1
|
Deng H, Fu Y, Su L, Chen D, Deng X, Hu B, Chen Y, Deng Y. Unveiling the deep-sea microplastic Odyssey: Characteristics, distribution, and ecological implications in Pacific Ocean sediments. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137537. [PMID: 39952139 DOI: 10.1016/j.jhazmat.2025.137537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 01/15/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
Microplastics (MPs) in deep-sea environments are a growing concern due to their potential ecological risks and the deep sea's role in global biogeochemical cycles. This study investigated the characteristics and distribution of MPs in sediments from the Pacific Ocean at depths of 4900-7016 m across three regions: Western Pacific (WP), Central Pacific (CP), and Eastern Pacific (EP). MPs were detected at all sampling sites, with the highest abundance in WP (111.3 ± 75.1 items/kg dw) and the lowest in CP (49.4 ± 18.7 items/kg dw). Site S9 was recorded as the peak abundance (270.1 ± 107.4 items/kg dw) in WP. MPs were predominantly fibers (94.8 %) in black, gray, and blue hues, mainly composed of polyester and rayon. Statistical analysis showed significant regional variations, reflecting anthropogenic impacts and complex deposition mechanisms. Risk assessments indicated low to medium hazard levels (PLI <10, PRI ≤ III), but the potential ecological impacts remain concerning. This study highlights the significant variability in MP distribution across regions, emphasizing the importance of region-specific mitigation strategies. It calls for comprehensive, long-term research to better understand MP sources, deposition processes, and ecological impacts in deep-sea ecosystems.
Collapse
Affiliation(s)
- Hua Deng
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511458, China
| | - Yutao Fu
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511458, China
| | - Lei Su
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Daohua Chen
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511458, China
| | - Xiguang Deng
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China
| | - Bo Hu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yuye Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Yinan Deng
- Key Laboratory of Marine Mineral Resources, Ministry of Natural Resources, Guangzhou Marine Geological Survey, China Geological Survey, Guangzhou 511458, China; National Engineering Research Center for Gas Hydrate Exploration and Development, Guangzhou 511458, China.
| |
Collapse
|
2
|
Li M, Liu Q, Wang J, Deng L, Yang D, Qian X, Fan Y. Exploring the response of bacterial community functions to microplastic features in lake ecosystems through interpretable machine learning. ENVIRONMENTAL RESEARCH 2025; 271:121098. [PMID: 39938630 DOI: 10.1016/j.envres.2025.121098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/22/2025] [Accepted: 02/09/2025] [Indexed: 02/14/2025]
Abstract
Microplastics (MPs) are ubiquitous and have various characteristics. However, their impacts on bacterial community functions in lakes remain elusive. In this study, we identified 33 different MPs features including their abundance, shape, color, size, and polymer type, from Taihu Lake, China. These features were used to construct 48 machine learning models, utilizing four types of machine learning regression algorithms, to investigate how different MP features influence human health, carbon/nitrogen cycling, and energy source-related functions of bacterial communities. The XGBoost models provided the best performance with an average R2 of 0.85 in explaining the abundance of functions. Yellow-, fragment-, and polyethylene terephthalate (PET) MPs were the most important features by Shapley values. Yellow- and PET-MPs mainly had primarily negative impacts on human pathogens pneumonia and chemoheterotrophy, respectively. Fragment-MPs had a primarily positive impact, which shifted from positive to negative at a proportion of 0.5 for methanol oxidation. Moreover, MPs may affect community structure by filtering for functional traits. These findings are important for understanding the effects of MP pollution on bacterial community function and its role in the global carbon and nitrogen cycling and human health and help us to determine the potential impacts of MP pollution on ecosystems.
Collapse
Affiliation(s)
- Mingjia Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Qi Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Jianjun Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Ligang Deng
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Daojun Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China; Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, China.
| | - Yifan Fan
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China.
| |
Collapse
|
3
|
Malla MA, Nomalihle M, Featherston J, Kumar A, Amoah ID, Ismail A, Bux F, Kumari S. Comprehensive profiling and risk assessment of antibiotic resistomes in surface water and plastisphere by integrated shotgun metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2025; 487:137180. [PMID: 39847933 DOI: 10.1016/j.jhazmat.2025.137180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/20/2024] [Accepted: 01/09/2025] [Indexed: 01/25/2025]
Abstract
The ever-increasing microplastics (MPs) and antibiotic-resistance genes (ARGs) in aquatic ecosystems has become a serious global challenging issue. However, the impact of different pollution sources on microbiome and antibiotic resistome in surface water (SW) and plastisphere (PS) remains largely elusive. Here, shotgun metagenomics was used to analyze microbiome structure and antibiotic resistome in SW and PS under the influence of different pollution sources. Pseudomonas were the most abundant genus, followed by Flavobacterium, Acinetobacter, Acidovorax, and Limnohabitans. However, their relative abundance varied significantly both across the sampling sites and habitats i.e. SW and PS (p < 0.05). Additionally, various ARGs were detected in SW and PS, with PS (372) having significantly more potential ARGs than SW (293). The results further showed significant variations in the relative abundance of potential pathogenic bacteria across the sampling sites and habitats (p < 0.05). Further moreover, significant differences were observed in antibiotic resistome risk scores, ARGs and MGEs across different habitats. Over all, this study suggests that pollution source and water quality parameters had a significant impact on microbiome composition and antibiotic resistome in SW and PS.
Collapse
Affiliation(s)
- Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Malambule Nomalihle
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Jonathan Featherston
- Sequencing Core Facility, National Institute for Communicable Diseases Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Arvind Kumar
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Isaac D Amoah
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa; Department of Environmental Science, The University of Arizona, Shantz Building Rm10 4291177 E 4th St., Tucson, AZ 85721, USA
| | - Arshad Ismail
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa; Sequencing Core Facility, National Institute for Communicable Diseases Division of the National Health Laboratory Service, Johannesburg 2131, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, P.O. Box 1334, Durban 4001, South Africa.
| |
Collapse
|
4
|
Vered G, Nordland O, Gozlan I, Shenkar N. Occurrence of plastic additives in coral-reef invertebrates on natural and plastic substrates. MARINE POLLUTION BULLETIN 2024; 208:116935. [PMID: 39278179 DOI: 10.1016/j.marpolbul.2024.116935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/28/2024] [Accepted: 09/02/2024] [Indexed: 09/18/2024]
Abstract
Numerous studies have investigated the occurrence of plastic additives in marine biota. Yet, their main vector of transfer into organisms tissues remains unknown. We explored seven common additives in benthic coral reef invertebrates residing on natural/plastic substrates in a protected marine reserve versus an unprotected reef to ascertain whether additives transfer by substrate leaching. Samples of three coral-reef species were extracted and analyzed by GCMS and HPLC. Of the seven chemical additives investigated, dibenzylamine and bis(2-ethylhexyl) phthalate were detected. No significant association was found between additives and substrate type, possibly because these plastics have been submerged for years, and the majority of additives within them have leached. The marine reserve had fewer samples with additives, highlighting the importance of active management. Understanding the transfer vectors of plastic additives into biota is essential for assessing the risk they pose and devising effective management tools for protecting coral reefs.
Collapse
Affiliation(s)
- Gal Vered
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Interuniversity Institute for Marine Sciences (IUI), Eilat, Israel.
| | - Olivia Nordland
- The Water Research Center, School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Igal Gozlan
- The Water Research Center, School of Environment and Earth Sciences, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Noa Shenkar
- School of Zoology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; The Steinhardt Museum of Natural History, Israel National Center for Biodiversity Studies, Tel-Aviv University, Tel Aviv, Israel.
| |
Collapse
|
5
|
Zheng M, Li Y, Dong W, Zhang Q, Wang W. Regioselective enzymatic depolymerization of aromatic-aliphatic polyester revealed by computational modelling. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134797. [PMID: 38865921 DOI: 10.1016/j.jhazmat.2024.134797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/25/2024] [Accepted: 06/01/2024] [Indexed: 06/14/2024]
Abstract
Poly(butylene adipate-co-terephthalate) (PBAT) is widely utilized in the production of food packaging and mulch films. Its extensive application has contributed significantly to global solid waste, posing numerous environmental challenges. Recently, enzymatic recycling has emerged as a promising eco-friendly solution for the management of plastic waste. Here, we systematically investigate the depolymerization mechanism of PBAT catalyzed by cutinase TfCutSI with molecular docking, molecular dynamics simulations, and quantum mechanics/molecular mechanics calculations. Although the binding affinities for acid ester and terephthalic acid ester bonds are similar, a regioselective depolymerization mechanism and a "chain-length" effect on regioselectivity were proposed and evidenced. The regioselectivity is highly associated with specific structural parameters, namely Substrate@O4-Met@H7 and Substrate@C1-Ser@O1 distances. Notably, the binding mode of BTa captured by X-ray crystallography does not facilitate subsequent depolymerization. Instead, a previously unanticipated binding mode, predicted through computational analysis, is confirmed to play a crucial role in BTa depolymerization. This finding proves the critical role of computational modelling in refining experimental results. Furthermore, our results revealed that both the hydrogen bond network and enzyme's intrinsic electric field are instrumental in the formation of the final product. In summary, these novel molecular insights into the PBAT depolymerization mechanism offer a fundamental basis for enzyme engineering to enhance industrial plastic recycling.
Collapse
Affiliation(s)
- Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, PR China.
| | - Weiliang Dong
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, PR China
| |
Collapse
|
6
|
Perez-Garcia P, Chow J, Costanzi E, Gurschke M, Dittrich J, Dierkes RF, Molitor R, Applegate V, Feuerriegel G, Tete P, Danso D, Thies S, Schumacher J, Pfleger C, Jaeger KE, Gohlke H, Smits SHJ, Schmitz RA, Streit WR. An archaeal lid-containing feruloyl esterase degrades polyethylene terephthalate. Commun Chem 2023; 6:193. [PMID: 37697032 PMCID: PMC10495362 DOI: 10.1038/s42004-023-00998-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 08/31/2023] [Indexed: 09/13/2023] Open
Abstract
Polyethylene terephthalate (PET) is a commodity polymer known to globally contaminate marine and terrestrial environments. Today, around 80 bacterial and fungal PET-active enzymes (PETases) are known, originating from four bacterial and two fungal phyla. In contrast, no archaeal enzyme had been identified to degrade PET. Here we report on the structural and biochemical characterization of PET46 (RLI42440.1), an archaeal promiscuous feruloyl esterase exhibiting degradation activity on semi-crystalline PET powder comparable to IsPETase and LCC (wildtypes), and higher activity on bis-, and mono-(2-hydroxyethyl) terephthalate (BHET and MHET). The enzyme, found by a sequence-based metagenome search, is derived from a non-cultivated, deep-sea Candidatus Bathyarchaeota archaeon. Biochemical characterization demonstrated that PET46 is a promiscuous, heat-adapted hydrolase. Its crystal structure was solved at a resolution of 1.71 Å. It shares the core alpha/beta-hydrolase fold with bacterial PETases, but contains a unique lid common in feruloyl esterases, which is involved in substrate binding. Thus, our study widens the currently known diversity of PET-hydrolyzing enzymes, by demonstrating PET depolymerization by a plant cell wall-degrading esterase.
Collapse
Affiliation(s)
- Pablo Perez-Garcia
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Jennifer Chow
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Elisa Costanzi
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Marno Gurschke
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Jonas Dittrich
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Robert F Dierkes
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Rebecka Molitor
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Violetta Applegate
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Golo Feuerriegel
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Prince Tete
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Dominik Danso
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany
| | - Stephan Thies
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Jülich, Germany
| | - Julia Schumacher
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Christopher Pfleger
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Karl-Erich Jaeger
- Institute of Molecular Enzyme Technology (IMET), Heinrich Heine University Düsseldorf, Jülich, Germany
- Institute of Bio- and Geosciences IBG-1: Biotechnology, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Holger Gohlke
- Institute for Pharmaceutical and Medicinal Chemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Bio- and Geosciences (IBG-4: Bioinformatics), Forschungszentrum Jülich, Jülich, Germany
| | - Sander H J Smits
- Center for Structural Studies (CSS), Heinrich Heine University Düsseldorf, Düsseldorf, Germany
- Institute for Biochemistry, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Ruth A Schmitz
- Institute for General Microbiology, Christian-Albrechts-Universität zu Kiel, Kiel, Germany.
| | - Wolfgang R Streit
- Department of Microbiology and Biotechnology, University of Hamburg, Hamburg, Germany.
| |
Collapse
|
7
|
Lyu L, Zhang S. Chlorinated Paraffin Pollution in the Marine Environment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11687-11703. [PMID: 37503949 DOI: 10.1021/acs.est.3c02316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Chlorinated paraffins (CPs) are ubiquitous in the environment due to their large-scale usage, persistence, and long-range atmospheric transport. The oceans are a critical environment where CPs transformation occurs. However, the broad impacts of CPs on the marine environment remain unclear. This review describes the sources, occurrence and transport pathways, environmental processes, and ecological effects of CPs in the marine environment. CPs are distributed in the global marine environment by riverine input, ocean currents, and long-range atmospheric transport from industrial areas. Environmental processes, such as the deposition of particle-bound compounds, leaching of plastics, and microbial degradation of CPs, are the critical drivers for regulating CPs' fate in water columns or sediment. Bioaccumulation and trophic transfer of CPs in marine food webs may threaten marine ecosystem functions. To elucidate the biogeochemical processes and environmental impacts of CPs in marine environments, future work should clarify the burden and transformation process of CPs and reveal their ecological effects. The results would help readers clarify the current research status and future research directions of CPs in the marine environment and provide the scientific basis and theoretical foundations for the government to assess marine ecological risks of CPs and to make policies for pollution prevention and control.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 Xingangxi Road, Guangzhou 510301, Guangdong, China
| | - Si Zhang
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, 164 Xingangxi Road, Guangzhou 510301, Guangdong, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, Guangdong, China
| |
Collapse
|
8
|
Zhang ZA, Qin X, Zhang Y. Using Data-Driven Methods and Aging Information to Quantitatively Identify Microplastic Environmental Sources and Establish a Comprehensive Discrimination Index. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37465930 DOI: 10.1021/acs.est.3c03048] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2023]
Abstract
The global distribution of microplastics (MPs) across various environmental compartments has garnered significant attention. However, the differences in the characteristics of MPs in different environments remain unclear, and there is still a lack of quantitative analysis of their environmental sources. In addition, the inclusion of aging in source apportionment is a novel approach that has not been widely explored. In this study, we conducted a meta-analysis of the literature from the past 10 years and extracted conventional and aging characteristic data of MPs from 321 sampling points across 7 environmental compartments worldwide. We established a data-driven analysis framework using these data sets to identify different MP communities across environmental compartments, screen key MP features, and develop an environmental source analysis model for MPs. Our results indicate significant differences in the characteristics of MP communities across environments. The key features of differentiation were identified using the LEfSe method and include the carbonyl index, hydroxyl index, fouling index, proportions of polypropylene, white, black/gray, and film/sheet. These features were screened for each environmental compartment. An environmental source identification model was established based on these features with an accuracy of 75.1%. In order to accurately represent the single/multisource case in a more probabilistic manner, we proposed the MP environmental source index (MESI) to provide a probability estimation of the sample having multiple sources. Our findings contribute to a better understanding of MP migration trends and fluxes in the plastic cycle and inform effective prevention and control strategies for MP pollution.
Collapse
Affiliation(s)
- Zhan-Ao Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xinran Qin
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
9
|
Zheng Y, Hamed M, De-la-Torre GE, Frias J, Jong MC, Kolandhasamy P, Chavanich S, Su L, Deng H, Zhao W, Shi H. Holes on surfaces of the weathered plastic fragments from coastal beaches. MARINE POLLUTION BULLETIN 2023; 193:115180. [PMID: 37352798 DOI: 10.1016/j.marpolbul.2023.115180] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/25/2023]
Abstract
The surface morphology of weathered plastics undergoes a variety of changes. In this study, 3950 plastic fragments from 26 beaches around the world, were assessed to identify holes. Holes were identified on 123 fragments on 20 beaches, with the highest frequency (10.3 %) being identified at Qesm AL Gomrok Beach in Egypt. The distribution of holes could be divided into even, single-sided, and random types. The external and internal holes were similar in size (37 ± 15 μm) of even type fragments. The external holes were larger than the internal holes in single-sided (516 ± 259 μm and 383 ± 161 μm) and random (588 ± 262 μm and 454 ± 210 μm) fragment types. The external hole sizes were positively correlated with the internal hole sizes for each type. This study reports a novel deformation phenomenon on the surface of weathered plastics and highlights their potential effects on plastics.
Collapse
Affiliation(s)
- Yifan Zheng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Mohamed Hamed
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China; Department of Zoology, Faculty of Science, Al-Azhar University (Assiut Branch), Assiut 71524, Egypt
| | - Gabriel Enrique De-la-Torre
- Grupo de Investigación de Biodiversidad, Medio Ambiente y Sociedad, Universidad San Ignacio de Loyola, Lima, Peru
| | - João Frias
- Marine and Freshwater Research Centre (MFRC), Atlantic Technological University (ATU), Galway Campus, Dublin Road, Galway H91 T8NW, Ireland
| | - Mui-Choo Jong
- Institute of Environment and Ecology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Prabhu Kolandhasamy
- Departmet of Marine Science, School of Marine Sciences, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620024, India
| | - Suchana Chavanich
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hua Deng
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Wenjun Zhao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
10
|
Liu X, Liang C, Fan J, Zhou M, Chang Z, Li L. Polyvinyl chloride microplastics induce changes in gene expression and organ histology along the HPG axis in Cyprinus carpio var. larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 258:106483. [PMID: 37023657 DOI: 10.1016/j.aquatox.2023.106483] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
The negative consequences of microplastics pollution on the health of aquatic species have garnered extensive attention. However, the mechanisms through which microplastics may cause harm in the reproductive processes of fish remain unknown. For this study, Cyprinus carpio var. was subjected to four treatments with various concentrations of PVC microplastics for 60 days, through food rationed diets (no plastic control, 10%, 20% and 30%). The gonadosomatic indices, gonad and brain histologies, sex hormone levels, and transcriptional and translational genes in the hypothalamic-pituitary-gonadal (HPG) axes of both sexes were observed. According to the results, the gonadosomatic indices were significantly decreased, gonadal development was delayed, and the level of estradiol (E2) in the females was significantly elevated. In addition, the expression levels of genes associated with the HPG axis in the brains and gonads (gnrh, gtha1, fshβ, cyp19b, erα, vtg1, dmrt1, sox9b, and cyp19a) and the transcription levels of apoptosis-related genes in the brains and gonads (caspase3, bax, and bcl-2) exhibited significant changes. Further investigation revealed that the translation levels of genes linked to sex differentiation and sex steroid hormone (cyp19b and dmrt1) were significantly altered. These findings indicated that PVC likely microplastics may have a negative impact on the reproductive system of Cyprinus carpio var. by inhibiting gonadal development, affecting the gonad and brain structures, and altering the levels of steroid hormones and the expression of HPG axis-related genes. This work provides new insights into the toxicity of microplastics in aquatic organisms by revealing that PVC microplastics are a potential threat against the reproduction of fish populations.
Collapse
Affiliation(s)
- Xinya Liu
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, China
| | - Chaonan Liang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, China
| | - Jiaiq Fan
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, China
| | - Miao Zhou
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, China
| | - Zhongjie Chang
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, China
| | - Li Li
- Molecular and Genetic Laboratory, College of Life Science, Henan Normal University, 46# East of Construction Road, Xinxiang, 453007, Henan, China.
| |
Collapse
|
11
|
Feng J, Li C, Tang L, Wu X, Wang Y, Yang Z, Yuan W, Sun L, Hu W, Zhang S. Tracing the Century-Long Evolution of Microplastics Deposition in a Cold Seep. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206120. [PMID: 36737848 PMCID: PMC10074074 DOI: 10.1002/advs.202206120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Microplastic (MP) pollution is one of the greatest threats to marine ecosystems. Cold seeps are characterized by methane-rich fluid seepage fueling one of the richest ecosystems on the seafloor, and there are approximately more than 900 cold seeps globally. While the long-term evolution of MPs in cold seeps remains unclear. Here, how MPs have been deposited in the Haima cold seep since the invention of plastics is demonstrated. It is found that the burial rates of MPs in the non-seepage areas significantly increased since the massive global use of plastics in the 1930s, nevertheless, the burial rates and abundance of MPs in the methane seepage areas are much lower than the non-seepage area of the cold seep, suggesting the degradation potential of MPs in cold seeps. More MP-degrading microorganism populations and functional genes are discovered in methane seepage areas to support this discovery. It is further investigated that the upwelling fluid seepage facilitated the fragmentation and degradation behaviors of MPs. Risk assessment indicated that long-term transport and transformation of MPs in the deeper sediments can reduce the potential environmental and ecological risks. The findings illuminated the need to determine fundamental strategies for sustainable marine plastic pollution mitigation in the natural deep-sea environments.
Collapse
Affiliation(s)
- Jing‐Chun Feng
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Can‐Rong Li
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Li Tang
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Xiao‐Nan Wu
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Yi Wang
- Key Laboratory of Gas HydrateGuangzhou Institute of Energy ConversionChinese Academy of SciencesGuangzhou510640P. R. China
- Guangzhou Center for Gas Hydrate ResearchChinese Academy of SciencesGuangzhou510640P. R. China
| | - Zhifeng Yang
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Weiyu Yuan
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Liwei Sun
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Weiqiang Hu
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for WatershedsInstitute of Environmental and Ecological EngineeringGuangdong University of TechnologyGuangzhou510006China
| | - Si Zhang
- School of EcologyEnvironment and ResourcesGuangdong University of TechnologyGuangzhou510006P. R. China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)Guangzhou511458P. R. China
- South China Sea Institute of OceanologyChinese Academy of SciencesGuangzhou510301P. R. China
| |
Collapse
|
12
|
Zhang J, Zhang Q, Maa JPY, Shen X, Liang J, Yu L, Ge L, Wang G. Effects of organic matter on interaction forces between polystyrene microplastics: An experimental study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157186. [PMID: 35809726 DOI: 10.1016/j.scitotenv.2022.157186] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/01/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
The aggregation and deposition processes of marine microplastics are extremely important in marine ecosystems. The main effect of these two physical processes is the transfer of surface microplastics to the deep sea, and the underlying kinetics can be significantly affected by the organic matter in the ocean. The morphology of and interaction force on 20-μm polystyrene microplastics in the presence of organic matter were studied by using environmental scanning electron microscopy (ESEM) and atomic force microscopy (AFM), respectively. Experiments were performed using organic matter of various concentrations, and the results showed that humic acid formed a translucent organic film around polystyrene microplastics. With increasing total organic content (TOC), the average overall size of the microplastic coated with biofilm increased up to 11 % (at a TOC of 50 mg/L) and then decreased slightly. The biofilm formed by humic acid decreases the repulsion force between two particles and thus could promote the aggregation process significantly. A modified formulation of eXtended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, describing the interaction force of microplastics with the influences of biofilms was proposed based on the measured results.
Collapse
Affiliation(s)
- Jinfeng Zhang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety Tianjin University, Tianjin 300072, China.
| | - Qinghe Zhang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety Tianjin University, Tianjin 300072, China
| | - Jerome P-Y Maa
- Department of Physical Sciences, Virginia Institute of Marine Science, School of Marine Science, College of William and Mary, Gloucester Point, VA 23062, USA
| | - Xiaoteng Shen
- State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Hohai University, Nanjing 210024, China
| | - Jiaxiong Liang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety Tianjin University, Tianjin 300072, China
| | - Lixin Yu
- State Key Laboratory of Hydraulic Engineering Simulation and Safety Tianjin University, Tianjin 300072, China
| | - Lin Ge
- NT-MDT Spectrum Instrument, China office, Beijing 100031, China
| | - Guangyao Wang
- State Key Laboratory of Hydraulic Engineering Simulation and Safety Tianjin University, Tianjin 300072, China
| |
Collapse
|
13
|
Song X, Zhuang W, Cui H, Liu M, Gao T, Li A, Gao Z. Interactions of microplastics with organic, inorganic and bio-pollutants and the ecotoxicological effects on terrestrial and aquatic organisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156068. [PMID: 35598660 DOI: 10.1016/j.scitotenv.2022.156068] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/16/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
As emerging contaminants, microplastics (MPs) have attracted global attention. They are a potential risk to organisms, ecosystems and human health. MPs are characterized by small particle sizes, weak photodegradability, and are good environmental carriers. They can physically adsorb or chemically react with organic, inorganic and bio-pollutants to generate complex binary pollutants or change the environmental behaviors of these pollutants. We systematically reviewed the following aspects of MPs: (i) Adsorption of heavy metals and organic pollutants by MPs and the key environmental factors affecting adsorption behaviors; (ii) Enrichment and release of antibiotic resistance genes (ARGs) on MPs and the effects of MPs on ARG migration in the environment; (iii) Formation of "plastisphere" and interactions between MPs and microorganisms; (iv) Ecotoxicological effects of MPs and their co-exposures with other pollutants. Finally, scientific knowledge gaps and future research areas on MPs are summarized, including standardization of study methodologies, ecological effects and human health risks of MPs and their combination with other pollutants.
Collapse
Affiliation(s)
- Xiaocheng Song
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Wen Zhuang
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China; Pilot National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China.
| | - Huizhen Cui
- Public (Innovation) Center of Experimental Teaching, Shandong University, Qingdao, Shandong 266237, China
| | - Min Liu
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Teng Gao
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Ao Li
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| | - Zhenhui Gao
- Institute of Eco-environmental Forensics, Shandong University, Qingdao, Shandong 266237, China; Qingdao Institute of Humanities and Social Sciences, Shandong University, Qingdao, Shandong 266237, China
| |
Collapse
|
14
|
Single-particle analysis of micro/nanoplastics by SEM-Raman technique. Talanta 2022; 249:123701. [PMID: 35751923 DOI: 10.1016/j.talanta.2022.123701] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/22/2022]
Abstract
Micro/nanoplastics (MNPs) have received global concern due to their widespread contamination, ingestion in organisms, and the ability to cross the biological barrier. Although MNPs have been detected in a variety of ecosystems, the identification of single MNPs remains an unsolved challenge. Herein, for the first time, scanning electron microscope (SEM) coupled with surface-enhanced Raman spectroscopy (SERS), which combined the advantages of ultrahigh spatial resolution of SEM and structural fingerprint of Raman spectroscopy, was proposed to identify MNPs at single-particle level. Under the optimum conditions, the polystyrene (PS) MNPs with sizes of 500 nm and 1 μm were identified by the image of SEM and fingerprint peaks of Raman spectroscopy. Additionally, the applicability of the method in different sample matrices and for other types of MNPs such as poly-methyl methacrylate (PMMA) with the sizes of 300 nm, 1 μm were validated. This method is simple, rapid and effective and is likely to provide an essential tool to identify other micro/nanoparticles in addition to MNPs.
Collapse
|
15
|
Wu X, Liu Z, Li M, Bartlam M, Wang Y. Integrated metagenomic and metatranscriptomic analysis reveals actively expressed antibiotic resistomes in the plastisphere. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128418. [PMID: 35144012 DOI: 10.1016/j.jhazmat.2022.128418] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 01/03/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
The plastisphere is viewed as a reservoir for the antibiotic resistome in water environments and may pose health concerns. However, the expression profiles of the resistome in the plastisphere are largely unknown. Here, we profiled the occurrence, abundance, and transcriptional level of antibiotic resistance genes (ARGs), plasmid associated ARGs, microbial composition and ARG bacterial hosts in the plastisphere and urban river water using 16S rRNA gene sequencing, metagenomic sequencing, and metatranscriptomic sequencing methods. A total of 173 ARGs conferring resistance to 24 major classes of antibiotics commonly prescribed to humans and animals were detected in the plastisphere. Of these, 75 genes were observed with transcriptional activity, indicating that the antibiotic resistome in the plastisphere was not only present, but also actively expressed. Human pathogens belonging to family Enterobacteriaceae were identified as bacterial hosts of ARGs in the plastisphere. The opportunistic and multidrug resistant human pathogen Enterobacter cloacae was found to actively express tetG and confer tetracycline resistance to the plastisphere. Furthermore, 39 genes were identified as "plasmid associated ARGs" in the plastisphere, displaying a higher proportion of transcript abundance compared with water. The above results suggest that the plastisphere is a hotspot for antibiotic resistome acquisition, expression, and dissemination.
Collapse
Affiliation(s)
- Xiaojian Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China
| | - Zongbao Liu
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Meng Li
- Institute for Advanced Study, Shenzhen University, Shenzhen 518060, China
| | - Mark Bartlam
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300071, China.
| | - Yingying Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai International Advanced Research Institute (Shenzhen Futian), Nankai University, Tianjin 300350, China.
| |
Collapse
|
16
|
Genomic Evidence for the Recycling of Complex Organic Carbon by Novel
Thermoplasmatota
Clades in Deep-Sea Sediments. mSystems 2022; 7:e0007722. [PMID: 35430893 PMCID: PMC9239135 DOI: 10.1128/msystems.00077-22] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Thermoplasmatota have been widely reported in a variety of ecosystems, but their distribution and ecological role in marine sediments are still elusive. Here, we obtained four draft genomes affiliated with the former RBG-16-68-12 clade, which is now considered a new order, “Candidatus Yaplasmales,” of the Thermoplasmatota phylum in sediments from the South China Sea. The phylogenetic trees based on the 16S rRNA genes and draft genomes showed that “Ca. Yaplasmales” archaea are composed of three clades: A, B, and C. Among them, clades A and B are abundantly distributed (up to 10.86%) in the marine anoxic sediment layers (>10-cm depth) of six of eight cores from 1,200- to 3,400-m depths. Metabolic pathway reconstructions indicated that all clades of “Ca. Yaplasmales” have the capacity for alkane degradation by predicted alkyl-succinate synthase. Clade A of “Ca. Yaplasmales” might be mixotrophic microorganisms for the identification of the complete Wood-Ljungdahl pathway and putative genes involved in the degradation of aromatic and halogenated organic compounds. Clades B and C were likely heterotrophic, especially with the potential capacity of the spermidine/putrescine and aromatic compound degradation, as suggested by a significant negative correlation between the concentrations of aromatic compounds and the relative abundances of clade B. The sulfide-quinone oxidoreductase and pyrophosphate-energized membrane proton pump were encoded by all genomes of “Ca. Yaplasmales,” serving as adaptive strategies for energy production. These findings suggest that “Ca. Yaplasmales” might synergistically transform benthic pollutant and detrital organic matter, possibly playing a vital role in the marine and terrestrial sedimentary carbon cycle. IMPORTANCE Deep oceans receive large amounts of complex organic carbon and anthropogenic pollutants. The deep-sea sediments of the continental slopes serve as the biggest carbon sink on Earth. Particulate organic carbons and detrital proteins accumulate in the sediment. The microbially mediated recycling of complex organic carbon is still largely unknown, which is an important question for carbon budget in global oceans and maintenance of the deep-sea ecosystem. In this study, we report the prevalence (up to 10.86% of the microbial community) of archaea from a novel order of Thermoplasmatota, “Ca. Yaplasmales,” in six of eight cores from 1,200- to 3,400-m depths in the South China Sea. We provide genomic evidence of “Ca. Yaplasmales” in the anaerobic microbial degradation of alkanes, aliphatic and monoaromatic hydrocarbons, and halogenated organic compounds. Our study identifies the key archaeal players in anoxic marine sediments, which are probably critical in recycling the complex organic carbon in global oceans.
Collapse
|
17
|
Han Y, Shi W, Tang Y, Zhou W, Sun H, Zhang J, Yan M, Hu L, Liu G. Microplastics and bisphenol A hamper gonadal development of whiteleg shrimp (Litopenaeus vannamei) by interfering with metabolism and disrupting hormone regulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152354. [PMID: 34914981 DOI: 10.1016/j.scitotenv.2021.152354] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/08/2021] [Accepted: 12/08/2021] [Indexed: 06/14/2023]
Abstract
Gonadal development is a prerequisite for the reproductive success of an organism, and might be affected by environmental factors such as emergent pollutants. Although marine crustaceans are threatened by ubiquitous emergent pollutants such as microplastics (MPs) and bisphenol A (BPA) under realistic scenarios, studies about the impacts of these pollutants on the gonadal development of crustacean species are rare. In this study, the effects of MPs and BPA, alone or in combination, on gonadal development were investigated in whiteleg shrimp (Litopenaeus vannamei). The results obtained demonstrated that whiteleg shrimp exposed to MPs and BPA had significantly smaller gonad-somatic index (GSI) and an obvious delay in the gonad developmental stage. In addition, exposure of whiteleg shrimp to pollutants tested resulted in a reduction in the oxygen consumption rate, elevation in the ammonia excretion rate, decline in the O: N ratio, and downregulation in the expression of metabolism-related genes, indicating significant disruptions of shrimp metabolism by the pollutants. Furthermore, in addition to a few exceptions, both the in vivo contents of gonadal development-related hormones (GIH and MIH) and the expression of genes encoding regulatory hormones (GIH, MIH, and CHH) were upregulated by the exposure of whiteleg shrimp to the pollutants investigated, suggesting a significant obstruction of endocrine regulation. Moreover, MP-BPA coexposure was shown to be more toxic to whiteleg shrimp than the corresponding single exposures and significantly greater amount of BPA accumulated in the gonads (both testis and ovaries) of shrimp with the coexistence of MPs, which may be caused by the Trojan horse effect and summation of the toxic impacts on common targets. In general, the data obtained in this study demonstrated that MPs and BPA at environmentally realistic concentrations significantly inhibited the gonadal development of whiteleg shrimp probably by interfering with metabolism and disrupting endocrine regulation.
Collapse
Affiliation(s)
- Yu Han
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Wei Shi
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yu Tang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weishang Zhou
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Hongxiang Sun
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiongming Zhang
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Maocang Yan
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Lihua Hu
- Zhejiang Key Laboratory of Exploitation and Preservation of Coastal Bio-resource, Zhejiang Mariculture Research Institute, Wenzhou 325005, China; Wenzhou Key Laboratory of Marine Biological Genetics and Breeding, Zhejiang Mariculture Research Institute, Wenzhou 325005, China
| | - Guangxu Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
18
|
Zheng M, Li Y, Dong W, Feng S, Zhang Q, Wang W. Computational biotransformation of polyethylene terephthalate by depolymerase: A QM/MM approach. JOURNAL OF HAZARDOUS MATERIALS 2022; 423:127017. [PMID: 34464862 DOI: 10.1016/j.jhazmat.2021.127017] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 06/13/2023]
Abstract
Despite increasing environmental concerns on ever-lasting Polyethylene Terephthalate (PET), its global production is continuously growing. Effective strategies that can completely remove PET from environment are urgently desired. Here biotransformation processes of PET by one of the most effective enzymes, leaf-branch compost cutinase (LCC), were systematically explored with Molecular Dynamics and Quantum Mechanics/Molecular Mechanics approaches. We found that four concerted steps are required to complete the whole catalytic cycle. The last concerted step, deacylation, was determined as the rate-determining step with Boltzmann-weighted average barrier of 13.6 kcal/mol and arithmetic average of 16.1 ± 2.9 kcal/mol. Interestingly, unprecedented fluctuations of hydrogen bond length during LCC catalyzed transformation process toward PET were found. This fluctuation was also observed in enzyme IsPETase, indicating that it may widely exist in other catalytic triad (Ser-His-Asp) containing enzymes as well. In addition, possible features (bond, angle, dihedral angle and charge) that influence the catalytic reaction were identified and correlations between activation energies and key features were established. Our results present new insights into catalytic mechanism of hydrolases and shed light on the efficient recycling of the ever-lasting PET.
Collapse
Affiliation(s)
- Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao Campus, 266237, PR China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao Campus, 266237, PR China.
| | - Weiliang Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Shanshan Feng
- Environment Research Institute, Shandong University, Qingdao Campus, 266237, PR China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao Campus, 266237, PR China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao Campus, 266237, PR China
| |
Collapse
|
19
|
Li R, Zhu L, Yang K, Li H, Zhu YG, Cui L. Impact of Urbanization on Antibiotic Resistome in Different Microplastics: Evidence from a Large-Scale Whole River Analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8760-8770. [PMID: 34132095 DOI: 10.1021/acs.est.1c01395] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Microplastics (MPs) are becoming ubiquitous in environments and viewed as carriers of antibiotic resistance genes (ARGs). Rivers connecting differently urbanized areas contribute a significant input of MPs and ARGs to the environment. However, a systematic study assessing the role of urbanization in shaping antibiotic resistome and mobilome in riverine MPs is lacking. Here, we conducted a large-scale study by placing five types of MPs (polyethylene, polypropylene, polystyrene, polyethylene-fiber, and polyethylene-fiber-polyethylene) into Beilun River with an urbanization gradient. A total of 314 ARGs and 57 mobile genetic elements (MGEs) were detected in MPs by high-throughput quantitative polymerase chain reaction (PCR). The ARGs in MPs showed a clear spatial distribution with the abundance increased by 2 orders of magnitude from rural to urban regions. A holistic analysis of 13 socioeconomic and environmental factors identified that urbanization predominantly contributed to both the abundance and potential MGE-mediated dissemination of ARGs in riverine MPs. Notably, MPs types were found to significantly affect the resistome and dissemination risk of ARGs, with polypropylene being the preferred substrates to acquire and spread ARGs. This work highlights the necessity of controlling MPs and ARGs pollution in urban areas and provides an important guide for the future usage and disposal of plastics.
Collapse
Affiliation(s)
- Ruilong Li
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- School of Marine Science, Guangxi University, Nanning 530004, China
| | - Longji Zhu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Kai Yang
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Hongzhe Li
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Li Cui
- Key Laboratory of Urban Environment and Health, Fujian Key Laboratory of Watershed Ecology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
20
|
Abstract
Research shifts from ecotoxicology to ecosystem effects and Earth system feedbacks
Collapse
Affiliation(s)
| | - Anika Lehmann
- Institute of Biology, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|