1
|
Shmuel-Galia L, Jiang Z, Stine L, Cahill S, Ng SL, Wilson R, Kandasamy RK, Kurt-Jones EA, Ramanjulu JM, Bertin J, Kasparcova V, Pesiridis GS, Fitzgerald KA, Humphries F. Alternative cGAS signaling promotes herpes simplex encephalitis. Proc Natl Acad Sci U S A 2025; 122:e2423873122. [PMID: 40424128 DOI: 10.1073/pnas.2423873122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 04/16/2025] [Indexed: 05/29/2025] Open
Abstract
During infection, foreign DNA is sensed by cyclic GMP-AMP synthase (cGAS) leading to the production of cGAMP, STING-dependent type I interferon and proinflammatory cytokine expression, and autophagy. To prevent a response to self-DNA, cGAS activity is tightly regulated. Dysregulation of cGAS underpins interferonopathies, such as Aicardi-Goutières syndrome, as well as Lupus and neurodegenerative diseases like Parkinson's disease. Thus, cGAS and its product cGAMP are therapeutic targets. However, if cGAS functions independently of cGAMP signaling is undefined. Here, we identified an alternative signaling pathway that cGAS engages independent of cGAMP synthesis. We demonstrate that alternative cGAS signaling promotes hyperexpression of CXCL1 and enhanced neutrophil recruitment that facilitates viral dissemination during herpes simplex encephalitis. Our study reports of an alternative cGAS response independent of cGAMP, highlighting a previously uncharacterized scaffold function for cGAS.
Collapse
Affiliation(s)
- Liraz Shmuel-Galia
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Zhaozhao Jiang
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Laurel Stine
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Sara Cahill
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Sze-Ling Ng
- Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, PA 19426
| | - Ruth Wilson
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Richard Kumaran Kandasamy
- Centre of Molecular Inflammation Research, and Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim 7491, Norway
| | - Evelyn A Kurt-Jones
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Chan Medical, Worcester, MA 01605
| | - Joshi M Ramanjulu
- Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, PA 19426
| | - John Bertin
- Immunology and Inflammation Therapeutic Area, Sanofi, Cambridge, MA 02139
| | - Viera Kasparcova
- Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, PA 19426
| | - G Scott Pesiridis
- Innate Immunity Research Unit, GlaxoSmithKline, Collegeville, PA 19426
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| | - Fiachra Humphries
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605
| |
Collapse
|
2
|
Ai J, Zhang S, Dai M, Jiang P, Huang J, Xiao H, Lin Y, Tang X, Tong W, He J, Mao Q, Wang Y, Ye Z, Wang T, Chai R. Small Extracellular Vesicles Orchestrate Cisplatin-Induced Ototoxicity: Potential Biomarker and Targets Discovery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e02627. [PMID: 40411396 DOI: 10.1002/advs.202502627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/12/2025] [Indexed: 05/26/2025]
Abstract
Cisplatin-induced ototoxicity remains a clinical dilemma with limited mechanistic understanding and no food and drug administration (FDA)-approved therapies. Despite emerging roles of small extracellular vesicles (sEV) in drug ototoxicity, their molecular cargo profiles and causal roles to cisplatin-induced ototoxicity are unexplored. This study systematically investigates sEV derived from cochlear explants treated with cisplatin (Cis-sEV) and controls (Ctrl-sEV) using multi-omics profiling. Through small RNA sequencing, 83 differentially expressed microRNAs (miRNAs) are identified in Cis-sEV compared to Ctrl-sEV. Notably, mmu-miR-34a-5p, mmu-miR-140-5p, mmu-miR-15b-5p, mmu-miR-25-3p, and mmu-miR-339-5p are significantly upregulation in Cis-sEVs. Predicted target pathways of these differentially expressed miRNAs are enriched in apoptosis, inflammation, and cellular damage, indicating their potential involvement in cisplatin-induced cochlear damage. LC-MS/MS analysis reveals 90 upregulated and 150 downregulated proteins in Cis-sEV, with many involved in damage response. Specifically, CLTC, CCT2, ANXA6, and HSPA8 are uniquely upregulated proteins in Cis-sEV, and CLTC and ANXA6 are exclusively co-localized in hair cells (HCs) post-cisplatin exposure, suggesting that Cis-sEV originate primarily from damaged HCs. Moreover, CLTC in sEV may serve as a potential biomarker for cisplatin-induced ototoxicity as verified in both in vitro and in vivo models. This study provides novel insights into the molecular mechanisms of cisplatin-induced ototoxicity and identifies potential biomarker and therapeutic targets.
Collapse
Affiliation(s)
- Jingru Ai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Shasha Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Mingchen Dai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Pei Jiang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jingyuan Huang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Hairong Xiao
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Yanqin Lin
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Xujun Tang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Wei Tong
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jun He
- Department of Otolaryngology - Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Qiuyue Mao
- Department of Otolaryngology - Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Yintao Wang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zixuan Ye
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Tian Wang
- Department of Otolaryngology - Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
- Department of Otolaryngology - Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Life Sciences and Technology, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, The University of Electronic Science and Technology of China, Chengdu, 610072, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Institute for Stem Cells and Regeneration, Chinese Academy of Science, Beijing, 100081, China
| |
Collapse
|
3
|
Stewart J, Damania B. Innate Immune Recognition of EBV. Curr Top Microbiol Immunol 2025. [PMID: 40399572 DOI: 10.1007/82_2025_297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2025]
Abstract
Epstein-Barr virus (EBV) is a very successful human pathogen, with ~95% seroprevalence worldwide (Mentzer et al, Nat Commun 13:1818, 2022). If contracted in early childhood, EBV infection is typically asymptomatic; however, infections in adolescence and adulthood can manifest as infectious mononucleosis (IM). The innate immune response is the first line of defense, and its function is critical for controlling EBV infection. During EBV infection, components of the virus, known as pathogen-associated molecular patterns (PAMPs), are recognized by germline-encoded pattern recognition receptors (PRRs). PRRs are found on both non-immune and immune cells including antigen-presenting cells, such as macrophages, monocytes, dendritic cells, natural killer (NK), and mast cells. PRRs are also found on B cells and epithelial cells, the primary targets of EBV infection. Without immune surveillance, EBV can transform cells inducing various malignancies. Conversely, a prolonged innate immune response can lead to chronic inflammation which increases the likelihood of cancer. This review discusses innate immune recognition of EBV and its associated diseases.
Collapse
Affiliation(s)
- Jessica Stewart
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Blossom Damania
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
4
|
Qin W, Duan Y, Hu Z, Hou Y, Wen T, Ouyang Y, Wang Z, Sun X, Chen X, Wang KL, Luo S, Ji G, Shen Y, Dong B, Lin Y, Tian Q, Guo Z, Wu S, Xiao L, Li M, Xiao L, Wu Q, Meng Y, Liu G, Zhang W, Duan S, Bai X, Liu T, He J, Lu Z, Xu D. PCK1 inhibits cGAS-STING activation by consumption of GTP to promote tumor immune evasion. J Exp Med 2025; 222:e20240902. [PMID: 40048154 PMCID: PMC11893166 DOI: 10.1084/jem.20240902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 11/18/2024] [Accepted: 01/15/2025] [Indexed: 03/12/2025] Open
Abstract
Hypoxia induces immunosuppressive phenotypes in tumor cells even in the presence of cytosolic DNA accumulation. The mechanisms by which tumor cells suppress hypoxia-induced cGAS-STING activation for immune evasion remain largely unclear. Here, we demonstrate that hypoxic stimulation induces JNK1/2-mediated S151 phosphorylation of phosphoenolpyruvate carboxykinase 1 (PCK1), a rate-limiting enzyme in gluconeogenesis. This phosphorylation triggers the interaction between PCK1 and cGAS. The PCK1 associated with cGAS competitively consumes GTP, a substrate shared by both PCK1 and cGAS. Consequently, PCK1 inhibits GTP-dependent cGAS activation and subsequent STING-promoted immune cell infiltration and activation in the tumor microenvironment, leading to promoted tumor growth in mice. The blockade of PCK1 function, in combination with anti-PD-1 antibody treatment, exhibits an additive therapeutic effect on tumor growth. Additionally, PCK1 S151 phosphorylation is inversely correlated with cGAS-STING activation in human breast cancer specimens and patient survival. These findings reveal a novel regulation of cGAS-STING pathway and uncover the metabolic control of immune response in tumor cells.
Collapse
Affiliation(s)
- Wenxing Qin
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, PR China
| | - Yuran Duan
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhiqiang Hu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yueru Hou
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ting Wen
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yuan Ouyang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Zheng Wang
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Xue Sun
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xiaohan Chen
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | | | - Shudi Luo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Guimei Ji
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yuli Shen
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Bofei Dong
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Yanni Lin
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Qi Tian
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhanpeng Guo
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Shiqi Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ling Xiao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Min Li
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Liwei Xiao
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Qingang Wu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Ying Meng
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Guijun Liu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Wuchang Zhang
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People’s Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Shengzhong Duan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Hangzhou, China
| | - Xueli Bai
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Tong Liu
- Department of Surgical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhimin Lu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
| | - Daqian Xu
- Zhejiang Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang Key Laboratory of Frontier Medical Research on Cancer Metabolism, and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Institute of Fundamental and Transdisciplinary Research, Cancer Center, Zhejiang University, Hangzhou, China
- NHC Key Laboratory of Cell Transplantation, Harbin Medical University, Harbin, China
| |
Collapse
|
5
|
Lee HS, Cho SJ, Kang HC, Lee JY, Kwon YJ, Cho YY. RSK2 and its binding partners: an emerging signaling node in cancers. Arch Pharm Res 2025; 48:365-383. [PMID: 40320503 DOI: 10.1007/s12272-025-01543-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2025] [Accepted: 04/22/2025] [Indexed: 05/28/2025]
Abstract
The growth factor-mediated mitogen-activated protein kinase (MAPK) signaling pathways in cancer development have become increasingly important in the discovery of therapeutic agents for the treatment of cancer. RSK2 has been historically overlooked in studies regarding its involvement in physiology and signaling pathways related to human diseases, except for Coffin-Lowry syndrome, because it is located downstream of ERKs. For the last 25 years, the authors' laboratory has made groundbreaking discoveries regarding the role of RSK2, especially by elucidating its binding partners, signaling network, and crosstalk. RSK2 is an important emerging target for developing anticancer drugs. Nevertheless, further studies on the detailed mechanism and signaling network are necessary to avoid the unexpected effects of RSK2 inhibitors. This paper describes a new paradigm of RSK2, where it works as a signaling node to modulate diverse cellular processes, including cell proliferation and transformation, cell cycle regulation, chromatin remodeling, and immune response and inflammation regulation.
Collapse
Affiliation(s)
- Hye Suk Lee
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Research Institute for Controlss and Materialss of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Sung-Jun Cho
- Internal Medicine Residency Program, Department Medicine, University of Minnesota Medical School, 401, East River Parkway, VCRC 1 floor, Suite 131, Minneapolis, MN, 55455, USA
| | - Han Chang Kang
- Research Institute for Controlss and Materialss of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Joo Young Lee
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Research Institute for Controlss and Materialss of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
| | - Young Jik Kwon
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, University of California, 132, Sprague Hall, Irvine, CA, 92697, USA
| | - Yong-Yeon Cho
- BK21-4th, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
- Research Institute for Controlss and Materialss of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Republic of Korea.
| |
Collapse
|
6
|
Zhang M, Wu C, Lu D, Wang X, Shang G. cGAS-STING: mechanisms and therapeutic opportunities. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1309-1323. [PMID: 39821837 DOI: 10.1007/s11427-024-2808-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 12/04/2024] [Indexed: 01/19/2025]
Abstract
The cGAS-STING pathway plays a crucial role in the innate immune system by detecting mislocalized double-stranded DNA (dsDNA) in the cytoplasm and triggering downstream signal transduction. Understanding the mechanisms by which cGAS and STING operate is vital for gaining insights into the biology of this pathway. This review provides a detailed examination of the structural features of cGAS and STING proteins, with a particular emphasis on their activation and inhibition mechanisms. We also discuss the novel discovery of STING functioning as an ion channel. Furthermore, we offer an overview of key agonists and antagonists of cGAS and STING, shedding light on their mechanisms of action. Deciphering the molecular intricacies of the cGAS-STING pathway holds significant promise for the development of targeted therapies aimed at maintaining immune homeostasis within both innate and adaptive immunity.
Collapse
Affiliation(s)
- Mengyuan Zhang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China
| | - Changxin Wu
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China
| | - Defen Lu
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, 030031, China.
| | - Xing Wang
- Shanxi Medical University School and Hospital of Stomatology, Taiyuan, 030001, China.
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, 030001, China.
| | - Guijun Shang
- The Key Laboratory of Medical Molecular Cell Biology of Shanxi Province, Institutes of Biomedical Sciences, Shanxi University, Taiyuan, 030006, China.
- College of Life Sciences, Shanxi Agricultural University, Taiyuan, 030031, China.
| |
Collapse
|
7
|
Miao R, Liu Y, Shen S, Wang W, Wang S. Chromatin remodeling in lymphocytic function and fate: the multifaceted roles of SWI/SNF complex. Front Immunol 2025; 16:1575857. [PMID: 40342423 PMCID: PMC12058788 DOI: 10.3389/fimmu.2025.1575857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 04/08/2025] [Indexed: 05/11/2025] Open
Abstract
The Switch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex comprises 10-15 subunits, which modulate the arrangement, location, or conformation of nucleosomes to upregulate chromatin accessibility. During lymphocytic differentiation and functional development, the SWI/SNF complex exerts its effects by binding to specific transcription factors (TFs) or DNA sequences via its subunits, which are thereafter recruited to the promoter or enhancer regions of target genes, rendering each subunit crucial wherein. The loss of individual subunits during lymphocytic differentiation not only disrupts the targeting of the SWI/SNF complex but also impairs its chromatin remodeling function, ultimately resulting in altered differentiation of immature lymphocytes, dysfunction of mature lymphocytes, and injured immune responses. Therefore, in this paper, we focus on TFs interacting with SWI/SNF complex subunits in lymphocytes, and summarize the effects of the loss of specific subunits of the SWI/SNF complex on lymphocytic differentiation and function, as well as the modification in the expression of key genes. We also summarize the potential clinical treatments and applications targeting the loss of SWI/SNF complex subunits, and focus on the application in Chimeric Antigen Receptor (CAR) technology. In conclusion, the SWI/SNF complex is a key regulatory factor in lymphocytic biology, involved in fundamental cellular processes and closely associated with hematological diseases and immune dysfunction. However, the specific roles of SWI/SNF complex subunits in different lymphocytic subpopulations remain unclear. Future clarification of the specific functions of these subunits in different lymphocytic subsets is expected to promote the development of immunotherapy and personalized therapy.
Collapse
Affiliation(s)
- Renjie Miao
- Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yun Liu
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang,
Jiangsu, China
| | - Shuo Shen
- Affiliated Third Hospital of Zhenjiang to Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenxin Wang
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang,
Jiangsu, China
| | - Shengjun Wang
- Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
- School of Medicine, Jiangsu University, Zhenjiang,
Jiangsu, China
| |
Collapse
|
8
|
Han X, Wang X, Han F, Yan H, Sun J, Zhang X, Moog C, Zhang C, Su B. The cGAS-STING pathway in HIV-1 and Mycobacterium tuberculosis coinfection. Infection 2025; 53:495-511. [PMID: 39509013 DOI: 10.1007/s15010-024-02429-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 10/28/2024] [Indexed: 11/15/2024]
Abstract
Mycobacterium tuberculosis (M. tuberculosis) infection is the most common opportunistic infection in human immunodeficiency virus-1 (HIV-1)-infected individuals, and the mutual reinforcement of these two pathogens may accelerate disease progression and lead to rapid mortality. Therefore, HIV-1/M. tuberculosis coinfection is one of the major global public health concerns. HIV-1 infection is the greatest risk factor for M. tuberculosis infection and increases the likelihood of endogenous relapse and exogenous reinfection with M. tuberculosis. Moreover, M. tuberculosis further increases HIV-1 replication and the occurrence of chronic immune activation, accelerating the progression of HIV-1 disease. Exploring the pathogenesis of HIV-1/M. tuberculosis coinfections is essential for the development of novel treatments to reduce the global burden of tuberculosis. Innate immunity, which is the first line of host immune defense, plays a critical role in resisting HIV-1 and M. tuberculosis infections. The role of the cyclic guanosine monophosphate-adenosine monophosphate synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway, which is a major DNA-sensing innate immune signaling pathway, in HIV-1 infection and M. tuberculosis infection has been intensively studied. This paper reviews the role of the cGAS-STING signaling pathway in HIV-1 infection and M. tuberculosis infection and discusses the possible role of this pathway in HIV-1/M. tuberculosis coinfection to provide new insight into the pathogenesis of HIV-1/M. tuberculosis coinfection and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Xiaoxu Han
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xiuwen Wang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Fangping Han
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China
| | - Hongxia Yan
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Jin Sun
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Xin Zhang
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
| | - Christiane Moog
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China
- Laboratoire d'ImmunoRhumatologie Moléculaire, Faculté de Médecine, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Institut National de la Santé et de la Recherche Médicale (INSERM) UMR_S 1109, Institut Thématique Interdisciplinaire (ITI) de Médecine de Précision de Strasbourg, Fédération Hospitalo-Universitaire OMICARE, Université de Strasbourg, Transplantex, Strasbourg, NG, 67000, France
- Vaccine Research Institute (VRI), Créteil, 94000, France
| | - Conggang Zhang
- State Key Laboratory of Membrane Biology, School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China.
| | - Bin Su
- Beijing Key Laboratory for HIV/AIDS Research, Clinical and Research Center for Infectious Diseases, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
- Sino-French Joint Laboratory for HIV/AIDS Research, Sino-French Joint Laboratory for Research on Humoral Immune Response to HIV Infection, Beijing Youan Hospital, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
9
|
Zhang B, Xu P, Ablasser A. Regulation of the cGAS-STING Pathway. Annu Rev Immunol 2025; 43:667-692. [PMID: 40085836 DOI: 10.1146/annurev-immunol-101721-032910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
The cGAS-cGAMP-STING pathway is essential for immune defense against pathogens. Upon binding DNA, cGAS synthesizes cGAMP, which activates STING, leading to potent innate immune effector responses. However, lacking specific features to distinguish between self and nonself DNA, cGAS-STING immunity requires precise regulation to prevent aberrant activation. Several safeguard mechanisms acting on different levels have evolved to maintain tolerance to self DNA and ensure immune homeostasis under normal conditions. Disruption of these safeguards can lead to erroneous activation by self DNA, resulting in inflammatory conditions but also favorable antitumor immunity. Insights into structural and cellular checkpoints that control and terminate cGAS-STING signaling are essential for comprehending and manipulating DNA-triggered innate immunity in health and disease.
Collapse
Affiliation(s)
- Bing Zhang
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Pengbiao Xu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland;
- Institute for Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
10
|
Chen Z, Behrendt R, Wild L, Schlee M, Bode C. Cytosolic nucleic acid sensing as driver of critical illness: mechanisms and advances in therapy. Signal Transduct Target Ther 2025; 10:90. [PMID: 40102400 PMCID: PMC11920230 DOI: 10.1038/s41392-025-02174-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 01/14/2025] [Accepted: 02/11/2025] [Indexed: 03/20/2025] Open
Abstract
Nucleic acids from both self- and non-self-sources act as vital danger signals that trigger immune responses. Critical illnesses such as acute respiratory distress syndrome, sepsis, trauma and ischemia lead to the aberrant cytosolic accumulation and massive release of nucleic acids that are detected by antiviral innate immune receptors in the endosome or cytosol. Activation of receptors for deoxyribonucleic acids and ribonucleic acids triggers inflammation, a major contributor to morbidity and mortality in critically ill patients. In the past decade, there has been growing recognition of the therapeutic potential of targeting nucleic acid sensing in critical care. This review summarizes current knowledge of nucleic acid sensing in acute respiratory distress syndrome, sepsis, trauma and ischemia. Given the extensive research on nucleic acid sensing in common pathological conditions like cancer, autoimmune disorders, metabolic disorders and aging, we provide a comprehensive summary of nucleic acid sensing beyond critical illness to offer insights that may inform its role in critical conditions. Additionally, we discuss potential therapeutic strategies that specifically target nucleic acid sensing. By examining nucleic acid sources, sensor activation and function, as well as the impact of regulating these pathways across various acute diseases, we highlight the driving role of nucleic acid sensing in critical illness.
Collapse
Affiliation(s)
- Zhaorong Chen
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Rayk Behrendt
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Lennart Wild
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany
| | - Martin Schlee
- Institute of Clinical Chemistry and Clinical Pharmacology, University Hospital Bonn, 53127, Bonn, Germany
| | - Christian Bode
- Department of Anesthesiology and Intensive Care Medicine, University Hospital Bonn, 53127, Bonn, Germany.
| |
Collapse
|
11
|
Dimitrov G, Ryffel B, Togbe D, Quesniaux V. cGAS-STING DNA-sensing in inflammatory bowel diseases. Trends Mol Med 2025; 31:165-180. [PMID: 39448330 DOI: 10.1016/j.molmed.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/19/2024] [Accepted: 10/01/2024] [Indexed: 10/26/2024]
Abstract
Inflammatory bowel diseases (IBD) are chronic, incurable pathologies with unknown causes, affecting millions of people. Pediatric-onset IBD, starting before the age of 18 years, are increasing, with more aggressive and extensive features than adult-onset IBD. These differences remain largely unexplained. Intestinal mucosal damage, cell death, DNA release from nuclear, mitochondrial, or microbiota sources, and DNA-sensing activating the cGAS-STING pathway may contribute to disease evolution. Increased colonic cGAS and STING are increasingly reported in experimental and human IBD. However, limited knowledge of the mechanisms involved hinders the development of new therapeutic options. Here, we discuss recent advances and unresolved questions regarding DNA release, DNA sensor activation, and the role and therapeutic potential of the cGAS-STING pathway in inflammatory colitis.
Collapse
Affiliation(s)
- Georges Dimitrov
- Pediatrics and pediatric surgery, University Hospital Center of Orleans, Orleans 45100, France; Laboratory of Immuno-Neuro Modulation (INEM), UMR7355, CNRS and University of Orleans, 45071, Orleans, France
| | - Bernhard Ryffel
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355, CNRS and University of Orleans, 45071, Orleans, France
| | - Dieudonnée Togbe
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355, CNRS and University of Orleans, 45071, Orleans, France; University of Orleans, Orleans, France.
| | - Valérie Quesniaux
- Laboratory of Immuno-Neuro Modulation (INEM), UMR7355, CNRS and University of Orleans, 45071, Orleans, France.
| |
Collapse
|
12
|
Zhang Z, Zhang C. Regulation of cGAS-STING signalling and its diversity of cellular outcomes. Nat Rev Immunol 2025:10.1038/s41577-024-01112-7. [PMID: 39774812 DOI: 10.1038/s41577-024-01112-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/06/2024] [Indexed: 01/11/2025]
Abstract
The cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signalling pathway, which recognizes both pathogen DNA and host-derived DNA, has emerged as a crucial component of the innate immune system, having important roles in antimicrobial defence, inflammatory disease, ageing, autoimmunity and cancer. Recent work suggests that the regulation of cGAS-STING signalling is complex and sophisticated. In this Review, we describe recent insights from structural studies that have helped to elucidate the molecular mechanisms of the cGAS-STING signalling cascade and we discuss how the cGAS-STING pathway is regulated by both activating and inhibitory factors. Furthermore, we summarize the newly emerging understanding of crosstalk between cGAS-STING signalling and other signalling pathways and provide examples to highlight the wide variety of cellular processes in which cGAS-STING signalling is involved, including autophagy, metabolism, ageing, inflammation and tumorigenesis.
Collapse
Affiliation(s)
- Zhengyin Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China
| | - Conggang Zhang
- School of Pharmaceutical Sciences, State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, Beijing Frontier Research Center for Biological Structure, Tsinghua University, Beijing, China.
- SXMU-Tsinghua Collaborative Innovation Center for Frontier Medicine, Shanxi Medical University, Taiyuan, Shanxi, China.
| |
Collapse
|
13
|
Jeon S, Jeon Y, Lim JY, Kim Y, Cha B, Kim W. Emerging regulatory mechanisms and functions of biomolecular condensates: implications for therapeutic targets. Signal Transduct Target Ther 2025; 10:4. [PMID: 39757214 DOI: 10.1038/s41392-024-02070-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/01/2024] [Accepted: 11/06/2024] [Indexed: 01/07/2025] Open
Abstract
Cells orchestrate their processes through complex interactions, precisely organizing biomolecules in space and time. Recent discoveries have highlighted the crucial role of biomolecular condensates-membrane-less assemblies formed through the condensation of proteins, nucleic acids, and other molecules-in driving efficient and dynamic cellular processes. These condensates are integral to various physiological functions, such as gene expression and intracellular signal transduction, enabling rapid and finely tuned cellular responses. Their ability to regulate cellular signaling pathways is particularly significant, as it requires a careful balance between flexibility and precision. Disruption of this balance can lead to pathological conditions, including neurodegenerative diseases, cancer, and viral infections. Consequently, biomolecular condensates have emerged as promising therapeutic targets, with the potential to offer novel approaches to disease treatment. In this review, we present the recent insights into the regulatory mechanisms by which biomolecular condensates influence intracellular signaling pathways, their roles in health and disease, and potential strategies for modulating condensate dynamics as a therapeutic approach. Understanding these emerging principles may provide valuable directions for developing effective treatments targeting the aberrant behavior of biomolecular condensates in various diseases.
Collapse
Affiliation(s)
- Soyoung Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Yeram Jeon
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Ji-Youn Lim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea
| | - Yujeong Kim
- Department of Life Science, University of Seoul, Seoul, South Korea
| | - Boksik Cha
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu, South Korea.
| | - Wantae Kim
- Department of Life Science, University of Seoul, Seoul, South Korea.
| |
Collapse
|
14
|
Ying X, Chen Q, Yang Y, Wu Z, Zeng W, Miao C, Huang Q, Ai K. Nanomedicines harnessing cGAS-STING pathway: sparking immune revitalization to transform 'cold' tumors into 'hot' tumors. Mol Cancer 2024; 23:277. [PMID: 39710707 DOI: 10.1186/s12943-024-02186-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 11/26/2024] [Indexed: 12/24/2024] Open
Abstract
cGAS-STING pathway stands at the forefront of innate immunity and plays a critical role in regulating adaptive immune responses, making it as a key orchestrator of anti-tumor immunity. Despite the great potential, clinical outcomes with cGAS-STING activators have been disappointing due to their unfavorable in vivo fate, signaling an urgent need for innovative solutions to bridge the gap in clinical translation. Recent advancements in nanotechnology have propelled cGAS-STING-targeting nanomedicines to the cutting-edge of cancer therapy, leveraging precise drug delivery systems and multifunctional platforms to achieve remarkable region-specific biodistribution and potent therapeutic efficacy. In this review, we provide an in-depth exploration of the molecular mechanisms that govern cGAS-STING signaling and its potential to dynamically modulate the anti-tumor immune cycle. We subsequently introduced several investigational cGAS-STING-dependent anti-tumor agents and summarized their clinical trial progress. Additionally, we provided a comprehensive review of the unique advantages of cGAS-STING-targeted nanomedicines, highlighting the transformative potential of nanotechnology in this field. Furthermore, we comprehensively reviewed and comparatively analyzed the latest breakthroughs cGAS-STING-targeting nanomedicine, focusing on strategies that induce cytosolic DNA generation via exogenous DNA delivery, chemotherapy, radiotherapy, or dynamic therapies, as well as the nanodelivery of STING agonists. Lastly, we discuss the future prospects and challenges in cGAS-STING-targeting nanomedicine development, offering new insights to bridge the gap between mechanistic research and drug development, thereby opening new pathways in cancer treatment.
Collapse
Affiliation(s)
- Xiaohong Ying
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiaohui Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Yongqi Yang
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Ziyu Wu
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Wan Zeng
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Chenxi Miao
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China
| | - Qiong Huang
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Kelong Ai
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Hunan Provincial Key Laboratory of Cardiovascular Research, Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, China.
- Key Laboratory of Aging-related Bone and Joint Diseases Prevention and Treatment, Xiangya Hospital, Ministry of Education, Central South University, Changsha, 410008, China.
| |
Collapse
|
15
|
Wang Y, Yu J, Pei Y. Identifying the key regulators orchestrating Epstein-Barr virus reactivation. Front Microbiol 2024; 15:1505191. [PMID: 39703703 PMCID: PMC11655498 DOI: 10.3389/fmicb.2024.1505191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Accepted: 11/14/2024] [Indexed: 12/21/2024] Open
Abstract
Epstein-Barr virus (EBV) infects more than 90% of the human population worldwide and establishes lifelong infection in hosts by switching between latent and lytic infection. EBV latency can be reactivated under appropriate conditions, leading to expression of the viral lytic genes and production of infectious progeny viruses. EBV reactivation involves crosstalk between various factors and signaling pathways, and the subsequent complicated virus-host interplays determine whether EBV continues to propagate. However, the detailed mechanisms underlying these processes remain unclear. In this review, we summarize the critical factors regulating EBV reactivation and the associated mechanisms. This encompasses the transcription and post-transcriptional regulation of immediate-early (IE) genes, the functions of viral factors on viral DNA replication and progeny virus production, the mechanisms through which viral proteins disrupt and inhibit the host's innate immune response, and the host factors that modulate EBV reactivation. Finally, we explore the potential applications of novel technologies in studying EBV reactivation, providing novel insights into the investigation of mechanisms governing EBV reactivation and the development of anti-EBV therapeutic strategies.
Collapse
Affiliation(s)
| | | | - Yonggang Pei
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
16
|
Kono Y, Shimi T. Crosstalk between mitotic reassembly and repair of the nuclear envelope. Nucleus 2024; 15:2352203. [PMID: 38780365 PMCID: PMC11123513 DOI: 10.1080/19491034.2024.2352203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 05/01/2024] [Indexed: 05/25/2024] Open
Abstract
In eukaryotic cells, the nuclear envelope (NE) is a membrane partition between the nucleus and the cytoplasm to compartmentalize nuclear contents. It plays an important role in facilitating nuclear functions including transcription, DNA replication and repair. In mammalian cells, the NE breaks down and then reforms during cell division, and in interphase it is restored shortly after the NE rupture induced by mechanical force. In this way, the partitioning effect is regulated through dynamic processes throughout the cell cycle. A failure in rebuilding the NE structure triggers the mixing of nuclear and cytoplasmic contents, leading to catastrophic consequences for the nuclear functions. Whereas the precise details of molecular mechanisms for NE reformation during cell division and NE restoration in interphase are still being investigated, here, we mostly focus on mammalian cells to describe key aspects that have been identified and to discuss the crosstalk between them.
Collapse
Affiliation(s)
- Yohei Kono
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
- Cell Biology Center, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Japan
| | - Takeshi Shimi
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
17
|
Harding SM. A road to rupture: New insights into the loss of micronuclear membrane integrity. Mol Cell 2024; 84:4056-4058. [PMID: 39515293 DOI: 10.1016/j.molcel.2024.10.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 10/14/2024] [Accepted: 10/14/2024] [Indexed: 11/16/2024]
Abstract
In two recent studies in Science, Martin et al. and Di Bona et al.1,2 showed that mitochondrial-derived reactive oxygen species (ROS) drive mechanisms responsible for micronuclei membrane rupture, with important implications for cancer.
Collapse
Affiliation(s)
- Shane M Harding
- Princess Margaret Cancer Center, University Health Network, Toronto, ON, Canada; Departments of Medical Biophysics, Immunology and Radiation Oncology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
18
|
Korsten G, Osinga M, Pelle RA, Serweta AK, Hoogenberg B, Kampinga HH, Kapitein LC. Nuclear poly-glutamine aggregates rupture the nuclear envelope and hinder its repair. J Cell Biol 2024; 223:e202307142. [PMID: 39150509 PMCID: PMC11329780 DOI: 10.1083/jcb.202307142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/08/2024] [Accepted: 07/30/2024] [Indexed: 08/17/2024] Open
Abstract
Huntington's disease (HD) is caused by a polyglutamine expansion of the huntingtin protein, resulting in the formation of polyglutamine aggregates. The mechanisms of toxicity that result in the complex HD pathology remain only partially understood. Here, we show that nuclear polyglutamine aggregates induce nuclear envelope (NE) blebbing and ruptures that are often repaired incompletely. These ruptures coincide with disruptions of the nuclear lamina and lead to lamina scar formation. Expansion microscopy enabled resolving the ultrastructure of nuclear aggregates and revealed polyglutamine fibrils sticking into the cytosol at rupture sites, suggesting a mechanism for incomplete repair. Furthermore, we found that NE repair factors often accumulated near nuclear aggregates, consistent with stalled repair. These findings implicate nuclear polyQ aggregate-induced loss of NE integrity as a potential contributing factor to Huntington's disease and other polyglutamine diseases.
Collapse
Affiliation(s)
- Giel Korsten
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Miriam Osinga
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Robin A Pelle
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Albert K Serweta
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Baukje Hoogenberg
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - Harm H Kampinga
- Department of Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Lukas C Kapitein
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University, Utrecht, Netherlands
- Centre for Living Technologies, Alliance TU/e, WUR, UU, UMC Utrecht University, Utrecht, Netherlands
| |
Collapse
|
19
|
Heinemann FS, Gershon PD. Differential Abundance of DNA Damage Sensors and Innate Immune Signaling Proteins in Inositol Polyphosphate 4-Phosphatase Type II-Negative Triple-Negative Breast Cancer Classified by Immunotype. THE AMERICAN JOURNAL OF PATHOLOGY 2024; 194:2212-2232. [PMID: 39147237 DOI: 10.1016/j.ajpath.2024.07.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/22/2024] [Accepted: 07/26/2024] [Indexed: 08/17/2024]
Abstract
The influence of neoplastic cells on the tumor microenvironment is poorly understood. In this study, eight patient samples representing two immunotypes of triple-negative breast cancer (TNBC), defined by quantitative histologic criteria as T-cell desert and T-cell infiltrated (TCI), were compared via label-free quantitative protein mass spectrometry of material extracted directly from targeted regions of formalin-fixed, paraffin-embedded tissue sections. Of 2934 proteins quantitated, 439 were significantly differentially abundant, among which 361 were overabundant in TCI-TNBC. The 361-protein group included proteins involved in major histocompatibility complex-I antigen processing and presentation, viral defense, DNA damage response, and innate immune signaling. Immunohistochemical validation of selected proteins showed good positive correlation between neoplastic cell histoscores and label-free quantitation. Extension of immunohistochemical analysis to a total of 58 inositol polyphosphate 4-phosphatase type II-negative TNBC confirmed elevated levels of the DNA damage sensor interferon-γ-inducible protein 16, inflammasome adaptor apoptosis-associated speck-like protein containing a CARD (ASC), and pore-forming protein gasdermin D in TCI-TNBC neoplastic cells. By contrast, cGMP-AMP synthase inhibitor barrier to autointegration factor (BAF) was elevated in the neoplastic cells of T-cell desert TNBC. These findings demonstrate a previously unknown correlation between the degree of T-cell infiltration in inositol polyphosphate 4-phosphatase type II-negative TNBC and the levels, in cognate neoplastic cells, of proteins that modulate innate immune signaling in response to DNA damage.
Collapse
Affiliation(s)
- F Scott Heinemann
- Department of Pathology, Hoag Memorial Hospital Presbyterian, Newport Beach, California.
| | - Paul D Gershon
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California.
| |
Collapse
|
20
|
Yu L, Liu P. cGAS/STING signalling pathway in senescence and oncogenesis. Semin Cancer Biol 2024; 106-107:87-102. [PMID: 39222763 PMCID: PMC11625615 DOI: 10.1016/j.semcancer.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
The cGAS/STING signaling pathway is a crucial component of the innate immune system, playing significant roles in sensing cytosolic DNA, regulating cellular senescence, and contributing to oncogenesis. Recent advances have shed new lights into the molecular mechanisms governing pathway activation in multiple pathophysiological settings, the indispensable roles of cGAS/STING signaling in cellular senescence, and its context-dependent roles in cancer development and suppression. This review summarizes current knowledge related to the biology of cGAS/STING signaling pathway and its participations into senescence and oncogenesis. We further explore the clinical implications and therapeutic potential for cGAS/STING targeted therapies, and faced challenges in the field. With a focus on molecular mechanisms and emerging pharmacological targets, this review underscores the importance of future studies to harness the therapeutic potential of the cGAS/STING pathway in treating senescence-related disorders and cancer. Advanced understanding of the regulatory mechanisms of cGAS/STING signaling, along with the associated deregulations in diseases, combined with the development of new classes of cGAS/STING modulators, hold great promises for creating novel and effective therapeutic strategies. These advancements could address current treatment challenges and unlock the full potential of cGAS/STING in treating senescence-related disorders and oncogenesis.
Collapse
Affiliation(s)
- Le Yu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Pengda Liu
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Biochemistry and Biophysics, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
21
|
Dong M, Fitzgerald KA. DNA-sensing pathways in health, autoinflammatory and autoimmune diseases. Nat Immunol 2024; 25:2001-2014. [PMID: 39367124 DOI: 10.1038/s41590-024-01966-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/07/2024] [Indexed: 10/06/2024]
Abstract
Detection of microbial DNA is a primary means of host defense. In mammalian cells, DNA-sensing pathways induce robust anti-microbial responses and initiation of adaptive immunity, leading to the eventual clearance of the infectious agent. However, while conferring the advantage of broad detection capability, the sequence-independent recognition mechanisms of most DNA sensors pose a significant challenge for mammalian cells to maintain ignorance to self-DNA under homeostatic conditions. In this Review, we summarize the fundamentals of DNA-sensing pathways and the intricate regulatory networks that keep these pathways in check. In addition, we describe how regulatory restraints can be defective and underlie human autoinflammatory and autoimmune diseases. Further, we discuss therapies in development that limit inflammation fueled by self-DNA or inappropriate activation of DNA-sensing pathways.
Collapse
Affiliation(s)
- Mingqi Dong
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Katherine A Fitzgerald
- Division of Innate Immunity, Department of Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
22
|
Chen W, Lee GE, Jeung D, Byun J, Wu J, Li X, Lee JY, Kang HC, Lee HS, Kim KD, Nam SB, Lee CJ, Kwon YJ, Cho YY. RSK2-mediated cGAS phosphorylation induces cGAS chromatin-incorporation-mediated cell transformation and cancer cell colony growth. Cell Death Discov 2024; 10:442. [PMID: 39424777 PMCID: PMC11492232 DOI: 10.1038/s41420-024-02208-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024] Open
Abstract
Cyclic guanosine-adenosine monophosphate synthase (cGAS) is a key cytosolic DNA sensor that plays a pivotal role in the innate immune response. Although a decade of research on the cGAS has advanced our understanding of inflammasome formation, cytokine production, and signaling pathways, the role of cGAS in the nucleus remains unclear. In this study, we found that the nuclear localization of endogenous and stably expressed cGAS differed from transiently expressed cGAS, which mainly localized in the cytosol. In the nucleus, cGAS is tightly bound to chromatin DNA. The chromatin DNA binding of cGAS was dependent on RSK2. Our molecular mechanism study indicated that the N-lobe of RSK2 harboring 1-323 interacted with the NTase domain of cGAS harboring residues 213-330. This interaction increased RSK2-induced cGAS phosphorylation at Ser120 and Thr130, resulting in the tightly binding of cGAS to chromatin. Importantly, epidermal growth factor (EGF)-induced cell transformation and anchorage-independent colony growth showed an increase in growth factors, such as EGF or bFGF, in cGAS stable expression compared to mock expression. Notably, the cGAS-S120A/T130A mutant abolished the increasing effect of cell transformation of JB6 Cl41 cells and colony growth of SK-MEL-2 malignant melanoma cells. The results suggested that cGAS's chromatin DNA binding, which is indispensable to RSK2-dependent phosphorylation of cGAS at Ser120/Thr130, provides the first clue to how cGAS may participate in chromatin remodeling in the nucleus.
Collapse
Affiliation(s)
- Weidong Chen
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Ga-Eun Lee
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Sciences, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Dohyun Jeung
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Jiin Byun
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Juan Wu
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Xianzhe Li
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Joo Young Lee
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Han Chang Kang
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Hye Suk Lee
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
| | - Kwang Dong Kim
- Division of Applied Life Science (BK21 four), PMBBRC, Gyeongsang National University, Jinju, 52828, Korea
| | - Soo-Bin Nam
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Sciences, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Cheol-Jung Lee
- Biopharmaceutical Research Center, Ochang Institute of Biological and Environmental Sciences, Korea Basic Science Institute, 162, Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju-si, 28119, Republic of Korea
| | - Young Jik Kwon
- College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea
- Department of Pharmaceutical Sciences, University of California, 132, Sprague Hall, Irvine, CA, 92697, USA
| | - Yong-Yeon Cho
- BK21-Four, College of Pharmacy, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea.
- Research Institute for Controls and Materials of Regulated Cell Death, The Catholic University of Korea, 43, Jibong-ro, Wonmi-gu, Bucheon-si, Gyeonggi-do, 14662, Korea.
| |
Collapse
|
23
|
Huang Y, Jiang W, Zhou R. DAMP sensing and sterile inflammation: intracellular, intercellular and inter-organ pathways. Nat Rev Immunol 2024; 24:703-719. [PMID: 38684933 DOI: 10.1038/s41577-024-01027-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/20/2024] [Indexed: 05/02/2024]
Abstract
Damage-associated molecular patterns (DAMPs) are endogenous molecules that are released from host cells as a result of cell death or damage. The release of DAMPs in tissues is associated with loss of tissue homeostasis. Sensing of DAMPs by innate immune receptors triggers inflammation, which can be beneficial in initiating the processes that restore tissue homeostasis but can also drive inflammatory diseases. In recent years, the sensing of intracellular DAMPs has received extensive attention in the field of sterile inflammation. However, emerging studies have shown that DAMPs that originate from neighbouring cells, and even from distal tissues or organs, also mediate sterile inflammatory responses. This multi-level sensing of DAMPs is crucial for intercellular, trans-tissue and trans-organ communication. Here, we summarize how DAMP-sensing receptors detect DAMPs from intracellular, intercellular or distal tissue and organ sources to mediate sterile inflammation. We also discuss the possibility of targeting DAMPs or their corresponding receptors to treat inflammatory diseases.
Collapse
Affiliation(s)
- Yi Huang
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Wei Jiang
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| | - Rongbin Zhou
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China.
- Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China.
| |
Collapse
|
24
|
Popęda M, Kowalski K, Wenta T, Beznoussenko GV, Rychłowski M, Mironov A, Lavagnino Z, Barozzi S, Richert J, Bertolio R, Myszczyński K, Szade J, Bieńkowski M, Miszewski K, Matuszewski M, Żaczek AJ, Braga L, Del Sal G, Bednarz-Knoll N, Maiuri P, Nastały P. Emerin mislocalization during chromatin bridge resolution can drive prostate cancer cell invasiveness in a collagen-rich microenvironment. Exp Mol Med 2024; 56:2016-2032. [PMID: 39218980 PMCID: PMC11446916 DOI: 10.1038/s12276-024-01308-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Micronuclei (MN) can form through many mechanisms, including the breakage of aberrant cytokinetic chromatin bridges. The frequent observation of MN in tumors suggests that they might not merely be passive elements but could instead play active roles in tumor progression. Here, we propose a mechanism through which the presence of micronuclei could induce specific phenotypic and functional changes in cells and increase the invasive potential of cancer cells. Through the integration of diverse in vitro imaging and molecular techniques supported by clinical samples from patients with prostate cancer (PCa) defined as high-risk by the D'Amico classification, we demonstrate that the resolution of chromosome bridges can result in the accumulation of Emerin and the formation of Emerin-rich MN. These structures are negative for Lamin A/C and positive for the Lamin-B receptor and Sec61β. MN can act as a protein sinks and result in the pauperization of Emerin from the nuclear envelope. The Emerin mislocalization phenotype is associated with a molecular signature that is correlated with a poor prognosis in PCa patients and is enriched in metastatic samples. Emerin mislocalization corresponds with increases in the migratory and invasive potential of tumor cells, especially in a collagen-rich microenvironment. Our study demonstrates that the mislocalization of Emerin to MN results in increased cell invasiveness, thereby worsening patient prognosis.
Collapse
Affiliation(s)
- Marta Popęda
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kamil Kowalski
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Tomasz Wenta
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | | | - Michał Rychłowski
- Laboratory of Virus Molecular Biology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, Gdansk, Poland
| | | | - Zeno Lavagnino
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Sara Barozzi
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Julia Richert
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Rebecca Bertolio
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
| | - Kamil Myszczyński
- Centre of Biostatistics and Bioinformatics Analysis, Medical University of Gdansk, Gdansk, Poland
| | - Jolanta Szade
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Michał Bieńkowski
- Department of Pathomorphology, Medical University of Gdańsk, Gdańsk, Poland
| | - Kevin Miszewski
- Department of Urology, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Anna J Żaczek
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Luca Braga
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
| | - Giannino Del Sal
- IFOM ETS-The AIRC Institute of Molecular Oncology, Milan, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Natalia Bednarz-Knoll
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland
| | - Paolo Maiuri
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Paulina Nastały
- Division of Translational Oncology, Intercollegiate Faculty of Biotechnology, University of Gdańsk and Medical University of Gdańsk, Gdańsk, Poland.
| |
Collapse
|
25
|
Zych MG, Hatch EM. Small spaces, big problems: The abnormal nucleoplasm of micronuclei and its consequences. Curr Opin Struct Biol 2024; 87:102839. [PMID: 38763098 DOI: 10.1016/j.sbi.2024.102839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/29/2024] [Accepted: 04/26/2024] [Indexed: 05/21/2024]
Abstract
Micronuclei (MN) form from missegregated chromatin that recruits its own nuclear envelope during mitotic exit and are a common consequence of chromosomal instability. MN are unstable due to errors in nuclear envelope organization and frequently rupture, leading to loss of compartmentalization, loss of nuclear functions, and major changes in genome stability and gene expression. However, recent work found that, even prior to rupture, nuclear processes can be severely defective in MN, which may contribute to rupture-associated defects and have lasting consequences for chromatin structure and function. In this review we discuss work that highlights nuclear function defects in intact MN, including their mechanisms and consequences, and how biases in chromosome missegregation into MN may affect the penetrance of these defects. Illuminating the nuclear environment of MN demonstrates that MN formation alone has major consequences for both the genome and cell and provides new insight into how nuclear content is regulated.
Collapse
Affiliation(s)
- Molly G Zych
- Molecular and Cellular Biology PhD Program, University of Washington, Seattle, WA, USA; Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA. https://twitter.com/ZychMolly
| | - Emily M Hatch
- Basic Sciences Division, Fred Hutchinson Cancer Center, Seattle, WA, USA; Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
26
|
Ramos A, Bizri N, Novak E, Mollen K, Khan S. The role of cGAS in epithelial dysregulation in inflammatory bowel disease and gastrointestinal malignancies. Front Pharmacol 2024; 15:1409683. [PMID: 39050748 PMCID: PMC11266671 DOI: 10.3389/fphar.2024.1409683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/31/2024] [Indexed: 07/27/2024] Open
Abstract
The gastrointestinal tract is lined by an epithelial monolayer responsible for selective permeability and absorption, as well as protection against harmful luminal contents. Recognition of foreign or aberrant DNA within these epithelial cells is, in part, regulated by pattern recognition receptors such as cyclic GMP-AMP synthase (cGAS). cGAS binds double-stranded DNA from exogenous and endogenous sources, resulting in the activation of stimulator of interferon genes (STING) and a type 1 interferon response. cGAS is also implicated in non-canonical pathways involving the suppression of DNA repair and the upregulation of autophagy via interactions with PARP1 and Beclin-1, respectively. The importance of cGAS activation in the development and progression of inflammatory bowel disease and gastrointestinal cancers has been and continues to be explored. This review delves into the intricacies of the complex role of cGAS in intestinal epithelial inflammation and gastrointestinal malignancies, as well as recent therapeutic advances targeting cGAS pathways.
Collapse
Affiliation(s)
- Anna Ramos
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Nazih Bizri
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Elizabeth Novak
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Kevin Mollen
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Division of Pediatric General and Thoracic Surgery, UPMC Children’s Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Sidrah Khan
- Department of Surgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|
27
|
Bonhomme D, Poirier EZ. Early signaling pathways in virus-infected cells. Curr Opin Virol 2024; 66:101411. [PMID: 38718574 DOI: 10.1016/j.coviro.2024.101411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/05/2024] [Accepted: 04/10/2024] [Indexed: 06/07/2024]
Abstract
Virus infection activates specific pattern recognition receptors and immune signal transduction, resulting in pro-inflammatory cytokine production and activation of innate immunity. We describe here the molecular organization of early signaling pathways downstream of viral recognition, including conformational changes, post-translational modifications, formation of oligomers, and generation of small-molecule second messengers. Such molecular organization allows tight regulation of immune signal transduction, characterized by swift but transient responses, nonlinearity, and signal amplification. Pathologies of early immune signaling caused by genomic mutations illustrate the fine regulation of the immune transduction cascade.
Collapse
Affiliation(s)
- Delphine Bonhomme
- Institut Curie, Stem Cell Immunity Lab, PSL Research University, INSERM U932, Paris, France
| | - Enzo Z Poirier
- Institut Curie, Stem Cell Immunity Lab, PSL Research University, INSERM U932, Paris, France.
| |
Collapse
|
28
|
Zhang H, Jiang L, Du X, Qian Z, Wu G, Jiang Y, Mao Z. The cGAS-Ku80 complex regulates the balance between two end joining subpathways. Cell Death Differ 2024; 31:792-803. [PMID: 38664591 PMCID: PMC11164703 DOI: 10.1038/s41418-024-01296-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 04/09/2024] [Accepted: 04/11/2024] [Indexed: 06/12/2024] Open
Abstract
As the major DNA sensor that activates the STING-TBK1 signaling cascade, cGAS is mainly present in the cytosol. A number of recent reports have indicated that cGAS also plays critical roles in the nucleus. Our previous work demonstrated for the first time that cGAS is translocated to the nucleus upon the occurrence of DNA damage and inhibits homologous recombination (HR), one of the two major pathways of DNA double strand break (DSB) repair. However, whether nuclear cGAS regulates the other DSB repair pathway, nonhomologous end joining (NHEJ), which can be further divided into the less error-prone canonical NHEJ (c-NHEJ) and more mutagenic alternative NHEJ (alt-NHEJ) subpathways, has not been characterized. Here, we demonstrated that cGAS tipped the balance of the two NHEJ subpathways toward c-NHEJ. Mechanistically, the cGAS-Ku80 complex enhanced the interaction between DNA-PKcs and the deubiquitinase USP7 to improve DNA-PKcs protein stability, thereby promoting c-NHEJ. In contrast, the cGAS-Ku80 complex suppressed alt-NHEJ by directly binding to the promoter of Polθ to suppress its transcription. Together, these findings reveal a novel function of nuclear cGAS in regulating DSB repair, suggesting that the presence of cGAS in the nucleus is also important in the maintenance of genome integrity.
Collapse
Affiliation(s)
- Haiping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lijun Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xinyi Du
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhen Qian
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Guizhu Wu
- Department of Gynecology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China.
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
29
|
En A, Bogireddi H, Thomas B, Stutzman A, Ikegami S, LaForest B, Almakki O, Pytel P, Moskowitz IP, Ikegami K. Pervasive nuclear envelope ruptures precede ECM signaling and disease onset without activating cGAS-STING in Lamin-cardiomyopathy mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.08.28.555134. [PMID: 37693381 PMCID: PMC10491116 DOI: 10.1101/2023.08.28.555134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Nuclear envelope (NE) ruptures are emerging observations in Lamin-related dilated cardiomyopathy, an adult-onset disease caused by loss-of-function mutations in Lamin A/C, a nuclear lamina component. Here, we tested a prevailing hypothesis that NE ruptures trigger pathological cGAS-STING cytosolic DNA-sensing pathway, using a mouse model of Lamin-cardiomyopathy. Reduction of Lamin A/C in cardiomyocytes of adult mice caused pervasive NE ruptures in cardiomyocytes, preceding inflammatory transcription, fibrosis, and fatal dilated cardiomyopathy. NE ruptures were followed by DNA damage accumulation without causing immediate cardiomyocyte death. However, cGAS-STING-dependent inflammatory signaling remained inactive. Deleting cGas or Sting did not rescue cardiomyopathy. The lack of cGAS-STING activation was likely due to the near absence of cGAS expression in adult cardiomyocytes at baseline. Instead, extracellular matrix (ECM) signaling was activated and predicted to initiate pro-inflammatory communication from Lamin-reduced cardiomyocytes to fibroblasts. Our work nominates ECM signaling, not cGAS-STING, as a potential inflammatory contributor in Lamin-cardiomyopathy.
Collapse
Affiliation(s)
- Atsuki En
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, Japan
| | - Hanumakumar Bogireddi
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Briana Thomas
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Alexis Stutzman
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Sachie Ikegami
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Brigitte LaForest
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Omar Almakki
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
| | - Peter Pytel
- Department of Pathology, The University of Chicago, Chicago, IL, USA
| | - Ivan P Moskowitz
- Department of Pediatrics, The University of Chicago, Chicago, IL, USA
- Department of Pathology, The University of Chicago, Chicago, IL, USA
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Kohta Ikegami
- Division of Molecular Cardvascular Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| |
Collapse
|
30
|
Martínez-López MF, Muslin C, Kyriakidis NC. STINGing Defenses: Unmasking the Mechanisms of DNA Oncovirus-Mediated Immune Escape. Viruses 2024; 16:574. [PMID: 38675916 PMCID: PMC11054469 DOI: 10.3390/v16040574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/21/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
DNA oncoviruses represent an intriguing subject due to their involvement in oncogenesis. These viruses have evolved mechanisms to manipulate the host immune response, facilitating their persistence and actively contributing to carcinogenic processes. This paper describes the complex interactions between DNA oncoviruses and the innate immune system, with a particular emphasis on the cGAS-STING pathway. Exploring these interactions highlights that DNA oncoviruses strategically target and subvert this pathway, exploiting its vulnerabilities for their own survival and proliferation within the host. Understanding these interactions lays the foundation for identifying potential therapeutic interventions. Herein, we sought to contribute to the ongoing efforts in advancing our understanding of the innate immune system in oncoviral pathogenesis.
Collapse
Affiliation(s)
- Mayra F Martínez-López
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| | - Claire Muslin
- One Health Research Group, Faculty of Health Sciences, Universidad de las Américas, Quito 170503, Ecuador;
| | - Nikolaos C. Kyriakidis
- Cancer Research Group (CRG), Faculty of Medicine, Universidad de las Américas, Quito 170503, Ecuador;
| |
Collapse
|
31
|
Sato Y, Hayashi MT. Micronucleus is not a potent inducer of the cGAS/STING pathway. Life Sci Alliance 2024; 7:e202302424. [PMID: 38307626 PMCID: PMC10837050 DOI: 10.26508/lsa.202302424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 01/22/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Micronuclei (MN) have been associated with the innate immune response. The abrupt rupture of MN membranes results in the accumulation of cGAS, potentially activating STING and downstream interferon-responsive genes. However, direct evidence connecting MN and cGAS activation has been lacking. We have developed the FuVis2 reporter system, which enables the visualization of the cell nucleus carrying a single sister chromatid fusion and, consequently, MN. Using this FuVis2 reporter equipped with cGAS and STING reporters, we rigorously assessed the potency of cGAS activation by MN in individual living cells. Our findings reveal that cGAS localization to membrane-ruptured MN during interphase is infrequent, with cGAS primarily capturing MN during mitosis and remaining bound to cytosolic chromatin. We found that cGAS accumulation during mitosis neither activates STING in the subsequent interphase nor triggers the interferon response. Gamma-ray irradiation activates STING independently of MN formation and cGAS localization to MN. These results suggest that cGAS accumulation in cytosolic MN is not a robust indicator of its activation and that MN are not the primary trigger of the cGAS/STING pathway.
Collapse
Affiliation(s)
- Yuki Sato
- Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Makoto T Hayashi
- IFOM-KU Joint Research Laboratory, Graduate School of Medicine, Kyoto University, Kyoto, Japan
- IFOM ETS, the AIRC Institute of Molecular Oncology, Milan, Italy
| |
Collapse
|
32
|
Molenberghs F, Verschuuren M, Vandeweyer L, Peeters S, Bogers JJ, Novo CP, Vanden Berghe W, De Reu H, Cools N, Schelhaas M, De Vos WH. Lamin B1 curtails early human papillomavirus infection by safeguarding nuclear compartmentalization and autophagic capacity. Cell Mol Life Sci 2024; 81:141. [PMID: 38485766 PMCID: PMC10940392 DOI: 10.1007/s00018-024-05194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 02/21/2024] [Accepted: 03/01/2024] [Indexed: 03/18/2024]
Abstract
Human papillomavirus (HPV) infection is a primary cause of cervical and head-and-neck cancers. The HPV genome enters the nucleus during mitosis when the nuclear envelope disassembles. Given that lamins maintain nuclear integrity during interphase, we asked to what extent their loss would affect early HPV infection. To address this question, we infected human cervical cancer cells and keratinocytes lacking the major lamins with a HPV16 pseudovirus (HP-PsV) encoding an EGFP reporter. We found that a sustained reduction or complete loss of lamin B1 significantly increased HP-PsV infection rate. A corresponding greater nuclear HP-PsV load in LMNB1 knockout cells was directly related to their prolonged mitotic window and extensive nuclear rupture propensity. Despite the increased HP-PsV presence, EGFP transcript levels remained virtually unchanged, indicating an additional defect in protein turnover. Further investigation revealed that LMNB1 knockout led to a substantial decrease in autophagic capacity, possibly linked to the persistent activation of cGAS by cytoplasmic chromatin exposure. Thus, the attrition of lamin B1 increases nuclear perviousness and attenuates autophagic capacity, creating an environment conducive to unrestrained accumulation of HPV capsids. Our identification of lower lamin B1 levels and nuclear BAF foci in the basal epithelial layer of several human cervix samples suggests that this pathway may contribute to an increased individual susceptibility to HPV infection.
Collapse
Affiliation(s)
- Freya Molenberghs
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Marlies Verschuuren
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Lauran Vandeweyer
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Sarah Peeters
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Johannes J Bogers
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium
| | - Claudina Perez Novo
- Cell Death Signaling Lab, Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Wim Vanden Berghe
- Cell Death Signaling Lab, Integrated Personalized and Precision Oncology Network (IPPON), Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Hans De Reu
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Nathalie Cools
- Laboratory of Experimental Hematology, Faculty Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium
| | - Mario Schelhaas
- Institute of Cellular Virology, University of Münster, Münster, Germany
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610, Antwerp, Belgium.
| |
Collapse
|
33
|
Benarroch E. What Is the Role of Nuclear Envelope Proteins in Neurologic Disorders? Neurology 2024; 102:e209202. [PMID: 38330281 DOI: 10.1212/wnl.0000000000209202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 02/10/2024] Open
|
34
|
Gunn AL, Yashchenko AI, Dubrulle J, Johnson J, Hatch EM. A high-content screen reveals new regulators of nuclear membrane stability. Sci Rep 2024; 14:6013. [PMID: 38472343 PMCID: PMC10933478 DOI: 10.1038/s41598-024-56613-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
Nuclear membrane rupture is a physiological response to multiple in vivo processes, such as cell migration, that can cause extensive genome instability and upregulate invasive and inflammatory pathways. However, the underlying molecular mechanisms of rupture are unclear and few regulators have been identified. In this study, we developed a reporter that is size excluded from re-compartmentalization following nuclear rupture events. This allows for robust detection of factors influencing nuclear integrity in fixed cells. We combined this with an automated image analysis pipeline in a high-content siRNA screen to identify new proteins that both increase and decrease nuclear rupture frequency in cancer cells. Pathway analysis identified an enrichment of nuclear membrane and ER factors in our hits and we demonstrate that one of these, the protein phosphatase CTDNEP1, is required for nuclear stability. Analysis of known rupture determinants, including an automated quantitative analysis of nuclear lamina gaps, are consistent with CTDNEP1 acting independently of actin and nuclear lamina organization. Our findings provide new insights into the molecular mechanism of nuclear rupture and define a highly adaptable program for rupture analysis that removes a substantial barrier to new discoveries in the field.
Collapse
Affiliation(s)
- Amanda L Gunn
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Artem I Yashchenko
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Julien Dubrulle
- Cellular Imaging Shared Resource, The Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Jodiene Johnson
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, Seattle, WA, USA
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, WA, USA
| | - Emily M Hatch
- Divisions of Basic Sciences and Human Biology, The Fred Hutchinson Cancer Center, Seattle, WA, USA.
| |
Collapse
|
35
|
Lu Y, Zhao M, Chen L, Wang Y, Liu T, Liu H. cGAS: action in the nucleus. Front Immunol 2024; 15:1380517. [PMID: 38515746 PMCID: PMC10954897 DOI: 10.3389/fimmu.2024.1380517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 02/23/2024] [Indexed: 03/23/2024] Open
Abstract
As a canonical cytoplasmic DNA sensor, cyclic GMP-AMP synthase (cGAS) plays a key role in innate immunity. In recent years, a growing number of studies have shown that cGAS can also be located in the nucleus and plays new functions such as regulating DNA damage repair, nuclear membrane repair, chromosome fusion, DNA replication, angiogenesis and other non-canonical functions. Meanwhile, the mechanisms underlying the nucleo-cytoplasmic transport and the regulation of cGAS activation have been revealed in recent years. Based on the current understanding of the structure, subcellular localization and canonical functions of cGAS, this review focuses on summarizing the mechanisms underlying nucleo-cytoplasmic transport, activity regulation and non-canonical functions of cGAS in the nucleus. We aim to provide insights into exploring the new functions of cGAS in the nucleus and advance its clinical translation.
Collapse
Affiliation(s)
- Yikai Lu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Mengmeng Zhao
- Research Center of Translational Medicine, Jinan Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Li Chen
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yan Wang
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tianhao Liu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Haipeng Liu
- Central Laboratory, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
36
|
Shinde O, Li P. The molecular mechanism of dsDNA sensing through the cGAS-STING pathway. Adv Immunol 2024; 162:1-21. [PMID: 38866436 DOI: 10.1016/bs.ai.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Double stranded DNA (dsDNA) in the cytoplasm triggers the cGAS-STING innate immune pathway to defend against pathogenic infections, tissue damage and malignant cells. Extensive structural and functional studies over the last couple of years have enabled the molecular understanding of dsDNA induced activation of the cGAS-STING signaling pathway. This review highlights recent advances in the structural characterization of key molecules in the cGAS-STING signaling axis by focusing on the mechanism of cGAS activation by dsDNA, the regulation of cGAS activity, the mechanism of STING activation by cGAMP, the molecular basis of TBK1 recruitment and activation by STING, the structural basis of IRF3 recruitment by STING, and the mechanism of IRF3 activation upon phosphorylation by TBK1. These comprehensive structural studies provide a detailed picture of the mechanism of the cGAS-STING signaling pathway, establishing a molecular framework for the development of novel therapeutic strategies targeting this pathway.
Collapse
Affiliation(s)
- Omkar Shinde
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States
| | - Pingwei Li
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, United States.
| |
Collapse
|
37
|
Xu P, Liu Y, Liu C, Guey B, Li L, Melenec P, Ricci J, Ablasser A. The CRL5-SPSB3 ubiquitin ligase targets nuclear cGAS for degradation. Nature 2024; 627:873-879. [PMID: 38418882 PMCID: PMC10972748 DOI: 10.1038/s41586-024-07112-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 01/24/2024] [Indexed: 03/02/2024]
Abstract
Cyclic GMP-AMP synthase (cGAS) senses aberrant DNA during infection, cancer and inflammatory disease, and initiates potent innate immune responses through the synthesis of 2'3'-cyclic GMP-AMP (cGAMP)1-7. The indiscriminate activity of cGAS towards DNA demands tight regulatory mechanisms that are necessary to maintain cell and tissue homeostasis under normal conditions. Inside the cell nucleus, anchoring to nucleosomes and competition with chromatin architectural proteins jointly prohibit cGAS activation by genomic DNA8-15. However, the fate of nuclear cGAS and its role in cell physiology remains unclear. Here we show that the ubiquitin proteasomal system (UPS) degrades nuclear cGAS in cycling cells. We identify SPSB3 as the cGAS-targeting substrate receptor that associates with the cullin-RING ubiquitin ligase 5 (CRL5) complex to ligate ubiquitin onto nuclear cGAS. A cryo-electron microscopy structure of nucleosome-bound cGAS in a complex with SPSB3 reveals a highly conserved Asn-Asn (NN) minimal degron motif at the C terminus of cGAS that directs SPSB3 recruitment, ubiquitylation and cGAS protein stability. Interference with SPSB3-regulated nuclear cGAS degradation primes cells for type I interferon signalling, conferring heightened protection against infection by DNA viruses. Our research defines protein degradation as a determinant of cGAS regulation in the nucleus and provides structural insights into an element of cGAS that is amenable to therapeutic exploitation.
Collapse
Affiliation(s)
- Pengbiao Xu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Ying Liu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
- School of Medicine, Jiangnan University, Wuxi, China
| | - Chong Liu
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Baptiste Guey
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Lingyun Li
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Pauline Melenec
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Jonathan Ricci
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Andrea Ablasser
- Global Health Institute, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- Institute for Cancer Research (ISREC), Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
38
|
Di Bona M, Bakhoum SF. Micronuclei and Cancer. Cancer Discov 2024; 14:214-226. [PMID: 38197599 PMCID: PMC11265298 DOI: 10.1158/2159-8290.cd-23-1073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/20/2023] [Accepted: 12/18/2023] [Indexed: 01/11/2024]
Abstract
Chromosome-containing micronuclei are a feature of human cancer. Micronuclei arise from chromosome mis-segregation and characterize tumors with elevated rates of chromosomal instability. Although their association with cancer has been long recognized, only recently have we broadened our understanding of the mechanisms that govern micronuclei formation and their role in tumor progression. In this review, we provide a brief historical account of micronuclei, depict the mechanisms underpinning their creation, and illuminate their capacity to propel tumor evolution through genetic, epigenetic, and transcriptional transformations. We also posit the prospect of leveraging micronuclei as biomarkers and therapeutic targets in chromosomally unstable cancers. SIGNIFICANCE Micronuclei in chromosomally unstable cancer cells serve as pivotal catalysts for cancer progression, instigating transformative genomic, epigenetic, and transcriptional alterations. This comprehensive review not only synthesizes our present comprehension but also outlines a framework for translating this knowledge into pioneering biomarkers and therapeutics, thereby illuminating novel paths for personalized cancer management.
Collapse
Affiliation(s)
- Melody Di Bona
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Samuel F. Bakhoum
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
39
|
Silva RCMC, Gomes FM. Evolution of the Major Components of Innate Immunity in Animals. J Mol Evol 2024; 92:3-20. [PMID: 38281163 DOI: 10.1007/s00239-024-10155-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 01/11/2024] [Indexed: 01/30/2024]
Abstract
Innate immunity is present in all animals. In this review, we explore the main conserved mechanisms of recognition and innate immune responses among animals. In this sense, we discuss the receptors, critical for binding to pathogen-associated molecular patterns (PAMPs) or danger-associated molecular patterns (DAMPs); the downstream signaling proteins; and transcription factors that govern immune responses. We also highlight conserved inflammatory mediators that are induced after the recognition of DAMPs and PAMPs. At last, we discuss the mechanisms that are involved in the regulation and/or generation of reactive oxygen species (ROS), influencing immune responses, like heme-oxygenases (HOs).
Collapse
Affiliation(s)
- Rafael Cardoso Maciel Costa Silva
- Laboratory of Immunoreceptors and Signaling, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Fábio Mendonça Gomes
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
40
|
Xu Y, Wang X, Yuan W, Zhang L, Chen W, Hu K. Identification of BANF1 as a novel prognostic biomarker in gastric cancer and validation via in-vitro and in-vivo experiments. Aging (Albany NY) 2024; 16:1808-1828. [PMID: 38261746 PMCID: PMC10866416 DOI: 10.18632/aging.205461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024]
Abstract
Gastric cancer (GC) is a widespread malignancy characterized by a notably high incidence rate and an unfavorable prognosis. We conducted a meticulous analysis of GC high-throughput sequencing data downloaded from the Gene Expression Omnibus (GEO) repository to pinpoint distinctive genes associated with GC. Our investigation successfully identified three signature genes implicated in GC, with a specific focus on the barrier to autointegration factor 1 (BANF1), which exhibits elevated expression across various cancer types, including GC. Bioinformatic analysis has highlighted BANF1 as a prognostic indicator for patients with GC, with direct implications for immune cell infiltration. To gain a more comprehensive understanding of the significance of BANF1 in GC, we performed a series of in vitro experiments to confirm its high expression in GC tissues and cellular components. Intriguingly, the induction of BANF1 knockdown resulted in a marked attenuation of proliferation, migratory capacity, and invasive potential in GC cells. Moreover, our in vivo experiments using nude mouse models revealed a notable impediment in tumor growth following BANF1 knockdown. These insights underscore the feasibility of BANF1 as a novel therapeutic target for GC.
Collapse
Affiliation(s)
- Yuanmin Xu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Xu Wang
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Weiwei Yuan
- Department of General Surgery, Anhui Public Health Clinical Center, Hefei 230022, China
| | - Ling Zhang
- Department of Immunology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230022, China
| | - Wei Chen
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
| | - Kongwang Hu
- Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei 230022, China
- Department of General Surgery, Fuyang Affiliated Hospital of Anhui Medical University, Fuyang 236000, China
| |
Collapse
|
41
|
Wei D, Liu Y, Yuan Y, Li Y, Zhao F, Qin X. Molecular map of cGAS-STING pathway-related genes in bladder cancer: the perspective toward immune microenvironment and prognosis. Aging (Albany NY) 2024; 16:1516-1535. [PMID: 38240703 PMCID: PMC10866408 DOI: 10.18632/aging.205442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 12/06/2023] [Indexed: 02/06/2024]
Abstract
BACKGROUND The cGAS-STING pathway emerges as a pivotal innate immune pathway with the potential to profoundly influence all facets of tumor initiation and progression. The prognostic significance and immunological role of cGAS-STING pathway-related genes (CRGs) in individuals diagnosed with bladder cancer (BLCA) have not yet been fully elucidated. METHODS Performed unsupervised cluster analysis to identify distinct clusters. Utilizing LASSO and multivariate Cox regression analysis to construct a prognostic risk model. The IMvigor210, GSE13507 and GSE78220 cohorts were utilized to explore the potential value of risk score in immune therapy response and survival prediction. RESULTS A risk model was developed utilizing four CRGs in order to forecast the overall survival (OS) of BLCA patients. The risk score to be a standalone risk factor, which was further corroborated by the external validation set obtained from the GEO database (GSE13507). We established an integrated nomogram that combined risk scoring and clinical information, exhibiting commendable clinical practicality in predicting the overall survival period of BLCA patients. It is noteworthy that risk score could differentiate tumor microenvironments among different risk groups and individuals who were more responsive to immunotherapy in IMvigor210 and GSE13507 cohorts. In vitro experiments, we noted an up-regulation of IRF3 and IKBKB upon the activation of the cGAS-STING pathway. Conversely, the activation of the cGAS-STING pathway resulted in a down-regulation of POLR3G and CTNNB1. CONCLUSIONS CRG risk model shows promise as a potential stratification approach for bladder cancer patients.
Collapse
Affiliation(s)
- Dong Wei
- Department of Urology, Hebei General Hospital, Shijiazhuang 050000, China
| | - Ying Liu
- Department of Neurology, Xingtai Third Hospital, Xingtai 054000, China
| | - Ying Yuan
- Department of Neurology, Xingtai Third Hospital, Xingtai 054000, China
| | - Yishuai Li
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang 050000, China
| | - Fangchao Zhao
- Department of Thoracic Surgery, The Second Hospital of Hebei Medical University, Shijiazhuang 050000, China
| | - Xuebo Qin
- Department of Thoracic Surgery, Hebei Chest Hospital, Shijiazhuang 050000, China
- Department of Thoracic Surgery, The Fourth Hospital of Hebei Medical University, Shijiazhuang 050000, China
| |
Collapse
|
42
|
Zierhut C. Potential cGAS-STING pathway functions in DNA damage responses, DNA replication and DNA repair. DNA Repair (Amst) 2024; 133:103608. [PMID: 38056369 DOI: 10.1016/j.dnarep.2023.103608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/06/2023] [Accepted: 11/21/2023] [Indexed: 12/08/2023]
Abstract
The major innate immune responder to the DNA of pathogens is the cyclic GMP-AMP (cGAMP) synthase (cGAS) - stimulator of interferon genes (STING) pathway. Most prominently, the outcome of cGAS signalling is the activation of inflammatory transcription through interferon regulatory factor 3 (IRF3) and nuclear factor kappa B (NF-kB). In addition, the cGAS-STING pathway can lead to the direct modulation of cellular processes independently of transcription, such as activation of autophagy. Under unperturbed conditions, several mechanisms are in place to prevent the activation of cGAS by self-DNA, chiefly its sequestration on chromatin, which interferes with binding to stimulatory DNA. However, under conditions of genotoxic stress and chromosomal instability, this inhibition breaks down, resulting in the activation of cGAS, which drives sterile inflammation, as well as cell fate and immune responses in cancer. Recently, several studies have suggested that cGAS, STING, or downstream pathway components can also regulate the DNA damage response, DNA damage checkpoint signalling, DNA repair and DNA replication. Here, I review these proposed mechanisms, and discuss some unanswered questions relating to them.
Collapse
Affiliation(s)
- Christian Zierhut
- The Institute of Cancer Research, Division of Cancer Biology, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
43
|
Monticelli S, Cejka P. DNA sensing and repair systems unexpectedly team up against cancer. Nature 2024; 625:457-458. [PMID: 38200334 DOI: 10.1038/d41586-023-03994-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
|
44
|
Halfmann CT, Scott KL, Sears RM, Roux KJ. Mechanisms by which barrier-to-autointegration factor regulates dynamics of nucleocytoplasmic leakage and membrane repair following nuclear envelope rupture. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.21.572811. [PMID: 38187776 PMCID: PMC10769424 DOI: 10.1101/2023.12.21.572811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
The nuclear envelope (NE) creates a barrier between the cytosol and nucleus during interphase that is key for cellular compartmentalization and protecting genomic DNA. NE rupture can expose genomic DNA to the cytosol and allow admixture of the nuclear and cytosolic constituents, a proposed mechanism of cancer and NE-associated diseases. Barrier-to-autointegration factor (BAF) is a DNA-binding protein that localizes to NE ruptures where it recruits LEM-domain proteins, A-type lamins, and participates in rupture repair. To further reveal the mechanisms by which BAF responds to and aids in repairing NE ruptures, we investigated known properties of BAF including LEM domain binding, lamin binding, compartmentalization, phosphoregulation of DNA binding, and BAF dimerization. We demonstrate that it is the cytosolic population of BAF that functionally repairs NE ruptures, and phosphoregulation of BAF's DNA-binding that enables its ability to facilitate that repair. Interestingly, BAF's LEM or lamin binding activity appears dispensable for its role in functional repair. Furthermore, we demonstrate that BAF functions to reduce the extent of leakage though NE ruptures, suggesting that BAF effectively forms a diffusion barrier prior to NE repair. Collectively, these results enhances our knowledge of the mechanisms by which BAF responds to NE ruptures and facilitates their repair.
Collapse
Affiliation(s)
| | - Kelsey L. Scott
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
| | - Rhiannon M. Sears
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD
| | - Kyle J. Roux
- Enabling Technologies Group, Sanford Research, Sioux Falls SD
- Department of Pediatrics, Sanford School of Medicine, University of South Dakota, Sioux Falls SD
| |
Collapse
|
45
|
Jiang Y, Sun S, Quan Y, Wang X, You Y, Zhang X, Zhang Y, Liu Y, Wang B, Xu H, Cao X. Nuclear RPSA senses viral nucleic acids to promote the innate inflammatory response. Nat Commun 2023; 14:8455. [PMID: 38114488 PMCID: PMC10730619 DOI: 10.1038/s41467-023-43784-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Innate sensors initiate the production of type I interferons (IFN-I) and proinflammatory cytokines to protect host from viral infection. Several innate nuclear sensors that mainly induce IFN-I production have been identified. Whether there exist innate nuclear sensors that mainly induce proinflammatory cytokine production remains to be determined. By functional screening, we identify 40 S ribosomal protein SA (RPSA) as a nuclear protein that recognizes viral nucleic acids and predominantly promotes proinflammatory cytokine gene expression in antiviral innate immunity. Myeloid-specific Rpsa-deficient mice exhibit less innate inflammatory response against infection with Herpes simplex virus-1 (HSV-1) and Influenza A virus (IAV), the viruses replicating in nucleus. Mechanistically, nucleus-localized RPSA is phosphorylated at Tyr204 upon infection, then recruits ISWI complex catalytic subunit SMARCA5 to increase chromatin accessibility of NF-κB to target gene promotors without affecting innate signaling. Our results add mechanistic insights to an intra-nuclear way of initiating proinflammatory cytokine expression in antiviral innate defense.
Collapse
Affiliation(s)
- Yan Jiang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Siqi Sun
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuan Quan
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xin Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yuling You
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Xiao Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yue Zhang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Yin Liu
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Bingjing Wang
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China
| | - Henan Xu
- Frontiers Science Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Xuetao Cao
- Department of Immunology, Center for Immunotherapy, Institute of Basic Medical Sciences, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, 100005, China.
- Frontiers Science Center for Cell Responses, Institute of Immunology, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
46
|
Zhen Z, Chen Y, Wang H, Tang H, Zhang H, Liu H, Jiang Y, Mao Z. Nuclear cGAS restricts L1 retrotransposition by promoting TRIM41-mediated ORF2p ubiquitination and degradation. Nat Commun 2023; 14:8217. [PMID: 38086852 PMCID: PMC10716122 DOI: 10.1038/s41467-023-43001-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cyclic GMP-AMP synthase (cGAS), initially identified as a cytosolic DNA sensor, detects DNA fragments to trigger an innate immune response. Recently, accumulating evidence reveals the presence of cGAS within the nucleus. However, the biological functions of nuclear cGAS are not fully understood. Here, we demonstrate that nuclear cGAS represses LINE-1 (L1) retrotransposition to preserve genome integrity in human cells. Mechanistically, the E3 ligase TRIM41 interacts with and ubiquitinates ORF2p to influence its stability, and cGAS enhances the association of ORF2p with TRIM41, thereby promoting TRIM41-mediated ORF2p degradation and the suppression of L1 retrotransposition. In response to DNA damage, cGAS is phosphorylated at serine residues 120 and 305 by CHK2, which promotes cGAS-TRIM41 association, facilitating TRIM41-mediated ORF2p degradation. Moreover, we show that nuclear cGAS mediates the repression of L1 retrotransposition in senescent cells induced by DNA damage agents. We also identify several cancer-associated cGAS mutations that abolish the suppressive effect on L1 retrotransposition by disrupting the CHK2-cGAS-TRIM41-ORF2p regulatory axis. Together, these findings indicate that nuclear cGAS exhibits an inhibitory function in L1 retrotransposition which could provide avenues for future interventions in both aging and tumorigenesis.
Collapse
Affiliation(s)
- Zhengyi Zhen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Haiyan Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Huanyin Tang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
| | - Haiping Zhang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Haipeng Liu
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Ying Jiang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, 200092, Shanghai, China.
- Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Tsingtao Advanced Research Institute, Tongji University, Qingdao, 266071, China.
| |
Collapse
|
47
|
Hao W, Li W, Wang L, Li S. The odyssey of cGAS: From cytosol to nucleus. Cytokine Growth Factor Rev 2023; 74:29-39. [PMID: 37778920 PMCID: PMC11542052 DOI: 10.1016/j.cytogfr.2023.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 09/25/2023] [Indexed: 10/03/2023]
Abstract
The cyclic GMP-AMP synthase (cGAS) is a widely recognized pattern recognition receptor responsible for detecting pathogenic DNA in the cytosol and inducing the production of type I interferon (IFN) to combat infections. The recently discovered nuclear localization of cGAS has changed the old dogma, illuminated a captivating dimension of innate immunity, and sparked many fundamental questions beyond the field of immunology. This review explores cGAS nuclear localization models, activation mechanisms, and biological significance. This expansion challenges the conventional understanding of cGAS and opens new avenues for scientific exploration, promising insights into cellular surveillance and potentially unveiling new therapeutic targets for immune disorders.
Collapse
Affiliation(s)
- Wenzhuo Hao
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA
| | - Wenjun Li
- Department of Craniofacial Biomedicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Lingyan Wang
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA.
| | - Shitao Li
- Department of Microbiology and Immunology, Tulane University, New Orleans, LA 70112, USA.
| |
Collapse
|
48
|
Ren J, Yu P, Liu S, Li R, Niu X, Chen Y, Zhang Z, Zhou F, Zhang L. Deubiquitylating Enzymes in Cancer and Immunity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303807. [PMID: 37888853 PMCID: PMC10754134 DOI: 10.1002/advs.202303807] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/30/2023] [Indexed: 10/28/2023]
Abstract
Deubiquitylating enzymes (DUBs) maintain relative homeostasis of the cellular ubiquitome by removing the post-translational modification ubiquitin moiety from substrates. Numerous DUBs have been demonstrated specificity for cleaving a certain type of ubiquitin linkage or positions within ubiquitin chains. Moreover, several DUBs perform functions through specific protein-protein interactions in a catalytically independent manner, which further expands the versatility and complexity of DUBs' functions. Dysregulation of DUBs disrupts the dynamic equilibrium of ubiquitome and causes various diseases, especially cancer and immune disorders. This review summarizes the Janus-faced roles of DUBs in cancer including proteasomal degradation, DNA repair, apoptosis, and tumor metastasis, as well as in immunity involving innate immune receptor signaling and inflammatory and autoimmune disorders. The prospects and challenges for the clinical development of DUB inhibitors are further discussed. The review provides a comprehensive understanding of the multi-faced roles of DUBs in cancer and immunity.
Collapse
Affiliation(s)
- Jiang Ren
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Peng Yu
- Zhongshan Institute for Drug DiscoveryShanghai Institute of Materia MedicaChinese Academy of SciencesZhongshanGuangdongP. R. China
| | - Sijia Liu
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang ProvinceHangzhou310058China
| | - Ran Li
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Xin Niu
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
| | - Yan Chen
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
| | - Zhenyu Zhang
- Department of NeurosurgeryThe First Affiliated Hospital of Zhengzhou UniversityZhengzhouHenan450003P. R. China
| | - Fangfang Zhou
- Institutes of Biology and Medical ScienceSoochow UniversitySuzhou215123P. R. China
| | - Long Zhang
- The Eighth Affiliated HospitalSun Yat‐sen UniversityShenzhen518033P. R. China
- International Biomed‐X Research CenterSecond Affiliated Hospital of Zhejiang University School of MedicineZhejiang UniversityHangzhouP. R. China
- MOE Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling NetworkLife Sciences InstituteZhejiang UniversityHangzhou310058P. R. China
- Cancer CenterZhejiang UniversityHangzhouZhejiang310058P. R. China
| |
Collapse
|
49
|
Thenin-Houssier S, Machida S, Jahan C, Bonnet-Madin L, Abbou S, Chen HC, Tesfaye R, Cuvier O, Benkirane M. POLE3 is a repressor of unintegrated HIV-1 DNA required for efficient virus integration and escape from innate immune sensing. SCIENCE ADVANCES 2023; 9:eadh3642. [PMID: 37922361 PMCID: PMC10624344 DOI: 10.1126/sciadv.adh3642] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 10/03/2023] [Indexed: 11/05/2023]
Abstract
Unintegrated retroviral DNA is transcriptionally silenced by host chromatin silencing factors. Here, we used the proteomics of isolated chromatin segments method to reveal viral and host factors associated with unintegrated HIV-1DNA involved in its silencing. By gene silencing using siRNAs, 46 factors were identified as potential repressors of unintegrated HIV-1DNA. Knockdown and knockout experiments revealed POLE3 as a transcriptional repressor of unintegrated HIV-1DNA. POLE3 maintains unintegrated HIV-1DNA in a repressive chromatin state, preventing RNAPII recruitment to the viral promoter. POLE3 and the recently identified host factors mediating unintegrated HIV-1 DNA silencing, CAF1 and SMC5/SMC6/SLF2, show specificity toward different forms of unintegrated HIV-1DNA. Loss of POLE3 impaired HIV-1 replication, suggesting that repression of unintegrated HIV-1DNA is important for optimal viral replication. POLE3 depletion reduces the integration efficiency of HIV-1. POLE3, by maintaining a repressive chromatin structure of unintegrated HIV-1DNA, ensures HIV-1 escape from innate immune sensing in primary CD4+ T cells.
Collapse
Affiliation(s)
- Suzie Thenin-Houssier
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Shinichi Machida
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
- Department of Structural Virology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo 162-8655, Japan
| | - Cyprien Jahan
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Lucie Bonnet-Madin
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Scarlette Abbou
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Heng-Chang Chen
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| | - Robel Tesfaye
- Laboratory of Chromatin Dynamics, Centre de Biologie Intégrative (CBI), MCD Unit (UMR5077), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Olivier Cuvier
- Laboratory of Chromatin Dynamics, Centre de Biologie Intégrative (CBI), MCD Unit (UMR5077), Université de Toulouse, CNRS, UPS, 31062 Toulouse, France
| | - Monsef Benkirane
- Institut de Génétique Humaine. Laboratoire de Virologie Moléculaire, CNRS Université de Montpellier. Montpellier. France
| |
Collapse
|
50
|
Wang X, Lin M, Zhu L, Ye Z. GAS-STING: a classical DNA recognition pathways to tumor therapy. Front Immunol 2023; 14:1200245. [PMID: 37920470 PMCID: PMC10618366 DOI: 10.3389/fimmu.2023.1200245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/28/2023] [Indexed: 11/04/2023] Open
Abstract
Cyclic GMP-AMP synthetase (cGAS), recognized as the primary DNA sensor within cells, possesses the capability to identify foreign DNA molecules along with free DNA fragments. This identification process facilitates the production of type I IFNs through the activator of the interferon gene (STING) which induces the phosphorylation of downstream transcription factors. This action characterizes the most archetypal biological functionality of the cGAS-STING pathway. When treated with anti-tumor agents, cells experience DNA damage that triggers activation of the cGAS-STING pathway, culminating in the expression of type I IFNs and associated downstream interferon-stimulated genes. cGAS-STING is one of the important innate immune pathways,the role of type I IFNs in the articulation between innate immunity and T-cell antitumour immunity.type I IFNs promote the recruitment and activation of inflammatory cells (including NK cells) at the tumor site.Type I IFNs also can promote the activation and maturation of dendritic cel(DC), improve the antigen presentation of CD4+T lymphocytes, and enhance the cross-presentation of CD8+T lymphocytes to upregulating anti-tumor responses. This review discussed the cGAS-STING signaling and its mechanism and biological function in traditional tumor therapy and immunotherapy.
Collapse
Affiliation(s)
- Xinrui Wang
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Meijia Lin
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- Department of Pathology, School of Basic Medical Sciences, Fujian Medical University, Fuzhou, China
| | - Liping Zhu
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| | - Zhoujie Ye
- National Health Commission (NHC), Key Laboratory of Technical Evaluation of Fertility Regulation for Non-Human Primate, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
- College of Clinical Medicine for Obstetrics & Gynecology and Pediatrics, Fujian Medical University, Fuzhou, Fujian, China
- Medical Research Center, Fujian Maternity and Child Health Hospital, Fuzhou, Fujian, China
| |
Collapse
|