1
|
Al-Kuraishy HM, Al-Gareeb AI, Al-Maiahy TJ, Alexiou A, Mukerjee N, Batiha GES. Prostaglandins and non-steroidal anti-inflammatory drugs in Covid-19. Biotechnol Genet Eng Rev 2024; 40:3305-3325. [PMID: 36098621 DOI: 10.1080/02648725.2022.2122290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
In response to different viral infections, including SARS-CoV-2 infection, pro-inflammatory, anti-inflammatory cytokines, and bioactive lipids are released from infected and immune cells. One of the most critical bioactive lipids is prostaglandins (PGs) which favor perseverance of inflammation leading to chronic inflammation as PGs act as cytokine amplifiers. PGs trigger the release of pro-inflammatory cytokines, activate Th cells, recruit immune cells, and increase the expression of pro-inflammatory genes. Therefore, PGs may induce acute and chronic inflammations in various inflammatory disorders and viral infections like SARS-CoV-2. PGs are mainly inhibited by non-steroidal anti-inflammatory drugs (NSAIDs) by blocking cyclooxygenase enzymes (COXs), which involve PG synthesis. NSAIDs reduce inflammation by selective or non-selective blocking activity of COX2 or COX1/2, respectively. In the Covid-19 era, there is a tremendous controversy regarding the use of NSAIDs in the management of SARS-CoV-2 infection. As well, the possible role of PGs in the pathogenesis of SARS-CoV-2 infection is not well-defined. Thus, the objective of the present study is to review the potential role of PGs and NSAIDs in Covid-19 in a narrative review regarding the preponderance of assorted views.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Baghdad, Iraq
| | - Thabat J Al-Maiahy
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, AlBeheira
| | - Athanasios Alexiou
- Department Of Gynecology and Obstetrics, College of Medicine, Al-Mustansiriyah University, aghdad, Iraq
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
| | - Nobendu Mukerjee
- AFNP Med, Wien, Austria
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, India
| | - Gaber El-Saber Batiha
- Department of Health Sciences, Novel Global Community Educational Foundation, Heber-sham, Australia
| |
Collapse
|
2
|
Rahman MS, Hossain MS. Eicosanoids Signals in SARS-CoV-2 Infection: A Foe or Friend. Mol Biotechnol 2024; 66:3025-3041. [PMID: 37878227 DOI: 10.1007/s12033-023-00919-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Accepted: 09/25/2023] [Indexed: 10/26/2023]
Abstract
SARS-CoV-2 mediated infection instigated a scary pandemic state since 2019. They created havoc comprising death, imbalanced social structures, and a wrecked global economy. During infection, the inflammation and associated cytokine storm generate a critical pathological situation in the human body, especially in the lungs. By the passage of time of infection, inflammatory disorders, and multiple organ damage happen which might lead to death, if not treated properly. Until now, many pathological parameters have been used to understand the progress of the severity of COVID-19 but with limited success. Bioactive lipid mediators have the potential of initiating and resolving inflammation in any disease. The connection between lipid storm and inflammatory states of SARS-CoV-2 infection has surfaced and got importance to understand and mitigate the pathological states of COVID-19. As the role of eicosanoids in COVID-19 infection is not well defined, available information regarding this issue has been accumulated to address the possible network of eicosanoids related to the initiation of inflammation, promotion of cytokine storm, and resolution of inflammation, and highlight possible strategies for treatment and drug discovery related to SARS-CoV-2 infection in this study. Understanding the involvement of eicosanoids in exploration of cellular events provoked by SARS-CoV-2 infection has been summarized as an important factor to deescalate any upcoming catastrophe imposed by the lethal variants of this micro-monster. Additionally, this study also recognized the eicosanoid based drug discovery, treatment, and strategies for managing the severity of SARS-COV-2 infection.
Collapse
Affiliation(s)
- Mohammad Sharifur Rahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, University of Dhaka, Dhaka, 1000, Bangladesh.
| | - Mohammad Salim Hossain
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh.
| |
Collapse
|
3
|
Hussain S, Iqbal A, Hamid S, Putra PP, Ashraf M. Identifying alkaline phosphatase inhibitory potential of cyclooxygenase-2 inhibitors: Insights from molecular docking, MD simulations, molecular expression analysis in MCF-7 breast cancer cell line and in vitro investigations. Int J Biol Macromol 2024; 277:132721. [PMID: 38815949 DOI: 10.1016/j.ijbiomac.2024.132721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/10/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
Alkaline phosphatases (APs, EC 3.1.3.1) belong to a superfamily of biological macromolecules that dephosphorylate many phosphometabolites and phosphoproteins and their overexpression is intricated in the spread of cancer to liver and bones, neuronal disorders including Alzheimer's disease (AD), inflammation and others. It was hypothesized that cyclooxygenase-2 (COX-2) selective inhibitors may possess anti-APs potential and may be involved in anticancer proceedings. Three COX-2 inhibitors including nimesulide, piroxicam and lornoxicam were evaluated for the inhibition of APs using in silico and in vitro methods. Molecular docking studies against tissue nonspecific alkaline phosphatase (TNAP) offered the best binding affinities for nimesulide (-11.14 kcal/mol) supported with conventional hydrogen bonding and hydrophobic interactions. MD simulations against TNAP for 200 ns and principal component analysis (PCA) reiterated the stability of ligand-receptor complexes. Molecular expression analysis of TNAP enzyme in the breast cancer cell line MCF-7 exhibited 0.24-fold downregulation with 5 μM nimesulide as compared with 0.26-fold standard 10 μM levamisole. In vitro assays against human placental AP (hPAP) displayed potent inhibitions of these drugs with IC50 values of 0.52 ± 0.02 μM to 3.46 ± 0.13 μM and similar results were obtained for bovine intestinal AP (bIAP). The data when generalized collectively emphasizes that the inhibition of APs by COX-2 inhibitors provides another target to work on the development of anticancer drugs.
Collapse
Affiliation(s)
- Safdar Hussain
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Ambar Iqbal
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan; Department of Biochemistry, Institute of Biochemistry, Biotechnology, Bioinformatics (IBBB), The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan.
| | - Sujhla Hamid
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan
| | - Purnawan Pontana Putra
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Andalas, Padang 256163, Indonesia.
| | - Muhammad Ashraf
- Institute of Chemistry, The Islamia University of Bahawalpur, 63100 Bahawalpur, Pakistan.
| |
Collapse
|
4
|
Hemmati AA, Mojiri-Forushani H. Off-label Use of Medicines in COVID-19: A Lesson For Future. CORONAVIRUSES 2024; 5. [DOI: 10.2174/0126667975271719231107052426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 01/03/2025]
Abstract
Abstract:
The COVID-19 infection is rapidly spreading worldwide. Treating this new viral infection
is a great challenge worldwide. There is no specific and approved medication for its treatment,
so some medications are considered off-label. Antivirals, corticosteroids, antimalarial agents, and
antibiotics are proposed in different countries to treat COVID-19. This narrative review discussed the
off-label use of medications for COVID-19 and the beneficial and adverse effects of them. Evidence
was collected and sorted from the literature ranging from 2019 to 2022 on scientific databases such
as Web of Science, PubMed, and Scopus with suitable keywords. All papers, namely systematic
reviews, case studies, and clinical guidelines, were evaluated. Antimalarial agents, antivirals, antibiotics,
corticosteroids, NSAIDs, biological medicines, Ivermectin, and melatonin were reviewed in
this study. Some medications have direct antiviral effects, and many can reduce infection symptoms
and hospitalization. In some clinical trial trials, even some of them, such as corticosteroids, can lower
death rates, particularly during the cytokine storm period. However, the effectiveness of some
medications has not been understood. Besides, the side effects of off-label use of these medications
must be considered a serious concern. There are no proven medications for COVID-19 yet. Off-label
use of medications is a double-edged sword that can have advantages outweighing its disadvantages.
The COVID-19 crisis taught us many lessons about dealing with health-related crises and their
treatment management. One of the most important lessons is paying more attention to the discovery
and development of novel drugs and vaccines based on modern technology.
Collapse
Affiliation(s)
- Ali Asghar Hemmati
- Department of Pharmacology, Marine Pharmaceutical Science Research Center, School of Pharmacy, Ahvaz
Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hoda Mojiri-Forushani
- Department of Pharmacology, School of Medicine, Abadan
University of Medical Sciences, Abadan, Iran
| |
Collapse
|
5
|
Shao XT, Wang YS, Gong ZF, Li YY, Tan DQ, Lin JG, Pei W, Wang DG. Surveillance of COVID-19 and influenza A(H1N1) prevalence in China via medicine-based wastewater biomarkers. WATER RESEARCH 2023; 247:120783. [PMID: 37924682 DOI: 10.1016/j.watres.2023.120783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 10/20/2023] [Accepted: 10/23/2023] [Indexed: 11/06/2023]
Abstract
The simultaneous monitoring of individual or multiple diseases can be achieved by selecting therapeutic medicines used to treat the primary symptoms of the condition as biomarkers in wastewater. This study proposes a novel approach to monitor the prevalence of COVID-19 and influenza A (H1N1) by selecting nine medicines to serve as biomarkers, including three antipyretics, three antivirals, and three cough suppressants. To verify our approach, wastewater samples were collected from seventeen urban and five rural wastewater treatment plants (WWTPs) in a Chinese city over a period of one year. The use of antipyretics increased notably during the COVID-19 pandemic, while the consumption of antivirals for influenza A (H1N1) rose in the post-COVID-19 pandemic period, indicating a minor spike in the occurrence of influenza A (H1N1) after the COVID-19 pandemic. Fever is a significant symptom of COVID-19 and can serve as a reliable indicator of disease prevalence. Our research found that the prevalence of COVID-19 in urban areas was significantly higher (at 78.5 %, 95 % CI: 73.4 % - 83.9 %) than in rural areas (with a prevalence of 48.1 %, 95 % CI: 42.4 % - 53.8 %). The prevalence of COVID-19 in urban areas in this study was consistent with the data reported by the Chinese center for Disease Control and Prevention (82.4 %). Continuous monitoring of WWTPs in urban areas with fluctuating populations and complex demographics can provide early disease warning. Our results demonstrate the feasibility of evaluating community disease prevalence by selecting major therapeutic medicines as biomarkers in wastewater.
Collapse
Affiliation(s)
- Xue-Ting Shao
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Yan-Song Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Zhen-Fang Gong
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Yan-Ying Li
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Dong-Qin Tan
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Jian-Guo Lin
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - Wei Pei
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026
| | - De-Gao Wang
- College of Environmental Science and Engineering, Dalian Maritime University, No. 1 Linghai Road, Dalian, China, 116026.
| |
Collapse
|
6
|
Meng H, Sengupta A, Ricciotti E, Mrčela A, Mathew D, Mazaleuskaya LL, Ghosh S, Brooks TG, Turner AP, Schanoski AS, Lahens NF, Tan AW, Woolfork A, Grant G, Susztak K, Letizia AG, Sealfon SC, Wherry EJ, Laudanski K, Weljie AM, Meyer NJ, FitzGerald GA. Deep phenotyping of the lipidomic response in COVID-19 and non-COVID-19 sepsis. Clin Transl Med 2023; 13:e1440. [PMID: 37948331 PMCID: PMC10637636 DOI: 10.1002/ctm2.1440] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 10/01/2023] [Indexed: 11/12/2023] Open
Abstract
BACKGROUND Lipids may influence cellular penetrance by viral pathogens and the immune response that they evoke. We deeply phenotyped the lipidomic response to SARs-CoV-2 and compared that with infection with other pathogens in patients admitted with acute respiratory distress syndrome to an intensive care unit (ICU). METHODS Mass spectrometry was used to characterise lipids and relate them to proteins, peripheral cell immunotypes and disease severity. RESULTS Circulating phospholipases (sPLA2, cPLA2 (PLA2G4A) and PLA2G2D) were elevated on admission in all ICU groups. Cyclooxygenase, lipoxygenase and epoxygenase products of arachidonic acid (AA) were elevated in all ICU groups compared with controls. sPLA2 predicted severity in COVID-19 and correlated with TxA2, LTE4 and the isoprostane, iPF2α-III, while PLA2G2D correlated with LTE4. The elevation in PGD2, like PGI2 and 12-HETE, exhibited relative specificity for COVID-19 and correlated with sPLA2 and the interleukin-13 receptor to drive lymphopenia, a marker of disease severity. Pro-inflammatory eicosanoids remained correlated with severity in COVID-19 28 days after admission. Amongst non-COVID ICU patients, elevations in 5- and 15-HETE and 9- and 13-HODE reflected viral rather than bacterial disease. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflected disease severity in COVID-19. In healthy marines, these lipids rose with seroconversion. Eicosanoids linked variably to the peripheral cellular immune response. PGE2, TxA2 and LTE4 correlated with T cell activation, as did PGD2 with non-B non-T cell activation. In COVID-19, LPS stimulated peripheral blood mononuclear cell PGF2α correlated with memory T cells, dendritic and NK cells while LA and DiHOMEs correlated with exhausted T cells. Three high abundance lipids - ChoE 18:3, LPC-O-16:0 and PC-O-30:0 - were altered specifically in COVID. LPC-O-16:0 was strongly correlated with T helper follicular cell activation and all three negatively correlated with multi-omic inflammatory pathways and disease severity. CONCLUSIONS A broad based lipidomic storm is a predictor of poor prognosis in ARDS. Alterations in sPLA2, PGD2 and 12-HETE and the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients and correlate with the inflammatory response to link to disease severity.
Collapse
Affiliation(s)
- Hu Meng
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Arjun Sengupta
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Emanuela Ricciotti
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Antonijo Mrčela
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Divij Mathew
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Immunology and Immune HealthPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Liudmila L. Mazaleuskaya
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Soumita Ghosh
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Thomas G. Brooks
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Alexandra P. Turner
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Nicholas F. Lahens
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ai Wen Tan
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Ashley Woolfork
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Greg Grant
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of GeneticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Katalin Susztak
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Andrew G. Letizia
- Naval Medical Research CenterSilver SpringMarylandUSA
- Naval Medical Research Unit TWOSingaporeSingapore
| | - Stuart C. Sealfon
- Department of NeurologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - E. John Wherry
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Institute for Immunology and Immune HealthPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Krzysztof Laudanski
- Department of Anesthesiology and Critical CarePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Aalim M. Weljie
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Nuala J. Meyer
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Garret A. FitzGerald
- Institute for Translational Medicine and TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of Systems Pharmacology and Translational TherapeuticsPerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
- Department of MedicinePerelman School of MedicineUniversity of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| |
Collapse
|
7
|
Skarke C, Lordan R, Barekat K, Naik A, Mathew D, Ohtani T, Greenplate AR, Grant GR, Lahens NF, Gouma S, Troisi E, Sengupta A, Weljie AM, Meng W, Luning Prak ET, Lundgreen K, Bates P, Meng H, FitzGerald GA. Modulation of the Immune Response to Severe Acute Respiratory Syndrome Coronavirus 2 Vaccination by Nonsteroidal Anti-Inflammatory Drugs. J Pharmacol Exp Ther 2023; 386:198-204. [PMID: 37105582 PMCID: PMC10353078 DOI: 10.1124/jpet.122.001415] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 01/13/2023] [Accepted: 02/09/2023] [Indexed: 04/29/2023] Open
Abstract
Evidence is scarce to guide the use of nonsteroidal anti-inflammatory drugs (NSAIDs) to mitigate severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccine-related adverse effects, given the possibility of blunting the desired immune response. In this pilot study, we deeply phenotyped a small number of volunteers who did or did not take NSAIDs concomitant with SARS-CoV-2 immunizations to seek initial information on the immune response. A SARS-CoV-2 vaccine-specific receptor binding domain (RBD) IgG antibody response and efficacy in the evoked neutralization titers were evident irrespective of concomitant NSAID consumption. Given the sample size, only a large and consistent signal of immunomodulation would have been detectable, and this was not apparent. However, the information gathered may inform the design of a definitive clinical trial. Here we report a series of divergent omics signals that invites additional hypotheses testing. SIGNIFICANCE STATEMENT: The impact of nonsteroidal anti-inflammatory drugs (NSAIDs) on the immune response elicited by repeat severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) immunizations was profiled by immunophenotypic, proteomic, and metabolomic approaches in a clinical pilot study of small sample size. A SARS-CoV-2 vaccine-specific immune response was evident irrespective of concomitant NSAID consumption. The information gathered may inform the design of a definitive clinical trial.
Collapse
Affiliation(s)
- Carsten Skarke
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Ronan Lordan
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kayla Barekat
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Amruta Naik
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Divij Mathew
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Takuya Ohtani
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Allison R Greenplate
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Gregory R Grant
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Nicholas F Lahens
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Sigrid Gouma
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Elizabeth Troisi
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Arjun Sengupta
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Aalim M Weljie
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Wenzhao Meng
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Eline T Luning Prak
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Kendall Lundgreen
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Paul Bates
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Hu Meng
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| | - Garret A FitzGerald
- Institute for Translational Medicine and Therapeutics (C.S., R.L., K.B., A.N., G.R.G., N.F.L., A.S., A.M.W., H.M., G.A.F.), Department of Medicine (C.S., G.A.F.), Institute for Immunology (D.M., T.O., A.R.G.), Immune Health (A.R.G.), Department of Microbiology (S.G., E.T., A.S., K.L., P.B.), Department of Systems Pharmacology and Translational Therapeutics (A.M.W.), and Department of Pathology and Laboratory Medicine (W.M., E.T.L.P.), University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania
| |
Collapse
|
8
|
Maity S, Santra A, Vardhan Hebbani A, Pulakuntla S, Chatterjee A, Rao Badri K, Damodara Reddy V. Targeting cytokine storm as the potential anti-viral therapy: Implications in regulating SARS-CoV-2 pathogenicity. Gene 2023:147612. [PMID: 37423400 DOI: 10.1016/j.gene.2023.147612] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/18/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
The latest global pandemic corona virus disease - 2019 (COVID-19) caused by the virus SARS-CoV-2 is still a matter of worrying concern both for the scientific communities and health care organizations. COVID-19 disease is proved to be a highly contagious disease transmitted through respiratory droplets and even close contact with affected individuals. COVID-19 disease is also understood to exhibit diverse symptoms of ranging severities i.e., from mild fatigue to death. Affected individuals' susceptibility to induce immunologic dysregulation phenomena termed 'cytokine storm' seems to be playing the damaging role of escalating the disease manifestation from mild to severe. Cytokine storm in patients with severe symptoms is understood to be characterized by enhanced serum levels of many cytokines including interleukin-1β, interleukin-6, IL-10, TNF, interferon-γ, MIP-1α, MIP-1β and VEGF. Since cytokine production in general is the most important antiviral defense response, understanding the COVID-19 associated cytokine storm in particular and differentiating it from the regular cytokine production response becomes crucial in developing an effective therapeutic strategy.This review focuses on the potential targeting of COVID-19 associated cytokine storm and its challenges.
Collapse
Affiliation(s)
- Subashish Maity
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India
| | - Ayantika Santra
- Department of Biochemistry, Indian Academy Degree College, Bengaluru, 560 043, India
| | | | - Swetha Pulakuntla
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India
| | - Ankita Chatterjee
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India
| | - Kameswara Rao Badri
- Department of Pharmacology and Toxicology, Cardiovascular Research Institute, Morehouse School of Medicine, GA, Atlanta-30310, USA; Clinical Analytical Chemistry Laboratory, COVID-19 Testing Laboratory, Morehouse School of Medicine, GA, Atlanta-30310, USA.
| | - Vaddi Damodara Reddy
- Department of Biotechnology, REVA University, Bengaluru-560064, Karnataka, India.
| |
Collapse
|
9
|
Imam MT, Almalki ZS, Alzahrani AR, Al-Ghamdi SS, Falemban AH, Alanazi IM, Shahzad N, Muhammad Alrooqi M, Jabeen Q, Shahid I. COVID-19 and severity of liver diseases: Possible crosstalk and clinical implications. Int Immunopharmacol 2023; 121:110439. [PMID: 37315370 PMCID: PMC10247890 DOI: 10.1016/j.intimp.2023.110439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
COVID-19-infected individuals and those who recovered from the infection have been demonstrated to have elevated liver enzymes or abnormal liver biochemistries, particularly with preexisting liver diseases, liver metabolic disorders, viral hepatitis, and other hepatic comorbidities. However, possible crosstalk and intricate interplay between COVID-19 and liver disease severity are still elusive, and the available data are murky and confined. Similarly, the syndemic of other blood-borne infectious diseases, chemical-induced liver injuries, and chronic hepatic diseases continued to take lives while showing signs of worsening due to the COVID-19 crisis. Moreover, the pandemic is not over yet and is transitioning to becoming an epidemic in recent years; hence, monitoring liver function tests (LFTs) and assessing hepatic consequences of COVID-19 in patients with or without liver illnesses would be of paramount interest. This pragmatic review explores the correlations between COVID-19 and liver disease severity based on abnormal liver biochemistries and other possible mechanisms in individuals of all ages from the emergence of the COVID-19 pandemic to the post-pandemic period. The review also alludes to clinical perspectives of such interactions to curb overlapping hepatic diseases in people who recovered from the infection or living with long COVID-19.
Collapse
Affiliation(s)
- Mohammad T Imam
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Ziyad S Almalki
- Department of Clinical Pharmacy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al Kharj 11942, Saudi Arabia
| | - Abdullah R Alzahrani
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | - Saeed S Al-Ghamdi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | - Alaa H Falemban
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | - Ibrahim M Alanazi
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | - Naiyer Shahzad
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia
| | | | - Qaisar Jabeen
- Department of Pharmacology, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Imran Shahid
- Department of Pharmacology and Toxicology, Faculty of Medicine, Umm Al-Qura University, Al-Abidiyah, Makkah 21955, Saudi Arabia.
| |
Collapse
|
10
|
Chen P, Wu M, He Y, Jiang B, He ML. Metabolic alterations upon SARS-CoV-2 infection and potential therapeutic targets against coronavirus infection. Signal Transduct Target Ther 2023; 8:237. [PMID: 37286535 DOI: 10.1038/s41392-023-01510-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 04/18/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) caused by coronavirus SARS-CoV-2 infection has become a global pandemic due to the high viral transmissibility and pathogenesis, bringing enormous burden to our society. Most patients infected by SARS-CoV-2 are asymptomatic or have mild symptoms. Although only a small proportion of patients progressed to severe COVID-19 with symptoms including acute respiratory distress syndrome (ARDS), disseminated coagulopathy, and cardiovascular disorders, severe COVID-19 is accompanied by high mortality rates with near 7 million deaths. Nowadays, effective therapeutic patterns for severe COVID-19 are still lacking. It has been extensively reported that host metabolism plays essential roles in various physiological processes during virus infection. Many viruses manipulate host metabolism to avoid immunity, facilitate their own replication, or to initiate pathological response. Targeting the interaction between SARS-CoV-2 and host metabolism holds promise for developing therapeutic strategies. In this review, we summarize and discuss recent studies dedicated to uncovering the role of host metabolism during the life cycle of SARS-CoV-2 in aspects of entry, replication, assembly, and pathogenesis with an emphasis on glucose metabolism and lipid metabolism. Microbiota and long COVID-19 are also discussed. Ultimately, we recapitulate metabolism-modulating drugs repurposed for COVID-19 including statins, ASM inhibitors, NSAIDs, Montelukast, omega-3 fatty acids, 2-DG, and metformin.
Collapse
Affiliation(s)
- Peiran Chen
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Mandi Wu
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China
| | - Yaqing He
- Shenzhen Center for Disease Control and Prevention, Shenzhen, 518055, Guangdong, China
| | - Binghua Jiang
- Cell Signaling and Proteomic Center, Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, China
| | - Ming-Liang He
- Department of Biomedical Sciences, City University of Hong Kong, HKSAR, Hong Kong, China.
| |
Collapse
|
11
|
Meng H, Sengupta A, Ricciotti E, Mrčela A, Mathew D, Mazaleuskaya LL, Ghosh S, Brooks TG, Turner AP, Schanoski AS, Lahens NF, Tan AW, Woolfork A, Grant G, Susztak K, Letizia AG, Sealfon SC, Wherry EJ, Laudanski K, Weljie AM, Meyer NB, FitzGerald GA. Deep Phenotyping of the Lipidomic Response in COVID and non-COVID Sepsis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.02.543298. [PMID: 37398323 PMCID: PMC10312560 DOI: 10.1101/2023.06.02.543298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Lipids may influence cellular penetrance by pathogens and the immune response that they evoke. Here we find a broad based lipidomic storm driven predominantly by secretory (s) phospholipase A 2 (sPLA 2 ) dependent eicosanoid production occurs in patients with sepsis of viral and bacterial origin and relates to disease severity in COVID-19. Elevations in the cyclooxygenase (COX) products of arachidonic acid (AA), PGD 2 and PGI 2 , and the AA lipoxygenase (LOX) product, 12-HETE, and a reduction in the high abundance lipids, ChoE 18:3, LPC-O-16:0 and PC-O-30:0 exhibit relative specificity for COVID-19 amongst such patients, correlate with the inflammatory response and link to disease severity. Linoleic acid (LA) binds directly to SARS-CoV-2 and both LA and its di-HOME products reflect disease severity in COVID-19. AA and LA metabolites and LPC-O-16:0 linked variably to the immune response. These studies yield prognostic biomarkers and therapeutic targets for patients with sepsis, including COVID-19. An interactive purpose built interactive network analysis tool was developed, allowing the community to interrogate connections across these multiomic data and generate novel hypotheses.
Collapse
|
12
|
Vijakumaran U, Goh NY, Razali RA, Abdullah NAH, Yazid MD, Sulaiman N. Role of Olive Bioactive Compounds in Respiratory Diseases. Antioxidants (Basel) 2023; 12:1140. [PMID: 37371870 DOI: 10.3390/antiox12061140] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/16/2023] [Accepted: 05/19/2023] [Indexed: 06/29/2023] Open
Abstract
Respiratory diseases recently became the leading cause of death worldwide, due to the emergence of COVID-19. The pathogenesis of respiratory diseases is centred around inflammation and oxidative stress. Plant-based alongside synthetic drugs were considered as therapeutics due to their proven nutraceutical value. One such example is the olive, which is a traditional symbol of the MedDiet. Olive bioactive compounds are enriched with antioxidant, anti-inflammatory, anticancer and antiviral properties. However, there are few studies relating to the beneficial effect of olive bioactive compounds on respiratory diseases. A vague understanding of its molecular action, dosage and bioavailability limits its usefulness for clinical trials about respiratory infections. Hence, our review aims to explore olive bioactive compound's antioxidant, anti-inflammatory and antiviral properties in respiratory disease defence and treatment. Molecular insight into olive compounds' potential for respiratory system protection against inflammation and ensuing infection is also presented. Olive bioactive compounds mainly protect the respiratory system by subsiding proinflammatory cytokines and oxidative stress.
Collapse
Affiliation(s)
- Ubashini Vijakumaran
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Neng-Yao Goh
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Rabiatul Adawiyah Razali
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nur Atiqah Haizum Abdullah
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Muhammad Dain Yazid
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| | - Nadiah Sulaiman
- Centre for Tissue Engineering & Regenerative Medicine, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latif, Cheras, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
13
|
Chamkouri N, Absalan F, Koolivand Z, Yousefi M. Nonsteroidal Anti-Inflammatory Drugs in Viral Infections Disease, Specially COVID-19. Adv Biomed Res 2023; 12:20. [PMID: 36926440 PMCID: PMC10012024 DOI: 10.4103/abr.abr_148_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 11/14/2021] [Accepted: 11/15/2021] [Indexed: 02/05/2023] Open
Abstract
During the current SARS-CoV-2 (COVID-19) pandemic, some reports were presented based on those nonsteroidal anti-inflammatory drugs (NSAIDs) and corticosteroids may exacerbate symptoms in COVID-19 patients. According to this, we aimed to collate information available in published articles to identify any evidence behind these statements with the aim of helping clinicians on how best to treat patients. We could not find published conclusive evidence for or against the use of NSAIDs in COVID-19 patients. Meanwhile, there appeared to be some evidence that corticosteroids may be beneficial if utilized in the early acute phase of infection, however, conflicting WHO (World Health Organization) evidence surrounding corticosteroid use in certain viral infections means this evidence is not conclusive. Given the current availability of literature, caution should be exercised until further evidence emerges surrounding the use of NSAIDs and corticosteroids in COVID-19 patients. However, the availability of reliable information for clinicians and patients is paramount.
Collapse
Affiliation(s)
- Narges Chamkouri
- Medical Faculty, Abadan University of Medical Sciences, Abadan, Iran
| | - Forouzan Absalan
- Medical Faculty, Abadan University of Medical Sciences, Abadan, Iran
| | - Zahra Koolivand
- Medical Faculty, Abadan University of Medical Sciences, Abadan, Iran
| | - Mahsa Yousefi
- Medical Faculty, Abadan University of Medical Sciences, Abadan, Iran
| |
Collapse
|
14
|
Parchwani D, Sonagra AD, Dholariya S, Motiani A, Singh R. COVID-19-related liver injury: Focus on genetic and drug-induced perspectives. World J Virol 2023; 12:53-67. [PMID: 36743658 PMCID: PMC9896591 DOI: 10.5501/wjv.v12.i1.53] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/15/2022] [Accepted: 12/01/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Empirical use of potentially hepatotoxic drugs in the management of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is considered as one of the major etiopathogenetic factors for liver injury. Recent evidence has shown that an underlying genetic factor may also occur. Hence, it is important to understand the host genetics and iatrogenic-based mechanisms for liver dysfunction to make timely remedial measures. AIM To investigate drug-induced and genetic perspectives for the development of coronavirus disease 2019 (COVID-19)-related liver injury. METHODS Reference Citation Analysis, PubMed, Google Scholar and China National Knowledge Infrastructure were searched by employing the relevant MeSH keywords and pertaining data of the duration, site and type of study, sample size with any subgroups and drug-induced liver injury outcome. Genetic aspects were extracted from the most current pertinent publications. RESULTS In all studies, the hepatic specific aminotransferase and other biochemical indices were more than their prescribed upper normal limit in COVID-19 patients and were found to be significantly related with the gravity of disease, hospital stay, number of COVID-19 treatment drugs and worse clinical outcomes. In addition, membrane bound O-acyltransferase domain containing 7 rs641738, rs11385942 G>GA at chromosome 3 gene cluster and rs657152 C>A at ABO blood locus was significantly associated with severity of livery injury in admitted SARS-CoV-2 patients. CONCLUSION Hepatic dysfunction in SARS-CoV-2 infection could be the result of individual drugs or due to drug-drug interactions and may be in a subset of patients with a genetic propensity. Thus, serial estimation of hepatic indices in hospitalized SARS-CoV-2 patients should be done to make timely corrective actions for iatrogenic causes to avoid clinical deterioration. Additional molecular and translational research is warranted in this regard.
Collapse
Affiliation(s)
- Deepak Parchwani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Amit D Sonagra
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Sagar Dholariya
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Anita Motiani
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| | - Ragini Singh
- Department of Biochemistry, All India Institute of Medical Sciences, Rajkot 360001, India
| |
Collapse
|
15
|
He J, Li X, Wang H, Xu Z. A study on the relationship between mindfulness and work performance of web editors: Based on the chain mediating effect of workplace spirituality and digital competencies. Front Psychol 2023; 13:1068735. [PMID: 36814888 PMCID: PMC9940765 DOI: 10.3389/fpsyg.2022.1068735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 11/17/2022] [Indexed: 01/19/2023] Open
Abstract
Introduction Based on the job demands-resources model, this study aims to explore the relationship between mindfulness in web editors, work performance, workplace spirituality, and digital competencies. Methods Online data from the Tencent Questionnaire Platform was used to examine the proposed research model. We distributed questionnaires to new media companies, and a total of 431 valid questionnaires were collected. Results and Discussion The results suggested that mindfulness in web editors can improve workplace spirituality, digital competencies, and work performance. In addition, workplace spirituality was found to act as a mediator between mindfulness and work performance. And, digital competencies did not play a mediating role between mindfulness and work performance, but workplace spirituality and digital competencies played a chain mediating role between mindfulness and work performance. The study explained the internal impact mechanism of mindfulness on work performance in web editors, and proposed methods to improve mindfulness, revealing the chain mediating role of workplace spirituality and digital competencies in the impact of mindfulness on work performance, which might provide new insights into existing research. It can provide a reference for new media companies to manage the team of web editors and improve the work performance of web editors.
Collapse
Affiliation(s)
- Jiazi He
- The Editorial Department of Periodicals, Guangdong University of Petrochemical Technology, Maoming, China
| | - Xinwei Li
- Faculty of International Tourism and Management, City University of Macau, Macao, Macao SAR, China,*Correspondence: Xinwei Li,
| | - Huiyi Wang
- The School of Transmedia, Guangzhou Academy of Fine Arts, Guangzhou, China,Faculty of Humanities and Social Sciences, City University of Macau, Macao, Macao SAR, China,Huiyi Wang,
| | - Zhiwu Xu
- School of Information Technology in Education, South China Normal University, Guangzhou, China
| |
Collapse
|
16
|
Perico N, Cortinovis M, Suter F, Remuzzi G. Home as the new frontier for the treatment of COVID-19: the case for anti-inflammatory agents. THE LANCET. INFECTIOUS DISEASES 2023; 23:e22-e33. [PMID: 36030796 PMCID: PMC9411261 DOI: 10.1016/s1473-3099(22)00433-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/20/2022] [Accepted: 06/20/2022] [Indexed: 02/09/2023]
Abstract
COVID-19, caused by SARS-CoV-2, is characterised by a broad spectrum of symptom severity that requires varying amounts of care according to the different stages of the disease. Intervening at the onset of mild to moderate COVID-19 symptoms in the outpatient setting would provide the opportunity to prevent progression to a more severe illness and long-term complications. As early disease symptoms variably reflect an underlying excessive inflammatory response to the viral infection, the use of anti-inflammatory drugs, especially non-steroidal anti-inflammatory drugs (NSAIDs), in the initial outpatient stage of COVID-19 seems to be a valuable therapeutic strategy. A few observational studies have tested NSAIDs (especially relatively selective COX-2 inhibitors), often as part of multipharmacological protocols, for early outpatient treatment of COVID-19. The findings from these studies are promising and point to a crucial role of NSAIDs for the at-home management of people with initial COVID-19 symptoms.
Collapse
Affiliation(s)
- Norberto Perico
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Bergamo, Italy
| | - Monica Cortinovis
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Bergamo, Italy
| | - Fredy Suter
- Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri, IRCCS, Bergamo, Italy; Azienda Socio-Sanitaria Territoriale (ASST) Papa Giovanni XXIII, Bergamo, Italy.
| |
Collapse
|
17
|
Amponsah SK, Tagoe B, Adams I, Bugyei KA. Efficacy and safety profile of corticosteroids and non-steroidal anti-inflammatory drugs in COVID-19 management: A narrative review. Front Pharmacol 2022; 13:1063246. [PMID: 36532785 PMCID: PMC9751434 DOI: 10.3389/fphar.2022.1063246] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/17/2022] [Indexed: 12/19/2024] Open
Abstract
Due to the fact that coronavirus disease 2019 (COVID-19) is still prevalent, and current reports show that some parts of the world have seen increase in incidence, it is relevant that health professionals and scientists know about recent or novel trends, especially drug treatments. Additionally, the safety profiles of these drug treatments need to be documented and shared with the public. Some studies have demonstrated the clinical benefits of non-steroidal anti-inflammatory drugs (NSAIDs) and corticosteroids in COVID-19 treatment. On the contrary, others have also reported that NSAIDs and corticosteroids may worsen symptoms associated with COVID-19. While some researchers have suggested that corticosteroids may be helpful if used in the early stages of COVID-19, there are still some conflicting findings regarding the use of corticosteroids in certain viral infections. Our review suggests that methylprednisolone, dexamethasone, and ibuprofen have therapeutic potential in reducing mortality due to COVID-19 among hospitalized patients. This review also highlights the fact that the use of NSAIDs is not associated with adverse outcomes of COVID-19. In reality, evidence suggests that NSAIDs do not increase the risk of COVID-19 infections. Also, the literature reviewed suggests that corticosteroid treatment in COVID-19 was linked with a decrease in all-cause mortality and disease progression, without increase in adverse events when compared to no corticosteroid treatment.
Collapse
Affiliation(s)
- Seth Kwabena Amponsah
- Department of Medical Pharmacology, University of Ghana Medical School, Accra, Ghana
| | - Benjamin Tagoe
- Fulfillment Operations and Academy, Zipline Ghana, Accra, Ghana
| | - Ismaila Adams
- Department of Medical Pharmacology, University of Ghana Medical School, Accra, Ghana
| | - Kwasi Agyei Bugyei
- Department of Medical Pharmacology, University of Ghana Medical School, Accra, Ghana
| |
Collapse
|
18
|
Mohamed SK, El Bakri Y, Abdul DA, Ahmad S, Albayati MR, Lai CH, Mague JT, Tolba MS. Synthesis, crystal structure, and a molecular modeling approach to identify effective antiviral hydrazide derivative against the main protease of SARS-CoV-2. J Mol Struct 2022; 1265:133391. [PMID: 35663190 PMCID: PMC9142792 DOI: 10.1016/j.molstruc.2022.133391] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 05/22/2022] [Accepted: 05/27/2022] [Indexed: 01/25/2023]
Abstract
In the fall of 2019, a new type of coronavirus took place in Wuhan city, China, and rapidly spread across the world and urges the scientific community to develop antiviral therapeutic agents. In our effort we have synthesized a new hydrazide derivative, (E)-N'-(1-(4-bromophenyl)ethylidene)-2-(6-methoxynaphthalen-2-yl)propanehydrazide for this purpose because of its potential inhibitory proprieties. The asymmetric unit of the title molecule consists of two independent molecules differing noticeably in conformation. In the crystal, the independent molecules are linked by N-H···O and C-H···O hydrogen bonds and C-H···π(ring) interactions into helical chains extending along the b-axis direction. The chains are further joined by additional C-H···π(ring) interactions into the full 3-D structure. To obtain a structure-activity relationship, the DFT-NBO analysis is performed to study the intrinsic electronic properties of the title compound. Molecular modeling studies were also conducted to examine the binding affinity of the compound for the SARS-CoV-2 main protease enzyme and to determine intermolecular binding interactions. The compound revealed a stable binding mode at the enzyme active pocket with a binding energy value of -8.1 kcal/mol. Further, stable dynamics were revealed for the enzyme-compound complex and reported highly favorable binding energies. The net MMGBSA binding energy of the complex is -37.41 kcal/mol while the net MMPBSA binding energy is -40.5 kcal/mol. Overall, the compound disclosed the strongest bond of ing the main protease enzyme and might be a good lead for further structural optimization.
Collapse
Affiliation(s)
- Shaaban K Mohamed
- Chemistry and Environmental Division, Manchester Metropolitan University, Manchester M1 5GD, United Kingdom
- Chemistry Department, Faculty of Science, Minia University, 61519 El-Minia, Egypt
| | - Youness El Bakri
- Department of Theoretical and Applied Chemistry, South Ural State University, Lenin prospect 76, Chelyabinsk 454080, Russia
| | - Dalia A Abdul
- Department of Chemistry, College of Science, university of Sulaimani, Sulaimania, Iraq
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar 25000, Pakistan
| | - Mustafa R Albayati
- Kirkuk University, College of Science, Department of Chemistry, Kirkuk, Iraq
| | - Chin-Hung Lai
- Department of Medical Applied Chemistry, Chung Shan Medical University, Taichung 40241, Taiwan
- Department of Medical Education, Chung Shan Medical University Hospital, 402 Taichung, Taiwan
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, LA 70118, United States
| | - Mahmoud S Tolba
- Chemistry Department, Faculty of Science, New Valley University, El-Kharja 72511, Egypt
| |
Collapse
|
19
|
Alyafei K, Ahmed R, Abir FF, Chowdhury MEH, Naji KK. A comprehensive review of COVID-19 detection techniques: From laboratory systems to wearable devices. Comput Biol Med 2022; 149:106070. [PMID: 36099862 PMCID: PMC9433350 DOI: 10.1016/j.compbiomed.2022.106070] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 08/03/2022] [Accepted: 08/27/2022] [Indexed: 11/30/2022]
Abstract
Screening of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) among symptomatic and asymptomatic patients offers unique opportunities for curtailing the transmission of novel coronavirus disease 2019, commonly known as COVID-19. Molecular diagnostic techniques, namely reverse transcription loop-mediated isothermal amplification (RT-LAMP), reverse transcription-polymerase chain reaction (RT-PCR), and immunoassays, have been frequently used to identify COVID-19 infection. Although these techniques are robust and accurate, mass testing of potentially infected individuals has shown difficulty due to the resources, manpower, and costs it entails. Moreover, as these techniques are typically used to test symptomatic patients, healthcare systems have failed to screen asymptomatic patients, whereas the spread of COVID-19 by these asymptomatic individuals has turned into a crucial problem. Besides, respiratory infections or cardiovascular conditions generally demonstrate changes in physiological parameters, namely body temperature, blood pressure, and breathing rate, which signifies the onset of diseases. Such vitals monitoring systems have shown promising results employing artificial intelligence (AI). Therefore, the potential use of wearable devices for monitoring asymptomatic COVID-19 individuals has recently been explored. This work summarizes the efforts that have been made in the domains from laboratory-based testing to asymptomatic patient monitoring via wearable systems.
Collapse
Affiliation(s)
- Khalid Alyafei
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar
| | - Rashid Ahmed
- Department of Mechanical and Industrial Engineering, College of Engineering, Qatar University, Doha, 2713, Qatar; Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, AJK, Pakistan
| | - Farhan Fuad Abir
- Department of Electrical Engineering, Qatar University, Doha, 2713, Qatar
| | | | | |
Collapse
|
20
|
Plasma Oxylipins and Their Precursors Are Strongly Associated with COVID-19 Severity and with Immune Response Markers. Metabolites 2022; 12:metabo12070619. [PMID: 35888743 PMCID: PMC9319897 DOI: 10.3390/metabo12070619] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/13/2022] Open
Abstract
COVID-19 is characterised by a dysregulated immune response, that involves signalling lipids acting as mediators of the inflammatory process along the innate and adaptive phases. To promote understanding of the disease biochemistry and provide targets for intervention, we applied a range of LC-MS platforms to analyse over 100 plasma samples from patients with varying COVID-19 severity and with detailed clinical information on inflammatory responses (>30 immune markers). The second publication in a series reports the results of quantitative LC-MS/MS profiling of 63 small lipids including oxylipins, free fatty acids, and endocannabinoids. Compared to samples taken from ward patients, intensive care unit (ICU) patients had 2−4-fold lower levels of arachidonic acid (AA) and its cyclooxygenase-derived prostanoids, as well as lipoxygenase derivatives, exhibiting negative correlations with inflammation markers. The same derivatives showed 2−5-fold increases in recovering ward patients, in paired comparison to early hospitalisation. In contrast, ICU patients showed elevated levels of oxylipins derived from poly-unsaturated fatty acids (PUFA) by non-enzymatic peroxidation or activity of soluble epoxide hydrolase (sEH), and these oxylipins positively correlated with markers of macrophage activation. The deficiency in AA enzymatic products and the lack of elevated intermediates of pro-resolving mediating lipids may result from the preference of alternative metabolic conversions rather than diminished stores of PUFA precursors. Supporting this, ICU patients showed 2-to-11-fold higher levels of linoleic acid (LA) and the corresponding fatty acyl glycerols of AA and LA, all strongly correlated with multiple markers of excessive immune response. Our results suggest that the altered oxylipin metabolism disrupts the expected shift from innate immune response to resolution of inflammation.
Collapse
|
21
|
Mota CM, Madden CJ. Neural circuits mediating circulating interleukin-1β-evoked fever in the absence of prostaglandin E2 production. Brain Behav Immun 2022; 103:109-121. [PMID: 35429606 PMCID: PMC9524517 DOI: 10.1016/j.bbi.2022.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 03/31/2022] [Accepted: 04/10/2022] [Indexed: 10/18/2022] Open
Abstract
Infectious diseases and inflammatory conditions recruit the immune system to mount an appropriate acute response that includes the production of cytokines. Cytokines evoke neurally-mediated responses to fight pathogens, such as the recruitment of thermoeffectors, thereby increasing body temperature and leading to fever. Studies suggest that the cytokine interleukin-1β (IL-1β) depends upon cyclooxygenase (COX)-mediated prostaglandin E2 production for the induction of neural mechanisms to elicit fever. However, COX inhibitors do not eliminate IL-1β-induced fever, thus suggesting that COX-dependent and COX-independent mechanisms are recruited for increasing body temperature after peripheral administration of IL-1β. In the present study, we aimed to build a foundation for the neural circuit(s) controlling COX-independent, inflammatory fever by determining the involvement of brain areas that are critical for controlling the sympathetic outflow to brown adipose tissue (BAT) and the cutaneous vasculature. In anesthetized rats, pretreatment with indomethacin, a non-selective COX inhibitor, did not prevent BAT thermogenesis or cutaneous vasoconstriction (CVC) induced by intravenous IL-1β (2 µg/kg). BAT and cutaneous vasculature sympathetic premotor neurons in the rostral raphe pallidus area (rRPa) are required for IL-1β-evoked BAT thermogenesis and CVC, with or without pretreatment with indomethacin. Additionally, activation of glutamate receptors in the dorsomedial hypothalamus (DMH) is required for COX-independent, IL-1β-induced BAT thermogenesis. Therefore, our data suggests that COX-independent mechanisms elicit activation of neurons within the DMH and rRPa, which is sufficient to trigger and mount inflammatory fever. These data provide a foundation for elucidating the brain circuits responsible for COX-independent, IL-1β-elicited fevers.
Collapse
Affiliation(s)
| | - Christopher J. Madden
- Corresponding author at: Dept. of Neurological Surgery, Oregon Health & Science University, 3181 Sam Jackson Park Road, Portland, OR 97239, United States. (C.J. Madden)
| |
Collapse
|
22
|
Widowati W, Handono K, Marlina M, Sholihah IA, Jasaputra DK, Wargasetia TL, Subangkit M, Faried A, Girsang E, Lister IN, Ginting CN, Nainggolan IM, Rizal R, Kusuma H, Chiuman L. In Silico Approach for Pro-inflammatory Protein Interleukin 1β and Interleukin-1 Receptor Antagonist Protein Docking as Potential Therapy for COVID-19 Disease. Open Access Maced J Med Sci 2022. [DOI: 10.3889/oamjms.2022.7405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background: Interleukin-1 receptor antagonist (IL-1Ra) also known as Anakinra is a receptor antagonist of IL-1 especially IL-1β. IL-1β increased in infected COVID-19 patient groups. This study aimed that the IL-1Ra contained in Conditioned Medium Wharton’s Jelly Mesenchymal Stem Cells (CM-WJMSCs) has the potential to inhibit IL-1β which is one of the cytokine storms that occur in COVID patients through an in-silico approach. Objective: This study aims to determine the effect of in silico approach pro-inflammatory protein interleukin 1β (IL-1 β) and interleukin-1 receptor antagonist protein as cytokine WJ-MSCs for potential treatment of COVID-19 disease. Methods: 3D structure using the homology modeling method on Swiss Model web-server. Molecular docking was performed to analyze the binding mode of the IL-1β related to COVID-19 with IL-1Ra and the docking results were fixed using FireDock web-server. Results: These results of the docking of proteins between IL-1β and the CM-WJMSCs component, namely IL-1Ra showed that IL-1Ra has criteria for docking on IL-1β such as the good score for QMEAN, good CscoreLB, and BS-score results, and the lowest energy obtained was -585.1 KJ/mol. It can be predicted that IL-1Ra can inhibit IL-1β which causes cytokine storms in COVID-19 patients. Conclusion: So that there is a potential treatment of CM-WJMSCs on the severity of Covid-19 infection.
Collapse
|
23
|
Naicker T, Padayachee S, Govender N. Gestational diabetes mellitus and preeclampsia: An increased risk to COVID-19? ARCHIVES OF MEDICINE AND HEALTH SCIENCES 2022. [DOI: 10.4103/amhs.amhs_288_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
|
24
|
Queré B, Saraux A, Marhadour T, Jousse-Joulin S, Cornec D, Houssais C, Carvajal Alegria G, Quiviger M, Le Guillou M, Devauchelle-Pensec V, Guellec D. Impact de la pandémie à COVID-19 sur la prise en charge thérapeutique des patients présentant une polyarthrite rhumatoïde en Bretagne (France). REVUE DU RHUMATISME 2022; 89:102-104. [PMID: 34335020 PMCID: PMC8314872 DOI: 10.1016/j.rhum.2021.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Accepted: 03/12/2021] [Indexed: 11/30/2022]
|
25
|
Quéré B, Lemelle I, Lohse A, Pillet P, Molimard J, Richer O, Sordet C, Despert V, Rossi-Semerano L, Borocco C, Kone-Paut I, Gervais E, Guellec D, Devauchelle-Pensec V. Juvenile Idiopathic Arthritis and COVID-19 Pandemic: Good Compliance With Treatment, Reluctance to Return to School. Front Med (Lausanne) 2021; 8:743815. [PMID: 34869435 PMCID: PMC8632709 DOI: 10.3389/fmed.2021.743815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/21/2021] [Indexed: 11/23/2022] Open
Abstract
Objective: The SARS-CoV-2 pandemic has induced an exceptional sanitary crisis, potentially having an impact on treatment continuation, for juvenile idiopathic arthritis (JIA) patients receiving immunosuppressive therapies. After national lockdowns, many patients were also concerned about their safety at school. We evaluated the impact of the pandemic on the optimal continuation of treatment and on the return to school in JIA patients. Methods: JIA patients under 18 years of age, usually treated with disease-modifying anti-rheumatic drugs (DMARDs) were prospectively included during their outpatient visit and completed a standardized questionnaire. The primary outcome was DMARD treatment modification in relation to the context of the pandemic but we also evaluated the pandemic's impact on the schooling. Results: One hundred and seventy three patients from 8 different expert centers were included between May and August 2020. Their mean age was 11.6 years (± 4.1 years), and most of them 31.2% (54/173) had a rheumatoid factor-negative polyarticular JIA. Fifty percent (86/172) were treated with methotrexate, and 72.5% (124/171) were treated with bDMARDs. DMARD treatment modification in relation to the pandemic was observed in 4.0% (7/173) of participants. 49.1% (81/165) of the patients did not return to school due to a personal/parental decision in 69.9% (55/81) of cases. Two patients were diagnosed positive for SARS-CoV-2 infection. Conclusion: This study suggests that JIA patients treated with DMARDs continued their treatment during the pandemic and were rarely affected by symptomatic COVID-19. In contrast, parents' reluctance was a major obstacle for returning to school. Therefore, more solidified school reopening strategies should be developed.
Collapse
Affiliation(s)
- Baptiste Quéré
- Department of Rheumatology, Cavale Blanche Hospital, Brest University, Brest, France
| | - Irene Lemelle
- Paediatric Onco-Haematology, Brabois Hospital, University Hospital of Nancy, Vandoeuvre-Lès-Nancy, France
| | - Anne Lohse
- Department of Rheumatology, Nord Franche-Comté Hospital, Belfort, France
| | - Pascal Pillet
- Paediatrics, Rheumatology and Paediatric Internal Medicine, Children's Hospital, Bordeaux, France
| | - Julie Molimard
- Paediatrics, Rheumatology and Paediatric Internal Medicine, Children's Hospital, Bordeaux, France
| | - Olivier Richer
- Paediatrics, Rheumatology and Paediatric Internal Medicine, Children's Hospital, Bordeaux, France
| | - Christelle Sordet
- Department of Rheumatology, University Hospital of Strasbourg, Strasbourg, France
| | | | - Linda Rossi-Semerano
- Department of Paediatric Rheumatology, National Reference Centre for Auto-inflammatory Diseases and Amyloidosis of Inflammatory Origin (CEREMAIA), Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris Sud Sacaly, Le Kremlin-Bicêtre, France
| | - Charlotte Borocco
- Department of Paediatric Rheumatology, National Reference Centre for Auto-inflammatory Diseases and Amyloidosis of Inflammatory Origin (CEREMAIA), Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris Sud Sacaly, Le Kremlin-Bicêtre, France
| | - Isabelle Kone-Paut
- Department of Paediatric Rheumatology, National Reference Centre for Auto-inflammatory Diseases and Amyloidosis of Inflammatory Origin (CEREMAIA), Assistance Publique-Hôpitaux de Paris (AP-HP), University of Paris Sud Sacaly, Le Kremlin-Bicêtre, France
| | - Elisabeth Gervais
- Department of Rheumatology, University Hospital of Poitiers, Poitiers, France
| | - Dewi Guellec
- Department of Rheumatology, Cavale Blanche Hospital, Brest University, Brest, France
| | | |
Collapse
|
26
|
Gupta Y, Maciorowski D, Zak SE, Jones KA, Kathayat RS, Azizi SA, Mathur R, Pearce CM, Ilc DJ, Husein H, Herbert AS, Bharti A, Rathi B, Durvasula R, Becker DP, Dickinson BC, Dye JM, Kempaiah P. Bisindolylmaleimide IX: A novel anti-SARS-CoV2 agent targeting viral main protease 3CLpro demonstrated by virtual screening pipeline and in-vitro validation assays. Methods 2021; 195:57-71. [PMID: 33453392 PMCID: PMC7807167 DOI: 10.1016/j.ymeth.2021.01.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 01/10/2021] [Indexed: 01/24/2023] Open
Abstract
SARS-CoV-2, the virus that causes COVID-19 consists of several enzymes with essential functions within its proteome. Here, we focused on repurposing approved and investigational drugs/compounds. We targeted seven proteins with enzymatic activities known to be essential at different stages of the viral cycle including PLpro, 3CLpro, RdRP, Helicase, ExoN, NendoU, and 2'-O-MT. For virtual screening, energy minimization of a crystal structure of the modeled protein was carried out using the Protein Preparation Wizard (Schrodinger LLC 2020-1). Following active site selection based on data mining and COACH predictions, we performed a high-throughput virtual screen of drugs and investigational molecules (n = 5903). The screening was performed against viral targets using three sequential docking modes (i.e., HTVS, SP, and XP). Virtual screening identified ∼290 potential inhibitors based on the criteria of energy, docking parameters, ligand, and binding site strain and score. Drugs specific to each target protein were further analyzed for binding free energy perturbation by molecular mechanics (prime MM-GBSA) and pruning the hits to the top 32 candidates. The top lead from each target pool was further subjected to molecular dynamics simulation using the Desmond module. The resulting top eight hits were tested for their SARS-CoV-2 anti-viral activity in-vitro. Among these, a known inhibitor of protein kinase C isoforms, Bisindolylmaleimide IX (BIM IX), was found to be a potent inhibitor of SARS-CoV-2. Further, target validation through enzymatic assays confirmed 3CLpro to be the target. This is the first study that has showcased BIM IX as a COVID-19 inhibitor thereby validating our pipeline.
Collapse
Affiliation(s)
- Yash Gupta
- Infectious Diseases, Mayo Clinic, Jacksonville, FL, USA
| | | | - Samantha E Zak
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA; The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA
| | - Krysten A Jones
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - Rahul S Kathayat
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - Saara-Anne Azizi
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | | | | | | | | | - Andrew S Herbert
- The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA
| | - Ajay Bharti
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Brijesh Rathi
- Laboratory for Translational Chemistry and Drug Discovery, Hansraj College, University of Delhi, India
| | | | | | - Bryan C Dickinson
- Department of Chemistry, The University of Chicago, 5801 South Ellis Avenue, Chicago, IL, USA
| | - John M Dye
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, USA; The Geneva Foundation, 917 Pacific Avenue, Tacoma, WA 98402, USA.
| | | |
Collapse
|
27
|
Niu Z, Li L, Li H, Mei S, Jiang H, Deng Z, Xin J. Latent Profile Analysis of Perceptions and Attitudes Towards COVID-19 in a Sample of Chinese People. Front Public Health 2021; 9:727242. [PMID: 34646804 PMCID: PMC8502915 DOI: 10.3389/fpubh.2021.727242] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/31/2021] [Indexed: 12/24/2022] Open
Abstract
Background: The novel coronavirus-2019 (COVID-19) disease has spread quickly throughout China and around the world, endangering human health and life. Individuals' perceptions and attitudes as well as related health education measures may affect disease progression and prognosis during the COVID-19 outbreak. To promote and implement health education, research must focus on the perceptions and attitudes towards COVID-19 among Chinese people. The present study aimed to examine the profiles and predictive factors of the perceptions and attitudes towards COVID-19 in a sample of Chinese people. Methods: A sample of 2,663 Chinese people comprising medical staff and members of the general public completed an online survey on Wenjuanxing. The survey measured demographic variables (e.g., gender, age, education level, and place of residence) and perceptions and attitudes towards COVID-19. Results: Two profiles of perceptions and attitudes towards COVID-19 (positive and negative perceptions and attitudes) were identified in the sample. Place of residence during the COVID-19 pandemic and first response to COVID-19 were found to be independent predictive factors for COVID-19 related perceptions and attitudes. Conclusion: In addition to drug therapy and mental health services, the perceptions and attitudes of Chinese people towards COVID-19 should be considered when promoting health education during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Zhimin Niu
- School of Humanities and Social Sciences, Gannan Medical University, Ganzhou, China
| | - Li Li
- School of Humanities and Social Sciences, Gannan Medical University, Ganzhou, China
| | - Hongying Li
- The First Affiliated Hospital, Soochow University, Suzhou, China
| | - Songli Mei
- School of Public Health, Jilin University, Changchun, China
| | - Hui Jiang
- Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Zhiyong Deng
- First People Hospital of Kunshan, Kunshan, China
| | - Jun Xin
- Suzhou Municipal Party School, Suzhou, China
| |
Collapse
|
28
|
Jafarzadeh A, Jafarzadeh S, Nemati M. Therapeutic potential of ginger against COVID-19: Is there enough evidence? JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2021. [PMCID: PMC8492833 DOI: 10.1016/j.jtcms.2021.10.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
In addition to the respiratory system, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) strikes other systems, including the digestive, circulatory, urogenital, and even the central nervous system, as its receptor angiotensin-converting enzyme 2 (ACE2) is expressed in various organs, such as lungs, intestine, heart, esophagus, kidneys, bladder, testis, liver, and brain. Different mechanisms, in particular, massive virus replication, extensive apoptosis and necrosis of the lung-related epithelial and endothelial cells, vascular leakage, hyper-inflammatory responses, overproduction of pro-inflammatory mediators, cytokine storm, oxidative stress, downregulation of ACE2, and impairment of the renin-angiotensin system contribute to the COVID-19 pathogenesis. Currently, COVID-19 is a global pandemic with no specific anti-viral treatment. The favorable capabilities of the ginger were indicated in patients suffering from osteoarthritis, neurodegenerative disorders, rheumatoid arthritis, type 2 diabetes, respiratory distress, liver diseases and primary dysmenorrheal. Ginger or its compounds exhibited strong anti-inflammatory and anti-oxidative influences in numerous animal models. This review provides evidence regarding the potential effects of ginger against SARS-CoV-2 infection and highlights its antiviral, anti-inflammatory, antioxidative, and immunomodulatory impacts in an attempt to consider this plant as an alternative therapeutic agent for COVID-19 treatment.
Collapse
|
29
|
Sodeifian F, Seyedalhosseini ZS, Kian N, Eftekhari M, Najari S, Mirsaeidi M, Farsi Y, Nasiri MJ. Drug-Induced Liver Injury in COVID-19 Patients: A Systematic Review. Front Med (Lausanne) 2021; 8:731436. [PMID: 34616757 PMCID: PMC8488138 DOI: 10.3389/fmed.2021.731436] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 08/25/2021] [Indexed: 02/06/2023] Open
Abstract
Introduction: The severity of COVID-19 may be correlated with the risk of liver injury development. An increasing number of studies indicate that degrees of hepatotoxicity has been associated with using some medications in the management of COVID-19 patients. However, limited studies had systematically investigated the evidence of drug-induced liver injury (DILI) in COVID-19 patients. Thus, this study aimed to examine DILI in COVID-19 patients. Methods: A systematic search was carried out in PubMed/Medline, EMBASE, and Web of Science up to December 30, 2020. Search items included "SARS-CoV-2", "Coronavirus," COVID-19, and liver injury. Results: We included 22 related articles. Among included studies, there was five case report, five case series, four randomizes control trial (RCT), seven cohort studies, and one cross-sectional study. The drugs included in this systematic review were remdesivir, favipiravir, tocilizumab, hydroxychloroquine, and lopinavir/ritonavir. Among included studies, some studies revealed a direct role of drugs, while others couldn't certainly confirm that the liver injury was due to SARS-CoV-2 itself or administration of medications. However, a significant number of studies reported that liver injury could be attributable to drug administration. Discussion: Liver injury in COVID-19 patients could be caused by the virus itself or the administration of some types of drug. Intensive liver function monitoring should be considered for patients, especially patients who are treated with drugs such as remdesivir, lopinavir/ritonavir, and tocilizumab.
Collapse
Affiliation(s)
- Fatemeh Sodeifian
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadat Seyedalhosseini
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Naghmeh Kian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahya Eftekhari
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Shaghayegh Najari
- School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehdi Mirsaeidi
- Division of Pulmonary and Critical Care, Department of Medicine, University of Miami Miller School of Medicine, Miami, FL, United States
- Department of Pulmonary and Critical Care, Miami VA Medical Center, Miami, FL, United States
| | - Yeganeh Farsi
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Nasiri
- Department of Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
30
|
Sheppe AEF, Santelices J, Czyz DM, Edelmann MJ. Yersinia pseudotuberculosis YopJ Limits Macrophage Response by Downregulating COX-2-Mediated Biosynthesis of PGE2 in a MAPK/ERK-Dependent Manner. Microbiol Spectr 2021; 9:e0049621. [PMID: 34319170 PMCID: PMC8552654 DOI: 10.1128/spectrum.00496-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 06/22/2021] [Indexed: 12/23/2022] Open
Abstract
Prostaglandin E2 (PGE2) is an essential immunomodulatory lipid released by cells in response to infection with many bacteria, yet its function in macrophage-mediated bacterial clearance is poorly understood. Yersinia overall inhibits the inflammatory circuit, but its effect on PGE2 production is unknown. We hypothesized that one of the Yersinia effector proteins is responsible for the inhibition of PGE2 biosynthesis. We identified that yopB-deficient Y. enterocolitica and Y. pseudotuberculosis deficient in the secretion of virulence proteins via a type 3 secretion system (T3SS) failed to inhibit PGE2 biosynthesis in macrophages. Consistently, COX-2-mediated PGE2 biosynthesis is upregulated in cells treated with heat-killed or T3SS-deficient Y. pseudotuberculosis but diminished in the presence of a MAPK/ERK inhibitor. Mutants expressing catalytically inactive YopJ induce similar levels of PGE2 as heat-killed or ΔyopB Y. pseudotuberculosis, reversed by YopJ complementation. Shotgun proteomics discovered host pathways regulated in a YopJ-mediated manner, including pathways regulating PGE2 synthesis and oxidative phosphorylation. Consequently, this study identified that YopJ-mediated inhibition of MAPK signal transduction serves as a mechanism targeting PGE2, an alternative means of inflammasome inhibition by Yersinia. Finally, we showed that EP4 signaling supports macrophage function in clearing intracellular bacteria. In summary, our unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription, thereby enhancing the intracellular survival of yersiniae. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic molecule to improve the outcomes of specific bacterial infections. Since other pathogens encode YopJ homologs, this mechanism is expected to be present in other infections. IMPORTANCE PGE2 is a critical immunomodulatory lipid, but its role in bacterial infection and pathogen clearance is poorly understood. We previously demonstrated that PGE2 leads to macrophage polarization toward the M1 phenotype and stimulates inflammasome activation in infected macrophages. Finally, we also discovered that PGE2 improved the clearance of Y. enterocolitica. The fact that Y. enterocolitica hampers PGE2 secretion in a type 3 secretion system (T3SS)-dependent manner and because PGE2 appears to assist macrophage in the clearance of this bacterium indicates that targeting of the eicosanoid pathway by Yersinia might be an adaption used to counteract host defenses. Our study identified a mechanism used by Yersinia that obstructs PGE2 biosynthesis in human macrophages. We showed that Y. pseudotuberculosis interferes with PGE2 biosynthesis by using one of its T3SS effectors, YopJ. Specifically, YopJ targets the host COX-2 enzyme responsible for PGE2 biosynthesis, which happens in a MAPK/ER-dependent manner. Moreover, in a shotgun proteomics study, we also discovered other pathways that catalytically active YopJ targets in the infected macrophages. YopJ was revealed to play a role in limiting host LPS responses, including repression of EGR1 and JUN proteins, which control transcriptional activation of proinflammatory cytokine production such as interleukin-1β. Since YopJ has homologs in other bacterial species, there are likely other pathogens that target and inhibit PGE2 biosynthesis. In summary, our study's unique contribution was to determine a bacterial virulence factor that targets COX-2 transcription. Future studies should investigate whether PGE2 or its stable synthetic derivatives could serve as a potential therapeutic target.
Collapse
Affiliation(s)
- Austin E. F. Sheppe
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - John Santelices
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Daniel M. Czyz
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Mariola J. Edelmann
- Department of Microbiology and Cell Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
31
|
Sluter MN, Hou R, Li L, Yasmen N, Yu Y, Liu J, Jiang J. EP2 Antagonists (2011-2021): A Decade's Journey from Discovery to Therapeutics. J Med Chem 2021; 64:11816-11836. [PMID: 34352171 PMCID: PMC8455147 DOI: 10.1021/acs.jmedchem.1c00816] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In the wake of health disasters associated with the chronic use of cyclooxygenase-2 (COX-2) inhibitor drugs, it has been widely proposed that modulation of downstream prostanoid synthases or receptors might provide more specificity than simply shutting down the entire COX cascade for anti-inflammatory benefits. The pathogenic actions of COX-2 have long been thought attributable to the prostaglandin E2 (PGE2) signaling through its Gαs-coupled EP2 receptor subtype; however, the truly selective EP2 antagonists did not emerge until 2011. These small molecules provide game-changing tools to better understand the EP2 receptor in inflammation-associated conditions. Their applications in preclinical models also reshape our knowledge of PGE2/EP2 signaling as a node of inflammation in health and disease. As we celebrate the 10-year anniversary of this breakthrough, the exploration of their potential as drug candidates for next-generation anti-inflammatory therapies has just begun. The first decade of EP2 antagonists passes, while their future looks brighter than ever.
Collapse
Affiliation(s)
- Madison N Sluter
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ruida Hou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Lexiao Li
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Nelufar Yasmen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Ying Yu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jiawang Liu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
- Medicinal Chemistry Core, Office of Research, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Jianxiong Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| |
Collapse
|
32
|
Ricciotti E, Laudanski K, FitzGerald GA. Nonsteroidal anti-inflammatory drugs and glucocorticoids in COVID-19. Adv Biol Regul 2021; 81:100818. [PMID: 34303107 PMCID: PMC8280659 DOI: 10.1016/j.jbior.2021.100818] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/09/2021] [Accepted: 07/13/2021] [Indexed: 12/15/2022]
Abstract
Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is characterized by a wide spectrum of symptom severity, which is manifested at different phases of infection and demands different levels of care. Viral load, host innate-immune response to SARS-CoV-2, and comorbidities have a direct impact on the clinical outcomes of COVID-19 patients and determine the diverse disease trajectories. The initial SARS-CoV-2 penetrance and replication in the host causes death of infected cells, determining the viral response. SARS-CoV-2 replication in the host triggers the activation of host antiviral immune mechanisms, determining the inflammatory response. While a healthy immune response is essential to eliminate infected cells and prevent spread of the virus, a dysfunctional immune response can result in a cytokine storm and hyperinflammation, contributing to disease progression. Current therapies for COVID-19 target the virus and/or the host immune system and may be complicated in their efficacy by comorbidities. Here we review the evidence for use of two classes of anti-inflammatory drugs, glucocorticoids and nonsteroidal anti-inflammatory drugs (NSAIDs) for the treatment of COVID-19. We consider the clinical evidence regarding the timing and efficacy of their use, their potential limitations, current recommendations and the prospect of future studies by these and related therapies.
Collapse
Affiliation(s)
- Emanuela Ricciotti
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krzysztof Laudanski
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA, USA; Leonard Davis Institute of Healthcare Economics, University of Pennsylvania, Philadelphia, PA, USA
| | - Garret A FitzGerald
- Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
33
|
Farid NF, Abdelhamid NS, Naguib IA, Anwar BH, Magdy MA. Quantitative Determination of Anti-Migraine Quaternary Mixture in Presence of p-Aminophenol and 4-Chloroacetanilide. J Chromatogr Sci 2021; 60:538-544. [PMID: 34296251 DOI: 10.1093/chromsci/bmab093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Indexed: 11/14/2022]
Abstract
A validated RP-HPLC method was developed for the estimation of paracetamol, caffeine, metoclopramide and ergotamine simultaneously in bulk and pharmaceutical formulation. The method was extended for the determination of two paracetamol genotoxic and nephrotoxic impurities and degradation products namely p-aminophenol and 4-chloroacetanilide. Separation was done on octadecyl column (15 cm × 2.1 mm, 5 μm). Gradient elution was performed using mobile phase consisting of acetonitrile and water (pH 3) in ratio of (20: 80, v/v) for the first 3 min, (50: 50, v/v) for the next 4.5 min, then (20: 80, v/v) for the final 2.5 min. The flow rate was 0.7 mL/min throughout the run which took 10 min. UV detection was done at 230 nm. The proposed method agreed with ICH guidelines of method validation. The suggested method was applied for the estimation of the proposed drugs in their dosage form. Statistical comparison was done between the results obtained from the suggested method and those obtained from reported HPLC method. The proposed method is more beneficial than the published one because of having higher sensitivity and selectivity as it allows the detection of the proposed drugs in lower concentrations in the presence of paracetamol toxic impurities, p-aminophenol and 4-chloroacetanilide.
Collapse
Affiliation(s)
- Nehal F Farid
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St., Beni-Suef 62514, Egypt
| | - Nessreen S Abdelhamid
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St., Beni-Suef 62514, Egypt
| | - Ibrahim A Naguib
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Basma H Anwar
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St., Beni-Suef 62514, Egypt
| | - Maimana A Magdy
- Pharmaceutical Analytical Chemistry Department, Faculty of Pharmacy, Beni-Suef University, Alshaheed Shehata Ahmad Hegazy St., Beni-Suef 62514, Egypt
| |
Collapse
|
34
|
Mosselhy DA, Assad MA, Sironen T, Elbahri M. Could Nanotheranostics be the Answer to the Coronavirus Crisis? GLOBAL CHALLENGES (HOBOKEN, NJ) 2021; 5:2000112. [PMID: 34141446 PMCID: PMC8182285 DOI: 10.1002/gch2.202000112] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/12/2021] [Indexed: 05/31/2023]
Abstract
The COVID-19 pandemic is expanding worldwide. This pandemic associated with COVID-19 placed the spotlight on how bacterial (e.g., methicillin-resistant Staphylococcus aureus) co-infections may impact responses to coronavirus. In this review the ways in which nanoparticles can contain and rapidly diagnose COVID-19 under the umbrella of nanotheranostics (i.e., smart, single agents combining nanodiagnostics and nanotherapeutics) are elaborated. The present work provides new insights into the promising incorporation of antiviral nanotheranostics into nanostructured materials, including electrospun fibers with tailored pore sizes and hydrophobicity, namely "superhydrophobic self-disinfecting electrospun facemasks/fabrics (SSEF)." SSEFs are proposed as smart alternatives to address the drawbacks of N95 respirators. The challenges of coronavirus containment are underscored, literature is reviewed, and "top-five suggestions" for containing COVID-19 are offered, including: i) preventive appraisals-avoiding needless hospital admission and practicing frequent hand washing (from 20 to 60 s). ii) Diagnostics-highly recommending nanodiagnostics, detecting COVID-19 within 10 min. iii) Therapeutics-expanding nanotherapeutics to treat COVID-19 and bacterial co-infections after safety assessments and clinical trials. iv) Multipronged and multinational, including China, collaborative appraisals. v) Humanitarian compassion to traverse this pandemic in a united way.
Collapse
Affiliation(s)
- Dina A. Mosselhy
- Nanochemistry and NanoengineeringDepartment of Chemistry and Materials ScienceSchool of Chemical EngineeringAalto UniversityEspoo02150Finland
- Department of VirologyFaculty of MedicineUniversity of HelsinkiP.O. Box 21Helsinki00014Finland
- Department of Veterinary BiosciencesFaculty of Veterinary MedicineUniversity of HelsinkiP.O. Box 66Helsinki00014Finland
- Microbiological UnitFish Diseases DepartmentAnimal Health Research InstituteDokkiGiza12618Egypt
| | - Mhd Adel Assad
- Nanochemistry and NanoengineeringDepartment of Chemistry and Materials ScienceSchool of Chemical EngineeringAalto UniversityEspoo02150Finland
| | - Tarja Sironen
- Department of VirologyFaculty of MedicineUniversity of HelsinkiP.O. Box 21Helsinki00014Finland
- Department of Veterinary BiosciencesFaculty of Veterinary MedicineUniversity of HelsinkiP.O. Box 66Helsinki00014Finland
| | - Mady Elbahri
- Nanochemistry and NanoengineeringDepartment of Chemistry and Materials ScienceSchool of Chemical EngineeringAalto UniversityEspoo02150Finland
- Nanochemistry and NanoengineeringInstitute for Materials ScienceFaculty of EngineeringKiel University24143KielGermany
- Center for NanotechnologyZewail City of Science and TechnologySheikh Zayed DistrictGiza12588Egypt
| |
Collapse
|
35
|
Chang JC. COVID-19 Sepsis: Pathogenesis and Endothelial Molecular Mechanisms Based on "Two-Path Unifying Theory" of Hemostasis and Endotheliopathy-Associated Vascular Microthrombotic Disease, and Proposed Therapeutic Approach with Antimicrothrombotic Therapy. Vasc Health Risk Manag 2021; 17:273-298. [PMID: 34103921 PMCID: PMC8179800 DOI: 10.2147/vhrm.s299357] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 03/24/2021] [Indexed: 12/15/2022] Open
Abstract
COVID-19 sepsis is characterized by acute respiratory distress syndrome (ARDS) as a consequence of pulmonary tropism of the virus and endothelial heterogeneity of the host. ARDS is a phenotype among patients with multiorgan dysfunction syndrome (MODS) due to disseminated vascular microthrombotic disease (VMTD). In response to the viral septicemia, the host activates the complement system which produces terminal complement complex C5b-9 to neutralize pathogen. C5b-9 causes pore formation on the membrane of host endothelial cells (ECs) if CD59 is underexpressed. Also, viral S protein attraction to endothelial ACE2 receptor damages ECs. Both affect ECs and provoke endotheliopathy. Disseminated endotheliopathy activates two molecular pathways: inflammatory and microthrombotic. The former releases inflammatory cytokines from ECs, which lead to inflammation. The latter initiates endothelial exocytosis of unusually large von Willebrand factor (ULVWF) multimers and FVIII from Weibel-Palade bodies. If ADAMTS13 is insufficient, ULVWF multimers activate intravascular hemostasis of ULVWF path. In activated ULVWF path, ULVWF multimers anchored to damaged endothelial cells recruit circulating platelets and trigger microthrombogenesis. This process produces "microthrombi strings" composed of platelet-ULVWF complexes, leading to endotheliopathy-associated VMTD (EA-VMTD). In COVID-19, microthrombosis initially affects the lungs per tropism causing ARDS, but EA-VMTD may orchestrate more complex clinical phenotypes, including thrombotic thrombocytopenic purpura (TTP)-like syndrome, hepatic coagulopathy, MODS and combined micro-macrothrombotic syndrome. In this pandemic, ARDS and pulmonary thromboembolism (PTE) have often coexisted. The analysis based on two hemostatic theories supports ARDS caused by activated ULVWF path is EA-VMTD and PTE caused by activated ULVWF and TF paths is macrothrombosis. The thrombotic disorder of COVID-19 sepsis is consistent with the notion that ARDS is virus-induced disseminated EA-VMTD and PTE is in-hospital vascular injury-related macrothrombosis which is not directly related to viral pathogenesis. The pathogenesis-based therapeutic approach is discussed for the treatment of EA-VMTD with antimicrothrombotic regimen and the potential need of anticoagulation therapy for coinciding macrothrombosis in comprehensive COVID-19 care.
Collapse
Affiliation(s)
- Jae C Chang
- Department of Medicine, University of California Irvine School of Medicine, Irvine, CA, USA
| |
Collapse
|
36
|
Detection of differentially abundant cell subpopulations in scRNA-seq data. Proc Natl Acad Sci U S A 2021; 118:2100293118. [PMID: 34001664 DOI: 10.1073/pnas.2100293118] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Comprehensive and accurate comparisons of transcriptomic distributions of cells from samples taken from two different biological states, such as healthy versus diseased individuals, are an emerging challenge in single-cell RNA sequencing (scRNA-seq) analysis. Current methods for detecting differentially abundant (DA) subpopulations between samples rely heavily on initial clustering of all cells in both samples. Often, this clustering step is inadequate since the DA subpopulations may not align with a clear cluster structure, and important differences between the two biological states can be missed. Here, we introduce DA-seq, a targeted approach for identifying DA subpopulations not restricted to clusters. DA-seq is a multiscale method that quantifies a local DA measure for each cell, which is computed from its k nearest neighboring cells across a range of k values. Based on this measure, DA-seq delineates contiguous significant DA subpopulations in the transcriptomic space. We apply DA-seq to several scRNA-seq datasets and highlight its improved ability to detect differences between distinct phenotypes in severe versus mildly ill COVID-19 patients, melanomas subjected to immune checkpoint therapy comparing responders to nonresponders, embryonic development at two time points, and young versus aging brain tissue. DA-seq enabled us to detect differences between these phenotypes. Importantly, we find that DA-seq not only recovers the DA cell types as discovered in the original studies but also reveals additional DA subpopulations that were not described before. Analysis of these subpopulations yields biological insights that would otherwise be undetected using conventional computational approaches.
Collapse
|
37
|
RAASI, NSAIDs, antidiabetics, and anticoagulants: More data needed to be labeled as harmful or neutral in SARS-CoV-2 infection. Proc Natl Acad Sci U S A 2021; 118:2025609118. [PMID: 33975949 DOI: 10.1073/pnas.2025609118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
|
38
|
Juengling FD, Maldonado A, Wuest F, Schindler TH. Identify. Quantify. Predict. Why Immunologists Should Widely Use Molecular Imaging for Coronavirus Disease 2019. Front Immunol 2021; 12:568959. [PMID: 34054793 PMCID: PMC8155634 DOI: 10.3389/fimmu.2021.568959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 04/16/2021] [Indexed: 01/18/2023] Open
Abstract
Molecular imaging using PET/CT or PET/MRI has evolved from an experimental imaging modality at its inception in 1972 to an integral component of diagnostic procedures in oncology, and, to lesser extent, in cardiology and neurology, by successfully offering in-vivo imaging and quantitation of key pathophysiological targets or molecular signatures, such as glucose metabolism in cancerous disease. Apart from metabolism probes, novel radiolabeled peptide and antibody PET tracers, including radiolabeled monoclonal antibodies (mAbs) have entered the clinical arena, providing the in-vivo capability to collect target-specific quantitative in-vivo data on cellular and molecular pathomechanisms on a whole-body scale, and eventually, extract imaging biomarkers possibly serving as prognostic indicators. The success of molecular imaging in mapping disease severity on a whole-body scale, and directing targeted therapies in oncology possibly could translate to the management of Coronavirus Disease 2019 (COVID-19), by identifying, localizing, and quantifying involvement of different immune mediated responses to the infection with SARS-COV2 during the course of acute infection and possible, chronic courses with long-term effects on specific organs. The authors summarize current knowledge for medical imaging in COVID-19 in general with a focus on molecular imaging technology and provide a perspective for immunologists interested in molecular imaging research using validated and immediately available molecular probes, as well as possible future targets, highlighting key targets for tailored treatment approaches as brought up by key opinion leaders.
Collapse
Affiliation(s)
- Freimut D. Juengling
- Medical Faculty, University Bern, Bern, Switzerland
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Antonio Maldonado
- Department of Nuclear Medicine and Molecular Imaging, Quironsalud Madrid University Hospital, Madrid, Spain
| | - Frank Wuest
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Thomas H. Schindler
- Mallinckrodt Institute of Radiology, Division of Nuclear Medicine, Washington University School of Medicine, Saint Louis, MO, United States
| |
Collapse
|
39
|
Shakartalla SB, Alhumaidi RB, Shammout ODA, Al Shareef ZM, Ashmawy NS, Soliman SSM. Dyslipidemia in breast cancer patients increases the risk of SAR-CoV-2 infection. INFECTION GENETICS AND EVOLUTION 2021; 92:104883. [PMID: 33905884 PMCID: PMC8079327 DOI: 10.1016/j.meegid.2021.104883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 04/17/2021] [Accepted: 04/22/2021] [Indexed: 12/27/2022]
Abstract
Breast cancer (BC) is the most diagnosed and second leading cause of death among women worldwide. Elevated levels of lipids have been reported in BC patients. On the other hand, lipids play an important role in coronavirus infections including the newly emerged disease caused by the severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) and designated COVID-19 by WHO. Cancer patients including BC have been reported to be at higher risk of SARS-CoV-2 infection, which is mostly attributed to the chronic immunosuppressive status of cancer patients along with the use of cytotoxic drugs. Here in this review, we highlighted the role of dyslipidemia associated with BC patients in the incidence and severity of SARS-CoV-2 infection. Elevated levels of lipids namely phospholipids, cholesterol, sphingolipids, and eicosanoids in the serum of BC patients and their re-localization to the alveolar spaces can increase susceptibility and/or severity due to SARA-CoV-2 infection. Therefore, manipulation of dyslipidemia in BC patients should be recommended as prophylactic and therapy against SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Sarra B Shakartalla
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, University of Gezira, P.O.Box. 21111, Wadmedani, Sudan
| | - Razan B Alhumaidi
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Ola D A Shammout
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Zainab M Al Shareef
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Medicine, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates
| | - Naglaa S Ashmawy
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; Faculty of Pharmacy, Department of Pharmacognosy, Ain Shams University, 11566-Abbassia, Cairo, Egypt
| | - Sameh S M Soliman
- Research Institute for Medical and Health sciences, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates; College of Pharmacy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates.
| |
Collapse
|
40
|
Kanimozhi G, Pradhapsingh B, Singh Pawar C, Khan HA, Alrokayan SH, Prasad NR. SARS-CoV-2: Pathogenesis, Molecular Targets and Experimental Models. Front Pharmacol 2021; 12:638334. [PMID: 33967772 PMCID: PMC8100521 DOI: 10.3389/fphar.2021.638334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 03/26/2021] [Indexed: 02/05/2023] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a recent pandemic outbreak threatening human beings worldwide. This novel coronavirus disease-19 (COVID-19) infection causes severe morbidity and mortality and rapidly spreading across the countries. Therefore, there is an urgent need for basic fundamental research to understand the pathogenesis and druggable molecular targets of SARS-CoV-2. Recent sequencing data of the viral genome and X-ray crystallographic data of the viral proteins illustrate potential molecular targets that need to be investigated for structure-based drug design. Further, the SARS-CoV-2 viral pathogen isolated from clinical samples needs to be cultivated and titrated. All of these scenarios demand suitable laboratory experimental models. The experimental models should mimic the viral life cycle as it happens in the human lung epithelial cells. Recently, researchers employing primary human lung epithelial cells, intestinal epithelial cells, experimental cell lines like Vero cells, CaCo-2 cells, HEK-293, H1299, Calu-3 for understanding viral titer values. The human iPSC-derived lung organoids, small intestinal organoids, and blood vessel organoids increase interest among researchers to understand SARS-CoV-2 biology and treatment outcome. The SARS-CoV-2 enters the human lung epithelial cells using viral Spike (S1) protein and human angiotensin-converting enzyme 2 (ACE-2) receptor. The laboratory mouse show poor ACE-2 expression and thereby inefficient SARS-CoV-2 infection. Therefore, there was an urgent need to develop transgenic hACE-2 mouse models to understand antiviral agents' therapeutic outcomes. This review highlighted the viral pathogenesis, potential druggable molecular targets, and suitable experimental models for basic fundamental research.
Collapse
Affiliation(s)
- G. Kanimozhi
- Department of Biochemistry, Dharmapuram Gnanambigai Government Arts College for Women, Mayiladuthurai, India
| | - B. Pradhapsingh
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
| | - Charan Singh Pawar
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - N. Rajendra Prasad
- Department of Biochemistry and Biotechnology, Annamalai University, Annamalainagar, India
| |
Collapse
|
41
|
Chang AY, Cullen MR, Harrington RA, Barry M. The impact of novel coronavirus COVID-19 on noncommunicable disease patients and health systems: a review. J Intern Med 2021; 289:450-462. [PMID: 33020988 PMCID: PMC7675448 DOI: 10.1111/joim.13184] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 02/06/2023]
Abstract
Coronavirus disease 2019 (COVID-19) is an ongoing global pandemic affecting all levels of health systems. This includes the care of patients with noncommunicable diseases (NCDs) who bear a disproportionate burden of both COVID-19 itself and the public health measures enacted to combat it. In this review, we summarize major COVID-19-related considerations for NCD patients and their care providers, focusing on cardiovascular, pulmonary, renal, haematologic, oncologic, traumatic, obstetric/gynaecologic, operative, psychiatric, rheumatologic/immunologic, neurologic, gastrointestinal, ophthalmologic and endocrine disorders. Additionally, we offer a general framework for categorizing the pandemic's disruptions by disease-specific factors, direct health system factors and indirect health system factors. We also provide references to major NCD medical specialty professional society statements and guidelines on COVID-19. COVID-19 and its control policies have already resulted in major disruptions to the screening, treatment and surveillance of NCD patients. In addition, it differentially impacts those with pre-existing NCDs and may lead to de novo NCD sequelae. Likely, there will be long-term effects from this pandemic that will continue to affect practitioners and patients in this field for years to come.
Collapse
Affiliation(s)
- Andrew Y. Chang
- From theDivision of Cardiovascular MedicineStanford UniversityStanfordCAUSA
- Department of MedicineStanford UniversityStanfordCAUSA
- Center for Innovation in Global HealthStanford UniversityStanfordCAUSA
| | - Mark R. Cullen
- Department of MedicineStanford UniversityStanfordCAUSA
- Division of Primary Care and Population HealthStanford UniversityStanfordCAUSA
| | | | - Michele Barry
- Department of MedicineStanford UniversityStanfordCAUSA
- Center for Innovation in Global HealthStanford UniversityStanfordCAUSA
| |
Collapse
|
42
|
Queré B, Saraux A, Marhadour T, Jousse-Joulin S, Cornec D, Houssais C, Carvajal Alegria G, Quiviger M, Le Guillou M, Devauchelle-Pensec V, Guellec D. Impact of the COVID-19 pandemic on therapeutic management of rheumatoid arthritis in Brittany (France). Joint Bone Spine 2021; 88:105179. [PMID: 33878606 PMCID: PMC7999690 DOI: 10.1016/j.jbspin.2021.105179] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/12/2021] [Indexed: 11/05/2022]
Affiliation(s)
| | - Alain Saraux
- Rheumatology department, CHU de Brest, University of Brest, Inserm, UMR1227, Lymphocytes B et autoimmunité, University of Brest, Inserm, LabEx IGO, Brest, France
| | | | | | - Divi Cornec
- Rheumatology department, CHU de Brest, University of Brest, Inserm, UMR1227, Lymphocytes B et autoimmunité, Brest, France
| | | | - Guillermo Carvajal Alegria
- Rheumatology department, CHU de Brest, University of Brest, Inserm, UMR1227, Lymphocytes B et autoimmunité, Brest, France
| | | | | | - Valérie Devauchelle-Pensec
- Rheumatology department, CHU de Brest, University of Brest, Inserm, UMR1227, Lymphocytes B et autoimmunité, Brest, France
| | - Dewi Guellec
- Rheumatology department, CHU de Brest, Inserm, CIC 1412, Brest, France.
| |
Collapse
|
43
|
Ng TSB, Leblanc K, Yeung DF, Tsang TSM. Medication use during COVID-19: Review of recent evidence. CANADIAN FAMILY PHYSICIAN MEDECIN DE FAMILLE CANADIEN 2021; 67:171-179. [PMID: 33727376 PMCID: PMC7963004 DOI: 10.46747/cfp.6703171] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE To keep health care providers, in response to the ongoing coronavirus disease 2019 (COVID-19) pandemic, informed about the medications that have been proposed to treat the disease and the evidence supporting their use. QUALITY OF EVIDENCE A narrative review of medications most widely used to treat COVID-19 was conducted, outlining the best available evidence for each pharmacologic treatment to date. Searches were performed in PubMed, EMBASE, and MEDLINE using key words COVID-19 and treatment, as well as related terms. Relevant research studies conducted in human populations and cases specific to patients with COVID-19 were included, as were relevant hand-searched papers and reviews. Only articles in English and Chinese were included. MAIN MESSAGE While current management of patients with COVID-19 largely involves supportive care, without a widely available vaccine, practitioners have also resorted to repurposing medications used for other indications. This has caused considerable controversy, as many of these treatments have limited clinical evidence supporting their use and therefore pose implications for patient safety, drug access, and public health. For instance, medications such as hydroxychloroquine and chloroquine, lopinavir-ritonavir, nonsteroidal anti-inflammatory drugs, angiotensin-converting enzyme inhibitors, and angiotensin receptor blockers gained widespread media attention owing to hype, misinformation, or misinterpretation of research evidence. CONCLUSION Given the severity of the pandemic and the potential broad effects of implementing safe and effective treatment, this article provides a narrative review of the current evidence behind the most widely used medications to treat COVID-19 in order to enable health care practitioners to make informed decisions in the care of patients with this life-threatening disease.
Collapse
Affiliation(s)
- T S Brandon Ng
- Medical student in the Faculty of Medicine at the University of British Columbia in Vancouver
| | - Kori Leblanc
- Assistant Professor in the Leslie Dan Faculty of Pharmacy at the University of Toronto in Ontario
| | - Darwin F Yeung
- Clinical Assistant Professor in the Faculty of Medicine at the University of British Columbia
| | - Teresa S M Tsang
- Director of Echocardiography at Vancouver General Hospital and the UBC Hospital, and Professor of Medicine in the Division of Cardiology and Associate Head of Research for the Department of Medicine at the University of British Columbia.
| |
Collapse
|
44
|
Padilla-Rojas LG, López-Cervantes RE, López-Almejo L, Gutiérrez-Mendoza I, Amadei-Enghelmayer RE, Pesciallo CA, Osma-Rueda JL, Triana-Quijano MA, Santos-Silva JD. Orthopaedic trauma care during the COVID-19 Pandemic: the Latin American perspective. OTA Int 2021; 4:e114. [PMID: 38630063 PMCID: PMC7959869 DOI: 10.1097/oi9.0000000000000114] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/08/2020] [Accepted: 12/11/2020] [Indexed: 11/25/2022]
Abstract
At first glance, the COVID-19 pandemic and the field of orthopaedics and traumatology do not appear to be related. Although orthopaedists are not considered front-line personnel in the fight against the pandemic, the role of the surgeon as part of the overall health care team is crucial. The specialty of orthopaedics and orthopaedic trauma, due to its extraordinary scope, affects individuals of all ages and timely care affects patients' long-term function and quality of life. Therefore, positioning the type and timing of care for musculoskeletal injuries and conditions, while maintaining the safety of the patient and healthcare providers, is essential. This article reviews the initial approaches to orthopaedic trauma care during the COVID-19 pandemic as established by 4 representative countries in Latin America: Mexico, Argentina, Colombia, and Brazil.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jorge Dos Santos-Silva
- Institute of Othopaedics and Traumatology Hospital das Clinicas Faculty of Medicine, University of San Paulo, San Paulo, Brazil
| |
Collapse
|
45
|
Swain SS, Singh SR, Sahoo A, Hussain T, Pati S. Anti-HIV-drug and phyto-flavonoid combination against SARS-CoV-2: a molecular docking-simulation base assessment. J Biomol Struct Dyn 2021; 40:6463-6476. [PMID: 33583350 PMCID: PMC7885723 DOI: 10.1080/07391102.2021.1885495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
At the health emergence, no such potent prophylactic therapy is available to control the deadly emerged Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). However, existing antiviral, anti-inflammatory, antimalarial drugs is the only option against SARS-CoV-2, but it may be harmful to patients without more clinical evidence. As an alternative solution, we proposed a newer hypothesis using the selective 10 potent anti-HIV drugs and flavonoid class of phytochemicals from previous reports to use in combination against SARS-CoV-2. Primarily, 10 anti-HIV protease inhibitor drugs and 10 phyto-flavonoids as ligands in molecular docking study against the putative target, the SARS-CoV-2-main protease (Mpro) ID: 6Y2E), as an essential enzyme in viral genome replication. According to molecular docking and drug-ability scores of each ligand, the anti-HIV drug, the darunavir (with a docking score, −10.25 kcal/mol and drug-likeness rating, 0.60) and the quercetin-3-rhamnoside (with a docking score, −10.90 kcal/mol and drug-likeness rating, 0.82) were selected for further analysis in combined effect. Perceptibly, the combined ‘anti-HIV drug and phyto-flavonoid’ docking complex has actively interacted with eight strong H-bonds with stability, briefly elucidated through RMRD-, RMSF- Rg-plots and MM/PBSA-binding energy calculation during 100 ns than the individual against SARS-CoV-2-Mpro. Thus, the ‘anti-HIV-drug-phyto-flavonoid’ combination therapy could be used against SARS-CoV-2 after some experimental validation. Communicated by Ramaswamy H. Sarma
Collapse
Affiliation(s)
- Shasank S Swain
- Division of Microbiology & NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Satya R Singh
- Centre for Bioinformatics, Pondicherry University, Puducherry, India
| | - Alaka Sahoo
- Department of Skin & VD, Institute of Medical Sciences & SUM Hospital, Siksha 'O' Anusandhan Deemed to be University, Bhubaneswar, Odisha, India
| | - Tahziba Hussain
- Division of Microbiology & NCDs, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| | - Sanghamitra Pati
- Division of Public Health & Research, ICMR-Regional Medical Research Centre, Bhubaneswar, Odisha, India
| |
Collapse
|
46
|
Fratta Pasini AM, Stranieri C, Cominacini L, Mozzini C. Potential Role of Antioxidant and Anti-Inflammatory Therapies to Prevent Severe SARS-Cov-2 Complications. Antioxidants (Basel) 2021; 10:272. [PMID: 33578849 PMCID: PMC7916604 DOI: 10.3390/antiox10020272] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/03/2021] [Accepted: 02/04/2021] [Indexed: 02/06/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel severe acute respiratory syndrome (SARS)-like coronavirus (SARS-CoV-2). Here, we review the molecular pathogenesis of SARS-CoV-2 and its relationship with oxidative stress (OS) and inflammation. Furthermore, we analyze the potential role of antioxidant and anti-inflammatory therapies to prevent severe complications. OS has a potential key role in the COVID-19 pathogenesis by triggering the NOD-like receptor family pyrin domain containing 3 inflammasome and nuclear factor-kB (NF-kB). While exposure to many pro-oxidants usually induces nuclear factor erythroid 2 p45-related factor2 (NRF2) activation and upregulation of antioxidant related elements expression, respiratory viral infections often inhibit NRF2 and/or activate NF-kB pathways, resulting in inflammation and oxidative injury. Hence, the use of radical scavengers like N-acetylcysteine and vitamin C, as well as of steroids and inflammasome inhibitors, has been proposed. The NRF2 pathway has been shown to be suppressed in severe SARS-CoV-2 patients. Pharmacological NRF2 inducers have been reported to inhibit SARS-CoV-2 replication, the inflammatory response, and transmembrane protease serine 2 activation, which for the entry of SARS-CoV-2 into the host cells through the angiotensin converting enzyme 2 receptor. Thus, NRF2 activation may represent a potential path out of the woods in COVID-19 pandemic.
Collapse
Affiliation(s)
- Anna M. Fratta Pasini
- Section of General Medicine and Atherothrombotic and Degenerative Diseases, Department of Medicine, University of Verona, Policlinico G.B. Rossi, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (C.S.); (L.C.); (C.M.)
| | | | | | | |
Collapse
|
47
|
Macciò A, Oppi S, Madeddu C. COVID-19 and cytokine storm syndrome: can what we know about interleukin-6 in ovarian cancer be applied? J Ovarian Res 2021; 14:28. [PMID: 33550983 PMCID: PMC7868172 DOI: 10.1186/s13048-021-00772-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/22/2021] [Indexed: 02/06/2023] Open
Abstract
Improving early diagnosis along with timely and effective treatment of COVID-19 are urgently needed. However, at present, the mechanisms underlying disease spread and development, defined prognosis, and immune status of patients with COVID-19 remain to be determined. Patients with severe disease state exhibit a hyperinflammatory response associated with cytokine storm syndrome, hypercoagulability, and depressed cell-mediated immunity. These clinical manifestations, sharing similar pathogenesis, have been well-studied in patients with advanced ovarian cancer. The present review suggests treatment approaches for COVID-19 based on strategies used against ovarian cancer, which shares similar immunopathology and associated coagulation disorders.The chronicization of the hyperinflammatory cytokine storm in patients with severe COVID-19 highlights a defective resistance phase that leads to aspecific chronic inflammation, associated with oxidative stress, which impairs specific T-cell response, induces tissue and endothelial damage, and thrombosis associated with systemic effects that lead to severe multi-organ failure and death. These events are similar to those observed in advanced ovarian cancer which share similar pathogenesis mediated primarily by Interleukin-6, which is, as well demonstrated in ovarian cancer, the key cytokine driving the immunopathology, related systemic symptoms, and patient prognosis.Consistent with findings in other disease models with similar immunopathology, such as advanced ovarian cancer, treatment of severe COVID-19 infection should target inflammation, oxidative stress, coagulation disorders, and immunodepression to improve patient outcome. Correctly identifying disease stages, based on available laboratory data, and developing a specific protocol for each phase is essential for effective treatment.
Collapse
Affiliation(s)
- Antonio Macciò
- Department of Gynecologic Oncology, Businco Hospital, "Azienda di Rilievo Nazionale ad Alta Specializzazione G. Brotzu", Via Jenner, 09100, Cagliari, Italy.
| | - Sara Oppi
- Hematology and Transplant Center, Businco Hospital, "Azienda di Rilievo Nazionale ad Alta Specializzazione G. Brotzu", Cagliari, Italy
| | - Clelia Madeddu
- Department of Medical Sciences and Public Health, University of Cagliari, Cagliari, Italy
| |
Collapse
|
48
|
Castro da Rocha FA, Melo LDP, Berenbaum F. Tackling osteoarthritis during COVID-19 pandemic. Ann Rheum Dis 2021; 80:151-153. [PMID: 32988837 DOI: 10.1136/annrheumdis-2020-218372] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/02/2020] [Accepted: 09/03/2020] [Indexed: 01/25/2023]
Abstract
In this opinion article, we would like to draw attention to the fact that COVID-19 has a significant impact not only on immune-mediated arthritis but also on osteoarthritis (OA), the most common rheumatic disease. We suggest herein strategies for pain relief and symptom prevention in patients with OA during COVID-19 pandemic.
Collapse
Affiliation(s)
| | - Lucas da Ponte Melo
- Internal Medicine, Faculdade de Medicina da Universidade Federal do Ceara, Fortaleza, Brazil
- Departamento de Ortopedia e Traumatologia, Faculdade de Medicina da Universidade de São Paulo, São Paulo, SP, Brazil
| | - Francis Berenbaum
- Department of Rheumatology, AP-HP Saint-Antoine Hospital, Sorbonne Universite, Paris, Île-de-France, France
| |
Collapse
|
49
|
Arnardottir H, Pawelzik SC, Öhlund Wistbacka U, Artiach G, Hofmann R, Reinholdsson I, Braunschweig F, Tornvall P, Religa D, Bäck M. Stimulating the Resolution of Inflammation Through Omega-3 Polyunsaturated Fatty Acids in COVID-19: Rationale for the COVID-Omega-F Trial. Front Physiol 2021; 11:624657. [PMID: 33505321 PMCID: PMC7830247 DOI: 10.3389/fphys.2020.624657] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causes coronavirus disease 2019 (COVID-19). SARS-CoV-2 triggers an immune response with local inflammation in the lung, which may extend to a systemic hyperinflammatory reaction. Excessive inflammation has been reported in severe cases with respiratory failure and cardiovascular complications. In addition to the release of cytokines, referred to as cytokine release syndrome or "cytokine storm," increased pro-inflammatory lipid mediators derived from the omega-6 polyunsaturated fatty acid (PUFA) arachidonic acid may cause an "eicosanoid storm," which contributes to the uncontrolled systemic inflammation. Specialized pro-resolving mediators, which are derived from omega-3 PUFA, limit inflammatory reactions by an active process called resolution of inflammation. Here, the rationale for omega-3 PUFA supplementation in COVID-19 patients is presented along with a brief overview of the study protocol for the trial "Resolving Inflammatory Storm in COVID-19 Patients by Omega-3 Polyunsaturated Fatty Acids - A single-blind, randomized, placebo-controlled feasibility study" (COVID-Omega-F). EudraCT: 2020-002293-28; clinicaltrials.gov: NCT04647604.
Collapse
Affiliation(s)
- Hildur Arnardottir
- Translational Cardiology, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Sven-Christian Pawelzik
- Translational Cardiology, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | | | - Gonzalo Artiach
- Translational Cardiology, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Robin Hofmann
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| | | | - Frieder Braunschweig
- Department of Cardiology, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| | - Per Tornvall
- Department of Clinical Science and Education, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Södersjukhuset, Stockholm, Sweden
| | - Dorota Religa
- Theme Ageing, Karolinska University Hospital, Stockholm, Sweden
- Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Bäck
- Translational Cardiology, Karolinska Institutet, Stockholm, Sweden
- Department of Cardiology, Theme Heart, Vessels, and Neuro, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
50
|
Zhang Y, Tang LV. Overview of Targets and Potential Drugs of SARS-CoV-2 According to the Viral Replication. J Proteome Res 2021; 20:49-59. [PMID: 33347311 PMCID: PMC7770889 DOI: 10.1021/acs.jproteome.0c00526] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Indexed: 01/18/2023]
Abstract
Since the novel coronavirus pandemic, people around the world have been touched in varying degrees, and this pandemic has raised a major global health concern. As there is no effective drug or vaccine, it is urgent to find therapeutic drugs that can serve to deal with the current epidemic situation in all countries and regions. We searched drugs and response measures for SARS-CoV-2 in the PubMed database, and then updated the potential targets and therapeutic drugs from the perspective of the viral replication cycle. The drug research studies of the viral replication cycle are predominantly focused on the process of the virus entering cells, proteases, and RdRp. The inhibitors of the virus entry to cells and RdRp, such as Arbidol, remdesivir, favipiravir, EIDD-2081, and ribavirin, are in clinical trials, while most of the protease inhibitors are mainly calculated by molecular docking technology, which needs in vivo and in vitro experiments to prove the effect for SARS-CoV-2. This review summarizes the drugs targeting the viral replication process and provides a basis and directions for future drug development and reuse on the protein level of COVID-19.
Collapse
Affiliation(s)
- Yi Zhang
- Institute
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Liang V. Tang
- Institute
of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|