1
|
White IS, Canniffe DP, Hitchcock A. The diversity of physiology and metabolism in chlorophototrophic bacteria. Adv Microb Physiol 2025; 86:1-98. [PMID: 40404267 DOI: 10.1016/bs.ampbs.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2025]
Abstract
Photosynthesis by (bacterio)chlorophyll-producing organisms ("chlorophototrophy") sustains virtually all life on Earth, providing the biosphere with food and energy. The oxygenic process carried out by plants, algae and cyanobacteria also generates the oxygen we breathe, and ancient cyanobacteria were responsible for oxygenating the atmosphere, creating the conditions that allowed the evolution of complex life. Cyanobacteria were also the endosymbiotic progenitors of chloroplasts, play major roles in biogeochemical cycles and as primary producers in aquatic ecosystems, and act as genetically tractable model organisms for studying oxygenic photosynthesis. In addition to the Cyanobacteriota, eight other bacterial phyla, namely Proteobacteria/Pseudomonadota, Chlorobiota, Chloroflexota, Bacillota, Acidobacteriota, Gemmatimonadota, Vulcanimicrobiota and Myxococcota contain at least one putative chlorophototrophic species, all of which perform a variant of anoxygenic photosynthesis, which does not yield oxygen as a by-product. These chlorophototrophic organisms display incredible diversity in the habitats that they colonise, and in their biochemistry, physiology and metabolism, with variation in the light-harvesting complexes and pigments they produce to utilise solar energy. Whilst some are very well understood, such as the proteobacterial 'purple bacteria', others have only been identified in the last few years and therefore relatively little is known about them - especially those that have not yet been isolated and cultured. In this chapter, we aim to summarise and compare the photosynthetic physiology and central metabolic processes of chlorophototrophic members from the nine phyla in which they are found, giving both a short historical perspective and highlighting gaps in our understanding.
Collapse
Affiliation(s)
- Isaac S White
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Daniel P Canniffe
- Institute of Systems, Molecular & Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Andrew Hitchcock
- Plants, Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom; Molecular Microbiology - Biochemistry and Disease, School of Biosciences, The University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
2
|
Li R, Liu X, Wu G, Li G, Chen JH, Jiang H, Dong H. Pyrite stimulates the growth and sulfur oxidation capacity of anoxygenic phototrophic sulfur bacteria in euxinic environments. SCIENCE ADVANCES 2025; 11:eadu7080. [PMID: 40249799 PMCID: PMC12007567 DOI: 10.1126/sciadv.adu7080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/14/2025] [Indexed: 04/20/2025]
Abstract
Anoxygenic phototrophic sulfur bacteria flourish in contemporary and ancient euxinic environments, driving the biogeochemical cycles of carbon and sulfur. However, it is unclear how these strict anaerobes meet their high demand for iron in iron-depleted environments. Here, we report that pyrite, a widespread and highly stable iron sulfide mineral in anoxic, low-temperature environments, can support the growth and metabolic activity of anoxygenic phototrophic sulfur bacteria by serving as the sole iron source under iron-depleted conditions. Transcriptomic and proteomic analyses revealed that pyrite addition substantially up-regulated genes and protein expression involved in photosynthesis, sulfur metabolism, and biosynthesis of organics. Anoxic microbial oxidation of pyritic sulfur and consequent destabilization of the pyrite structure were postulated to facilitate microbial iron acquisition. These findings advance our understanding of the survival strategies of anaerobes in iron-depleted environments and are important for revealing the previously underappreciated bioavailability of pyritic iron in anoxic environments and anoxic weathering of pyrite.
Collapse
Affiliation(s)
- Runjie Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing 100083, China
| | - Xiaolei Liu
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
- Key Laboratory of Polar Geology and Marine Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Geng Wu
- State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences, Wuhan 430074, China
| | - Gaoyuan Li
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China
| | - Jing-Hua Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongchen Jiang
- School of Ocean Sciences, China University of Geosciences (Beijing), Beijing 100083, China
- Key Laboratory of Polar Geology and Marine Mineral Resources, China University of Geosciences (Beijing), Beijing 100083, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Geomicrobiology and Environmental Changes, China University of Geosciences (Beijing), Beijing 100083, China
- Frontiers Science Center for Deep-time Digital Earth, China University of Geosciences (Beijing), Beijing 100083, China
| |
Collapse
|
3
|
Huang G, Dong S, Ma L, Li L, Ju J, Wang MJ, Zhang JP, Sui SF, Qin X. Cryo-EM structure of a minimal reaction center-light-harvesting complex from the phototrophic bacterium Chloroflexus aurantiacus. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:967-978. [PMID: 39912559 DOI: 10.1111/jipb.13853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
Photosynthetic organisms have developed various light-harvesting antenna systems to capture light and transfer energy to reaction centers (RCs). Simultaneous utilization of the integral membrane light-harvesting antenna (LH complex) and the extrinsic antenna (chlorosomes) makes the phototrophic bacterium Chloroflexus (Cfx.) aurantiacus an ideal model for studying filamentous anoxygenic phototrophs (FAPs). Here, we determined the structure of a minimal RC-LH photocomplex from Cfx. aurantiacus J-10-fl (CaRC-LH) at 3.05-Å resolution. The CaRC-LH binds only to seven LH subunits, which form a crescent-shaped antenna surrounding the movable menaquinone-10 (QB) binding site of CaRC. In this complex with minimal LH units, an extra antenna is required to ensure sufficient light-gathering, providing a clear explanation for the presence of chlorosomes in Cfx. aurantiacus. More importantly, the semicircle of the antenna represents a novel RC-LH assembly pattern. Our structure provides a basis for understanding the existence of chlorosomes in Cfx. aurantiacus and the possible assembly pattern of RC-LH.
Collapse
Affiliation(s)
- Guoqiang Huang
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- Multiscale Research Institute of Complex Systems, Fudan University, Shanghai, 200433, China
| | - Shishang Dong
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Lin Ma
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Lin Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jinxin Ju
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Mei-Jiao Wang
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Jian-Ping Zhang
- School of Chemistry and Life Resources, Renmin University of China, Beijing, 100872, China
| | - Sen-Fang Sui
- State Key Laboratory of Membrane Biology, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, China
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Xiaochun Qin
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| |
Collapse
|
4
|
Li Y, Cao T, Guo Y, Grimm B, Li X, Duanmu D, Lin R. Regulatory and retrograde signaling networks in the chlorophyll biosynthetic pathway. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:887-911. [PMID: 39853950 PMCID: PMC12016751 DOI: 10.1111/jipb.13837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 12/08/2024] [Indexed: 01/26/2025]
Abstract
Plants, algae and photosynthetic bacteria convert light into chemical energy by means of photosynthesis, thus providing food and energy for most organisms on Earth. Photosynthetic pigments, including chlorophylls (Chls) and carotenoids, are essential components that absorb the light energy necessary to drive electron transport in photosynthesis. The biosynthesis of Chl shares several steps in common with the biosynthesis of other tetrapyrroles, including siroheme, heme and phycobilins. Given that many tetrapyrrole precursors possess photo-oxidative properties that are deleterious to macromolecules and can lead to cell death, tetrapyrrole biosynthesis (TBS) requires stringent regulation under various developmental and environmental conditions. Thanks to decades of research on model plants and algae, we now have a deeper understanding of the regulatory mechanisms that underlie Chl synthesis, including (i) the many factors that control the activity and stability of TBS enzymes, (ii) the transcriptional and post-translational regulation of the TBS pathway, and (iii) the complex roles of tetrapyrrole-mediated retrograde signaling from chloroplasts to the cytoplasm and the nucleus. Based on these new findings, Chls and their derivatives will find broad applications in synthetic biology and agriculture in the future.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
| | - Tianjun Cao
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Yunling Guo
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Bernhard Grimm
- Institute of Biology/Plant PhysiologyHumboldt‐Universität zu BerlinBerlin10115Germany
- The Zhongzhou Laboratory for Integrative Biology, State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life SciencesHenan UniversityKaifeng475004China
| | - Xiaobo Li
- School of Life SciencesWestlake UniversityHangzhou310030China
- Institute of BiologyWestlake Institute for Advanced StudyHangzhou310024China
| | - Deqiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Rongcheng Lin
- Key Laboratory of Photobiology, Institute of Botanythe Chinese Academy of SciencesBeijing100093China
- Institute of Biotechnology, Xianghu LaboratoryHangzhou311231China
| |
Collapse
|
5
|
Yukawa H, Kono H, Ishiwata H, Igarashi R, Takakusagi Y, Arai S, Hirano Y, Suhara T, Baba Y. Quantum life science: biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, quantum biology, and quantum biotechnology. Chem Soc Rev 2025; 54:3293-3322. [PMID: 39874046 DOI: 10.1039/d4cs00650j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025]
Abstract
The emerging field of quantum life science combines principles from quantum physics and biology to study fundamental life processes at the molecular level. Quantum mechanics, which describes the properties of small particles, can help explain how quantum phenomena such as tunnelling, superposition, and entanglement may play a role in biological systems. However, capturing these effects in living systems is a formidable challenge, as it involves dealing with dissipation and decoherence caused by the surrounding environment. We overview the current status of the quantum life sciences from technologies and topics in quantum biology. Technologies such as biological nano quantum sensors, quantum technology-based hyperpolarized MRI/NMR, high-speed 2D electronic spectrometers, and computer simulations are being developed to address these challenges. These interdisciplinary fields have the potential to revolutionize our understanding of living organisms and lead to advancements in genetics, molecular biology, medicine, and bioengineering.
Collapse
Affiliation(s)
- Hiroshi Yukawa
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hidetoshi Kono
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Hitoshi Ishiwata
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Ryuji Igarashi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoichi Takakusagi
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Shigeki Arai
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yu Hirano
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Tetsuya Suhara
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| | - Yoshinobu Baba
- Institute for Quantum Life Science, National Institutes for Quantum Science and Technology (QST), Anagawa 4-9-1, Inage-ku, Chiba 263-8555, Japan.
| |
Collapse
|
6
|
Mulkidjanian AY, Dibrova DV, Bychkov AY. Origin of the RNA World in Cold Hadean Geothermal Fields Enriched in Zinc and Potassium: Abiogenesis as a Positive Fallout from the Moon-Forming Impact? Life (Basel) 2025; 15:399. [PMID: 40141744 PMCID: PMC11943819 DOI: 10.3390/life15030399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/06/2025] [Accepted: 02/14/2025] [Indexed: 03/28/2025] Open
Abstract
The ubiquitous, evolutionarily oldest RNAs and proteins exclusively use rather rare zinc as transition metal cofactor and potassium as alkali metal cofactor, which implies their abundance in the habitats of the first organisms. Intriguingly, lunar rocks contain a hundred times less zinc and ten times less potassium than the Earth's crust; the Moon is also depleted in other moderately volatile elements (MVEs). Current theories of impact formation of the Moon attribute this depletion to the MVEs still being in a gaseous state when the hot post-impact disk contracted and separated from the nascent Moon. The MVEs then fell out onto juvenile Earth's protocrust; zinc, as the most volatile metal, precipitated last, just after potassium. According to our calculations, the top layer of the protocrust must have contained up to 1019 kg of metallic zinc, a powerful reductant. The venting of hot geothermal fluids through this MVE-fallout layer, rich in metallic zinc and radioactive potassium, both capable of reducing carbon dioxide and dinitrogen, must have yielded a plethora of organic molecules released with the geothermal vapor. In the pools of vapor condensate, the RNA-like molecules may have emerged through a pre-Darwinian selection for low-volatile, associative, mineral-affine, radiation-resistant, nitrogen-rich, and polymerizable molecules.
Collapse
Affiliation(s)
- Armen Y. Mulkidjanian
- Department of Physics, Osnabrueck University, D-49069 Osnabrueck, Germany
- Center of Cellular Nanoanalytics, Osnabrueck University, D-49069 Osnabrueck, Germany
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Daria V. Dibrova
- School of Bioengineering and Bioinformatics, Lomonosov Moscow State University, 119992 Moscow, Russia
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, 119992 Moscow, Russia
| | - Andrey Y. Bychkov
- School of Geology, Lomonosov Moscow State University, 119992 Moscow, Russia;
| |
Collapse
|
7
|
Wang B, Liao Q, Xia C, Gan F. Biosynthesis of Bacteriochlorophylls and Bacteriochlorophyllides in Escherichia coli. Biotechnol Bioeng 2025; 122:710-723. [PMID: 39690792 DOI: 10.1002/bit.28908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/14/2024] [Accepted: 11/28/2024] [Indexed: 12/19/2024]
Abstract
Photosynthesis, the most important biological process on Earth, converts light energy into chemical energy with essential pigments like chlorophylls and bacteriochlorophylls. The ability to reconstruct photosynthesis in heterotrophic organisms could significantly impact solar energy utilization and biomass production. In this study, we focused on constructing light-dependent biosynthesis pathways for bacteriochlorophyll (BChl) a and bacteriochlorophyllide (BChlide) d and c in the model strain Escherichia coli. The production of the starting compound, Mg protoporphyrin monomethylester, was optimized by screening the ribosome binding sites for the expression of each of the five genes. By fusing a maltose-binding protein and apolipoprotein A-I domain with the membrane protein BchF, the yield of 3-hydroxyethyl-Chlide a was increased by five-fold. Anaerobic cultivation of the engineered E. coli strains facilitated the reduction of the C7=C8 double bond by chlorophyllide a oxidoreductase, a critical step in BChl a synthesis. We further enhanced BChl a production by adjusting the isopropyl-β-d-thiogalactopyranoside concentration to optimize enzyme production and introducing an exogenous superoxide dismutase to combat oxidative stress. Additionally, fusing BciC with a RIAD tag resulted in an eight-fold increase in the production of 3-vinyl BChlide d. This study lays the foundation for the reconstitution of BChl-based photosynthetic apparatus in heterotrophic model organisms, offering promising avenues for future research and applications in biotechnology.
Collapse
Affiliation(s)
- Baiyang Wang
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Qiancheng Liao
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Chenyang Xia
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Fei Gan
- Department of Microbiology, Hubei Key Laboratory of Cell Homeostasis, College of Life Science, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
8
|
Tsukatani Y, Azai C, Noji T, Kawai S, Sugimoto S, Shimamura S, Shimane Y, Harada J, Mizoguchi T, Tamiaki H, Masuda S. Genes for the Type-I Reaction Center and Galactolipid Synthesis are Required for Chlorophyll a Accumulation in a Purple Photosynthetic Bacterium. PLANT & CELL PHYSIOLOGY 2025; 66:204-213. [PMID: 39030709 DOI: 10.1093/pcp/pcae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 07/21/2024]
Abstract
Anoxygenic photosynthesis is diversified into two classes: chlorophototrophy based on a bacterial type-I or type-II reaction center (RC). Whereas the type-I RC contains both bacteriochlorophyll and chlorophyll, type-II RC-based phototrophy relies only on bacteriochlorophyll. However, type-II phototrophic bacteria theoretically have the potential to produce chlorophyll a by the addition of an enzyme, chlorophyll synthase, because the direct precursor for the enzyme, chlorophyllide a, is produced as an intermediate of BChl a biosynthesis. In this study, we attempted to modify the type-II proteobacterial phototroph Rhodovulum sulfidophilum to produce chlorophyll a by introducing chlorophyll synthase, which catalyzes the esterification of a diterpenoid group to chlorophyllide a thereby producing chlorophyll a. However, the resulting strain did not accumulate chlorophyll a, perhaps due to the absence of endogenous chlorophyll a-binding proteins. We further heterologously incorporated genes encoding the type-I RC complex to provide a target for chlorophyll a. Heterologous expression of type-I RC subunits, chlorophyll synthase and galactolipid synthase successfully afforded detectable accumulation of chlorophyll a in Rdv. sulfidophilum. This suggests that the type-I RC can work to accumulate chlorophyll a and that galactolipids are likely necessary for the type-I RC assembly. The evolutionary acquisition of type-I RCs could be related to prior or concomitant acquisition of galactolipids and chlorophylls.
Collapse
Affiliation(s)
- Yusuke Tsukatani
- Biogeochemistry Research Center, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061 Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, 237-0061 Japan
| | - Chihiro Azai
- Faculty of Science and Engineering, Chuo University, Tokyo, 112-8551 Japan
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Tomoyasu Noji
- The OCU Advanced Research Institute for Natural Science and Technology (OCARINA), Osaka City University, Osaka, 558-8585 Japan
| | - Shigeru Kawai
- Biogeochemistry Research Center, Research Institute for Marine Resources Utilization, Japan Agency for Marine-Earth Science and Technology (JAMSTEC), 2-15 Natsushima-cho, Yokosuka, Kanagawa, 237-0061 Japan
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, 237-0061 Japan
| | - Saori Sugimoto
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501 Japan
| | - Shigeru Shimamura
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, 237-0061 Japan
| | - Yasuhiro Shimane
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), JAMSTEC, Yokosuka, Kanagawa, 237-0061 Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka, 830-0011 Japan
| | - Tadashi Mizoguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577 Japan
| | - Shinji Masuda
- Department of Life Science and Technology, Tokyo Institute of Technology, Yokohama, Kanagawa, 226-8501 Japan
| |
Collapse
|
9
|
Li M, Liu ZF, Ma J, Huo D, Cui G, Yang QZ, Wan Y. The Rapid Transport of Excitons in Organic Crystals Can Be Regulated by the Molecular Packing Form. J Phys Chem Lett 2025; 16:955-962. [PMID: 39836871 DOI: 10.1021/acs.jpclett.4c03385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Long-range exciton transport is crucial for optoelectronic devices based on organic semiconductors, but the method for increasing and regulating the exciton transport rate in organic semiconductors is still underexplored. Here we have achieved rapid-transporting excitons in organic crystals assembled of difluoroboron β-diketonate (BCZ) and found that the exciton transport rate of BCZ crystals can be regulated by the molecular packing form. Using transient absorption microscopy, we find that the BCZ-Y crystal in which BCZ molecules experience uniform head-to-tail antiparallel molecular packing has anisotropic long-range exciton transport. The exciton diffusion constants along the fast and slow axes are 2.0 and 0.9 cm2/s, respectively. By contrast, there is no obvious exciton transport in BCZ-R crystals, in which BCZ molecules form tightly stacked dimers. Theoretical calculations prove that energy transfer in BCZ-Y is much faster than that in BCZ-R because of the different molecular arrangements.
Collapse
Affiliation(s)
- Minjie Li
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Zheng-Fei Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Jiajia Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Dayujia Huo
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Ganglong Cui
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Qing-Zheng Yang
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| | - Yan Wan
- College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China
| |
Collapse
|
10
|
Kichishima S, Sakaguchi K, Tamiaki H. Physical properties of chlorophyll-quinone conjugates prepared via Friedel-Crafts reaction. PHOTOSYNTHESIS RESEARCH 2025; 163:8. [PMID: 39821778 PMCID: PMC11742327 DOI: 10.1007/s11120-024-01132-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/27/2024] [Indexed: 01/30/2025]
Abstract
Pheophytin-a derivatives possessing plastoquinone and phylloquinone analogs in the peripheral 3-substituent were prepared by Friedel-Crafts reactions of a 3-hydroxymethyl-chlorin as one of the chlorophyll-a derivatives with benzo- and naphthohydroquinones, respectively, and successive oxidation of the 1,4-dihydroxy-aryl groups in the resulting dehydration products. The 3-quinonylmethyl-chlorins exhibited ultraviolet-visible absorption and circular dichroism spectra in acetonitrile, which were composed of those of the starting 3-hydroxymethyl-chlorin and the corresponding methylated benzo- and naphthoquinones. No intramolecular interaction between the chlorin and quinone π-systems was observed in the solution owing to the methylene spacer. The first reduction potentials of the quinone moieties in the synthetic conjugates were determined by cyclic voltammetry and shifted positively from those of the reference quinones. The former quinonyl groups were reduced more readily by approximately 0.1 V than the latter quinones, which was ascribable to the stabilization of the quinonyl anion radical by the nearby macrocyclic chlorin π-chromophore. This observation implied that the reduction potentials of quinones were regulated by the close pheophytin-a derivative by through-space interaction. Considering the charge shift from pheophytin-a anion radical to plastoquinone and phylloquinone in reaction centers of photosystems II and I, respectively, the reduction potentials of these quinones as a determinant factor of the rapid electron transfer process would be dependent on the pheophytin-a in the photosynthetic reaction centers of oxygenic phototrophs as well as on the neighboring peptides.
Collapse
Affiliation(s)
- Saki Kichishima
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Kana Sakaguchi
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
11
|
Noji T, Saito K, Ishikita H. How the Electron-Transfer Cascade is Maintained in Chlorophyll- d Containing Photosystem I. Biochemistry 2025; 64:203-212. [PMID: 39656068 PMCID: PMC11716663 DOI: 10.1021/acs.biochem.4c00521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025]
Abstract
Photosystem I (PSI) from Acaryochloris marina utilizes chlorophyll d (Chld) with a formyl group as its primary pigment, which is more red-shifted than chlorophyll a (Chla) in PSI from Thermosynechococcus elongatus. Using the cryo-electron microscopy structure and solving the linear Poisson-Boltzmann equation, here we report the redox potential (Em) values in A. marina PSI. The Em(Chld) values at the paired chlorophyll site, [PAPB], are nearly identical to the corresponding Em(Chla) values in T. elongatus PSI, despite Chld having a 200 mV lower reduction power. The accessory chlorophyll site, A-1, in the B branch exhibits an extensive H-bond network with its ligand water molecule, contributing to Em(A-1B) being lower than Em(A-1A). The substitution of pheophytin a (Pheoa) with Chla at the electron acceptor site, A0, decreases Em(A0), resulting in an uphill electron transfer from A-1. The impact of the A-1 formyl group on Em(A0) is offset by the reorientation of the A0 ester group. It seems likely that Pheoa is necessary for A. marina PSI to maintain the overall electron-transfer cascade characteristic of PSI in its unique light environment.
Collapse
Affiliation(s)
- Tomoyasu Noji
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Keisuke Saito
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
12
|
Hashimoto Y, Takeda T, Ogasawara S, Tamiaki H. Self-aggregation of 13 2,13 2-disubstituted bacteriochlorophyll-d analog. Photochem Photobiol Sci 2024; 23:2227-2236. [PMID: 39604785 DOI: 10.1007/s43630-024-00662-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024]
Abstract
Zinc methyl 132,132-disubstituted 3-hydroxymethyl-pyropheophorbides-a were prepared as models of bacteriochlorophyll-d, which self-aggregated in the main light-harvesting antenna (chlorosome) of photosynthetic green bacteria. The synthetic zinc 31-hydroxy-131-oxo-chlorins possessing methyl and methoxycarbonyl groups at the 132-position could not self-aggregate in an aqueous Triton X-100 solution. However, another model compound bearing an ethane-1,2-diyl group at the 132-position did self-aggregate under the same conditions to give red-shifted and broadened Qy and Soret absorption bands. The spiro-cyclopropane condensation slightly suppressed the chlorosome-like self-aggregation due to an increase in the steric hindrance around the 13-carbonyl group. The red-shifted and broadened values of these bands by the self-aggregation were dependent on the 132-substituents. The 132-substitution substantially controlled the aqueous J-aggregation.
Collapse
Affiliation(s)
- Yamato Hashimoto
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Toyoho Takeda
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Shin Ogasawara
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
13
|
Tian LR, Chen JH. Photosystem I: A Paradigm for Understanding Biological Environmental Adaptation Mechanisms in Cyanobacteria and Algae. Int J Mol Sci 2024; 25:8767. [PMID: 39201454 PMCID: PMC11354412 DOI: 10.3390/ijms25168767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 07/31/2024] [Accepted: 08/04/2024] [Indexed: 09/02/2024] Open
Abstract
The process of oxygenic photosynthesis is primarily driven by two multiprotein complexes known as photosystem II (PSII) and photosystem I (PSI). PSII facilitates the light-induced reactions of water-splitting and plastoquinone reduction, while PSI functions as the light-driven plastocyanin-ferredoxin oxidoreductase. In contrast to the highly conserved structure of PSII among all oxygen-evolving photosynthetic organisms, the structures of PSI exhibit remarkable variations, especially for photosynthetic organisms that grow in special environments. In this review, we make a concise overview of the recent investigations of PSI from photosynthetic microorganisms including prokaryotic cyanobacteria and eukaryotic algae from the perspective of structural biology. All known PSI complexes contain a highly conserved heterodimeric core; however, their pigment compositions and peripheral light-harvesting proteins are substantially flexible. This structural plasticity of PSI reveals the dynamic adaptation to environmental changes for photosynthetic organisms.
Collapse
Affiliation(s)
- Li-Rong Tian
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Collaboration Innovation Center for Cell Signaling and Environmental Adaptation, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| | - Jing-Hua Chen
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
14
|
Kushkevych I, Procházka V, Vítězová M, Dordević D, Abd El-Salam M, Rittmann SKMR. Anoxygenic photosynthesis with emphasis on green sulfur bacteria and a perspective for hydrogen sulfide detoxification of anoxic environments. Front Microbiol 2024; 15:1417714. [PMID: 39056005 PMCID: PMC11269200 DOI: 10.3389/fmicb.2024.1417714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 06/12/2024] [Indexed: 07/28/2024] Open
Abstract
The bacterial light-dependent energy metabolism can be divided into two types: oxygenic and anoxygenic photosynthesis. Bacterial oxygenic photosynthesis is similar to plants and is characteristic for cyanobacteria. Bacterial anoxygenic photosynthesis is performed by anoxygenic phototrophs, especially green sulfur bacteria (GSB; family Chlorobiaceae) and purple sulfur bacteria (PSB; family Chromatiaceae). In anoxygenic photosynthesis, hydrogen sulfide (H2S) is used as the main electron donor, which differs from plants or cyanobacteria where water is the main source of electrons. This review mainly focuses on the microbiology of GSB, which may be found in water or soil ecosystems where H2S is abundant. GSB oxidize H2S to elemental sulfur. GSB possess special structures-chlorosomes-wherein photosynthetic pigments are located. Chlorosomes are vesicles that are surrounded by a lipid monolayer that serve as light-collecting antennas. The carbon source of GSB is carbon dioxide, which is assimilated through the reverse tricarboxylic acid cycle. Our review provides a thorough introduction to the comparative eco-physiology of GSB and discusses selected application possibilities of anoxygenic phototrophs in the fields of environmental management, bioremediation, and biotechnology.
Collapse
Affiliation(s)
- Ivan Kushkevych
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Vít Procházka
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Monika Vítězová
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Dani Dordević
- Department of Plant Origin Foodstuffs Hygiene and Technology, Faculty of Veterinary Hygiene and Ecology, University of Veterinary Sciences, Brno, Czechia
| | - Mohamed Abd El-Salam
- Department of Pharmacognosy, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
- School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Simon K.-M. R. Rittmann
- Archaea Physiology & Biotechnology Group, Department of Functional and Evolutionary Ecology, Universität Wien, Wien, Austria
| |
Collapse
|
15
|
Ennist NM, Wang S, Kennedy MA, Curti M, Sutherland GA, Vasilev C, Redler RL, Maffeis V, Shareef S, Sica AV, Hua AS, Deshmukh AP, Moyer AP, Hicks DR, Swartz AZ, Cacho RA, Novy N, Bera AK, Kang A, Sankaran B, Johnson MP, Phadkule A, Reppert M, Ekiert D, Bhabha G, Stewart L, Caram JR, Stoddard BL, Romero E, Hunter CN, Baker D. De novo design of proteins housing excitonically coupled chlorophyll special pairs. Nat Chem Biol 2024; 20:906-915. [PMID: 38831036 PMCID: PMC11213709 DOI: 10.1038/s41589-024-01626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Accepted: 04/15/2024] [Indexed: 06/05/2024]
Abstract
Natural photosystems couple light harvesting to charge separation using a 'special pair' of chlorophyll molecules that accepts excitation energy from the antenna and initiates an electron-transfer cascade. To investigate the photophysics of special pairs independently of the complexities of native photosynthetic proteins, and as a first step toward creating synthetic photosystems for new energy conversion technologies, we designed C2-symmetric proteins that hold two chlorophyll molecules in closely juxtaposed arrangements. X-ray crystallography confirmed that one designed protein binds two chlorophylls in the same orientation as native special pairs, whereas a second designed protein positions them in a previously unseen geometry. Spectroscopy revealed that the chlorophylls are excitonically coupled, and fluorescence lifetime imaging demonstrated energy transfer. The cryo-electron microscopy structure of a designed 24-chlorophyll octahedral nanocage with a special pair on each edge closely matched the design model. The results suggest that the de novo design of artificial photosynthetic systems is within reach of current computational methods.
Collapse
Affiliation(s)
- Nathan M Ennist
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
| | - Shunzhi Wang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Madison A Kennedy
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Mariano Curti
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | | | | | - Rachel L Redler
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Valentin Maffeis
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - Saeed Shareef
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
- Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Tarragona, Spain
| | - Anthony V Sica
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ash Sueh Hua
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arundhati P Deshmukh
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Adam P Moyer
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Derrick R Hicks
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Avi Z Swartz
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Ralph A Cacho
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Nathan Novy
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Asim K Bera
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Alex Kang
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Banumathi Sankaran
- Molecular Biophysics and Integrated Bioimaging, Berkeley Center for Structural Biology, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | | | - Amala Phadkule
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Mike Reppert
- Department of Chemistry, Purdue University, West Lafayette, IN, USA
| | - Damian Ekiert
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
- Department of Microbiology, New York University School of Medicine, New York, NY, USA
| | - Gira Bhabha
- Department of Cell Biology and Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY, USA
| | - Lance Stewart
- Institute for Protein Design, University of Washington, Seattle, WA, USA
- Department of Biochemistry, University of Washington, Seattle, WA, USA
| | - Justin R Caram
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Barry L Stoddard
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA, USA
| | - Elisabet Romero
- Institute of Chemical Research of Catalonia (ICIQ-CERCA), Barcelona Institute of Science and Technology (BIST), Tarragona, Spain
| | - C Neil Hunter
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - David Baker
- Institute for Protein Design, University of Washington, Seattle, WA, USA.
- Department of Biochemistry, University of Washington, Seattle, WA, USA.
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA.
| |
Collapse
|
16
|
Nelson N. Investigating the Balance between Structural Conservation and Functional Flexibility in Photosystem I. Int J Mol Sci 2024; 25:5073. [PMID: 38791114 PMCID: PMC11121529 DOI: 10.3390/ijms25105073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/16/2024] [Accepted: 04/30/2024] [Indexed: 05/26/2024] Open
Abstract
Photosynthesis, as the primary source of energy for all life forms, plays a crucial role in maintaining the global balance of energy, entropy, and enthalpy in living organisms. Among its various building blocks, photosystem I (PSI) is responsible for light-driven electron transfer, crucial for generating cellular reducing power. PSI acts as a light-driven plastocyanin-ferredoxin oxidoreductase and is situated in the thylakoid membranes of cyanobacteria and the chloroplasts of eukaryotic photosynthetic organisms. Comprehending the structure and function of the photosynthetic machinery is essential for understanding its mode of action. New insights are offered into the structure and function of PSI and its associated light-harvesting proteins, with a specific focus on the remarkable structural conservation of the core complex and high plasticity of the peripheral light-harvesting complexes.
Collapse
Affiliation(s)
- Nathan Nelson
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
17
|
Li X, Li Z, Wang F, Zhao S, Xu C, Mao Z, Duan J, Feng Y, Yang Y, Shen L, Wang G, Yang Y, Yu LJ, Sang M, Han G, Wang X, Kuang T, Shen JR, Wang W. Structures and organizations of PSI-AcpPCI supercomplexes from red tidal and coral symbiotic photosynthetic dinoflagellates. Proc Natl Acad Sci U S A 2024; 121:e2315476121. [PMID: 38319970 PMCID: PMC10873603 DOI: 10.1073/pnas.2315476121] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/02/2024] [Indexed: 02/08/2024] Open
Abstract
Marine photosynthetic dinoflagellates are a group of successful phytoplankton that can form red tides in the ocean and also symbiosis with corals. These features are closely related to the photosynthetic properties of dinoflagellates. We report here three structures of photosystem I (PSI)-chlorophylls (Chls) a/c-peridinin protein complex (PSI-AcpPCI) from two species of dinoflagellates by single-particle cryoelectron microscopy. The crucial PsaA/B subunits of a red tidal dinoflagellate Amphidinium carterae are remarkably smaller and hence losing over 20 pigment-binding sites, whereas its PsaD/F/I/J/L/M/R subunits are larger and coordinate some additional pigment sites compared to other eukaryotic photosynthetic organisms, which may compensate for the smaller PsaA/B subunits. Similar modifications are observed in a coral symbiotic dinoflagellate Symbiodinium species, where two additional core proteins and fewer AcpPCIs are identified in the PSI-AcpPCI supercomplex. The antenna proteins AcpPCIs in dinoflagellates developed some loops and pigment sites as a result to accommodate the changed PSI core, therefore the structures of PSI-AcpPCI supercomplex of dinoflagellates reveal an unusual protein assembly pattern. A huge pigment network comprising Chls a and c and various carotenoids is revealed from the structural analysis, which provides the basis for our deeper understanding of the energy transfer and dissipation within the PSI-AcpPCI supercomplex, as well as the evolution of photosynthetic organisms.
Collapse
Affiliation(s)
- Xiaoyi Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
| | - Zhenhua Li
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing100049, China
| | - Fangfang Wang
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai201204, China
| | - Songhao Zhao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing100049, China
| | - Caizhe Xu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- Department of Mechanical Engineering, Tsinghua University, Beijing100084, China
| | - Zhiyuan Mao
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing100049, China
| | - Jialin Duan
- National Facility for Protein Science in Shanghai, Chinese Academy of Sciences, Shanghai201204, China
| | - Yue Feng
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing100049, China
| | - Yang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou571158, China
| | - Lili Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing100049, China
| | - Guanglei Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- College of Life Sciences, University of Chinese Academy of Science, Beijing100049, China
| | - Yanyan Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
| | - Long-Jiang Yu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
| | - Min Sang
- China National Botanical Garden, Beijing100093, China
| | - Guangye Han
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
| | - Xuchu Wang
- Laboratory for Ecology of Tropical Islands, Ministry of Education, College of Life Sciences, Hainan Normal University, Haikou571158, China
- Key Laboratory of Plant Resources Conservation and Germplasm Innovation in Mountainous Region, Ministry of Education, College of Life Sciences, Guizhou University, Guiyang550025, China
| | - Tingyun Kuang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
| | - Jian-Ren Shen
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
- Research Institute for Interdisciplinary Science, Graduate School of Natural Science and Technology, Okayama University, Okayama700-8530, Japan
| | - Wenda Wang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing100093, China
- China National Botanical Garden, Beijing100093, China
| |
Collapse
|
18
|
Kimura A, Kitoh-Nishioka H, Kondo T, Oh-Oka H, Itoh S, Azai C. Experimental and Theoretical Mutation of Exciton States on the Smallest Type-I Photosynthetic Reaction Center Complex of a Green Sulfur Bacterium Chlorobaclum tepidum. J Phys Chem B 2024; 128:731-743. [PMID: 38198639 DOI: 10.1021/acs.jpcb.3c07424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
The exciton states on the smallest type-I photosynthetic reaction center complex of a green sulfur bacterium Chlorobaculum tepidum (GsbRC) consisting of 26 bacteriochlorophylls a (BChl a) and four chlorophylls a (Chl a) located on the homodimer of two PscA reaction center polypeptides were investigated. This analysis involved the study of exciton states through a combination of theoretical modeling and the genetic removal of BChl a pigments at eight sites. (1) A theoretical model of the pigment assembly exciton state on GsbRC was constructed using Poisson TrESP (P-TrESP) and charge density coupling (CDC) methods based on structural information. The model reproduced the experimentally obtained absorption spectrum, circular dichroism spectrum, and excitation transfer dynamics, as well as explained the effects of mutation. (2) Eight BChl a molecules at different locations on the GsbRC were selectively removed by genetic exchange of the His residue, which ligates the central Mg atom of BChl a, with the Leu residue on either one or two PscAs in the RC. His locations are conserved among all type-I RC plant polypeptide, cyanobacteria, and bacteria amino acid sequences. (3) Purified mutant-GsbRCs demonstrated distinct absorption and fluorescence spectra at 77 K, which were different from each other, suggesting successful pigment removal. (4) The same mutations were applied to the constructed theoretical model to analyze the outcomes of these mutations. (5) The combination of theoretical predictions and experimental mutations based on structural information is a new tool for studying the function and evolution of photosynthetic reaction centers.
Collapse
Affiliation(s)
- Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Hirotaka Kitoh-Nishioka
- Department of Energy and Materials, Faculty of Science and Engineering, Kindai University, Osaka 577-8502, Japan
| | - Toru Kondo
- School of Life Science and Technology, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8550, Japan
| | - Hirozo Oh-Oka
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka 560-0043, Japan
| | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Chihiro Azai
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo 112-8551, Japan
| |
Collapse
|
19
|
Gao Y, Shi X, Chang Y, Li Y, Xiong X, Liu H, Li M, Li W, Zhang X, Fu Z, Xue Y, Tang J. Mapping the gene of a maize leaf senescence mutant and understanding the senescence pathways by expression analysis. PLANT CELL REPORTS 2023; 42:1651-1663. [PMID: 37498331 DOI: 10.1007/s00299-023-03051-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 07/12/2023] [Indexed: 07/28/2023]
Abstract
KEY MESSAGES Narrowing down to a single putative target gene behind a leaf senescence mutant and constructing the regulation network by proteomic method. Leaf senescence mutant is an important resource for exploring molecular mechanism of aging. To dig for potential modulation networks during maize leaf aging process, we delimited the gene responsible for a premature leaf senescence mutant els5 to a 1.1 Mb interval in the B73 reference genome using a BC1F1 population with 40,000 plants, and analyzed the leaf proteomics of the mutant and its near-isogenic wild type line. A total of 1355 differentially accumulated proteins (DAP) were mainly enriched in regulation pathways such as "photosynthesis", "ribosome", and "porphyrin and chlorophyll metabolism" by the KEGG pathway analysis. The interaction networks constructed by incorporation of transcriptome data showed that ZmELS5 likely repaired several key factors in the photosynthesis system. The putative candidate proteins for els5 were proposed based on DAPs in the fined QTL mapping interval. These results provide fundamental basis for cloning and functional research of the els5 gene, and new insights into the molecular mechanism of leaf senescence in maize.
Collapse
Affiliation(s)
- Yong Gao
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xia Shi
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongyuan Chang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yingbo Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuehang Xiong
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongmei Liu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Mengyuan Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Li
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xuehai Zhang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiyuan Fu
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yadong Xue
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Jihua Tang
- State Key Laboratory of Wheat and Maize Crop Science, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
20
|
Götze JP, Maity S, Kleinekathöfer U. Incoherent Energy Transfer between the Baseplate and FMO Protein Explored at Ideal Geometries. J Phys Chem B 2023; 127:7829-7838. [PMID: 37691433 DOI: 10.1021/acs.jpcb.3c02568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
The Förster resonance energy transfer (FRET) between the Fenna-Matthews-Olson (FMO) protein complex and the chlorosomal baseplate (CBP) is investigated by using an idealized model. This simplified model is based on crystal structure and molecular dynamics conformations. Some of the further input, such as the transition dipole moments, was extracted from earlier molecular-level simulations. The resulting model mimics the effects of the relative position between the CBP and the FMO complex on the corresponding FRET efficiency under ideal conditions, involving about 1.3 billion FRET calculations per investigated model. In this idealized model and employing some approximations, it is found that FRET efficiency is almost completely independent of the FMO trimer orientation (displacement, distance, and rotation), despite FMO and CBP being highly structured complexes. Even removing individual FMO BChl triples will only reduce the FRET efficiency by up to 8.6%. An FMO containing only the least efficient BChl triple will retain about 25% of the FRET efficiency of a full FMO complex. In addition to its proposed function as an energetic funnel, FMO is thus identified to act as a highly robust spatial funnel for CBP excitation harvesting, independent of the mutual CBP-FMO orientation.
Collapse
Affiliation(s)
- Jan P Götze
- Institut für Chemie und Biochemie, Physikalische und Theoretische Chemie, Freie Universität Berlin, Arnimallee 22, 14195 Berlin, Germany
| | - Sayan Maity
- School of Science, Constructor University, Campusring 1, 28759 Bremen, Germany
| | | |
Collapse
|
21
|
Kanda T, Ishikita H. Redox Potentials of Iron-Sulfur Clusters in Type I Photosynthetic Reaction Centers. J Phys Chem B 2023; 127:4998-5004. [PMID: 37226417 PMCID: PMC10259448 DOI: 10.1021/acs.jpcb.3c01071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/10/2023] [Indexed: 05/26/2023]
Abstract
The electron transfer pathways in type I photosynthetic reaction centers, such as photosystem I (PSI) and reaction centers from green sulfur bacteria (GsbRC), are terminated by two Fe4S4 clusters, FA and FB. The protein structures are the basis of understanding how the protein electrostatic environment interacts with the Fe4S4 clusters and facilitates electron transfer. Using the protein structures, we calculated the redox potential (Em) values for FA and FB in PSI and GsbRC, solving the linear Poisson-Boltzmann equation. The FA-to-FB electron transfer is energetically downhill in the cyanobacterial PSI structure, while it is isoenergetic in the plant PSI structure. The discrepancy arises from differences in the electrostatic influences of conserved residues, including PsaC-Lys51 and PsaC-Arg52, located near FA. The FA-to-FB electron transfer is slightly downhill in the GsbRC structure. Em(FA) and Em(FB) exhibit similar levels upon isolation of the membrane-extrinsic PsaC and PscB subunits from the PSI and GsbRC reaction centers, respectively. The binding of the membrane-extrinsic subunit at the heterodimeric/homodimeric reaction center plays a key role in tuning Em(FA) and Em(FB).
Collapse
Affiliation(s)
- Tomoki Kanda
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
22
|
Brütting M, Foerster JM, Kümmel S. Understanding Primary Charge Separation in the Heliobacterial Reaction Center. J Phys Chem Lett 2023; 14:3092-3102. [PMID: 36951395 DOI: 10.1021/acs.jpclett.3c00377] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The homodimeric reaction center of heliobacteria retains features of the ancestral reaction center and can thus provide insights into the evolution of photosynthesis. Primary charge separation is expected to proceed in a two-step mechanism along either of the two reaction center branches. We reveal the first charge-separation step from first-principles calculations based on time-dependent density functional theory with an optimally tuned range-separated hybrid and ab initio Born-Oppenheimer molecular dynamics: the electron is most likely localized on the electron transfer cofactor 3 (EC3, OH-chlorophyll a), and the hole on the adjacent EC2. Including substantial parts of the surrounding protein environment into the calculations shows that a distinct structural mechanism is decisive for the relative energetic positioning of the electronic excitations: specific charged amino acids in the vicinity of EC3 lower the energy of charge-transfer excitations and thus facilitate efficient charge separation. These results are discussed considering recent experimental insights.
Collapse
|
23
|
Hirose M, Tsukatani Y, Harada J, Tamiaki H. In vitro reversible dehydration in C3-substituents of zinc chlorophyll analogs by BchF and BchV enzymes: Stereoselectivity and substrate specificity in the dehydration. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2023; 1864:148959. [PMID: 36822492 DOI: 10.1016/j.bbabio.2023.148959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/14/2023] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
In the biosynthetic pathway of bacteriochlorophyll(BChl)-a/b/c/d/e molecules, BchF and BchV enzymes catalyze the hydration of a C3-vinyl to C3-1-hydroxyethyl group. In this study, the in vitro reactions catalyzed by BchF and BchV partially afforded a C31-epimeric mixture of the hydrated products (secondary alcohols), with the primary recovery of the C3-vinylated substrate. The stereoselectivity and substrate specificity for the in vitro reverse enzymatic dehydration were examined using zinc chlorophyll analogs as model substrates by BchF and BchV, which were obtained from extracts of Escherichia coli overexpressing the respective genes from Chlorobaculum tepidum and used without further purification. Both BchF and BchV preferred dehydration of the (31R)-epimers over the (31S)-epimers. The (31R)-epimer was directly dehydrated by BchF and BchV to give the C3-vinylated product. By contrast, two reaction pathways for BchF and BchV dehydrations of the (31S)-epimer were proposed: (1) the (31S)-epimer would be directly dehydrated to C3-vinyl group. (2) the (31S)-epimer would be epimerized to the (31R)-epimer, and the resulting epimer was dehydrated. The results indicated that both BchF and BchV did function as a hydratase/dehydratase and could play a role in the C31-epimerization. An increase in the alkyl size at the C8-position gradually suppressed the BchF and BchV-catalyzed dehydration in vitro, while the C121- and C20-methylation only slightly affected the reaction. Using the BchF dehydration, a large amount of 3-vinyl-bacteriochlorophyllide-a was successfully prepared, with the retention of the chemically labile, central magnesium atom.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Yusuke Tsukatani
- Institute for Extra-cutting-edge Science and Technology Avant-garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa 237-0061, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|
24
|
Freire MÁ. The origins of photosynthetic systems: Clues from the phosphorus and sulphur chemical scenarios. Biosystems 2023; 226:104873. [PMID: 36906114 DOI: 10.1016/j.biosystems.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/22/2023] [Accepted: 03/06/2023] [Indexed: 03/11/2023]
Abstract
Photosynthesis is the predominant biochemical process of carbon dioxide assimilation in the biosphere. To reduce carbon dioxide into organic compounds, photosynthetic organisms have one or two distinct photochemical reaction centre complexes with which they capture solar energy and generate ATP and reducing power. The core polypeptides of the photosynthetic reaction centres show low homologies but share overlapping structural folds, overall architecture, similar functional properties and highly conserved positions in protein sequences suggesting a common ancestry. However, the other biochemical components of photosynthetic apparatus appear to be a mosaic resulting from different evolutionary trajectories. The current proposal focusses on the nature and biosynthetic pathways of some organic redox cofactors that participate in the photosynthetic systems: quinones, chlorophyll and heme rings and their attached isoprenoid side chains, as well as on the coupled proton motive forces and associated carbon fixation pathways. This perspective highlights clues about the involvement of the phosphorus and sulphur chemistries that would have shaped the different types of photosynthetic systems.
Collapse
Affiliation(s)
- Miguel Ángel Freire
- Instituto Multidisciplinario de Biología Vegetal (IMBIV), CONICET, Universidad Nacional de Córdoba (UNC), Facultad de Ciencias Exactas, Físicas y Naturales. Av. Vélez Sarsfield 299, CC 495, 5000, Córdoba, Argentina.
| |
Collapse
|
25
|
Kanda T, Ishikita H. Energetic Diversity in the Electron-Transfer Pathways of Type I Photosynthetic Reaction Centers. Biochemistry 2023; 62:934-941. [PMID: 36749324 PMCID: PMC9949227 DOI: 10.1021/acs.biochem.2c00689] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/08/2023] [Indexed: 02/08/2023]
Abstract
Photosynthetic reaction centers from heliobacteria (HbRC) and green sulfur bacteria (GsbRC) are homodimeric proteins and share a common ancestor with photosystem I (PSI), classified as type I reaction centers. Using the HbRC crystal structure, we calculated the redox potential (Em) values in the electron-transfer branches, solving the linear Poisson-Boltzmann equation and considering the protonation states of all titratable sites in the entire protein-pigment complex. Em(A-1) for bacteriochlorophyll g at the secondary site in HbRC (-1157 mV) is as low as Em(A-1) for chlorophyll a in PSI (-1173 mV). Em(A0/HbRC) is at the same level as Em(A0/GsbRC) and is 200 mV higher than Em(A0/PSI) due to the replacement of PsaA-Trp697/PsaB-Trp677 in PSI with PshA-Arg554 in HbRC. In contrast, Em(FX) for the Fe4S4 cluster in HbRC (-420 mV) is significantly higher than Em(FX) in GsbRC (-719 mV) and PSI (-705 mV) due to the absence of acidic residues that correspond to PscA-Asp634 in GsbRC and PsaB-Asp575 in PSI. It seems likely that type I reaction centers have evolved, adopting (bacterio)chlorophylls suitable for their light environments while maintaining electron-transfer cascades.
Collapse
Affiliation(s)
- Tomoki Kanda
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
26
|
Chen JH, Wang W, Wang C, Kuang T, Shen JR, Zhang X. Cryo-electron microscopy structure of the intact photosynthetic light-harvesting antenna-reaction center complex from a green sulfur bacterium. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023; 65:223-234. [PMID: 36125941 DOI: 10.1111/jipb.13367] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/19/2022] [Indexed: 06/15/2023]
Abstract
The photosynthetic reaction center complex (RCC) of green sulfur bacteria (GSB) consists of the membrane-imbedded RC core and the peripheric energy transmitting proteins called Fenna-Matthews-Olson (FMO). Functionally, FMO transfers the absorbed energy from a huge peripheral light-harvesting antenna named chlorosome to the RC core where charge separation occurs. In vivo, one RC was found to bind two FMOs, however, the intact structure of RCC as well as the energy transfer mechanism within RCC remain to be clarified. Here we report a structure of intact RCC which contains a RC core and two FMO trimers from a thermophilic green sulfur bacterium Chlorobaculum tepidum at 2.9 Å resolution by cryo-electron microscopy. The second FMO trimer is attached at the cytoplasmic side asymmetrically relative to the first FMO trimer reported previously. We also observed two new subunits (PscE and PscF) and the N-terminal transmembrane domain of a cytochrome-containing subunit (PscC) in the structure. These two novel subunits possibly function to facilitate the binding of FMOs to RC core and to stabilize the whole complex. A new bacteriochlorophyll (numbered as 816) was identified at the interspace between PscF and PscA-1, causing an asymmetrical energy transfer from the two FMO trimers to RC core. Based on the structure, we propose an energy transfer network within this photosynthetic apparatus.
Collapse
Affiliation(s)
- Jing-Hua Chen
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Weiwei Wang
- College of Life Science, Zhejiang University, Hangzhou, 310058, China
| | - Chen Wang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Tingyun Kuang
- Key Laboratory of Photobiology, Institute of Botany, Photosynthesis Research Center, the Chinese Academy of Sciences, Beijing, 100093, China
| | - Jian-Ren Shen
- Key Laboratory of Photobiology, Institute of Botany, Photosynthesis Research Center, the Chinese Academy of Sciences, Beijing, 100093, China
- Research Institute for Interdisciplinary Science, and Graduate School of Natural Science and Technology, Okayama University, Okayama, 700-8530, Japan
| | - Xing Zhang
- Department of Pathology of Sir Run Run Shaw Hospital, and Department of Biophysics, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, 310058, China
| |
Collapse
|
27
|
Structure of the Acidobacteria homodimeric reaction center bound with cytochrome c. Nat Commun 2022; 13:7745. [PMID: 36517472 PMCID: PMC9751088 DOI: 10.1038/s41467-022-35460-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Photosynthesis converts light energy to chemical energy to fuel life on earth. Light energy is harvested by antenna pigments and transferred to reaction centers (RCs) to drive the electron transfer (ET) reactions. Here, we present cryo-electron microscopy (cryo-EM) structures of two forms of the RC from the microaerophilic Chloracidobacterium thermophilum (CabRC): one containing 10 subunits, including two different cytochromes; and the other possessing two additional subunits, PscB and PscZ. The larger form contained 2 Zn-bacteriochlorophylls, 16 bacteriochlorophylls, 10 chlorophylls, 2 lycopenes, 2 hemes, 3 Fe4S4 clusters, 12 lipids, 2 Ca2+ ions and 6 water molecules, revealing a type I RC with an ET chain involving two hemes and a hybrid antenna containing bacteriochlorophylls and chlorophylls. Our results provide a structural basis for understanding the excitation energy and ET within the CabRC and offer evolutionary insights into the origin and adaptation of photosynthetic RCs.
Collapse
|
28
|
Kanda T, Ishikita H. Energetics of the Electron Transfer Pathways in the Homodimeric Photosynthetic Reaction Center. Biochemistry 2022; 61:2621-2627. [PMID: 36322126 PMCID: PMC9671125 DOI: 10.1021/acs.biochem.2c00524] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/09/2022] [Indexed: 11/06/2022]
Abstract
Photosynthetic reaction centers from a green sulfur bacterium (GsbRC), the PscA/PscA proteins, and photosystem I (PSI), PsaA/PsaB proteins, share structural similarities. Here, we report the redox potential (Em) values of GsbRC by solving the linear Poisson-Boltzmann equation and considering the protonation states of all titratable sites in the entire GsbRC protein and identify the factors that shift the Em values with respect to PSI. The Em values for one-electron reduction of the accessory (A-1) and adjacent (A0) chlorophylls in GsbRC are 100-250 mV higher than those in PSI, whereas the Em values for the Fe4S4 cluster (FX) are at the same level. The PsaA-Trp697/PsaB-Trp677 pair in PSI, which forms the A1-quinone binding site, is replaced with PscA-Arg638 in GsbRC. PsaB-Asp575 in PSI, which is responsible for the Em difference between A1A and A1B quinones in PSI, is absent in GsbRC. These discrepancies also contribute to the upshift in Em(A-1) and Em(A0) in GsbRC with respect to PSI. It seems likely that the upshifted Em for chlorophylls in GsbRC ultimately originates from the characteristics of the electrostatic environment that corresponds to the A1 site of PSI.
Collapse
Affiliation(s)
- Tomoki Kanda
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Hiroshi Ishikita
- Department
of Applied Chemistry, The University of
Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research
Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
29
|
Puskar R, Du Truong C, Swain K, Chowdhury S, Chan KY, Li S, Cheng KW, Wang TY, Poh YP, Mazor Y, Liu H, Chou TF, Nannenga BL, Chiu PL. Molecular asymmetry of a photosynthetic supercomplex from green sulfur bacteria. Nat Commun 2022; 13:5824. [PMID: 36192412 PMCID: PMC9529944 DOI: 10.1038/s41467-022-33505-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 09/20/2022] [Indexed: 11/21/2022] Open
Abstract
The photochemical reaction center (RC) features a dimeric architecture for charge separation across the membrane. In green sulfur bacteria (GSB), the trimeric Fenna-Matthews-Olson (FMO) complex mediates the transfer of light energy from the chlorosome antenna complex to the RC. Here we determine the structure of the photosynthetic supercomplex from the GSB Chlorobaculum tepidum using single-particle cryogenic electron microscopy (cryo-EM) and identify the cytochrome c subunit (PscC), two accessory protein subunits (PscE and PscF), a second FMO trimeric complex, and a linker pigment between FMO and the RC core. The protein subunits that are assembled with the symmetric RC core generate an asymmetric photosynthetic supercomplex. One linker bacteriochlorophyll (BChl) is located in one of the two FMO-PscA interfaces, leading to differential efficiencies of the two energy transfer branches. The two FMO trimeric complexes establish two different binding interfaces with the RC cytoplasmic surface, driven by the associated accessory subunits. This structure of the GSB photosynthetic supercomplex provides mechanistic insight into the light excitation energy transfer routes and a possible evolutionary transition intermediate of the bacterial photosynthetic supercomplex from the primitive homodimeric RC.
Collapse
Affiliation(s)
- Ryan Puskar
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Chloe Du Truong
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- Rampart Bioscience, Monrovia, CA, 91016, USA
| | - Kyle Swain
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Saborni Chowdhury
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Ka-Yi Chan
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Shan Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Kai-Wen Cheng
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Ting Yu Wang
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Yu-Ping Poh
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- Center for Mechanisms of Evolution, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Yuval Mazor
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
| | - Haijun Liu
- Department of Biology, Washington University, St. Louis, MO, 63130, USA
| | - Tsui-Fen Chou
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
- Proteome Exploration Laboratory, Beckman Institute, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Brent L Nannenga
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA
- School for Engineering of Matter, Transport and Energy, Arizona State University, Tempe, AZ, 85287, USA
| | - Po-Lin Chiu
- School of Molecular Sciences, Arizona State University, Tempe, AZ, 85287, USA.
- Center for Applied Structural Discovery, Biodesign Institute, Arizona State University, Tempe, AZ, 85287, USA.
| |
Collapse
|
30
|
Hirose M, Tsukatani Y, Harada J, Tamiaki H. Characterization of regioisomeric diterpenoid tails in bacteriochlorophylls produced by geranylgeranyl reductase from Halorhodospira halochloris and Blastochloris viridis. PHOTOSYNTHESIS RESEARCH 2022; 154:1-12. [PMID: 35852706 DOI: 10.1007/s11120-022-00938-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Geranylgeranyl reductase (GGR) encoded by the bchP gene catalyzes the reductions of three unsaturated C = C double bonds (C6 = C7, C10 = C11, and C14 = C15) in a geranylgeranyl (GG) group of the esterifying moiety in 17-propionate residue of bacteriochlorophyll (BChl) molecules. It was recently reported that GGR in Halorhodospira halochloris potentially catalyzes two hydrogenations, yielding BChl with a tetrahydrogeranylgeranyl (THGG) tail. Furthermore, its engineered GGR, in which N-terminal insertion peptides characteristic for H. halochloris were deleted, performed single hydrogenation, producing BChl with a dihydrogeranylgeranyl (DHGG) tail. In some of these enzymatic reactions, it remained unclear in which order the C = C double bond in a GG group was first reduced. In this study, we demonstrated that the (variant) GGR from H. halochloris catalyzed an initial reduction of the C6 = C7 double bond to yield a 6,7-DHGG tail. The intact GGR of H. halochloris catalyzed the further hydrogenation of the C14 = C15 double bonds to give a 6,7,14,15-THGG group, whereas deleting the characteristic peptide region from the GGR suppressed the C14 = C15 reduction. We also verified that in a model bacterium, Blastochloris viridis producing standard BChl-b, the reduction of a GG to phytyl group occurred via 10,11-DHGG and 6,7,10,11-THGG. The high-performance liquid chromatographic elution profiles of BChls-a/b employed in this study are essential for identifying the regioisomeric diterpenoid tails in the BChls of phototrophic bacteria distributed in nature and elucidating GGR enzymatic reactions.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan
| | - Yusuke Tsukatani
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-Star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, 237-0061, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka, 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga, 525-8577, Japan.
| |
Collapse
|
31
|
Shoji S, Stepanenko V, Würthner F, Tamiaki H. Self-assembly of a zinc bacteriochlorophyll- d analog with a lipophilic tertiary amide group in the 17-substituent. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2022. [DOI: 10.1246/bcsj.20220128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Sunao Shoji
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
- Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Sapporo, Hokkaido 001-0021, Japan
- Division of Applied Chemistry, Faculty of Engineering, Hokkaido University, Sapporo, Hokkaido 060-8628, Japan
| | - Vladimir Stepanenko
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Frank Würthner
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
- Center for Nanosystems Chemistry (CNC) & Bavarian Polymer Institute (BPI), Universität Würzburg, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| |
Collapse
|
32
|
Kimura A, Kitoh-Nishioka H, Aota T, Hamaguchi T, Yonekura K, Kawakami K, Shinzawa-Itoh K, Inoue-Kashino N, Ifuku K, Yamashita E, Kashino Y, Itoh S. Theoretical Model of the Far-Red-Light-Adapted Photosystem I Reaction Center of Cyanobacterium Acaryochloris marina Using Chlorophyll d and the Effect of Chlorophyll Exchange. J Phys Chem B 2022; 126:4009-4021. [PMID: 35617171 DOI: 10.1021/acs.jpcb.2c00869] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A theoretical model of the far-red-light-adapted photosystem I (PSI) reaction center (RC) complex of a cyanobacterium, Acaryochloris marina (AmPSI), was constructed based on the exciton theory and the recently identified molecular structure of AmPSI by Hamaguchi et al. (Nat. Commun., 2021, 12, 2333). A. marina performs photosynthesis under the visible to far-red light (400-750 nm), which is absorbed by chlorophyll d (Chl-d). It is in contrast to the situation of all the other oxygenic photosynthetic processes of cyanobacteria and plants, which contains chlorophyll a (Chl-a) that absorbs only 400-700 nm visible light. AmPSI contains 70 Chl-d, 1 Chl-d', 2 pheophytin a (Pheo-a), and 12 carotenoids in the currently available structure. A special pair of Chl-d/Chl-d' acts as the electron donor (P740) and two Pheo-a act as the primary electron acceptor A0 as the counterparts of P700 and Chl-a, respectively, of Chl-a-type PSIs. The exciton Hamiltonian of AmPSI was constructed considering the excitonic coupling strength and site energy shift of individual pigments using the Poisson-TrESP (P-TrESP) and charge density coupling (CDC) methods. The model was constructed to fit the experimentally measured spectra of absorption and circular dichroism (CD) spectra during downhill/uphill excitation energy transfer processes. The constructed theoretical model of AmPSI was further compared with the Chl-a-type PSI of Thermosynechococcus elongatus (TePSI), which contains only Chl-a and Chl-a'. The functional properties of AmPSI and TePSI were further examined by the in silico exchange of Chl-d by Chl-a in the models.
Collapse
Affiliation(s)
- Akihiro Kimura
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | | | - Toshimichi Aota
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Tasuku Hamaguchi
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 776 Sayo, Hyogo 679-5148, Japan
| | - Koji Yonekura
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 776 Sayo, Hyogo 679-5148, Japan
| | - Keisuke Kawakami
- Biostructural Mechanism Laboratory, RIKEN SPring-8 Center, 776 Sayo, Hyogo 679-5148, Japan
| | - Kyoko Shinzawa-Itoh
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | | | - Kentaro Ifuku
- Graduate School of Agriculture, Kyoto University, Kyoto 606-8502, Japan
| | - Eiki Yamashita
- Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yasuhiro Kashino
- Graduate School of Science, University of Hyogo, Ako-gun, Hyogo 678-1297, Japan
| | - Shigeru Itoh
- Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| |
Collapse
|
33
|
Wang X, Xie GJ, Tian N, Dang CC, Cai C, Ding J, Liu BF, Xing DF, Ren NQ, Wang Q. Anaerobic microbial manganese oxidation and reduction: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 822:153513. [PMID: 35101498 DOI: 10.1016/j.scitotenv.2022.153513] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 01/24/2022] [Accepted: 01/25/2022] [Indexed: 06/14/2023]
Abstract
Manganese is a vital heavy metal abundant in terrestrial and aquatic environments. Anaerobic manganese redox reactions mediated by microorganisms have been recognized for a long time, which promote elements mobility and bioavailability in the environment. Biological anaerobic redox of manganese serves two reactions, including Mn(II) oxidation and Mn(IV) reduction. This review provides a comprehensive analysis of manganese redox cycles in the environment, closely related to greenhouse gas mitigation, the fate of nutrients, microbial bioremediation, and global biogeochemical cycle, including nitrogen, sulfur, and carbon. The oxidation and reduction of manganese occur cyclically and simultaneously in the environment. Anaerobic reduction of Mn(IV) receives electrons from methane, ammonium and sulfide, while Mn(II) can function as an electron source for manganese-oxidizing microorganisms for autotrophic denitrification and photosynthesis. The anaerobic redox transition between Mn(II) and Mn(IV) promotes a dynamic biogeochemical cycle coupled to microorganisms in water, soil and sediment environments. The discussion of reaction mechanisms, microorganism diversity, environmental influence bioremediation and application identify the research gaps for future investigation, which provides promising opportunities for further development of biotechnological applications to remediate contaminated environments.
Collapse
Affiliation(s)
- Xuan Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| | - Ning Tian
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Cheng-Cheng Dang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Chen Cai
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jie Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qilin Wang
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
34
|
Oliver N, Avramov AP, Nürnberg DJ, Dau H, Burnap RL. From manganese oxidation to water oxidation: assembly and evolution of the water-splitting complex in photosystem II. PHOTOSYNTHESIS RESEARCH 2022; 152:107-133. [PMID: 35397059 DOI: 10.1007/s11120-022-00912-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
The manganese cluster of photosystem II has been the focus of intense research aiming to understand the mechanism of H2O-oxidation. Great effort has also been applied to investigating its oxidative photoassembly process, termed photoactivation that involves the light-driven incorporation of metal ions into the active Mn4CaO5 cluster. The knowledge gained on these topics has fundamental scientific significance, but may also provide the blueprints for the development of biomimetic devices capable of splitting water for solar energy applications. Accordingly, synthetic chemical approaches inspired by the native Mn cluster are actively being explored, for which the native catalyst is a useful benchmark. For both the natural and artificial catalysts, the assembly process of incorporating Mn ions into catalytically active Mn oxide complexes is an oxidative process. In both cases this process appears to share certain chemical features, such as producing an optimal fraction of open coordination sites on the metals to facilitate the binding of substrate water, as well as the involvement of alkali metals (e.g., Ca2+) to facilitate assembly and activate water-splitting catalysis. This review discusses the structure and formation of the metal cluster of the PSII H2O-oxidizing complex in the context of what is known about the formation and chemical properties of different Mn oxides. Additionally, the evolutionary origin of the Mn4CaO5 is considered in light of hypotheses that soluble Mn2+ was an ancient source of reductant for some early photosynthetic reaction centers ('photomanganotrophy'), and recent evidence that PSII can form Mn oxides with structural resemblance to the geologically abundant birnessite class of minerals. A new functional role for Ca2+ to facilitate sustained Mn2+ oxidation during photomanganotrophy is proposed, which may explain proposed physiological intermediates during the likely evolutionary transition from anoxygenic to oxygenic photosynthesis.
Collapse
Affiliation(s)
- Nicholas Oliver
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Anton P Avramov
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Dennis J Nürnberg
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Holger Dau
- Physics Department, Freie Universität Berlin, Arnimallee 14, 14195, Berlin, Germany
| | - Robert L Burnap
- Department of Microbiology and Molecular Genetics, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
35
|
Tsukatani Y, Harada J, Kurosawa K, Tanaka K, Tamiaki H. Incomplete Hydrogenation by Geranylgeranyl Reductase from a Proteobacterial Phototroph Halorhodospira halochloris, Resulting in the Production of Bacteriochlorophyll with a Tetrahydrogeranylgeranyl Tail. J Bacteriol 2022; 204:e0060521. [PMID: 35225690 PMCID: PMC8923163 DOI: 10.1128/jb.00605-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 01/19/2022] [Indexed: 12/02/2022] Open
Abstract
Light harvesting and charge separation are functions of chlorophyll and bacteriochlorophyll pigments. While most photosynthetic organisms use (bacterio)chlorophylls with a phytyl (2-phytenyl) group as the hydrophobic isoprenoid tail, Halorhodospira halochloris, an anoxygenic photosynthetic bacterium belonging to Gammaproteobacteria, produces bacteriochlorophylls with a unique 6,7,14,15-tetrahydrogeranylgeranyl (2,10-phytadienyl) tail. Geranylgeranyl reductase (GGR), encoded by the bchP gene, catalyzes hydrogenation at three unsaturated C=C bonds of a geranylgeranyl group, giving rise to the phytyl tail. In this study, we discovered that H. halochloris GGR exhibits only partial hydrogenation activities, resulting in the tetrahydrogeranylgeranyl tail formation. We hypothesized that the hydrogenation activity of H. halochloris GGR differed from that of Chlorobaculum tepidum GGR, which also produces a pigment with partially reduced hydrophobic tails (2,6-phytadienylated chlorophyll a). An engineered GGR was also constructed and demonstrated to perform only single hydrogenation, resulting in the dihydrogeranylgeranyl tail formation. H. halochloris original and variant GGRs shed light on GGR catalytic mechanisms and offer prospective bioengineering tools in the microbial production of isoprenoid compounds. IMPORTANCE Geranylgeranyl reductase (GGR) catalyzes the hydrogenation of carbon-carbon double bonds of unsaturated hydrocarbons of isoprenoid compounds, including α-tocopherols, phylloquinone, archaeal cell membranes, and (bacterio)chlorophyll pigments in various organisms. GGRs in photosynthetic organisms, including anoxygenic phototrophic bacteria, cyanobacteria, and plants perform successive triple hydrogenation to produce chlorophylls and bacteriochlorophylls with a phytyl chain. Here, we demonstrated that the GGR of a gammaproteobacterium Halorhodospira halochloris catalyzed unique double hydrogenation to produce bacteriochlorophylls with a tetrahydrogeranylgeranyl tail. We also constructed a variant enzyme derived from H. halochloris GGR that performs only single hydrogenation. The results of this study provide new insights into catalytic mechanisms of multiposition reductions by a single enzyme.
Collapse
Affiliation(s)
- Yusuke Tsukatani
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan
| | - Jiro Harada
- Department of Medical Biochemistry, Kurume University School of Medicine, Fukuoka, Japan
| | - Kanako Kurosawa
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan
| | - Keiko Tanaka
- Institute for Extra-Cutting-Edge Science and Technology Avant-Garde Research (X-star), Japan Agency for Marine-Earth Science and Technology (JAMSTEC), Kanagawa, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Shiga, Japan
| |
Collapse
|
36
|
Abstract
Light is a ubiquitous energy source and environmental signal that broadly impacts the lifestyle of a large number of photosynthetic/nonphotosynthetic microorganisms living in the euphotic layer. However, the responses of deep-sea microbes to light are largely unknown, even though blue light is proposed to be distributed in the deep ocean. Here, we successfully cultured a novel bacterial species, named Spongiibacter nanhainus CSC3.9, from deep-sea cold seep samples by a blue light induction approach. The growth of strain CSC3.9 was obviously promoted by the illumination of blue light. We next determined BLUF (a typical blue light photoreceptor) was the most essential factor directing light sensing of strain CSC3.9 through a combined proteomic and genetic method. The function of light sensing mediated by BLUF was further confirmed by the in vitro-synthesized protein. Notably, homologs of BLUF widely existed across the marine microorganisms (containing Spongiibacter species) derived from different environments, including cold seeps. This strongly indicates that the distribution of light utilization by the nonphototrophic bacteria living in the ocean is broad and has been substantially underestimated. IMPORTANCE Extensive studies have been conducted to explore the mechanisms of light sensing and utilization by microorganisms that live in the photic zone. Strikingly, accumulated evidence shows that light is distributed in the deep biosphere. However, the existence and process of light sensing and utilization by microbes inhabiting the deep ocean have been seldom reported. In the present study, a novel bacterial strain, Spongiibacter nanhainus CSC3.9, was enriched and purified from a deep-sea cold seep sample through a blue light induction method. Combined with genomic, proteomic, genetic, and biochemical approaches, the mechanism of this novel strain sensing blue light through a BLUF-dependent pathway was detailed. Our study provides a good model to study the mechanisms of light sensing mediated by deep-sea nonphototrophic bacteria.
Collapse
|
37
|
Tanaka M, Tanaka A, Saga Y. Effects of peripheral substituents on epimerization kinetics of formylated chlorophylls. J PORPHYR PHTHALOCYA 2022. [DOI: 10.1142/s1088424622500109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
C132-[Formula: see text]-epimers of chlorophyll (Chl) molecules are important cofactors in the photosystem I reaction centers in oxygenic photosynthetic organisms; however, their production mechanism is still unclear. The reaction properties of Chl epimerization are helpful for a better understanding of the molecular mechanism of the in vivo formation of Chl C132-[Formula: see text]-epimers. We report herein the kinetic properties of the epimerization of formylated Chl molecules, Chl [Formula: see text] and Chl [Formula: see text], by use of triethylamine. Both Chl [Formula: see text] and Chl [Formula: see text] performed faster epimerization kinetics than Chl [Formula: see text], indicating that the electron-withdrawing ability of the formyl groups directly linked to the chlorin macrocycle is responsible for acceleration of the epimerization. Comparing the rate constants of the two mono-formylated Chl molecules indicated that the epimerization of Chl [Formula: see text] was faster than that of Chl [Formula: see text]. This difference is rationalized by invoking a combination of the inductive effects of the C3- and C7-substituents in Chls; the sums of Hammett [Formula: see text] parameters of the C3- and C7-substituents exhibited high correlations with the epimerization rate constants of Chls [Formula: see text], [Formula: see text], and [Formula: see text].
Collapse
Affiliation(s)
- Masayuki Tanaka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Aiko Tanaka
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| | - Yoshitaka Saga
- Department of Chemistry, Faculty of Science and Engineering, Kindai University, Higashi-Osaka, Osaka 577-8502, Japan
| |
Collapse
|
38
|
EPR of Type I photosynthetic reaction centers. Methods Enzymol 2022; 666:413-450. [DOI: 10.1016/bs.mie.2022.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
39
|
Gisriel CJ, Shen G, Ho MY, Kurashov V, Flesher DA, Wang J, Armstrong WH, Golbeck JH, Gunner MR, Vinyard DJ, Debus RJ, Brudvig GW, Bryant DA. Structure of a monomeric photosystem II core complex from a cyanobacterium acclimated to far-red light reveals the functions of chlorophylls d and f. J Biol Chem 2022; 298:101424. [PMID: 34801554 PMCID: PMC8689208 DOI: 10.1016/j.jbc.2021.101424] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 11/12/2021] [Accepted: 11/13/2021] [Indexed: 11/26/2022] Open
Abstract
Far-red light (FRL) photoacclimation in cyanobacteria provides a selective growth advantage for some terrestrial cyanobacteria by expanding the range of photosynthetically active radiation to include far-red/near-infrared light (700-800 nm). During this photoacclimation process, photosystem II (PSII), the water:plastoquinone photooxidoreductase involved in oxygenic photosynthesis, is modified. The resulting FRL-PSII is comprised of FRL-specific core subunits and binds chlorophyll (Chl) d and Chl f molecules in place of several of the Chl a molecules found when cells are grown in visible light. These new Chls effectively lower the energy canonically thought to define the "red limit" for light required to drive photochemical catalysis of water oxidation. Changes to the architecture of FRL-PSII were previously unknown, and the positions of Chl d and Chl f molecules had only been proposed from indirect evidence. Here, we describe the 2.25 Å resolution cryo-EM structure of a monomeric FRL-PSII core complex from Synechococcus sp. PCC 7335 cells that were acclimated to FRL. We identify one Chl d molecule in the ChlD1 position of the electron transfer chain and four Chl f molecules in the core antenna. We also make observations that enhance our understanding of PSII biogenesis, especially on the acceptor side of the complex where a bicarbonate molecule is replaced by a glutamate side chain in the absence of the assembly factor Psb28. In conclusion, these results provide a structural basis for the lower energy limit required to drive water oxidation, which is the gateway for most solar energy utilization on earth.
Collapse
Affiliation(s)
| | - Gaozhong Shen
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Ming-Yang Ho
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Life Science, National Taiwan University, Taipei, Taiwan
| | - Vasily Kurashov
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - David A Flesher
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | | | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania, USA
| | - Marilyn R Gunner
- Department of Physics, City College of New York, New York, New York, USA
| | - David J Vinyard
- Department of Biological Sciences, Louisiana State University, Baton Rouge, Louisiana, USA
| | - Richard J Debus
- Department of Biochemistry, University of California, Riverside, California, USA
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA.
| | - Donald A Bryant
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, Pennsylvania, USA; Intercollege Graduate Program in Plant Biology, The Pennsylvania State University, University Park, Pennsylvania, USA.
| |
Collapse
|
40
|
Panwar P, Allen MA, Williams TJ, Haque S, Brazendale S, Hancock AM, Paez-Espino D, Cavicchioli R. Remarkably coherent population structure for a dominant Antarctic Chlorobium species. MICROBIOME 2021; 9:231. [PMID: 34823595 PMCID: PMC8620254 DOI: 10.1186/s40168-021-01173-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 10/09/2021] [Indexed: 05/22/2023]
Abstract
BACKGROUND In Antarctica, summer sunlight enables phototrophic microorganisms to drive primary production, thereby "feeding" ecosystems to enable their persistence through the long, dark winter months. In Ace Lake, a stratified marine-derived system in the Vestfold Hills of East Antarctica, a Chlorobium species of green sulphur bacteria (GSB) is the dominant phototroph, although its seasonal abundance changes more than 100-fold. Here, we analysed 413 Gb of Antarctic metagenome data including 59 Chlorobium metagenome-assembled genomes (MAGs) from Ace Lake and nearby stratified marine basins to determine how genome variation and population structure across a 7-year period impacted ecosystem function. RESULTS A single species, Candidatus Chlorobium antarcticum (most similar to Chlorobium phaeovibrioides DSM265) prevails in all three aquatic systems and harbours very little genomic variation (≥ 99% average nucleotide identity). A notable feature of variation that did exist related to the genomic capacity to biosynthesize cobalamin. The abundance of phylotypes with this capacity changed seasonally ~ 2-fold, consistent with the population balancing the value of a bolstered photosynthetic capacity in summer against an energetic cost in winter. The very high GSB concentration (> 108 cells ml-1 in Ace Lake) and seasonal cycle of cell lysis likely make Ca. Chlorobium antarcticum a major provider of cobalamin to the food web. Analysis of Ca. Chlorobium antarcticum viruses revealed the species to be infected by generalist (rather than specialist) viruses with a broad host range (e.g., infecting Gammaproteobacteria) that were present in diverse Antarctic lakes. The marked seasonal decrease in Ca. Chlorobium antarcticum abundance may restrict specialist viruses from establishing effective lifecycles, whereas generalist viruses may augment their proliferation using other hosts. CONCLUSION The factors shaping Antarctic microbial communities are gradually being defined. In addition to the cold, the annual variation in sunlight hours dictates which phototrophic species can grow and the extent to which they contribute to ecosystem processes. The Chlorobium population studied was inferred to provide cobalamin, in addition to carbon, nitrogen, hydrogen, and sulphur cycling, as critical ecosystem services. The specific Antarctic environmental factors and major ecosystem benefits afforded by this GSB likely explain why such a coherent population structure has developed in this Chlorobium species. Video abstract.
Collapse
Affiliation(s)
- Pratibha Panwar
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Michelle A Allen
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Timothy J Williams
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
| | - Sabrina Haque
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Present address: Department of Molecular Sciences, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Sarah Brazendale
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- , Present address: Pegarah, Australia
| | - Alyce M Hancock
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia
- Present address: Institute for Marine and Antarctic Studies, University of Tasmania, 20 Castray Esplanade, Battery Point, Tasmania, Australia
| | - David Paez-Espino
- Department of Energy Joint Genome Institute, Berkeley, CA, USA
- Present address: Mammoth Biosciences, Inc., 1000 Marina Blvd. Suite 600, Brisbane, CA, USA
| | - Ricardo Cavicchioli
- School of Biotechnology and Biomolecular Sciences, UNSW Sydney, Sydney, New South Wales, 2052, Australia.
| |
Collapse
|
41
|
Hippler M, Nelson N. The Plasticity of Photosystem I. PLANT & CELL PHYSIOLOGY 2021; 62:1073-1081. [PMID: 33768246 DOI: 10.1093/pcp/pcab046] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Most of life's energy comes from sunlight, and thus, photosynthesis underpins the survival of virtually all life forms. The light-driven electron transfer at photosystem I (PSI) is certainly the most important generator of reducing power at the cellular level and thereby largely determines the global amount of enthalpy in living systems (Nelson 2011). The PSI is a light-driven plastocyanin:ferredoxin oxidoreductase, which is embedded into thylakoid membranes of cyanobacteria and chloroplasts of eukaryotic photosynthetic organism. Structural determination of complexes of the photosynthetic machinery is vital for the understanding of its mode of action. Here, we describe new structural and functional insights into PSI and associated light-harvesting proteins, with a focus on the plasticity of PSI.
Collapse
Affiliation(s)
- Michael Hippler
- Institute of Plant Biology and Biotechnology, University of Münster, Münster 48143, Germany
- Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nathan Nelson
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| |
Collapse
|
42
|
Gorka M, Baldansuren A, Malnati A, Gruszecki E, Golbeck JH, Lakshmi KV. Shedding Light on Primary Donors in Photosynthetic Reaction Centers. Front Microbiol 2021; 12:735666. [PMID: 34659164 PMCID: PMC8517396 DOI: 10.3389/fmicb.2021.735666] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Accepted: 08/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chlorophylls (Chl)s exist in a variety of flavors and are ubiquitous in both the energy and electron transfer processes of photosynthesis. The functions they perform often occur on the ultrafast (fs-ns) time scale and until recently, these have been difficult to measure in real time. Further, the complexity of the binding pockets and the resulting protein-matrix effects that alter the respective electronic properties have rendered theoretical modeling of these states difficult. Recent advances in experimental methodology, computational modeling, and emergence of new reaction center (RC) structures have renewed interest in these processes and allowed researchers to elucidate previously ambiguous functions of Chls and related pheophytins. This is complemented by a wealth of experimental data obtained from decades of prior research. Studying the electronic properties of Chl molecules has advanced our understanding of both the nature of the primary charge separation and subsequent electron transfer processes of RCs. In this review, we examine the structures of primary electron donors in Type I and Type II RCs in relation to the vast body of spectroscopic research that has been performed on them to date. Further, we present density functional theory calculations on each oxidized primary donor to study both their electronic properties and our ability to model experimental spectroscopic data. This allows us to directly compare the electronic properties of hetero- and homodimeric RCs.
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Amanda Malnati
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - Elijah Gruszecki
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| | - John H. Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, United States
- Department of Chemistry, The Pennsylvania State University, University Park, PA, United States
| | - K. V. Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch ’60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY, United States
| |
Collapse
|
43
|
Sandmann G. Diversity and origin of carotenoid biosynthesis: its history of coevolution towards plant photosynthesis. THE NEW PHYTOLOGIST 2021; 232:479-493. [PMID: 34324713 DOI: 10.1111/nph.17655] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
The development of photosynthesis was a highlight in the progression of bacteria. In addition to the photosystems with their structural proteins, the photosynthesis apparatus consists of different cofactors including essential carotenoids. Thus, the evolution of the carotenoid pathways in relation to the functionality of the resulting structures in photosynthesis is the focus of this review. Analysis of carotenoid pathway genes indicates early evolutionary roots in prokaryotes. The pathway complexity leading to a multitude of structures is a result of gene acquisition, including their functional modifications, emergence of novel genes and gene exchange between species. Along with the progression of photosynthesis, carotenoid pathways coevolved with photosynthesis according to their advancing functionality. Cyanobacteria, with their oxygenic photosynthesis, became a landmark for evolutionary events including carotenogenesis. Concurrent with endosymbiosis, the cyanobacterial carotenoid pathways were inherited into algal plastids. In the lineage leading to Chlorophyta and plants, carotenoids evolved to their prominent role in protection and regulation of light energy input as constituents of a highly efficient light-harvesting complex.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Institute of Molecular Biosciences, Goethe-University Frankfurt/M, Max von Laue Str. 9, Frankfurt, D-60438, Germany
| |
Collapse
|
44
|
Cryo-EM structure of the Rhodospirillum rubrum RC-LH1 complex at 2.5 Å. Biochem J 2021; 478:3253-3263. [PMID: 34402504 PMCID: PMC8454704 DOI: 10.1042/bcj20210511] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 08/12/2021] [Accepted: 08/17/2021] [Indexed: 12/03/2022]
Abstract
The reaction centre light-harvesting 1 (RC–LH1) complex is the core functional component of bacterial photosynthesis. We determined the cryo-electron microscopy (cryo-EM) structure of the RC–LH1 complex from Rhodospirillum rubrum at 2.5 Å resolution, which reveals a unique monomeric bacteriochlorophyll with a phospholipid ligand in the gap between the RC and LH1 complexes. The LH1 complex comprises a circular array of 16 αβ-polypeptide subunits that completely surrounds the RC, with a preferential binding site for a quinone, designated QP, on the inner face of the encircling LH1 complex. Quinols, initially generated at the RC QB site, are proposed to transiently occupy the QP site prior to traversing the LH1 barrier and diffusing to the cytochrome bc1 complex. Thus, the QP site, which is analogous to other such sites in recent cryo-EM structures of RC–LH1 complexes, likely reflects a general mechanism for exporting quinols from the RC–LH1 complex.
Collapse
|
45
|
Gisriel CJ, Azai C, Cardona T. Recent advances in the structural diversity of reaction centers. PHOTOSYNTHESIS RESEARCH 2021; 149:329-343. [PMID: 34173168 PMCID: PMC8452559 DOI: 10.1007/s11120-021-00857-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/10/2021] [Indexed: 06/13/2023]
Abstract
Photosynthetic reaction centers (RC) catalyze the conversion of light to chemical energy that supports life on Earth, but they exhibit substantial diversity among different phyla. This is exemplified in a recent structure of the RC from an anoxygenic green sulfur bacterium (GsbRC) which has characteristics that may challenge the canonical view of RC classification. The GsbRC structure is analyzed and compared with other RCs, and the observations reveal important but unstudied research directions that are vital for disentangling RC evolution and diversity. Namely, (1) common themes of electron donation implicate a Ca2+ site whose role is unknown; (2) a previously unidentified lipid molecule with unclear functional significance is involved in the axial ligation of a cofactor in the electron transfer chain; (3) the GsbRC features surprising structural similarities with the distantly-related photosystem II; and (4) a structural basis for energy quenching in the GsbRC can be gleaned that exemplifies the importance of how exposure to oxygen has shaped the evolution of RCs. The analysis highlights these novel avenues of research that are critical for revealing evolutionary relationships that underpin the great diversity observed in extant RCs.
Collapse
Affiliation(s)
| | - Chihiro Azai
- College of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, 525-8577, Japan
| | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK
| |
Collapse
|
46
|
Kanda T, Saito K, Ishikita H. Electron Acceptor-Donor Iron Sites in the Iron-Sulfur Cluster of Photosynthetic Electron-Transfer Pathways. J Phys Chem Lett 2021; 12:7431-7438. [PMID: 34338530 DOI: 10.1021/acs.jpclett.1c01896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In photosystem I, two electron-transfer pathways via quinones (A1A and A1B) are merged at the iron-sulfur Fe4S4 cluster FX into a single pathway toward the other two Fe4S4 clusters FA and FB. Using a quantum mechanical/molecular mechanical approach, we identify the redox-active Fe sites in the clusters. In FA and FB, the Fe site, which does not belong to the CxxCxxCxxxCP motif, serves as an electron acceptor/donor. FX has two independent electron acceptor Fe sites for A- and B-branch electron transfers, depending on the Asp-B575 protonation state, which causes the A1A-to-FX electron transfer to be uphill and the A1B-to-FX electron transfer to be downhill. The two asymmetric electron-transfer pathways from A1 to FX and the separation of the electron acceptor and donor Fe sites are likely associated with the specific role of FX in merging the two electron transfer pathways into the single pathway.
Collapse
Affiliation(s)
- Tomoki Kanda
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
| | - Keisuke Saito
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| | - Hiroshi Ishikita
- Department of Applied Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8654, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
| |
Collapse
|
47
|
Renger T. Semiclassical Modified Redfield and Generalized Förster Theories of Exciton Relaxation/Transfer in Light-Harvesting Complexes: The Quest for the Principle of Detailed Balance. J Phys Chem B 2021; 125:6406-6416. [PMID: 34126008 PMCID: PMC8237266 DOI: 10.1021/acs.jpcb.1c01479] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A conceptual problem
of transfer theories that use a semiclassical
description of the electron-vibrational coupling is the neglect of
the correlation between momenta and coordinates of nuclei. In the
Redfield theory of exciton relaxation, this neglect leads to a violation
of the principle of detailed balance; equal “uphill”
and “downhill” transfer rate constants are obtained.
Here, we investigate how this result depends on nuclear reorganization
effects, neglected in Redfield but taken into account in the modified
Redfield theory. These reorganization effects, resulting from a partial
localization of excited states, are found to promote a preferential
“downhill” relaxation of excitation energy. However,
for realistic spectral densities of light-harvesting antennae in photosynthesis,
the reorganization effects are too small to compensate for the missing
coordinate–momentum uncertainty. For weaker excitonic couplings
as they occur between domains of strongly coupled pigments, we find
the principle of detailed balance to be fulfilled in a semiclassical
variant of the generalized Förster theory. A qualitatively
correct description of the transfer is obtained with this theory at
a significantly lower computational cost as with the quantum generalized
Förster theory. Larger deviations between the two theories
are expected for large energy gaps as they occur in complexes with
chemically different pigments.
Collapse
Affiliation(s)
- Thomas Renger
- Institut für Theoretische Physik, Johannes Kepler Universität Linz, Altenberger Str. 69, 4040 Linz, Austria
| |
Collapse
|
48
|
Gorka M, Charles P, Kalendra V, Baldansuren A, Lakshmi KV, Golbeck JH. A dimeric chlorophyll electron acceptor differentiates type I from type II photosynthetic reaction centers. iScience 2021; 24:102719. [PMID: 34278250 PMCID: PMC8267441 DOI: 10.1016/j.isci.2021.102719] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
This research addresses one of the most compelling issues in the field of photosynthesis, namely, the role of the accessory chlorophyll molecules in primary charge separation. Using a combination of empirical and computational methods, we demonstrate that the primary acceptor of photosystem (PS) I is a dimer of accessory and secondary chlorophyll molecules, Chl2A and Chl3A, with an asymmetric electron charge density distribution. The incorporation of highly coupled donors and acceptors in PS I allows for extensive delocalization that prolongs the lifetime of the charge-separated state, providing for high quantum efficiency. The discovery of this motif has widespread implications ranging from the evolution of naturally occurring reaction centers to the development of a new generation of highly efficient artificial photosynthetic systems. Video abstract
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip Charles
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Vidmantas Kalendra
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
49
|
Oliver T, Sánchez-Baracaldo P, Larkum AW, Rutherford AW, Cardona T. Time-resolved comparative molecular evolution of oxygenic photosynthesis. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2021; 1862:148400. [PMID: 33617856 PMCID: PMC8047818 DOI: 10.1016/j.bbabio.2021.148400] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/01/2021] [Accepted: 02/12/2021] [Indexed: 12/15/2022]
Abstract
Oxygenic photosynthesis starts with the oxidation of water to O2, a light-driven reaction catalysed by photosystem II. Cyanobacteria are the only prokaryotes capable of water oxidation and therefore, it is assumed that the origin of oxygenic photosynthesis is a late innovation relative to the origin of life and bioenergetics. However, when exactly water oxidation originated remains an unanswered question. Here we use phylogenetic analysis to study a gene duplication event that is unique to photosystem II: the duplication that led to the evolution of the core antenna subunits CP43 and CP47. We compare the changes in the rates of evolution of this duplication with those of some of the oldest well-described events in the history of life: namely, the duplication leading to the Alpha and Beta subunits of the catalytic head of ATP synthase, and the divergence of archaeal and bacterial RNA polymerases and ribosomes. We also compare it with more recent events such as the duplication of Cyanobacteria-specific FtsH metalloprotease subunits and the radiation leading to Margulisbacteria, Sericytochromatia, Vampirovibrionia, and other clades containing anoxygenic phototrophs. We demonstrate that the ancestral core duplication of photosystem II exhibits patterns in the rates of protein evolution through geological time that are nearly identical to those of the ATP synthase, RNA polymerase, or the ribosome. Furthermore, we use ancestral sequence reconstruction in combination with comparative structural biology of photosystem subunits, to provide additional evidence supporting the premise that water oxidation had originated before the ancestral core duplications. Our work suggests that photosynthetic water oxidation originated closer to the origin of life and bioenergetics than can be documented based on phylogenetic or phylogenomic species trees alone.
Collapse
Affiliation(s)
- Thomas Oliver
- Department of Life Sciences, Imperial College London, London, UK
| | | | | | | | - Tanai Cardona
- Department of Life Sciences, Imperial College London, London, UK.
| |
Collapse
|
50
|
Hirose M, Harada J, Tamiaki H. Detection of 13 2-carboxy-chlorin produced by the in vitro BciC enzymatic hydrolysis of zinc chlorophyllide. Bioorg Med Chem Lett 2021; 40:127931. [PMID: 33705911 DOI: 10.1016/j.bmcl.2021.127931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 02/25/2021] [Indexed: 10/22/2022]
Abstract
Green photosynthetic bacteria with an efficient light-harvesting system contain special chlorophyll molecules, called bacteriochlorophylls c, d, e, in their main antennae. In the biosynthetic pathway, a BciC enzyme is proposed to catalyze the hydrolysis of the C132-methoxycarbonyl group of chlorophyllide a, but the resulting C132-carboxy group has not been detected yet because it is spontaneously removed due to the instability of the β-keto-carboxylic acid. In this study, the in vitro BciC enzymatic reactions of zinc methyl (131R/S)-hydroxy-mesochlorophyllides a were examined and a carboxylic acid possessing the C132S-OH was first observed as the hydrolyzed product of the C132-COOCH3.
Collapse
Affiliation(s)
- Mitsuaki Hirose
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan
| | - Jiro Harada
- Medical Biochemistry, Kurume University School of Medicine, Kurume, Fukuoka 830-0011, Japan
| | - Hitoshi Tamiaki
- Graduate School of Life Sciences, Ritsumeikan University, Kusatsu, Shiga 525-8577, Japan.
| |
Collapse
|