [1-Co](PF6)2. Notably, [1-Co]2+ efficiently functionalizes both chloro- and bromoarene substrates despite the short excited-state lifetime of the key photoexcited intermediate *[1-Co]2+ (8 ps). We present herein the scope of this C-H arylation protocol and provide mechanistic insights derived from detailed spectroscopic and computational studies. These indicate that, despite its transient existence, reduction of *[1-Co]2+ is facilitated via pre-assembly with the NEt3 reductant, highlighting an alternative strategy for the future development of 3d metal-catalyzed PRC.
Collapse
Affiliation(s)
- Julia Märsch
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Sebastian Reiter
- Department of Chemistry, Ludwig Maximilian University Munich, 81377, Munich, Germany
| | - Thomas Rittner
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Rafael E Rodriguez-Lugo
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
- present address: Istituto di Chimica dei Composti Organometallici, Consiglio Nazionale delle Ricerche, Via Madonna del Piano 10, Sesto Fiorentino, 50019, Italy
| | - Maximilian Whitfield
- Department of Chemistry, Ludwig Maximilian University Munich, 81377, Munich, Germany
| | - Daniel J Scott
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
- present address: Department of Chemistry, University of Bath, Claverton Down Bath, BA2 7AY, United Kingdom
| | - Roger Jan Kutta
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | - Patrick Nuernberger
- Institute of Physical and Theoretical Chemistry, University of Regensburg, 93040, Regensburg, Germany
| | | | - Robert Wolf
- Institute of Inorganic Chemistry, University of Regensburg, 93040, Regensburg, Germany
| |
Collapse
|