1
|
Juusola M, Takalo J, Kemppainen J, Haghighi KR, Scales B, McManus J, Bridges A, MaBouDi H, Chittka L. Theory of morphodynamic information processing: Linking sensing to behaviour. Vision Res 2025; 227:108537. [PMID: 39755072 DOI: 10.1016/j.visres.2024.108537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 11/27/2024] [Accepted: 12/10/2024] [Indexed: 01/06/2025]
Abstract
The traditional understanding of brain function has predominantly focused on chemical and electrical processes. However, new research in fruit fly (Drosophila) binocular vision reveals ultrafast photomechanical photoreceptor movements significantly enhance information processing, thereby impacting a fly's perception of its environment and behaviour. The coding advantages resulting from these mechanical processes suggest that similar physical motion-based coding strategies may affect neural communication ubiquitously. The theory of neural morphodynamics proposes that rapid biomechanical movements and microstructural changes at the level of neurons and synapses enhance the speed and efficiency of sensory information processing, intrinsic thoughts, and actions by regulating neural information in a phasic manner. We propose that morphodynamic information processing evolved to drive predictive coding, synchronising cognitive processes across neural networks to match the behavioural demands at hand effectively.
Collapse
Affiliation(s)
- Mikko Juusola
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK.
| | - Jouni Takalo
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Joni Kemppainen
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | | | - Ben Scales
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - James McManus
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Alice Bridges
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - HaDi MaBouDi
- School of Biosciences, University of Sheffield, Sheffield S10 2TN, UK
| | - Lars Chittka
- Centre for Brain and Behaviour, School of Biological and Behavioural Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
2
|
Li F, Wang X, Zhou X. The Genomics Revolution Drives a New Era in Entomology. ANNUAL REVIEW OF ENTOMOLOGY 2025; 70:379-400. [PMID: 39874145 DOI: 10.1146/annurev-ento-013024-013420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
Thanks to the fast development of sequencing techniques and bioinformatics tools, sequencing the genome of an insect species for specific research purposes has become an increasingly popular practice. Insect genomes not only provide sets of gene sequences but also represent a change in focus from reductionism to systemic biology in the field of entomology. Using insect genomes, researchers are able to identify and study the functions of all members of a gene family, pathway, or gene network associated with a trait of interest. Comparative genomics studies provide new insights into insect evolution, addressing long-lasting controversies in taxonomy. It is also now feasible to uncover the genetic basis of important traits by identifying variants using genome resequencing data of individual insects, followed by genome-wide association analysis. Here, we review the current progress in insect genome sequencing projects and the application of insect genomes in uncovering the phylogenetic relationships between insects and unraveling the mechanisms of important life-history traits. We also summarize the challenges in genome data sharing and possible solutions. Finally, we provide guidance for fully and deeply mining insect genome data.
Collapse
Affiliation(s)
- Fei Li
- Zhejiang Key Laboratory of Biology and Ecological Regulation of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou, China;
| | - Xianhui Wang
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China;
| | - Xin Zhou
- Department of Entomology, China Agricultural University, Beijing, China;
| |
Collapse
|
3
|
Boahen EK, Kweon H, Oh H, Kim JH, Lim H, Kim DH. Bio-Inspired Neuromorphic Sensory Systems from Intelligent Perception to Nervetronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2409568. [PMID: 39527666 PMCID: PMC11714237 DOI: 10.1002/advs.202409568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Inspired by the extensive signal processing capabilities of the human nervous system, neuromorphic artificial sensory systems have emerged as a pivotal technology in advancing brain-like computing for applications in humanoid robotics, prosthetics, and wearable technologies. These systems mimic the functionalities of the central and peripheral nervous systems through the integration of sensory synaptic devices and neural network algorithms, enabling external stimuli to be converted into actionable electrical signals. This review delves into the intricate relationship between synaptic device technologies and neural network processing algorithms, highlighting their mutual influence on artificial intelligence capabilities. This study explores the latest advancements in artificial synaptic properties triggered by various stimuli, including optical, auditory, mechanical, and chemical inputs, and their subsequent processing through artificial neural networks for applications in image recognition and multimodal pattern recognition. The discussion extends to the emulation of biological perception via artificial synapses and concludes with future perspectives and challenges in neuromorphic system development, emphasizing the need for a deeper understanding of neural network processing to innovate and refine these complex systems.
Collapse
Affiliation(s)
- Elvis K. Boahen
- Department of Chemical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Hyukmin Kweon
- Department of Chemical EngineeringHanyang UniversitySeoul04763Republic of Korea
- Present address:
Department of Chemical EngineeringStanford UniversityStanfordCA94305USA
| | - Hayoung Oh
- Department of Chemical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Ji Hong Kim
- Department of Chemical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Hayoung Lim
- Department of Chemical EngineeringHanyang UniversitySeoul04763Republic of Korea
| | - Do Hwan Kim
- Department of Chemical EngineeringHanyang UniversitySeoul04763Republic of Korea
- Institute of Nano Science and TechnologyHanyang UniversitySeoul04763Republic of Korea
- Clean‐Energy Research InstituteHanyang UniversitySeoul04763Republic of Korea
| |
Collapse
|
4
|
Le Floch A, Ropars G. Hebbian Optocontrol of Cross-Modal Disruptive Reading in Increasing Acoustic Noise in an Adult with Developmental Coordination Disorder: A Case Report. Brain Sci 2024; 14:1208. [PMID: 39766407 PMCID: PMC11674537 DOI: 10.3390/brainsci14121208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/22/2024] [Accepted: 11/27/2024] [Indexed: 01/11/2025] Open
Abstract
Acoustic noise is known to perturb reading for good readers, including children and adults. This external acoustic noise interfering at the multimodal areas in the brain causes difficulties reducing reading and writing performances. Moreover, it is known that people with developmental coordination disorder (DCD) and dyslexia have reading deficits even in the absence of acoustic noise. The goal of this study is to investigate the effects of additional acoustic noise on an adult with DCD and dyslexia. Indeed, as vision is the main source of information for the brain during reading, a noisy internal visual crowding has been observed in many cases of readers with dyslexia, as additional mirror or duplicated images of words are perceived by these observers, simultaneously with the primary images. Here, we show that when the noisy internal visual crowding and an increasing external acoustic noise are superimposed, a reading disruptive threshold at about 50 to 60 dBa of noise is reached, depending on the type of acoustic noise for a young adult with DCD and dyslexia but not for a control. More interestingly, we report that this disruptive noise threshold can be controlled by Hebbian mechanisms linked to a pulse-modulated lighting that erases the confusing internal crowding images. An improvement of 12 dBa in the disruptive threshold is then observed with two types of acoustic noises, showing the potential utility of Hebbian optocontrol in managing reading difficulties in adults with DCD and dyslexia.
Collapse
Affiliation(s)
- Albert Le Floch
- Laser Physics Laboratory, University of Rennes, 35042 Rennes Cedex, France;
- Quantum Electronics and Chiralities Laboratory, 20 Square Marcel Bouget, 35700 Rennes Cedex, France
| | - Guy Ropars
- Laser Physics Laboratory, University of Rennes, 35042 Rennes Cedex, France;
- UFR SPM, University of Rennes, 35042 Rennes Cedex, France
| |
Collapse
|
5
|
Tan D, Zhang Z, Shi H, Sun N, Li Q, Bi S, Huang J, Liu Y, Guo Q, Jiang C. Bioinspired Artificial Visual-Respiratory Synapse as Multimodal Scene Recognition System with Oxidized-Vacancies MXene. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407751. [PMID: 39011791 DOI: 10.1002/adma.202407751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/27/2024] [Indexed: 07/17/2024]
Abstract
In the pursuit of artificial neural systems, the integration of multimodal plasticity, memory retention, and perceptual functions stands as a paramount objective in achieving neuromorphic perceptual components inspired by the human brain, to emulating the neurological excitability tuning observed in human visual and respiratory collaborations. Here, an artificial visual-respiratory synapse is presented with monolayer oxidized MXene (VRSOM) exhibiting synergistic light and atmospheric plasticity. The VRSOM enables to realize facile modulation of synaptic behaviors, encompassing postsynaptic current, sustained photoconductivity, stable facilitation/depression properties, and "learning-experience" behavior. These performances rely on the privileged photocarrier trapping characteristics and the hydroxyl-preferential selectivity inherent of oxidized vacancies. Moreover, environment recognitions and multimodal neural network image identifications are achieved through multisensory integration, underscoring the potential of the VRSOM in reproducing human-like perceptual attributes. The VRSOM platform holds significant promise for hardware output of human-like mixed-modal interactions and paves the way for perceiving multisensory neural behaviors in artificial interactive devices.
Collapse
Affiliation(s)
- Dongchen Tan
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
| | - Zhaorui Zhang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
| | - Haohao Shi
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
| | - Nan Sun
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
| | - Qikun Li
- School of Advanced Materials and Nanotechnology, Xidian University, Xi'an, 710126, China
| | - Sheng Bi
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
| | - Jijie Huang
- School of Materials Engineering, Purdue University, West Lafayette, IN, 47907, USA
| | - Yiheng Liu
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
| | - Qinglei Guo
- Department of Material Science and Engineering, Frederick Seitz Material Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Chengming Jiang
- State Key Laboratory of High-Performance Precision Manufacturing, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
6
|
Somanathan H. Why diversity matters for understanding the visual ecology and behaviour of bees. CURRENT OPINION IN INSECT SCIENCE 2024; 64:101224. [PMID: 38925459 DOI: 10.1016/j.cois.2024.101224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 05/25/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024]
Abstract
Two bee species, the European honeybee and the buff-tailed bumblebee, are well-developed models of visual behaviour and ecology. How representative of bees across phylogeny and geography are these two species? Bee sensory systems likely differ between temperate and tropical species due to differences in the intensity or the types of selection pressures. Differences in temperate and tropical floral diversity, abundance and seasonality can influence sensory adaptations and behaviours. Niche partitioning in the speciose tropics along the microhabitat and temporal axes is increasingly reported to involve special visual adaptations in bees. Inclusive approaches encompassing other bee species and building on lessons from the 'model' bees will inform how ecology shapes bee senses, and, in turn, the structure of plant-bee mutualisms.
Collapse
Affiliation(s)
- Hema Somanathan
- School of Biology, Indian Institute of Science Education and Research Thiruvananthapuram, Kerala, India.
| |
Collapse
|
7
|
Brebner JS, Loconsole M, Hanley D, Vasas V. Through an animal's eye: the implications of diverse sensory systems in scientific experimentation. Proc Biol Sci 2024; 291:20240022. [PMID: 39016597 PMCID: PMC11253838 DOI: 10.1098/rspb.2024.0022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 03/01/2024] [Accepted: 06/19/2024] [Indexed: 07/18/2024] Open
Abstract
'Accounting for the sensory abilities of animals is critical in experimental design.' No researcher would disagree with this statement, yet it is often the case that we inadvertently fall for anthropocentric biases and use ourselves as the reference point. This paper discusses the risks of adopting an anthropocentric view when working with non-human animals, and the unintended consequences this has on our experimental designs and results. To this aim, we provide general examples of anthropocentric bias from different fields of animal research, with a particular focus on animal cognition and behaviour, and lay out the potential consequences of adopting a human-based perspective. Knowledge of the sensory abilities, both in terms of similarities to humans and peculiarities of the investigated species, is crucial to ensure solid conclusions. A more careful consideration of the diverse sensory systems of animals would improve many scientific fields and enhance animal welfare in the laboratory.
Collapse
Affiliation(s)
- Joanna S. Brebner
- Research Centre on Animal Cognition (CRCA), Centre for Integrative Biology (CBI); CNRS, University Paul Sabatier – Toulouse III, Toulouse, France
| | - Maria Loconsole
- School of Biological and Behavioural Sciences, Queen Mary University of London, London, UK
- Department of General Psychology, University of Padova, Padova, Italy
| | - Daniel Hanley
- Department of Biology, George Mason University, Fairfax, VA, USA
| | - Vera Vasas
- School of Life Sciences, University of Sussex, BrightonBN1 9RH, UK
| |
Collapse
|
8
|
Lim HY, Lee I. Subpopulations of neurons in the perirhinal cortex enable both modality-specific and modality-invariant recognition of objects. PLoS Biol 2024; 22:e3002713. [PMID: 38924050 PMCID: PMC11233021 DOI: 10.1371/journal.pbio.3002713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 07/09/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
The perirhinal cortex (PER) supports multimodal object recognition, but how multimodal information of objects is integrated within the PER remains unknown. Here, we recorded single units within the PER while rats performed a PER-dependent multimodal object-recognition task. In this task, audiovisual cues were presented simultaneously (multimodally) or separately (unimodally). We identified 2 types of object-selective neurons in the PER: crossmodal cells, showing constant firing patterns for an object irrespective of its modality, and unimodal cells, showing a preference for a specific modality. Unimodal cells further dissociated unimodal and multimodal versions of the object by modulating their firing rates according to the modality condition. A population-decoding analysis confirmed that the PER could perform both modality-invariant and modality-specific object decoding-the former for recognizing an object as the same in various conditions and the latter for remembering modality-specific experiences of the same object.
Collapse
Affiliation(s)
- Heung-Yeol Lim
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| | - Inah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Korea
| |
Collapse
|
9
|
Li P, Zhang M, Zhou Q, Zhang Q, Xie D, Li G, Liu Z, Wang Z, Guo E, He M, Wang C, Gu L, Yang G, Jin K, Ge C. Reconfigurable optoelectronic transistors for multimodal recognition. Nat Commun 2024; 15:3257. [PMID: 38627413 PMCID: PMC11021444 DOI: 10.1038/s41467-024-47580-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Biological nervous system outperforms in both dynamic and static information perception due to their capability to integrate the sensing, memory and processing functions. Reconfigurable neuromorphic transistors, which can be used to emulate different types of biological analogues in a single device, are important for creating compact and efficient neuromorphic computing networks, but their design remains challenging due to the need for opposing physical mechanisms to achieve different functions. Here we report a neuromorphic electrolyte-gated transistor that can be reconfigured to perform physical reservoir and synaptic functions. The device exhibits dynamics with tunable time-scales under optical and electrical stimuli. The nonlinear volatile property is suitable for reservoir computing, which can be used for multimodal pre-processing. The nonvolatility and programmability of the device through ion insertion/extraction achieved via electrolyte gating, which are required to realize synaptic functions, are verified. The device's superior performance in mimicking human perception of dynamic and static multisensory information based on the reconfigurable neuromorphic functions is also demonstrated. The present study provides an exciting paradigm for the realization of multimodal reconfigurable devices and opens an avenue for mimicking biological multisensory fusion.
Collapse
Affiliation(s)
- Pengzhan Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing, China
| | - Mingzhen Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China
| | - Qingli Zhou
- Key Laboratory of Terahertz Optoelectronics, Ministry of Education, Department of Physics, Capital Normal University, Beijing, China
| | - Qinghua Zhang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- Yangtze River Delta Physics Research Center Co. Ltd., Liyang, China
| | - Donggang Xie
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China
| | - Ge Li
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China
| | - Zhuohui Liu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing, China
| | - Zheng Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China
| | - Erjia Guo
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China
| | - Meng He
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Can Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China
| | - Lin Gu
- Beijing National Center for Electron Microscopy and Laboratory of Advanced Materials, Department of Materials Science and Engineering, Tsinghua University, Beijing, China
| | - Guozhen Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Kuijuan Jin
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China.
| | - Chen Ge
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- School of Physical Sciences, University of Chinese Academy of Science, Beijing, China.
| |
Collapse
|
10
|
Irwin LN. Behavioral indicators of heterogeneous subjective experience in animals across the phylogenetic spectrum: Implications for comparative animal phenomenology. Heliyon 2024; 10:e28421. [PMID: 38623251 PMCID: PMC11016586 DOI: 10.1016/j.heliyon.2024.e28421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/12/2024] [Accepted: 03/19/2024] [Indexed: 04/17/2024] Open
Abstract
This behavioral study was undertaken to provide empirical evidence in favor of or opposed to the notion that animals across a wide breadth of the animal kingdom have subjective (personal) experience that varies with their lifestyles, ecological constraints, or phylogeny. Twelve species representing two invertebrate phyla and six vertebrate classes were observed unobtrusively in 15-min episodes, during which three modes of behavior (volitional, interactive, and egocentric) were quantified according to the frequency, variety, and dynamism of each mode. Volitional behavior was the most prevalent and dynamic mode for nearly all species, largely without regard to phylogenetic position. Interactive behavior likewise varied inconsistently across the entire evolutionary spectrum. Egocentric behavior was concentrated among the avian and mammalian species, but evidence of it were observed in the invertebrate species as well. Diagrams of the matrix constructed from the three qualitative modes and three quantitative attributes for each mode provide a metaphorical representation of the unique experiential profile of each species. To the extent that these behavioral measures correlate with the nature of the animal's subjective experience, they support the growing view that phenomenology is heterogeneous, multimodal, and non-linear in extent across the animal kingdom.
Collapse
Affiliation(s)
- Louis N. Irwin
- Department of Biological Sciences, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
11
|
Versace E, Freeland L, Emmerson MG. First-sight recognition of touched objects shows that chicks can solve Molyneux's problem. Biol Lett 2024; 20:20240025. [PMID: 38565149 PMCID: PMC10987231 DOI: 10.1098/rsbl.2024.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/06/2024] [Indexed: 04/04/2024] Open
Abstract
If a congenitally blind person learns to distinguish between a cube and a sphere by touch, would they immediately recognize these objects by sight once their vision is restored? This question, posed by Molyneux in 1688, has puzzled philosophers and scientists since then. To overcome ethical and practical difficulties in the investigation of cross-modal recognition, we studied inexperienced poultry chicks, which can be reared in darkness until the moment of a visual test with no detrimental consequences. After hatching chicks in darkness, we exposed them to either tactile smooth or tactile bumpy stimuli for 24 h. Immediately after the tactile exposure, chicks were tested in a visual recognition task, during their first experience with light. At first sight, chicks that had been exposed in the tactile modality to smooth stimuli approached the visual smooth stimulus significantly more than those exposed to the tactile bumpy stimuli. These results show that visually inexperienced chicks can solve Molyneux's problem, indicating cross-modal recognition does not require previous multimodal experience. At least in this precocial species, supra-modal brain areas appear functional already at birth. This discovery paves the way for the investigation of predisposed cross-modal cognition that does not depend on visual experience.
Collapse
Affiliation(s)
- Elisabetta Versace
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
| | - Laura Freeland
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
| | - Michael G. Emmerson
- Department of Biological and Experimental Psychology, School of Biological and Behavioural Sciences, Queen Mary University of London, 327 Mile End Road, London E1 4NS, UK
| |
Collapse
|
12
|
Lafon G, Paoli M, Paffhausen BH, Sanchez GDB, Lihoreau M, Avarguès-Weber A, Giurfa M. Efficient visual learning by bumble bees in virtual-reality conditions: Size does not matter. INSECT SCIENCE 2023; 30:1734-1748. [PMID: 36734172 DOI: 10.1111/1744-7917.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
Recent developments allowed establishing virtual-reality (VR) setups to study multiple aspects of visual learning in honey bees under controlled experimental conditions. Here, we adopted a VR environment to investigate the visual learning in the buff-tailed bumble bee Bombus terrestris. Based on responses to appetitive and aversive reinforcements used for conditioning, we show that bumble bees had the proper appetitive motivation to engage in the VR experiments and that they learned efficiently elemental color discriminations. In doing so, they reduced the latency to make a choice, increased the proportion of direct paths toward the virtual stimuli and walked faster toward them. Performance in a short-term retention test showed that bumble bees chose and fixated longer on the correct stimulus in the absence of reinforcement. Body size and weight, although variable across individuals, did not affect cognitive performances and had a mild impact on motor performances. Overall, we show that bumble bees are suitable experimental subjects for experiments on visual learning under VR conditions, which opens important perspectives for invasive studies on the neural and molecular bases of such learning given the robustness of these insects and the accessibility of their brain.
Collapse
Affiliation(s)
- Gregory Lafon
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Marco Paoli
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Benjamin H Paffhausen
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Gabriela de Brito Sanchez
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Mathieu Lihoreau
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Aurore Avarguès-Weber
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
| | - Martin Giurfa
- Centre de Recherches sur la Cognition Animale, Centre de Biologie Intégrative (CBI), University of Toulouse, CNRS, UPS, Toulouse, France
- French Academy of Sciences for University Professors, Institut Universitaire de France (IUF), Paris, France
| |
Collapse
|
13
|
Pattrick JG, Symington HA, Federle W, Glover BJ. Bumblebees negotiate a trade-off between nectar quality and floral biomechanics. iScience 2023; 26:108071. [PMID: 38107877 PMCID: PMC10725025 DOI: 10.1016/j.isci.2023.108071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 08/31/2023] [Accepted: 09/25/2023] [Indexed: 12/19/2023] Open
Abstract
How and why pollinators choose which flowers to visit are fundamental, multifaceted questions in pollination biology, yet most studies of floral traits measure simple relative preferences. Here, we used vertically and horizontally oriented slippery-surfaced artificial flowers to test whether bumblebees could make a trade-off between floral handling difficulty and nectar sucrose concentration. We quantified foraging energetics, thereby resolving the rationale behind the bees' foraging decisions. The bees chose flowers with either a high handling cost or low sucrose concentration, depending on which was the energetically favorable option. Their behavior agreed with the critical currency being the rate of energy return (net energy collected per unit time), not energetic efficiency (net energy collected per unit energy spent). This suggests that bumblebees prioritize immediate carbohydrate flow to the nest rather than energy gain over the working lifespan of each bee. Trade-off paradigms like these are a powerful approach for quantifying pollinator trait preferences.
Collapse
Affiliation(s)
- Jonathan G. Pattrick
- Department of Biology, University of Oxford, The John Krebs Field Station, Wytham, Oxford OX2 8QJ, UK
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Hamish A. Symington
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| | - Walter Federle
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK
| | - Beverley J. Glover
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, UK
| |
Collapse
|
14
|
Chandak P, Chakraborti U, Annagiri S. Using pupae as appetitive reinforcement to study visual and tactile associative learning in the Ponerine ant Diacamma indicum. Sci Rep 2023; 13:15609. [PMID: 37731033 PMCID: PMC10511714 DOI: 10.1038/s41598-023-42439-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
Associative learning is of great importance to animals, as it enhances their ability to navigate, forage, evade predation and improve fitness. Even though associative learning abilities of Hymenopterans have been explored, many of these studies offered food as appetitive reinforcement. In the current study, we focus on tactile and visual cue learning in an ant Diacamma indicum using a Y-maze setup with pupa as a positive reinforcement. Using pupa as a reward resulted in a significantly higher proportion of ants completing the training in a shorter time as compared to using food as reinforcement. Ants spent significantly more time in the conditioned arm for both visual cues (white dots or black dots) and tactile cues (rough or smooth surfaces) presented on the floor when associated with pupa, thus showing that they were capable of associative learning. On encountering a conflict between visual and tactile cues during the test, ants chose to spend significantly more time on the arm with the tactile cues indicating that they had made a stronger association between pupa and the tactile cue as compared to the visual cue during training. Using pupa as an ecologically relevant reward, we show that these solitary foraging ants living in small colonies are capable of visual and tactile associative learning and are likely to learn tactile cues over visual cues in association with pupa.
Collapse
Affiliation(s)
- Parth Chandak
- Behaviour and Ecology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Udipta Chakraborti
- Behaviour and Ecology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India
| | - Sumana Annagiri
- Behaviour and Ecology Lab, Department of Biological Sciences, Indian Institute of Science Education and Research, Mohanpur, Kolkata, 741246, India.
| |
Collapse
|
15
|
Loconsole M, Stancher G, Versace E. Crossmodal association between visual and acoustic cues in a tortoise ( Testudo hermanni). Biol Lett 2023; 19:20230265. [PMID: 37465911 PMCID: PMC10354690 DOI: 10.1098/rsbl.2023.0265] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 06/29/2023] [Indexed: 07/20/2023] Open
Abstract
Humans spontaneously match information coming from different senses, in what we call crossmodal associations. For instance, high-pitched sounds are preferentially associated with small objects, and low-pitched sounds with larger ones. Although previous studies reported crossmodal associations in mammalian species, evidence for other taxa is scarce, hindering an evolutionary understanding of this phenomenon. Here, we provide evidence of pitch-size correspondence in a reptile, the tortoise Testudo hermanni. Tortoises showed a spontaneous preference to associate a small disc (i.e. visual information about size) with a high-pitch sound (i.e. auditory information) and a larger disc to a low-pitched sound. These results suggest that crossmodal associations may be an evolutionary ancient phenomenon, potentially an organizing principle of the vertebrate brain.
Collapse
Affiliation(s)
- Maria Loconsole
- School of Biological and Behavioural Sciences, Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK
| | - Gionata Stancher
- Rovereto Civic Museum Foundation, Borgo Santa Caterina 41, 38068 Rovereto, Trentino, Italy
| | - Elisabetta Versace
- School of Biological and Behavioural Sciences, Department of Biological and Experimental Psychology, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
16
|
Jiang C, Liu J, Ni Y, Qu S, Liu L, Li Y, Yang L, Xu W. Mammalian-brain-inspired neuromorphic motion-cognition nerve achieves cross-modal perceptual enhancement. Nat Commun 2023; 14:1344. [PMID: 36906637 PMCID: PMC10008641 DOI: 10.1038/s41467-023-36935-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
Perceptual enhancement of neural and behavioral response due to combinations of multisensory stimuli are found in many animal species across different sensory modalities. By mimicking the multisensory integration of ocular-vestibular cues for enhanced spatial perception in macaques, a bioinspired motion-cognition nerve based on a flexible multisensory neuromorphic device is demonstrated. A fast, scalable and solution-processed fabrication strategy is developed to prepare a nanoparticle-doped two-dimensional (2D)-nanoflake thin film, exhibiting superior electrostatic gating capability and charge-carrier mobility. The multi-input neuromorphic device fabricated using this thin film shows history-dependent plasticity, stable linear modulation, and spatiotemporal integration capability. These characteristics ensure parallel, efficient processing of bimodal motion signals encoded as spikes and assigned with different perceptual weights. Motion-cognition function is realized by classifying the motion types using mean firing rates of encoded spikes and postsynaptic current of the device. Demonstrations of recognition of human activity types and drone flight modes reveal that the motion-cognition performance match the bio-plausible principles of perceptual enhancement by multisensory integration. Our system can be potentially applied in sensory robotics and smart wearables.
Collapse
Affiliation(s)
- Chengpeng Jiang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China.,Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China.,Research Center for Intelligent Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Jiaqi Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China.,Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Yao Ni
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China.,Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Shangda Qu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China.,Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Lu Liu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China.,Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Yue Li
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China.,Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Lu Yang
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China.,Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China
| | - Wentao Xu
- Institute of Photoelectronic Thin Film Devices and Technology, Key Laboratory of Photoelectronic Thin Film Devices and Technology of Tianjin, College of Electronic Information and Optical Engineering, Engineering Research Center of Thin Film Photoelectronic Technology of Ministry of Education, School of Materials Science and Engineering, Smart Sensing Interdisciplinary Science Center, Nankai University, Tianjin, 300350, China. .,Shenzhen Research Institute of Nankai University, Shenzhen, 518000, China.
| |
Collapse
|
17
|
Novel object recognition in Octopus maya. Anim Cogn 2023; 26:1065-1072. [PMID: 36809584 PMCID: PMC10066149 DOI: 10.1007/s10071-023-01753-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 01/16/2023] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
The Novel Object Recognition task (NOR) is widely used to study vertebrates' memory. It has been proposed as an adequate model for studying memory in different taxonomic groups, allowing similar and comparable results. Although in cephalopods, several research reports could indicate that they recognize objects in their environment, it has not been tested as an experimental paradigm that allows studying different memory phases. This study shows that two-month-old and older Octopus maya subjects can differentiate between a new object and a known one, but one-month-old subjects cannot. Furthermore, we observed that octopuses use vision and tactile exploration of new objects to achieve object recognition, while familiar objects only need to be explored visually. To our knowledge, this is the first time showing an invertebrate performing the NOR task similarly to how it is performed in vertebrates. These results establish a guide to studying object recognition memory in octopuses and the ontological development of that memory.
Collapse
|
18
|
Guasti MT, Alexiadou A, Sauerland U. Undercompression errors as evidence for conceptual primitives. Front Psychol 2023; 14:1104930. [PMID: 37213391 PMCID: PMC10193858 DOI: 10.3389/fpsyg.2023.1104930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/31/2023] [Indexed: 05/23/2023] Open
Abstract
The Meaning First Approach offers a model of the relation between thought and language that includes a Generator and a Compressor. The Generator build non-linguistic thought structures and the Compressor is responsible for its articulation through three processes: structure-preserving linearization, lexification, and compression via non-articulation of concepts when licensed. One goal of this paper is to show that a range of phenomena in child language can be explained in a unified way within the Meaning First Approach by the assumption that children differ from adults with respect to compression and, specifically, that they may undercompress in production, an idea that sets a research agenda for the study of language acquisition. We focus on dependencies involving pronouns or gaps in relative clauses and wh-questions, multi-argument verbal concepts, and antonymic concepts involving negation or other opposites. We present extant evidence from the literature that children produce undercompression errors (a type of commission errors) that are predicted by the Meaning First Approach. We also summarize data that children's comprehension ability provides evidence for the Meaning First Approach prediction that decompression should be challenging, when there is no 1-to-1 correspondence.
Collapse
Affiliation(s)
- Maria Teresa Guasti
- Department of Psychology, University of Milano-Bicocca, Milan, Italy
- *Correspondence: Maria Teresa Guasti,
| | - Artemis Alexiadou
- Leibniz-Centre General Linguistics (ZAS), Berlin, Germany
- Institute of German Language and Linguistics, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Uli Sauerland
- Leibniz-Centre General Linguistics (ZAS), Berlin, Germany
| |
Collapse
|
19
|
Quilty-Dunn J, Porot N, Mandelbaum E. The best game in town: The reemergence of the language-of-thought hypothesis across the cognitive sciences. Behav Brain Sci 2022; 46:e261. [PMID: 36471543 DOI: 10.1017/s0140525x22002849] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Mental representations remain the central posits of psychology after many decades of scrutiny. However, there is no consensus about the representational format(s) of biological cognition. This paper provides a survey of evidence from computational cognitive psychology, perceptual psychology, developmental psychology, comparative psychology, and social psychology, and concludes that one type of format that routinely crops up is the language-of-thought (LoT). We outline six core properties of LoTs: (i) discrete constituents; (ii) role-filler independence; (iii) predicate-argument structure; (iv) logical operators; (v) inferential promiscuity; and (vi) abstract content. These properties cluster together throughout cognitive science. Bayesian computational modeling, compositional features of object perception, complex infant and animal reasoning, and automatic, intuitive cognition in adults all implicate LoT-like structures. Instead of regarding LoT as a relic of the previous century, researchers in cognitive science and philosophy-of-mind must take seriously the explanatory breadth of LoT-based architectures. We grant that the mind may harbor many formats and architectures, including iconic and associative structures as well as deep-neural-network-like architectures. However, as computational/representational approaches to the mind continue to advance, classical compositional symbolic structures - that is, LoTs - only prove more flexible and well-supported over time.
Collapse
Affiliation(s)
- Jake Quilty-Dunn
- Department of Philosophy and Philosophy-Neuroscience-Psychology Program, Washington University in St. Louis, St. Louis, MO, USA. , sites.google.com/site/jakequiltydunn/
| | - Nicolas Porot
- Africa Institute for Research in Economics and Social Sciences, Mohammed VI Polytechnic University, Rabat, Morocco. , nicolasporot.com
| | - Eric Mandelbaum
- Departments of Philosophy and Psychology, The Graduate Center & Baruch College, CUNY, New York, NY, USA. , ericmandelbaum.com
| |
Collapse
|
20
|
Baran B, Krzyżowski M, Rádai Z, Francikowski J, Hohol M. Geometry-based navigation in the dark: layout symmetry facilitates spatial learning in the house cricket, Acheta domesticus, in the absence of visual cues. Anim Cogn 2022; 26:755-770. [PMID: 36369419 PMCID: PMC10066172 DOI: 10.1007/s10071-022-01712-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/13/2022]
Abstract
AbstractThe capacity to navigate by layout geometry has been widely recognized as a robust strategy of place-finding. It has been reported in various species, although most studies were performed with vision-based paradigms. In the presented study, we aimed to investigate layout symmetry-based navigation in the house cricket, Acheta domesticus, in the absence of visual cues. For this purpose, we used a non-visual paradigm modeled on the Tennessee Williams setup. We ensured that the visual cues were indeed inaccessible to insects. In the main experiment, we tested whether crickets are capable of learning to localize the centrally positioned, inconspicuous cool spot in heated arenas of various shapes (i.e., circular, square, triangular, and asymmetric quadrilateral). We found that the symmetry of the arena significantly facilitates crickets’ learning to find the cool spot, indicated by the increased time spent on the cool spot and the decreased latency in locating it in subsequent trials. To investigate mechanisms utilized by crickets, we analyzed their approach paths to the spot. We found that crickets used both heuristic and directed strategies of approaching the target, with the dominance of a semi-directed strategy (i.e., a thigmotactic phase preceding direct navigation to the target). We propose that the poor performance of crickets in the asymmetrical quadrilateral arena may be explained by the difficulty of encoding its layout with cues from a single modality.
Collapse
|
21
|
Mazor M, Brown S, Ciaunica A, Demertzi A, Fahrenfort J, Faivre N, Francken JC, Lamy D, Lenggenhager B, Moutoussis M, Nizzi MC, Salomon R, Soto D, Stein T, Lubianiker N. The Scientific Study of Consciousness Cannot and Should Not Be Morally Neutral. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2022; 18:535-543. [PMID: 36170496 DOI: 10.1177/17456916221110222] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A target question for the scientific study of consciousness is how dimensions of consciousness, such as the ability to feel pain and pleasure or reflect on one's own experience, vary in different states and animal species. Considering the tight link between consciousness and moral status, answers to these questions have implications for law and ethics. Here we point out that given this link, the scientific community studying consciousness may face implicit pressure to carry out certain research programs or interpret results in ways that justify current norms rather than challenge them. We show that because consciousness largely determines moral status, the use of nonhuman animals in the scientific study of consciousness introduces a direct conflict between scientific relevance and ethics-the more scientifically valuable an animal model is for studying consciousness, the more difficult it becomes to ethically justify compromises to its well-being for consciousness research. Finally, in light of these considerations, we call for a discussion of the immediate ethical corollaries of the body of knowledge that has accumulated and for a more explicit consideration of the role of ideology and ethics in the scientific study of consciousness.
Collapse
Affiliation(s)
- Matan Mazor
- Department of Psychological Sciences, Birkbeck, University of London.,Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London
| | - Simon Brown
- Department of Philosophy, Johns Hopkins University
| | - Anna Ciaunica
- Centre for Philosophy of Science, University of Lisbon
| | - Athena Demertzi
- Physiology of Cognition, GIGA Consciousness Research Unit, Université de Liège.,Fund for Scientific Research, Bruxelles, Belgium
| | - Johannes Fahrenfort
- Department of Psychology, University of Amsterdam.,Department of Experimental and Applied Psychology, Vrije Universiteit
| | - Nathan Faivre
- Centre for Neuroprosthetics and Brain Mind Institute, Faculty of Life Sciences, Swiss Federal Institute of Technology.,University Grenoble Alpes, University Savoie Mont Blanc, CNRS, LPNC
| | - Jolien C Francken
- Faculty of Philosophy, Theology and Religious Studies, Radboud University
| | - Dominique Lamy
- Sagol School of Neuroscience, Tel Aviv University, Tel-Aviv, Israel.,School of Psychological Sciences, Tel Aviv University
| | | | - Michael Moutoussis
- Wellcome Centre for Human Neuroimaging, Institute of Neurology, University College London.,Max Planck-University College London Centre for Computational Psychiatry and Ageing Research, University College London
| | - Marie-Christine Nizzi
- Semel Institute for Neuroscience and Human Behavior, Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine, University of California Los Angeles.,Cognitive Science Program, Dartmouth College.,Institute for Interdisciplinary Brain and Behavioral Sciences, Chapman University
| | - Roy Salomon
- Gonda Multidisciplinary Brain Research Centre, Bar-Ilan University
| | - David Soto
- Basque Centre on Cognition, Brain and Language, San Sebastian, Spain.,Ikerbasque, Basque Foundation for Science, Bilbao, Spain
| | - Timo Stein
- Department of Psychology, University of Amsterdam
| | - Nitzan Lubianiker
- School of Psychological Sciences, Tel Aviv University.,Sagol Brain Institute, Tel-Aviv Medical Centre, Tel Aviv, Israel
| |
Collapse
|
22
|
Abstract
Autonomous robots are expected to perform a wide range of sophisticated tasks in complex, unknown environments. However, available onboard computing capabilities and algorithms represent a considerable obstacle to reaching higher levels of autonomy, especially as robots get smaller and the end of Moore's law approaches. Here, we argue that inspiration from insect intelligence is a promising alternative to classic methods in robotics for the artificial intelligence (AI) needed for the autonomy of small, mobile robots. The advantage of insect intelligence stems from its resource efficiency (or parsimony) especially in terms of power and mass. First, we discuss the main aspects of insect intelligence underlying this parsimony: embodiment, sensory-motor coordination, and swarming. Then, we take stock of where insect-inspired AI stands as an alternative to other approaches to important robotic tasks such as navigation and identify open challenges on the road to its more widespread adoption. Last, we reflect on the types of processors that are suitable for implementing insect-inspired AI, from more traditional ones such as microcontrollers and field-programmable gate arrays to unconventional neuromorphic processors. We argue that even for neuromorphic processors, one should not simply apply existing AI algorithms but exploit insights from natural insect intelligence to get maximally efficient AI for robot autonomy.
Collapse
Affiliation(s)
- G C H E de Croon
- Micro Air Vehicle Laboratory, Faculty of Aerospace Engineering, TU Delft, Delft, Netherlands
| | - J J G Dupeyroux
- Micro Air Vehicle Laboratory, Faculty of Aerospace Engineering, TU Delft, Delft, Netherlands
| | - S B Fuller
- Autonomous Insect Robotics Laboratory, Department of Mechanical Engineering and Paul G. Allen School of Computer Science, University of Washington, Seattle, WA, USA
| | - J A R Marshall
- Opteran Technologies, Sheffield, UK
- Complex Systems Modeling Group, Department of Computer Science, University of Sheffield, Sheffield, UK
| |
Collapse
|
23
|
Bruck JN, Walmsley SF, Janik VM. Cross-modal perception of identity by sound and taste in bottlenose dolphins. SCIENCE ADVANCES 2022; 8:eabm7684. [PMID: 35584227 PMCID: PMC9116882 DOI: 10.1126/sciadv.abm7684] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
While studies have demonstrated concept formation in animals, only humans are known to label concepts to use them in mental simulations or predictions. To investigate whether other animals use labels comparably, we studied cross-modal, individual recognition in bottlenose dolphins (Tursiops truncatus) that use signature whistles as labels for conspecifics in their own communication. First, we tested whether dolphins could use gustatory stimuli and found that they could distinguish between water and urine samples, as well as between urine from familiar and unfamiliar individuals. Then, we paired playbacks of signature whistles of known animals with urine samples from either the same dolphin or a different, familiar animal. Dolphins investigated the presentation area longer when the acoustic and gustatory sample matched than when they mismatched. This demonstrates that dolphins recognize other individuals by gustation alone and can integrate information from acoustic and taste inputs indicating a modality independent, labeled concept for known conspecifics.
Collapse
|
24
|
Gil-Guevara O, Bernal HA, Riveros AJ. Honey bees respond to multimodal stimuli following the Principle of Inverse Effectiveness. J Exp Biol 2022; 225:275501. [PMID: 35531628 PMCID: PMC9206449 DOI: 10.1242/jeb.243832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 04/29/2022] [Indexed: 11/20/2022]
Abstract
Multisensory integration is assumed to entail benefits for receivers across multiple ecological contexts. However, signal integration effectiveness is constrained by features of the spatiotemporal and intensity domains. How sensory modalities are integrated during tasks facilitated by learning and memory, such as pollination, remains unsolved. Honey bees use olfactory and visual cues during foraging, making them a good model to study the use of multimodal signals. Here, we examined the effect of stimulus intensity on both learning and memory performance of bees trained using unimodal or bimodal stimuli. We measured the performance and the latency response across planned discrete levels of stimulus intensity. We employed the conditioning of the proboscis extension response protocol in honey bees using an electromechanical setup allowing us to control simultaneously and precisely olfactory and visual stimuli at different intensities. Our results show that the bimodal enhancement during learning and memory was higher as the intensity decreased when the separate individual components were least effective. Still, this effect was not detectable for the latency of response. Remarkably, these results support the principle of inverse effectiveness, traditionally studied in vertebrates, predicting that multisensory stimuli are more effectively integrated when the best unisensory response is relatively weak. Thus, we argue that the performance of the bees while using a bimodal stimulus depends on the interaction and intensity of its individual components. We further hold that the inclusion of findings across all levels of analysis enriches the traditional understanding of the mechanics and reliance of complex signals in honey bees. Summary: Bimodal enhancement during learning and memory tasks in africanized honey bees increases as the stimulus intensity of its unimodal components decreases; this indicates that learning performance depends on the interaction between the intensity of its components and the nature of the sensory modalities involved, supporting the principle of inverse effectiveness.
Collapse
Affiliation(s)
- Oswaldo Gil-Guevara
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario. Cra. 26 #63B-48. Bogotá. Colombia. 21Bogotá, Colombia
| | - Hernan A. Bernal
- Programa de Ingeniería Biomédica, Escuela de Medicina y Ciencias de la Salud, Universidad del Rosario. Bogotá, Colombia
| | - Andre J. Riveros
- Departamento de Biología, Facultad de Ciencias Naturales, Universidad del Rosario. Cra. 26 #63B-48. Bogotá. Colombia. 21Bogotá, Colombia
| |
Collapse
|
25
|
Patel RN, Kempenaers J, Heinze S. Vector navigation in walking bumblebees. Curr Biol 2022; 32:2871-2883.e4. [DOI: 10.1016/j.cub.2022.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/04/2022] [Accepted: 05/05/2022] [Indexed: 01/20/2023]
|
26
|
The best of both worlds: Dual systems of reasoning in animals and AI. Cognition 2022; 225:105118. [PMID: 35453083 DOI: 10.1016/j.cognition.2022.105118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/29/2022] [Accepted: 04/01/2022] [Indexed: 11/20/2022]
Abstract
Much of human cognition involves two different types of reasoning that operate together. Type 1 reasoning systems are intuitive and fast, whereas Type 2 reasoning systems are reflective and slow. Why has our cognition evolved with these features? Both systems are coherent and in most ecological circumstances either alone is capable of coming up with the right answer most of the time. Neural tissue is costly, and thus far evolutionary models have struggled to identify a benefit of operating two systems of reasoning. To explore this issue we take a broad comparative perspective. We discuss how dual processes of cognition have enabled the emergence of selective attention in insects, transforming the learning capacities of these animals. Modern AIs using dual systems of learning are able to learn how their vast world works and how best to interact with it, allowing them to exceed human levels of performance in strategy games. We propose that the core benefits of dual processes of reasoning are to narrow down a problem space in order to focus cognitive resources most effectively.
Collapse
|
27
|
Computational knowledge vision: paradigmatic knowledge based prescriptive learning and reasoning for perception and vision. Artif Intell Rev 2022. [DOI: 10.1007/s10462-022-10166-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
28
|
Abstract
There is no agreement on whether any invertebrates are conscious and no agreement on a methodology that could settle the issue. How can the debate move forward? I distinguish three broad types of approach: theory-heavy, theory-neutral and theory-light. Theory-heavy and theory-neutral approaches face serious problems, motivating a middle path: the theory-light approach. At the core of the theory-light approach is a minimal commitment about the relation between phenomenal consciousness and cognition that is compatible with many specific theories of consciousness: the hypothesis that phenomenally conscious perception of a stimulus facilitates, relative to unconscious perception, a cluster of cognitive abilities in relation to that stimulus. This "facilitation hypothesis" can productively guide inquiry into invertebrate consciousness. What is needed? At this stage, not more theory, and not more undirected data gathering. What is needed is a systematic search for consciousness-linked cognitive abilities, their relationships to each other, and their sensitivity to masking.
Collapse
|
29
|
Ning J, Li Z, Zhang X, Wang J, Chen D, Liu Q, Sun Y. Behavioral signatures of structured feature detection during courtship in Drosophila. Curr Biol 2022; 32:1211-1231.e7. [DOI: 10.1016/j.cub.2022.01.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 11/27/2021] [Accepted: 01/10/2022] [Indexed: 11/27/2022]
|
30
|
Kawashima S, Ikeda Y. Evaluation of Visual and Tactile Perception by Plain-Body Octopus ( Callistoctopus aspilosomatis) of Prey-Like Objects. Zoolog Sci 2021; 38:495-505. [PMID: 34854281 DOI: 10.2108/zs210037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 09/12/2021] [Indexed: 11/17/2022]
Abstract
We investigated the characteristic features of perception in octopuses by examining multisensory information from an object simulating prey, which provided different visual and tactile stimuli. In experiments, we presented plain-body octopus with four kinds of models, namely, the Lifelike crab, the Embedded crab, the Translucent crab, and the Black cuboid. These models contain different amounts of visual and tactile information that a crab originally contains: the Lifelike crab resembles a crab both visually and tactilely, the Embedded crab resembles a crab visually but provides different tactile information, the Translucent crab provides tactile information of a crab but contains less visual information, and the Black cuboid lacks both visual and tactile information of a crab. Among these four models, octopuses contacted most with the Lifelike crab, which was similar to their behavior with a crab. Indeed, octopuses were fastest to contact the Lifelike crab and had the longest duration of contacting it among the four models. Octopuses contacted the Embedded crab more than the Translucent crab, both of which had contrasting visuo-tactile information compared to that of a crab. Quickness of octopuses to contact and duration of contact with the Embedded crab were more similar to those with the Lifelike crab than to those with the Translucent crab. Furthermore, octopuses contacted the Black cuboid least among the models. These results suggest that octopuses compositely detect both visual and tactile information in order to perceive an object. Furthermore, octopuses possess the potential priority either for visual or tactile information, by which they process the target object.
Collapse
Affiliation(s)
- Sumire Kawashima
- Graduate School of Engineering and Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Yuzuru Ikeda
- Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan,
| |
Collapse
|
31
|
Kawashima S, Yasumuro H, Ikeda Y. Plain-Body Octopus's ( Callistoctopus aspilosomatis) Learning about Objects via Both Visual and Tactile Sensory Inputs: A Pilot Study. Zoolog Sci 2021; 38:383-396. [PMID: 34664913 DOI: 10.2108/zs210034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 05/23/2021] [Indexed: 11/17/2022]
Abstract
Although various recognizing abilities have been revealed for octopuses, they predominantly deal with only a few species. Therefore, cognition diversity among other octopus species that have been overlooked needs to be investigated. We investigated whether plain-body octopus can learn a symbolic stimulus, for the reason that this octopus is abundant around Okinawa Island with a complex coral community landscape. Attention was paid to whether an octopus can learn a stimulus based solely on visual information without previous experience of learning it tactilely as well as visually. Furthermore, we examined whether different sensory inputs affect learning in octopuses. First, we tested whether octopuses can be conditioned to three different stimuli (object, picture, and video of a white cross). Octopuses that were presented an object or a picture could learn to touch them. However, octopuses that were presented a video could not learn to touch the stimulus. Second, we showed a video to octopuses that had already learned about an object or a picture to investigate whether the octopuses, having experienced a target using visual and tactile senses, can recognize a video of the target based solely on visual information. Octopuses could learn to touch the video. When a conditioned stimulus and a novel stimulus were simultaneously presented on a computer screen, an octopus that had learned an object more often selected the conditioned stimulus when compared with an octopus that had experienced only a picture. These findings suggest that octopuses use multisensory information to recognize a specific object.
Collapse
Affiliation(s)
- Sumire Kawashima
- Graduate School of Engineering and Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Haruhiko Yasumuro
- Graduate School of Engineering and Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Yuzuru Ikeda
- Faculty of Science, University of the Ryukyus, Senbaru, Nishihara, Okinawa 903-0213, Japan,
| |
Collapse
|
32
|
Extraordinary claims, extraordinary evidence? A discussion. Learn Behav 2021; 49:265-275. [PMID: 34378175 PMCID: PMC8410695 DOI: 10.3758/s13420-021-00474-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2021] [Indexed: 11/08/2022]
Abstract
Roberts (2020, Learning & Behavior, 48[2], 191-192) discussed research claiming honeybees can do arithmetic. Some readers of this research might regard such claims as unlikely. The present authors used this example as a basis for a debate on the criterion that ought to be used for publication of results or conclusions that could be viewed as unlikely by a significant number of readers, editors, or reviewers.
Collapse
|
33
|
Abstract
The question of consciousness in other species, not least species very physically different from humans such as insects, is highly challenging for a number of reasons. One reason is that we do not have any available empirical method to answer the question. Another reason is that current theories of consciousness disagree about the relation between physical structure and consciousness, i.e., whether consciousness requires specific, say, neural structures or whether consciousness can be realized in different ways. This article sets out to analyze if and how there could be an empirical and/or a theoretical approach to the topic on the basis of current consciousness research in humans.
Collapse
Affiliation(s)
- Morten Overgaard
- Aarhus Institute of Advanced Studies, Aarhus University, Aarhus, Denmark
- Center for Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| |
Collapse
|
34
|
Dyer AG, Greentree AD, Garcia JE, Dyer EL, Howard SR, Barth FG. Einstein, von Frisch and the honeybee: a historical letter comes to light. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:449-456. [PMID: 33970340 PMCID: PMC8222030 DOI: 10.1007/s00359-021-01490-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/27/2021] [Accepted: 04/28/2021] [Indexed: 12/04/2022]
Abstract
The work of the Nobel Laureate Karl von Frisch, the founder of this journal, was seminal in many ways. He established the honeybee as a key animal model for experimental behavioural studies on sensory perception, learning and memory, and first correctly interpreted its famous dance communication. Here, we report on a previously unknown letter by the Physicist and Nobel Laureate Albert Einstein that was written in October 1949. It briefly addresses the work of von Frisch and also queries how understanding animal perception and navigation may lead to innovations in physics. We discuss records proving that Einstein and von Frisch met in April 1949 when von Frisch visited the USA to present a lecture on bees at Princeton University. In the historical context of Einstein’s theories and thought experiments, we discuss some more recent discoveries of animal sensory capabilities alien to us humans and potentially valuable for bio-inspired design improvements. We also address the orientation of animals like migratory birds mentioned by Einstein 70 years ago, which pushes the boundaries of our understanding nature, both its biology and physics.
Collapse
Affiliation(s)
- Adrian G Dyer
- School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia
- Department of Physiology, Monash University, Clayton, VIC, 3800, Australia
| | - Andrew D Greentree
- ARC Centre of Excellence for Nanoscale BioPhotonics, School of Science, RMIT University, Melbourne, VIC, 3001, Australia
| | - Jair E Garcia
- School of Media and Communication, RMIT University, Melbourne, VIC, 3001, Australia
| | - Elinya L Dyer
- Department of Computer Science and Software Engineering, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Scarlett R Howard
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Burwood, VIC, 3217, Australia
| | - Friedrich G Barth
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Althanstr.14, 1090, Vienna, Austria.
| |
Collapse
|
35
|
Deora T, Ahmed MA, Daniel TL, Brunton BW. Tactile active sensing in an insect plant pollinator. J Exp Biol 2021; 224:jeb.239442. [PMID: 33441388 DOI: 10.1242/jeb.239442] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 01/03/2021] [Indexed: 11/20/2022]
Abstract
The interaction between insects and the flowers they pollinate has driven the evolutionary diversity of both insects and flowering plants, two groups with the most numerous species on Earth. Insects use vision and olfaction to localize host plants, but we know relatively little about how they find the tiny nectary opening in the flower, which can be well beyond their visual resolution. Especially when vision is limited, touch becomes crucial in successful insect-plant pollination interactions. Here, we studied the remarkable feeding behavior of crepuscular hawkmoths Manduca sexta, which use their long, actively controlled, proboscis to expertly explore flower-like surfaces. Using machine vision and 3D-printed artificial flower-like feeders, we revealed a novel behavior that shows moths actively probe surfaces, sweeping their proboscis from the feeder edge to its center repeatedly until they locate the nectary opening. Moreover, naive moths rapidly learn to exploit these flowers, and they adopt a tactile search strategy to more directly locate the nectary opening in as few as three to five consecutive visits. Our results highlight the proboscis as a unique active sensory structure and emphasize the central role of touch in nectar foraging insect-plant pollinator interactions.
Collapse
Affiliation(s)
- Tanvi Deora
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Mahad A Ahmed
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Thomas L Daniel
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| | - Bing W Brunton
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
36
|
Abstract
Knowing one's body dimensions is a core aspect of individual experience and self-awareness. A recent study illustrates how bees take into account their own body size both in preparation for and while traversing small gaps.
Collapse
Affiliation(s)
- Joanna Brebner
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| | - Lars Chittka
- Department of Biological and Experimental Psychology, School of Biological and Chemical Sciences, Queen Mary University of London, London, UK.
| |
Collapse
|
37
|
Tan H, Zhou Y, Tao Q, Rosen J, van Dijken S. Bioinspired multisensory neural network with crossmodal integration and recognition. Nat Commun 2021; 12:1120. [PMID: 33602925 PMCID: PMC7893014 DOI: 10.1038/s41467-021-21404-z] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/26/2021] [Indexed: 11/09/2022] Open
Abstract
The integration and interaction of vision, touch, hearing, smell, and taste in the human multisensory neural network facilitate high-level cognitive functionalities, such as crossmodal integration, recognition, and imagination for accurate evaluation and comprehensive understanding of the multimodal world. Here, we report a bioinspired multisensory neural network that integrates artificial optic, afferent, auditory, and simulated olfactory and gustatory sensory nerves. With distributed multiple sensors and biomimetic hierarchical architectures, our system can not only sense, process, and memorize multimodal information, but also fuse multisensory data at hardware and software level. Using crossmodal learning, the system is capable of crossmodally recognizing and imagining multimodal information, such as visualizing alphabet letters upon handwritten input, recognizing multimodal visual/smell/taste information or imagining a never-seen picture when hearing its description. Our multisensory neural network provides a promising approach towards robotic sensing and perception.
Collapse
Affiliation(s)
- Hongwei Tan
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076, Aalto, Finland.
| | - Yifan Zhou
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076, Aalto, Finland
| | - Quanzheng Tao
- Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Johanna Rosen
- Thin Film Physics, Department of Physics, Chemistry and Biology (IFM), Linköping University, SE-581 83, Linköping, Sweden
| | - Sebastiaan van Dijken
- NanoSpin, Department of Applied Physics, Aalto University School of Science, P.O. Box 15100, FI-00076, Aalto, Finland.
| |
Collapse
|
38
|
Flanigan KAS, Wiegmann DD, Hebets EA, Bingman VP. Multisensory integration supports configural learning of a home refuge in the whip spider Phrynus marginemaculatus. J Exp Biol 2021; 224:jeb.238444. [PMID: 33436366 DOI: 10.1242/jeb.238444] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 01/04/2021] [Indexed: 12/31/2022]
Abstract
Whip spiders (Amblypygi) reside in structurally complex habitats and are nocturnally active yet display notable navigational abilities. From the theory that uncertainty in sensory inputs should promote multisensory representations to guide behavior, we hypothesized that their navigation is supported by a multisensory and perhaps configural representation of navigational inputs, an ability documented in a few insects and never reported in arachnids. We trained Phrynus marginemaculatus to recognize a home shelter characterized by both discriminative olfactory and tactile stimuli. In tests, subjects readily discriminated between shelters based on the paired stimuli. However, subjects failed to recognize the shelter in tests with either of the component stimuli alone. This result is consistent with the hypothesis that the terminal phase of their navigational behavior, shelter recognition, can be supported by the integration of multisensory stimuli as an enduring, configural representation. We hypothesize that multisensory learning occurs in the whip spiders' extraordinarily large mushroom bodies, which may functionally resemble the hippocampus of vertebrates.
Collapse
Affiliation(s)
- Kaylyn A S Flanigan
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0001, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| | - Daniel D Wiegmann
- Department of Biological Sciences, Bowling Green State University, Bowling Green, OH 43403-0001, USA.,J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| | - Eileen A Hebets
- School of Biological Sciences, University of Nebraska, Lincoln, NE 68588-0118, USA
| | - Verner P Bingman
- J.P. Scott Center for Neuroscience, Mind and Behavior, Bowling Green State University, Bowling Green, OH 43403-0001, USA .,Department of Psychology, Bowling Green State University, Bowling Green, OH 43403-0001, USA
| |
Collapse
|
39
|
|
40
|
Gutnick T, Zullo L, Hochner B, Kuba MJ. Use of Peripheral Sensory Information for Central Nervous Control of Arm Movement by Octopus vulgaris. Curr Biol 2020; 30:4322-4327.e3. [PMID: 32916119 DOI: 10.1016/j.cub.2020.08.037] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 07/16/2020] [Accepted: 08/10/2020] [Indexed: 01/04/2023]
Abstract
Octopuses are active predators with highly flexible bodies and rich behavioral repertoires [1-3]. They display advanced cognitive abilities, and the size of their large nervous system rivals that of many mammals. However, only one third of the neurons constitute the CNS, while the rest are located in an elaborate PNS, including eight arms, each containing myriad sensory receptors of various modalities [2-4]. This led early workers to question the extent to which the CNS is privy to non-visual sensory input from the periphery and to suggest that it has limited capacity to finely control arm movement [3-5]. This conclusion seemed reasonable considering the size of the PNS and the results of early behavioral tests [3, 6-8]. We recently demonstrated that octopuses use visual information to control goal-directed complex single arm movements [9]. However, that study did not establish whether animals use information from the arm itself [9-12]. We here report on development of two-choice, single-arm mazes that test the ability of octopuses to perform operant learning tasks that mimic normal tactile exploration behavior and require the non-peripheral neural circuitry to use focal sensory information originating in single arms [1, 10]. We show that the CNS of the octopus uses peripheral information about arm motion as well as tactile input to accomplish learning tasks that entail directed control of movement. We conclude that although octopus arms have a great capacity to act independently, they are also subject to central control, allowing well-organized, purposeful behavior of the organism as a whole.
Collapse
Affiliation(s)
- Tamar Gutnick
- Department of Neurobiology, Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; Okinawa Institute of Science and Technology, Graduate University, 904-0495 Okinawa, Japan.
| | - Letizia Zullo
- Center for Micro-BioRobotics & Center for Synaptic Neuroscience and Technology (NSYN), Istituto Italiano di Tecnologia, Largo Rosanna Benzi 10, 16132, Genoa, Italy
| | - Binyamin Hochner
- Department of Neurobiology, Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Michael J Kuba
- Department of Neurobiology, Institute of Life Sciences, Edmond J. Safra Campus, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; Okinawa Institute of Science and Technology, Graduate University, 904-0495 Okinawa, Japan.
| |
Collapse
|
41
|
MaBouDi H, Marshall JAR, Barron AB. Honeybees solve a multi-comparison ranking task by probability matching. Proc Biol Sci 2020; 287:20201525. [PMID: 32873200 DOI: 10.1098/rspb.2020.1525] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Honeybees forage on diverse flowers which vary in the amount and type of rewards they offer, and bees are challenged with maximizing the resources they gather for their colony. That bees are effective foragers is clear, but how bees solve this type of complex multi-choice task is unknown. Here, we set bees a five-comparison choice task in which five colours differed in their probability of offering reward and punishment. The colours were ranked such that high ranked colours were more likely to offer reward, and the ranking was unambiguous. Bees' choices in unrewarded tests matched their individual experiences of reward and punishment of each colour, indicating bees solved this test not by comparing or ranking colours but by basing their colour choices on their history of reinforcement for each colour. Computational modelling suggests a structure like the honeybee mushroom body with reinforcement-related plasticity at both input and output can be sufficient for this cognitive strategy. We discuss how probability matching enables effective choices to be made without a need to compare any stimuli directly, and the use and limitations of this simple cognitive strategy for foraging animals.
Collapse
Affiliation(s)
- HaDi MaBouDi
- Department of Computer Science, University of Sheffield, Sheffield, UK
| | | | - Andrew B Barron
- Department of Computer Science, University of Sheffield, Sheffield, UK.,Department of Biological Sciences, Macquarie University, North Ryde, Sydney, Australia
| |
Collapse
|
42
|
Schubiger MN, Fichtel C, Burkart JM. Validity of Cognitive Tests for Non-human Animals: Pitfalls and Prospects. Front Psychol 2020; 11:1835. [PMID: 32982822 PMCID: PMC7488350 DOI: 10.3389/fpsyg.2020.01835] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 07/03/2020] [Indexed: 01/04/2023] Open
Abstract
Comparative psychology assesses cognitive abilities and capacities of non-human animals and humans. Based on performance differences and similarities in various species in cognitive tests, it is inferred how their minds work and reconstructed how cognition might have evolved. Critically, such species comparisons are only valid and meaningful if the tasks truly capture individual and inter-specific variation in cognitive abilities rather than contextual variables that might affect task performance. Unlike in human test psychology, however, cognitive tasks for non-human primates (and most other animals) have been rarely evaluated regarding their measurement validity. We review recent studies that address how non-cognitive factors affect performance in a set of commonly used cognitive tasks, and if cognitive tests truly measure individual variation in cognitive abilities. We find that individual differences in emotional and motivational factors primarily affect performance via attention. Hence, it is crucial to systematically control for attention during cognitive tasks to obtain valid and reliable results. Aspects of test design, however, can also have a substantial effect on cognitive performance. We conclude that non-cognitive factors are a minor source of measurement error if acknowledged and properly controlled for. It is essential, however, to validate and eventually re-design several primate cognition tasks in order to ascertain that they capture the cognitive abilities they were designed to measure. This will provide a more solid base for future cognitive comparisons within primates but also across a wider range of non-human animal species.
Collapse
Affiliation(s)
- Michèle N. Schubiger
- Evolutionary Cognition Group, Department of Anthropology, University of Zurich, Zurich, Switzerland
- World Ape Fund, London, United Kingdom
| | - Claudia Fichtel
- Behavioural Ecology and Sociobiology Unit, German Primate Center, Göttingen, Germany
- Leibniz ScienceCampus “Primate Cognition”, Göttingen, Germany
| | - Judith M. Burkart
- Evolutionary Cognition Group, Department of Anthropology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
43
|
Bray N. Bees can touch but not look. Nat Rev Neurosci 2020; 21:245. [DOI: 10.1038/s41583-020-0297-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
44
|
von der Emde G, de Perera TB. Cross-modal sensory transfer: Bumble bees do it. Science 2020; 367:850-851. [DOI: 10.1126/science.aba8519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Stored sensory input permits two sensory channels to exchange and compare information
Collapse
|