1
|
Zhao Q, Xu J, Shi Z, Zhang Y, Du X, Zhai Y, Xu J, Liu F, Zhang Q. Genome-wide Pleiotropy Analysis Reveals Shared Genetic Associations between Type 2 Diabetes Mellitus and Subcortical Brain Volumes. RESEARCH (WASHINGTON, D.C.) 2025; 8:0688. [PMID: 40330659 PMCID: PMC12053431 DOI: 10.34133/research.0688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/31/2025] [Accepted: 04/07/2025] [Indexed: 05/08/2025]
Abstract
Type 2 diabetes mellitus (T2DM), a prevalent metabolic disorder marked by insulin resistance and hyperglycemia, has been linked to volumetric changes in subcortical regions, yet the genetic basis of this relationship remains unclear. We analyzed genome-wide association study summary data for T2DM and 14 subcortical volumetric traits, using MiXeR to quantify shared genetic architecture and applying conditional/conjunctional false discovery rate analyses to detect novel and shared genomic loci. Enrichment and gene expression analyses were subsequently performed to explore the biological functions and mechanisms of genes associated with these loci. We observed a substantial proportion of trait-influencing variants shared between T2DM and subcortical structures, with Dice coefficients ranging from 22.4% to 49.6%. Additionally, 70 distinct loci were identified as being jointly associated with T2DM and subcortical volumes, 5 and 22 of which were novel for T2DM and subcortical volumes, respectively. The 769 protein-coding genes mapped to these shared loci are enriched in metabolic and neurodevelopmental pathways and exhibit specific developmental trajectories, with 117 genes showing expression levels linked to both T2DM and subcortical structures. This study uncovered polygenic overlap between T2DM and subcortical structures, deepening our comprehension of the genetic factors linking metabolic disorders and brain health.
Collapse
Affiliation(s)
| | | | | | - Yang Zhang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Xin Du
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ying Zhai
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinglei Xu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Feng Liu
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology,
Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Quan Zhang
- Department of Radiology, Tianjin Key Lab of Functional Imaging & Tianjin Institute of Radiology,
Tianjin Medical University General Hospital, Tianjin 300052, China
| |
Collapse
|
2
|
Barrett JE, Herzog CM, Aminzadeh-Gohari S, Redl E, Ishaq Parveen I, Rothärmel J, Tevini J, Weber DD, Catalano L, Stefan VE, Felder TK, Obrist P, Alkasalias T, Gemzell-Danielsson K, Lang R, Kofler B, Widschwendter M. Epigenetic signatures in surrogate tissues are able to assess cancer risk and indicate the efficacy of preventive measures. COMMUNICATIONS MEDICINE 2025; 5:97. [PMID: 40175633 PMCID: PMC11965489 DOI: 10.1038/s43856-025-00779-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 02/21/2025] [Indexed: 04/04/2025] Open
Abstract
BACKGROUND In order to advance personalized primary cancer prevention, surrogate endpoint biomarkers in distant, easy to access tissues (i.e., field defect indicators) reflecting field cancerization in the organ at risk are essential. METHODS Here we utilized medroxyprogesterone acetate and 7,12-dimethylbenzanthracene to induce mammary gland cancers in mice. We assessed epigenetic signatures reflective of carcinogen exposure, cell-type composition, mitotic age, and methylation at progesterone receptor binding sites in both, the tissue at risk (normal mammary gland; field cancerization) and distant non-at-risk organs (cervix, oviduct, and blood; field defect indicators), in mice that did and did not develop mammary gland cancers. RESULTS We demonstrate that the anti-progestine mifepristone reduces the cancer risk by more than 50%. Importantly, the reduction in cancer risk is accompanied by a decline in both field cancerization and field defect indicators; specifically, epigenetic signatures in the cervix are predictive of mammary cancer formation but show tissue-specific directionality. CONCLUSIONS These data encourage further exploration of epigenetic biomarkers in certain field defect-indicating tissues with a view to monitor the efficacy of cancer prevention strategies in humans.
Collapse
Affiliation(s)
- James E Barrett
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Chiara Maria Herzog
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Sepideh Aminzadeh-Gohari
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Elisa Redl
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Isma Ishaq Parveen
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Julia Rothärmel
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria
| | - Julia Tevini
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Daniela D Weber
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Luca Catalano
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Victoria E Stefan
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Department of Bioscienes and Medical Biology, University of Salzburg, Salzburg, Austria
| | - Thomas K Felder
- Department of Laboratory Medicine, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Institute of Pharmacy, Paracelsus Medical University, Salzburg, Austria
| | | | - Twana Alkasalias
- General Directorate of Scientific Research Center, Salahaddin University-Erbil, Erbil, 44001, Iraq
- Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Kristina Gemzell-Danielsson
- Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
| | - Roland Lang
- Department of Dermatology and Allergology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Barbara Kofler
- Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, University Hospital of the Paracelsus Medical University, Salzburg, Austria
| | - Martin Widschwendter
- European Translational Oncology Prevention and Screening (EUTOPS) Institute, University Innsbruck, Hall in Tirol, Austria.
- Institute for Biomedical Aging Research, University Innsbruck, Innsbruck, Austria.
- Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden.
- Department of Women's Cancer, University College London, London, UK.
| |
Collapse
|
3
|
Zhang F, Evans T. Stage-specific DNA methylation dynamics in mammalian heart development. Epigenomics 2025; 17:359-371. [PMID: 39980349 PMCID: PMC11970762 DOI: 10.1080/17501911.2025.2467024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/10/2025] [Indexed: 02/22/2025] Open
Abstract
Cardiac development is a precisely regulated process governed by both genetic and epigenetic mechanisms. Among these, DNA methylation is one mode of epigenetic regulation that plays a crucial role in controlling gene expression at various stages of heart development and maturation. Understanding stage-specific DNA methylation dynamics is critical for unraveling the molecular processes underlying heart development from specification of early progenitors, formation of a primitive and growing heart tube from heart fields, heart morphogenesis, organ function, and response to developmental and physiological signals. This review highlights research that has explored profiles of DNA methylation that are highly dynamic during cardiac development and maturation, exploring stage-specific roles and the key molecular players involved. By exploring recent insights into the changing methylation landscape, we aim to highlight the complex interplay between DNA methylation and stage-specific cardiac gene expression, differentiation, and maturation.
Collapse
Affiliation(s)
- Fangfang Zhang
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
| | - Todd Evans
- Department of Surgery, Weill Cornell Medicine, New York, NY, USA
- Hartman Institute for Therapeutic Organ Regeneration, Weill Cornell Medicine, New York, NY, USA
- Center for Genomic Health, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Mätlik K, Govek EE, Hatten ME. Histone bivalency in CNS development. Genes Dev 2025; 39:428-444. [PMID: 39880657 PMCID: PMC11960699 DOI: 10.1101/gad.352306.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
Neuronal maturation is guided by changes in the chromatin landscape that control developmental gene expression programs. Histone bivalency, the co-occurrence of activating and repressive histone modifications, has emerged as an epigenetic feature of developmentally regulated genes during neuronal maturation. Although initially associated with early embryonic development, recent studies have shown that histone bivalency also exists in differentiated and mature neurons. In this review, we discuss methods to study bivalency in specific populations of neurons and summarize emerging studies on the function of bivalency in central nervous system neuronal maturation and in adult neurons.
Collapse
Affiliation(s)
- Kärt Mätlik
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn 12618, Estonia
| | - Eve-Ellen Govek
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA
| | - Mary E Hatten
- Laboratory of Developmental Neurobiology, The Rockefeller University, New York, New York 10065, USA;
| |
Collapse
|
5
|
Cooper GW, Lee BP, Kim WJ, Su Y, Chen VZ, Salas E, Yang X, Lintner RE, Piccioni F, Giacomelli AO, Howard TP, Bagchi P, Conneely KN, Root DE, Liang B, Hahn WC, Gorkin DU, Biegel JA, Chi SN, Hong AL. SMARCB1 missense mutants disrupt SWI/SNF complex stability and remodeling activity. RESEARCH SQUARE 2025:rs.3.rs-6018128. [PMID: 40196006 PMCID: PMC11975040 DOI: 10.21203/rs.3.rs-6018128/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Chromatin remodeling complexes, such as the SWItch/Sucrose Non-Fermentable (SWI/SNF) complex, play key roles in regulating gene expression by modulating nucleosome positioning. The core subunit SMARCB1 is essential for these functions, as it anchors the complex to the nucleosome acidic patch, enabling effective chromatin remodeling. While biallelic inactivation of SMARCB1 is a hallmark of several aggressive pediatric malignancies, the functional implication of missense mutations is not fully understood. Current diagnostic approaches focus on detecting the presence or absence of SMARCB1 by immunohistochemistry (IHC) often without consideration of mutation status as such data is lacking. Here, we present the first comprehensive deep mutational scanning (DMS) of SMARCB1, encompassing 8,418 amino acid substitutions, to systematically assess their functional impact. We show that missense mutations in the RPT2 domain of SMARCB1 disrupt SMARCB1 tumor suppressor function by destabilizing the SWI/SNF complex. Notably, we identify mutations in RPT2 that impair chromatin remodeling and transcriptional regulation to an extent comparable to nonsense mutations, despite maintaining detectable protein expression, thus challenging the conventional diagnostic reliance on IHC. Importantly, these mutations seem to act by disrupting winged-helix domain flexibility. These findings provide a deeper understanding of the role of SMARCB1 in chromatin remodeling and cancer biology, highlighting the limitations of current mutation classification approaches. By establishing a high-throughput functional framework, this study offers a critical resource for elucidating SMARCB1's mutational landscape and its implications for cancer diagnostics.
Collapse
Affiliation(s)
- Garrett W Cooper
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center - Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Benjamin P Lee
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center - Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Won Jun Kim
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Yongdong Su
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center - Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Victor Z Chen
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center - Children’s Healthcare of Atlanta, Atlanta, GA, USA
| | - Eliseo Salas
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - Xiaoping Yang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | | | | | - Pritha Bagchi
- Emory Integrated Proteomics Core, Emory University, Atlanta, GA, USA
| | - Karen N Conneely
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA, USA
| | - David E Root
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Bo Liang
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA, USA
| | - William C Hahn
- Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - David U Gorkin
- Department of Biology, Emory University, Atlanta, GA, USA
| | - Jaclyn A Biegel
- Department of Pathology, Children’s Hospital Los Angeles and Keck School of Medicine, University of Southern California, Los Angeles, California, USA
| | - Susan N Chi
- Dana-Farber Cancer Institute, Boston, MA, USA
- Boston Children’s Hospital, Boston, MA, USA
| | - Andrew L Hong
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA, USA
- Aflac Cancer and Blood Disorders Center - Children’s Healthcare of Atlanta, Atlanta, GA, USA
- Winship Cancer Institute, Atlanta, GA, USA
| |
Collapse
|
6
|
Alrubayyi A, Hassan AS, Hare J, Hsieh A, Gilmour J, Price MA, Kilembe W, Karita E, Ruzagira E, Esbjörnsson J, Sanders EJ, Peppa D, Rowland-Jones SL. An early functional adaptive NK cell signature drives optimal CD8 + T-cell activation and predicts sustained HIV-1 viral control. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.17.643703. [PMID: 40166297 PMCID: PMC11956991 DOI: 10.1101/2025.03.17.643703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
A better understanding of the immune responses associated with future viral control in humans during acute HIV-1 infection (AHI) is critical to inform vaccines and immune-based therapeutics. Natural killer (NK) cells and CD8 + T-cells are pivotal in antiviral defence, yet the dynamics and complementary roles of these effector subsets during AHI with different HIV-1 subtypes remain poorly understood. Access to a unique patient cohort recruited during and post-peak HIV-1 viral load with different HIV-1 subtypes and followed up longitudinally in the absence of antiretroviral therapy up to six years post estimated date of infection (EDI) provided a rare opportunity to fill this knowledge gap. Our data show an early expansion of FcεRγ - CD57 + NK cells with classical adaptive traits concomitant with an enhanced capacity for antibody-dependent cellular cytotoxicity (ADCC) and reactivity against HIV-1 antigens. This distinctive NK cell profile was more abundant in donors with subtype A infection compared to non-subtype A, partially driven by elevated pro-inflammatory cytokine levels and changes in the epigenetic landscape. The accumulation of adaptive NK cells during the first month of infection contributed to the optimal activation of CD8 + T-cells, promoting virus-specific responses. Notably, individuals with higher levels of FcεRγ - CD57 + adaptive NK cells during the first month of infection were more likely to exhibit long-term viral control in the absence of ART. These findings underscore the critical role of early, high-magnitude adaptive NK cell responses in CD8 + T-cell activation and subsequent immune control. This work provides novel insights into the correlates of protective immunity against HIV-1 infection, with implications for preventative or therapeutic vaccine strategies aimed at promoting adaptive NK cell responses. One Sentence Summary Early expansion of adaptive NK cells during acute HIV-1 infection promotes long-term viral control.
Collapse
|
7
|
Zhou W, Reizel Y. On correlative and causal links of replicative epimutations. Trends Genet 2025; 41:60-75. [PMID: 39289103 PMCID: PMC12048181 DOI: 10.1016/j.tig.2024.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024]
Abstract
The mitotic inheritability of DNA methylation as an epigenetic marker in higher-order eukaryotes has been established for >40 years. The DNA methylome and mitotic division interplay is now considered bidirectional and highly intertwined. Various epigenetic writers, erasers, and modulators shape the perceived replicative methylation dynamics. This Review surveys the principles and complexity of mitotic transmission of DNA methylation, emphasizing the awareness of mitotic aging in analyzing DNA methylation dynamics in development and disease. We reviewed how DNA methylation changes alter mitotic proliferation capacity, implicating age-related diseases like cancer. We link replicative epimutation to stem cell dysfunction, inflammatory response, cancer risks, and epigenetic clocks, discussing the causative role of DNA methylation in health and disease.
Collapse
Affiliation(s)
- Wanding Zhou
- Center for Computational and Genomic Medicine, The Children's Hospital of Philadelphia, PA, 19104, USA; Department of Pathology and Laboratory Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA.
| | - Yitzhak Reizel
- Department of Biotechnology and Food Engineering, Technion - Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
8
|
Chen L, van der Veer BK, Chen Q, Champeris Tsaniras S, Brangers W, Kwak HHM, Khoueiry R, Lei Y, Cabrera R, Gross SS, Finnell RH, Koh KP. The DNA demethylase TET1 modifies the impact of maternal folic acid status on embryonic brain development. EMBO Rep 2025; 26:175-199. [PMID: 39578553 PMCID: PMC11724065 DOI: 10.1038/s44319-024-00316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/24/2024] Open
Abstract
Folic acid (FA) is well known to prevent neural tube defects (NTDs), but we do not know why many human NTD cases still remain refractory to FA supplementation. Here, we investigate how the DNA demethylase TET1 interacts with maternal FA status to regulate mouse embryonic brain development. We determined that cranial NTDs display higher penetrance in non-inbred than in inbred Tet1-/- embryos and are resistant to FA supplementation across strains. Maternal diets that are either too rich or deficient in FA are linked to an increased incidence of cranial deformities in wild type and Tet1+/- offspring and to altered DNA hypermethylation in Tet1-/- embryos, primarily at neurodevelopmental loci. Excess FA in Tet1-/- embryos results in phospholipid metabolite loss and reduced expression of multiple membrane solute carriers, including a FA transporter gene that exhibits increased promoter DNA methylation and thereby mimics FA deficiency. Moreover, FA deficiency reveals that Tet1 haploinsufficiency can contribute to DNA hypermethylation and susceptibility to NTDs. Overall, our study suggests that epigenetic dysregulation may underlie NTD development despite FA supplementation.
Collapse
Affiliation(s)
- Lehua Chen
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium
| | - Bernard K van der Veer
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Spyridon Champeris Tsaniras
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium
| | - Wannes Brangers
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium
| | - Harm H M Kwak
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium
| | - Rita Khoueiry
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Robert Cabrera
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - Steven S Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, NY, 10065, USA
| | - Richard H Finnell
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
- Department of Molecular and Human Genetics, Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Kian Peng Koh
- Department of Development and Regeneration, Stem Cell and Developmental Biology, KU Leuven, Leuven, 3000, Belgium.
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
9
|
Smith ZD, Hetzel S, Meissner A. DNA methylation in mammalian development and disease. Nat Rev Genet 2025; 26:7-30. [PMID: 39134824 DOI: 10.1038/s41576-024-00760-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/24/2024] [Indexed: 12/15/2024]
Abstract
The DNA methylation field has matured from a phase of discovery and genomic characterization to one seeking deeper functional understanding of how this modification contributes to development, ageing and disease. In particular, the past decade has seen many exciting mechanistic discoveries that have substantially expanded our appreciation for how this generic, evolutionarily ancient modification can be incorporated into robust epigenetic codes. Here, we summarize the current understanding of the distinct DNA methylation landscapes that emerge over the mammalian lifespan and discuss how they interact with other regulatory layers to support diverse genomic functions. We then review the rising interest in alternative patterns found during senescence and the somatic transition to cancer. Alongside advancements in single-cell and long-read sequencing technologies, the collective insights made across these fields offer new opportunities to connect the biochemical and genetic features of DNA methylation to cell physiology, developmental potential and phenotype.
Collapse
Affiliation(s)
- Zachary D Smith
- Department of Genetics, Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA.
| | - Sara Hetzel
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
10
|
Zu H, Chen X. Epigenetics behind CD8 + T cell activation and exhaustion. Genes Immun 2024; 25:525-540. [PMID: 39543311 DOI: 10.1038/s41435-024-00307-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 10/29/2024] [Accepted: 10/31/2024] [Indexed: 11/17/2024]
Abstract
CD8+ T cells play a critical role in specific immunity. In recent years, cell therapy has been emerging rapidly. The specific cytotoxic capabilities of these cells enable them to precisely identify and kill cells presenting specific antigens. This has demonstrated promise in the treatment of autoimmune diseases and cancers, with wide-ranging applications and value. However, in some diseases, such as tumors and chronic infections, T cells may adopt an exhausted phenotype, resulting in a loss of cytotoxicity and limiting their further application. Epigenetics plays a significant role in the differentiation and regulation of gene expression in cells. There is extensive evidence indicating that epigenetic remodeling plays an important role in T cell exhaustion. Therefore, further understanding its role in CD8+ T cell function can provide insights into the programmatic regulation of CD8+ T cells from a genetic perspective and overcome these diseases. We attempted to describe the relationship between the activation, function, and exhaustion mechanisms of CD8+ T cells, as well as epigenetics. This understanding makes it possible for us to address the aforementioned issues.
Collapse
Affiliation(s)
- Hao Zu
- Yanjing Medical College, Capital Medical University, 101300, Beijing, China
| | - Xiaoqin Chen
- Yanjing Medical College, Capital Medical University, 101300, Beijing, China.
| |
Collapse
|
11
|
Zaretsky A, Venzor AG, Eremenko E, Stein D, Smirnov D, Rabuah Y, Dryer R, Kriukov D, Kaluski-Kopatch S, Einav M, Khrameeva E, Toiber D. SIRT6-dependent functional switch via K494 modifications of RE-1 silencing transcription factor. Cell Death Dis 2024; 15:798. [PMID: 39511137 PMCID: PMC11543946 DOI: 10.1038/s41419-024-07160-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
RE-1 silencing transcription factor (REST) is a key repressor of neural genes. REST is upregulated under stress signals, aging and neurodegenerative diseases, but although it is upregulated, its function is lost in Alzheimer's Disease. However, why it becomes inactive remains unclear. Here, we show that the NAD-dependent deacetylase SIRT6 regulates REST expression, location and activity. In the absence of SIRT6, REST is overexpressed but mislocalized, leading to a partial loss of its activity and causing it to become toxic. SIRT6 deficiency abrogates REST and EZH2 interaction, perturbs the location of REST to the heterochromatin Lamin B ring, and leads to REST target gene overexpression. SIRT6 reintroduction or REST methyl-mimic K494M expression rescues this phenotype, while an acetyl-mimic mutant loses its function even in WT cells. Our studies define a novel regulatory switch where, depending on SIRT6 presence, the function of REST is regulated by post-translational modifications on K494 (Ac/me), affecting neuronal gene expression. In WT cells (left), REST functions as a repressor due to its methylation, which allows proper localization and interaction with EZH2. In SIRT6 KO cells (right), REST is overexpressed, but it is mislocalized and acetylated instead of methylated, impairing its interaction with EZH2. REST localizes in the cytoplasm in autophagosomes. The overall increase in REST without SIRT6 results in non-functional and toxic REST proteins. During aging, SIRT6 declines in the brain, while REST is upregulated to protect it. In pathological aging, where SIRT6 levels are very low, the increase in REST without SIRT6 results in non-functional and toxic REST.
Collapse
Affiliation(s)
- Adam Zaretsky
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Alfredo Garcia Venzor
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Ekaterina Eremenko
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Daniel Stein
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Dmitrii Smirnov
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Yuval Rabuah
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Rebecca Dryer
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Dmitrii Kriukov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Shai Kaluski-Kopatch
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Monica Einav
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel
| | - Ekaterina Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| | - Debra Toiber
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
- The Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer Sheva, 8410501, Israel.
| |
Collapse
|
12
|
Rosen BP, Li QV, Cho HS, Liu D, Yang D, Graff S, Yan J, Luo R, Verma N, Damodaran JR, Kale HT, Kaplan SJ, Beer MA, Sidoli S, Huangfu D. Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness. Nat Commun 2024; 15:8966. [PMID: 39419994 PMCID: PMC11487130 DOI: 10.1038/s41467-024-53284-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/08/2024] [Indexed: 10/19/2024] Open
Abstract
Pluripotent stem cells have remarkable self-renewal capacity: the ability to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into almost any cell type in the body. To investigate the interplay between these two aspects of self-renewal, we perform four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSCs and the dissolution of primed pluripotent identity during early differentiation. These screens distinguish genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further identify a core set of genes controlling both stem cell fitness and pluripotent identity, including a network of chromatin factors. Here, unbiased screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide a valuable resource for exploring pluripotent stem cell identity versus cell fitness, and offer a framework for categorizing gene function.
Collapse
Affiliation(s)
- Bess P Rosen
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Qing V Li
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Tessera Therapeutics, Somerville, MA, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Dingyu Liu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Sarah Graff
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Nipun Verma
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Department of Therapeutic Radiology, Yale School of Medicine, New Haven, CT, USA
| | | | - Hanuman T Kale
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Samuel J Kaplan
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York, NY, USA
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA.
| |
Collapse
|
13
|
Rosen BP, Li QV, Cho HS, Liu D, Yang D, Graff S, Yan J, Luo R, Verma N, Damodaran JR, Kale HT, Kaplan SJ, Beer MA, Sidoli S, Huangfu D. Parallel genome-scale CRISPR-Cas9 screens uncouple human pluripotent stem cell identity versus fitness. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.03.539283. [PMID: 37205540 PMCID: PMC10187244 DOI: 10.1101/2023.05.03.539283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Pluripotent stem cells are defined by their self-renewal capacity, which is the ability of the stem cells to proliferate indefinitely while maintaining the pluripotent identity essential for their ability to differentiate into any somatic cell lineage. However, understanding the mechanisms that control stem cell fitness versus the pluripotent cell identity is challenging. To investigate the interplay between these two aspects of pluripotency, we performed four parallel genome-scale CRISPR-Cas9 loss-of-function screens interrogating stem cell fitness in hPSC self-renewal conditions, and the dissolution of the primed pluripotency identity during early differentiation. Comparative analyses led to the discovery of genes with distinct roles in pluripotency regulation, including mitochondrial and metabolism regulators crucial for stem cell fitness, and chromatin regulators that control pluripotent identity during early differentiation. We further discovered a core set of factors that control both stem cell fitness and pluripotent identity, including a network of chromatin factors that safeguard pluripotency. Our unbiased and systematic screening and comparative analyses disentangle two interconnected aspects of pluripotency, provide rich datasets for exploring pluripotent cell identity versus cell fitness, and offer a valuable model for categorizing gene function in broad biological contexts.
Collapse
|
14
|
Kaplan SJ, Wong W, Yan J, Pulecio J, Cho HS, Li Q, Zhao J, Leslie-Iyer J, Kazakov J, Murphy D, Luo R, Dey KK, Apostolou E, Leslie CS, Huangfu D. CRISPR screening uncovers a long-range enhancer for ONECUT1 in pancreatic differentiation and links a diabetes risk variant. Cell Rep 2024; 43:114640. [PMID: 39163202 PMCID: PMC11406439 DOI: 10.1016/j.celrep.2024.114640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/01/2024] [Accepted: 07/31/2024] [Indexed: 08/22/2024] Open
Abstract
Functional enhancer annotation is critical for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants. However, unbiased enhancer discovery in disease-relevant contexts remains challenging. To identify enhancers pertinent to diabetes, we conducted a CRISPR interference (CRISPRi) screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers identified, we focused on an enhancer we named ONECUT1e-664kb, ∼664 kb from the ONECUT1 promoter. Previous studies have linked ONECUT1 coding mutations to pancreatic hypoplasia and neonatal diabetes. We found that homozygous deletion of ONECUT1e-664kb in hPSCs leads to a near-complete loss of ONECUT1 expression and impaired pancreatic differentiation. ONECUT1e-664kb contains a type 2 diabetes-associated variant (rs528350911) disrupting a GATA motif. Introducing the risk variant into hPSCs reduced binding of key pancreatic transcription factors (GATA4, GATA6, and FOXA2), supporting its causal role in diabetes. This work highlights the utility of unbiased enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.
Collapse
Affiliation(s)
- Samuel Joseph Kaplan
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Wilfred Wong
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Qianzi Li
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA; Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jiahui Zhao
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Jayanti Leslie-Iyer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jonathan Kazakov
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dylan Murphy
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medical College, New York, NY 10065, USA
| | - Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kushal K Dey
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Effie Apostolou
- Meyer Cancer Center, Division of Neuro-Oncology, Department of Neurology, Sandra and Edward Meyer Cancer Center, New York-Presbyterian Hospital/Weill Cornell Medicine, New York, NY 10065, USA
| | - Christina S Leslie
- Computational and Systems Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
15
|
van der Veer BK, Chen L, Tsaniras SC, Brangers W, Chen Q, Schroiff M, Custers C, Kwak HH, Khoueiry R, Cabrera R, Gross SS, Finnell RH, Lei Y, Koh KP. Epigenetic regulation by TET1 in gene-environmental interactions influencing susceptibility to congenital malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.21.581196. [PMID: 39026762 PMCID: PMC11257484 DOI: 10.1101/2024.02.21.581196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
The etiology of neural tube defects (NTDs) involves complex gene-environmental interactions. Folic acid (FA) prevents NTDs, but the mechanisms remain poorly understood and at least 30% of human NTDs resist the beneficial effects of FA supplementation. Here, we identify the DNA demethylase TET1 as a nexus of folate-dependent one-carbon metabolism and genetic risk factors post-neural tube closure. We determine that cranial NTDs in Tet1 -/- embryos occur at two to three times higher penetrance in genetically heterogeneous than in homogeneous genetic backgrounds, suggesting a strong impact of genetic modifiers on phenotypic expression. Quantitative trait locus mapping identified a strong NTD risk locus in the 129S6 strain, which harbors missense and modifier variants at genes implicated in intracellular endocytic trafficking and developmental signaling. NTDs across Tet1 -/- strains are resistant to FA supplementation. However, both excess and depleted maternal FA diets modify the impact of Tet1 loss on offspring DNA methylation primarily at neurodevelopmental loci. FA deficiency reveals susceptibility to NTD and other structural brain defects due to haploinsufficiency of Tet1. In contrast, excess FA in Tet1 -/- embryos drives promoter DNA hypermethylation and reduced expression of multiple membrane solute transporters, including a FA transporter, accompanied by loss of phospholipid metabolites. Overall, our study unravels interactions between modified maternal FA status, Tet1 gene dosage and genetic backgrounds that impact neurotransmitter functions, cellular methylation and individual susceptibilities to congenital malformations, further implicating that epigenetic dysregulation may underlie NTDs resistant to FA supplementation.
Collapse
Affiliation(s)
- Bernard K. van der Veer
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Lehua Chen
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Spyridon Champeris Tsaniras
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Wannes Brangers
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Mariana Schroiff
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Colin Custers
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Harm H.M. Kwak
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Rita Khoueiry
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
| | - Robert Cabrera
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10065, USA
| | - Richard H. Finnell
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
- Department of Molecular and Human Genetics, Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Yunping Lei
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| | - Kian Peng Koh
- Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, KU Leuven, Leuven 3000, Belgium
- Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
16
|
Kaplan SJ, Wong W, Yan J, Pulecio J, Cho HS, Li Q, Zhao J, Leslie-Iyer J, Kazakov J, Murphy D, Luo R, Dey KK, Apostolou E, Leslie CS, Huangfu D. CRISPR Screening Uncovers a Long-Range Enhancer for ONECUT1 in Pancreatic Differentiation and Links a Diabetes Risk Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.26.591412. [PMID: 38746154 PMCID: PMC11092487 DOI: 10.1101/2024.04.26.591412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Functional enhancer annotation is a valuable first step for understanding tissue-specific transcriptional regulation and prioritizing disease-associated non-coding variants for investigation. However, unbiased enhancer discovery in physiologically relevant contexts remains a major challenge. To discover regulatory elements pertinent to diabetes, we conducted a CRISPR interference screen in the human pluripotent stem cell (hPSC) pancreatic differentiation system. Among the enhancers uncovered, we focused on a long-range enhancer ∼664 kb from the ONECUT1 promoter, since coding mutations in ONECUT1 cause pancreatic hypoplasia and neonatal diabetes. Homozygous enhancer deletion in hPSCs was associated with a near-complete loss of ONECUT1 gene expression and compromised pancreatic differentiation. This enhancer contains a confidently fine-mapped type 2 diabetes associated variant (rs528350911) which disrupts a GATA motif. Introduction of the risk variant into hPSCs revealed substantially reduced binding of key pancreatic transcription factors (GATA4, GATA6 and FOXA2) on the edited allele, accompanied by a slight reduction of ONECUT1 transcription, supporting a causal role for this risk variant in metabolic disease. This work expands our knowledge about transcriptional regulation in pancreatic development through the characterization of a long-range enhancer and highlights the utility of enhancer discovery in disease-relevant settings for understanding monogenic and complex disease.
Collapse
|
17
|
Kunoh S, Nakashima H, Nakashima K. Epigenetic Regulation of Neural Stem Cells in Developmental and Adult Stages. EPIGENOMES 2024; 8:22. [PMID: 38920623 PMCID: PMC11203245 DOI: 10.3390/epigenomes8020022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/18/2024] [Accepted: 05/31/2024] [Indexed: 06/27/2024] Open
Abstract
The development of the nervous system is regulated by numerous intracellular molecules and cellular signals that interact temporally and spatially with the extracellular microenvironment. The three major cell types in the brain, i.e., neurons and two types of glial cells (astrocytes and oligodendrocytes), are generated from common multipotent neural stem cells (NSCs) throughout life. However, NSCs do not have this multipotentiality from the beginning. During cortical development, NSCs sequentially obtain abilities to differentiate into neurons and glial cells in response to combinations of spatiotemporally modulated cell-intrinsic epigenetic alterations and extrinsic factors. After the completion of brain development, a limited population of NSCs remains in the adult brain and continues to produce neurons (adult neurogenesis), thus contributing to learning and memory. Many biological aspects of brain development and adult neurogenesis are regulated by epigenetic changes via behavioral control of NSCs. Epigenetic dysregulation has also been implicated in the pathogenesis of various brain diseases. Here, we present recent advances in the epigenetic regulation of NSC behavior and its dysregulation in brain disorders.
Collapse
Affiliation(s)
| | - Hideyuki Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| | - Kinichi Nakashima
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan;
| |
Collapse
|
18
|
Zhao J, Liu Z, Yang K, Shen S, Peng J. DNA methylation regulator-based molecular subtyping and tumor microenvironment characterization in hepatocellular carcinoma. Front Immunol 2024; 15:1333923. [PMID: 38736884 PMCID: PMC11082416 DOI: 10.3389/fimmu.2024.1333923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 04/16/2024] [Indexed: 05/14/2024] Open
Abstract
Backgroud Although recent studies have reported the regulation of the immune response in hepatocellular carcinoma (HCC) through DNA methylation, the comprehensive impact methylation modifications on tumor microenvironment characteristics and immunotherapy efficacy has not been fully elucidated. Methods In this research, we conducted a comprehensive assessment of the patterns of DNA methylation regulators and the profiles of the tumor microenvironment (TME) in HCC, focusing on 21 specific DNA methylation regulators. We subsequently developed a unique scoring system, a DNA methylation score (DMscore), to assess the individual DNA methylation modifications among the three distinct methylation patterns for differentially expressed genes (DEGs). Results Three distinct methylation modification patterns were identified with distinct TME infiltration characteristics. We demonstrated that the DMscore could predict patient subtype, TME infiltration, and patient prognosis. A low DMscore, characterized by an elevated tumor mutation burden (TMB), hepatitis B virus (HBV)/hepatitis C virus (HCV) infection, and immune activation, indicates an inflamed tumor microenvironment phenotype with a 5-year survival rate of 7.8%. Moreover, a low DMscore appeared to increase the efficacy of immunotherapy in the anti-CTLA-4/PD-1/PD-L1 cohort. Conclusions In brief, this research has enhanced our understanding of the correlation between modifications in DNA methylation patterns and the profile of the tumor microenvironment in individuals diagnosed with HCC. The DMscore may serve as an alternative biomarker for survival and efficacy of immunotherapy in patients with HCC.
Collapse
Affiliation(s)
- Junsheng Zhao
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhengtao Liu
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Keda Yang
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Sijia Shen
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital Affiliated to Shulan International Medical College, Zhejiang Shuren University, Hangzhou, China
| | - Jing Peng
- Department of Breast Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
19
|
Muscò A, Martini D, Digregorio M, Broccoli V, Andreazzoli M. Shedding a Light on Dark Genes: A Comparative Expression Study of PRR12 Orthologues during Zebrafish Development. Genes (Basel) 2024; 15:492. [PMID: 38674426 PMCID: PMC11050278 DOI: 10.3390/genes15040492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/06/2024] [Accepted: 04/09/2024] [Indexed: 04/28/2024] Open
Abstract
Haploinsufficiency of the PRR12 gene is implicated in a human neuro-ocular syndrome. Although identified as a nuclear protein highly expressed in the embryonic mouse brain, PRR12 molecular function remains elusive. This study explores the spatio-temporal expression of zebrafish PRR12 co-orthologs, prr12a and prr12b, as a first step to elucidate their function. In silico analysis reveals high evolutionary conservation in the DNA-interacting domains for both orthologs, with significant syntenic conservation observed for the prr12b locus. In situ hybridization and RT-qPCR analyses on zebrafish embryos and larvae reveal distinct expression patterns: prr12a is expressed early in zygotic development, mainly in the central nervous system, while prr12b expression initiates during gastrulation, localizing later to dopaminergic telencephalic and diencephalic cell clusters. Both transcripts are enriched in the ganglion cell and inner neural layers of the 72 hpf retina, with prr12b widely distributed in the ciliary marginal zone. In the adult brain, prr12a and prr12b are found in the cerebellum, amygdala and ventral telencephalon, which represent the main areas affected in autistic patients. Overall, this study suggests PRR12's potential involvement in eye and brain development, laying the groundwork for further investigations into PRR12-related neurobehavioral disorders.
Collapse
Affiliation(s)
- Alessia Muscò
- Cell and Developmental Biology Unit, University of Pisa, 56126 Pisa, Italy (D.M.)
| | - Davide Martini
- Cell and Developmental Biology Unit, University of Pisa, 56126 Pisa, Italy (D.M.)
| | - Matteo Digregorio
- Cell and Developmental Biology Unit, University of Pisa, 56126 Pisa, Italy (D.M.)
| | - Vania Broccoli
- Stem Cell and Neurogenesis Unit, Division of Neuroscience, San Raffaele Scientific Institute, 20132 Milan, Italy
- CNR Institute of Neuroscience, 20132 Milan, Italy
| | | |
Collapse
|
20
|
Glancy E, Choy N, Eckersley-Maslin MA. Bivalent chromatin: a developmental balancing act tipped in cancer. Biochem Soc Trans 2024; 52:217-229. [PMID: 38385532 PMCID: PMC10903468 DOI: 10.1042/bst20230426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/05/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
Bivalent chromatin is defined by the co-occurrence of otherwise opposing H3K4me3 and H3K27me3 modifications and is typically located at unmethylated promoters of lowly transcribed genes. In embryonic stem cells, bivalent chromatin has been proposed to poise developmental genes for future activation, silencing or stable repression upon lineage commitment. Normally, bivalent chromatin is kept in tight balance in cells, in part through the activity of the MLL/COMPASS-like and Polycomb repressive complexes that deposit the H3K4me3 and H3K27me3 modifications, respectively, but also emerging novel regulators including DPPA2/4, QSER1, BEND3, TET1 and METTL14. In cancers, both the deregulation of existing domains and the creation of de novo bivalent states is associated with either the activation or silencing of transcriptional programmes. This may facilitate diverse aspects of cancer pathology including epithelial-to-mesenchymal plasticity, chemoresistance and immune evasion. Here, we review current methods for detecting bivalent chromatin and discuss the factors involved in the formation and fine-tuning of bivalent domains. Finally, we examine how the deregulation of chromatin bivalency in the context of cancer could facilitate and/or reflect cancer cell adaptation. We propose a model in which bivalent chromatin represents a dynamic balance between otherwise opposing states, where the underlying DNA sequence is primed for the future activation or repression. Shifting this balance in any direction disrupts the tight equilibrium and tips cells into an altered epigenetic and phenotypic space, facilitating both developmental and cancer processes.
Collapse
Affiliation(s)
- Eleanor Glancy
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Natalie Choy
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Melanie A. Eckersley-Maslin
- Peter MacCallum Cancer Centre, Melbourne, Victoria 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, Victoria 3010, Australia
- Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria 3010, Australia
| |
Collapse
|
21
|
Huang X, Balmer S, Lyu C, Xiang Y, Malik V, Wang H, Zhang Y, Cai B, Xie W, Hadjantonakis AK, Zhou H, Wang J. ZFP281 controls transcriptional and epigenetic changes promoting mouse pluripotent state transitions via DNMT3 and TET1. Dev Cell 2024; 59:465-481.e6. [PMID: 38237590 PMCID: PMC10923053 DOI: 10.1016/j.devcel.2023.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 11/04/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates epiblast development in vivo during the peri-implantation period of mouse embryo development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events that occur during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knockin cell models, we identify the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, which is dependent on the formation of R-loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.
Collapse
Affiliation(s)
- Xin Huang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| | - Sophie Balmer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cong Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunlong Xiang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200082, China
| | - Bishuang Cai
- Division of Liver Diseases, Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wei Xie
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development and Stem Cell Therapies, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
22
|
Seneviratne JA, Ho WWH, Glancy E, Eckersley-Maslin MA. A low-input high resolution sequential chromatin immunoprecipitation method captures genome-wide dynamics of bivalent chromatin. Epigenetics Chromatin 2024; 17:3. [PMID: 38336688 PMCID: PMC10858499 DOI: 10.1186/s13072-024-00527-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/11/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Bivalent chromatin is an exemplar of epigenetic plasticity. This co-occurrence of active-associated H3K4me3 and inactive-associated H3K27me3 histone modifications on opposite tails of the same nucleosome occurs predominantly at promoters that are poised for future transcriptional upregulation or terminal silencing. We know little of the dynamics, resolution, and regulation of this chromatin state outside of embryonic stem cells where it was first described. This is partly due to the technical challenges distinguishing bone-fide bivalent chromatin, where both marks are on the same nucleosome, from allelic or sample heterogeneity where there is a mix of H3K4me3-only and H3K27me3-only mononucleosomes. RESULTS Here, we present a robust and sensitive method to accurately map bivalent chromatin genome-wide, along with controls, from as little as 2 million cells. We optimized and refined the sequential ChIP protocol which uses two sequential overnight immunoprecipitation reactions to robustly purify nucleosomes that are truly bivalent and contain both H3K4me3 and H3K27me3 modifications. Our method generates high quality genome-wide maps with strong peak enrichment and low background, which can be analyzed using standard bioinformatic packages. Using this method, we detect 8,789 bivalent regions in mouse embryonic stem cells corresponding to 3,918 predominantly CpG rich and developmentally regulated gene promoters. Furthermore, profiling Dppa2/4 knockout mouse embryonic stem cells, which lose both H3K4me3 and H3K27me3 at approximately 10% of bivalent promoters, demonstrated the ability of our method to capture bivalent chromatin dynamics. CONCLUSIONS Our optimized sequential reChIP method enables high-resolution genome-wide assessment of bivalent chromatin together with all required controls in as little as 2 million cells. We share a detailed protocol and guidelines that will enable bivalent chromatin landscapes to be generated in a range of cellular contexts, greatly enhancing our understanding of bivalent chromatin and epigenetic plasticity beyond embryonic stem cells.
Collapse
Affiliation(s)
- Janith A Seneviratne
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - William W H Ho
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
| | - Eleanor Glancy
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia
| | - Melanie A Eckersley-Maslin
- Peter MacCallum Cancer Centre, Melbourne, Victoria, 3000, Australia.
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria, 3010, Australia.
- Department of Anatomy and Physiology, The University of Melbourne, Victoria, 3010, Australia.
| |
Collapse
|
23
|
Pandey A, Hoover M, Singla M, Bedi Y, Storaci H, Goodman SB, Chan C, Bhutani N. TET1 Regulates Skeletal Stem-Cell Mediated Cartilage Regeneration. Arthritis Rheumatol 2024; 76:216-230. [PMID: 37610277 DOI: 10.1002/art.42678] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 08/02/2023] [Accepted: 08/15/2023] [Indexed: 08/24/2023]
Abstract
OBJECTIVE Adult skeletal stem cells (SSCs) that give rise to chondrocytes, osteocytes, and stromal cells as progeny have been shown to contribute to cartilage regeneration in osteoarthritis (OA). Understanding extrinsic and intrinsic regulators of SSC fate and function can therefore identify putative candidate factors to enhance cartilage regeneration. This study explores how the DNA hydroxymethylase Tet1 regulates SSC function in OA. METHODS We investigated the differences in the SSC lineage tree and differentiation potential in neonatal and adult Tet1+/+ and Tet1-/- mice with and without injury and upon OA induction and progression. Using RNA sequencing, the transcriptomic differences between SSCs and bone cartilage stroma progenitor cells (BCSPs) were identified in Tet1+/+ mice and Tet1-/- mice. RESULTS Loss of Tet1 skewed the SSC lineage tree by expanding the SSC pool and enhanced the chondrogenic potential of SSCs and BCSPs. Tet1 inhibition led to enhanced chondrogenesis in human SSCs and chondroprogenitors isolated from human cartilage. Importantly, TET1 inhibition in vivo in late stages of a mouse model of OA led to increased cartilage regeneration. Transcriptomic analyses of SSCs and BCSPs lacking Tet1 revealed pathway alterations in transforming growth factor β signaling, melatonin degradation, and cartilage development-associated genes. Lastly, we report that use of the hormone melatonin can dampen inflammation and improve cartilage health. CONCLUSION Although Tet1 is a broad epigenetic regulator, melatonin can mimic the inhibition ability of TET1 to enhance the chondrogenic ability of SSCs. Melatonin administration has the potential to be an attractive stem cell-based therapy for cartilage regeneration.
Collapse
|
24
|
Lu YR, Tian X, Sinclair DA. The Information Theory of Aging. NATURE AGING 2023; 3:1486-1499. [PMID: 38102202 DOI: 10.1038/s43587-023-00527-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 10/02/2023] [Indexed: 12/17/2023]
Abstract
Information storage and retrieval is essential for all life. In biology, information is primarily stored in two distinct ways: the genome, comprising nucleic acids, acts as a foundational blueprint and the epigenome, consisting of chemical modifications to DNA and histone proteins, regulates gene expression patterns and endows cells with specific identities and functions. Unlike the stable, digital nature of genetic information, epigenetic information is stored in a digital-analog format, susceptible to alterations induced by diverse environmental signals and cellular damage. The Information Theory of Aging (ITOA) states that the aging process is driven by the progressive loss of youthful epigenetic information, the retrieval of which via epigenetic reprogramming can improve the function of damaged and aged tissues by catalyzing age reversal.
Collapse
Affiliation(s)
- Yuancheng Ryan Lu
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Xiao Tian
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Paul F. Glenn Center for Biology of Aging Research, Department of Genetics, Blavatnik Institute, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
25
|
Zhang W, Wang H, Ma Y, Gao B, Guan P, Huang X, Ouyang W, Guo M, Chen G, Li G, Li X. Domains Rearranged Methylase 2 maintains DNA methylation at large DNA hypomethylated shores and long-range chromatin interactions in rice. PLANT BIOTECHNOLOGY JOURNAL 2023; 21:2333-2347. [PMID: 37539491 PMCID: PMC10579712 DOI: 10.1111/pbi.14134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/25/2023] [Accepted: 07/08/2023] [Indexed: 08/05/2023]
Abstract
DNA methylation plays an important role in gene regulation and genomic stability. However, large DNA hypomethylated regions known as DNA methylation valleys (DMVs) or canyons have also been suggested to serve unique regulatory functions, largely unknown in rice (Oryza sativa). Here, we describe the DMVs in rice seedlings, which were highly enriched with developmental and transcription regulatory genes. Further detailed analysis indicated that grand DMVs (gDMVs) might be derived from nuclear integrants of organelle DNA (NORGs). Furthermore, Domains Rearranged Methylase 2 (OsDRM2) maintained DNA methylation at short DMV (sDMV) shores. Epigenetic maps indicated that sDMVs were marked with H3K4me3 and/or H3K27me3, although the loss of DNA methylation had a negligible effect on histone modification within these regions. In addition, we constructed H3K27me3-associated interaction maps for homozygous T-DNA insertion mutant of the gene (osdrm2) and wild type (WT). From a global perspective, most (90%) compartments were stable between osdrm2 and WT plants. At a high resolution, we observed a dramatic loss of long-range chromatin loops in osdrm2, which suffered an extensive loss of non-CG (CHG and CHH, H = A, T, or C) methylation. From another viewpoint, the loss of non-CG methylation at sDMV shores in osdrm2 could disrupt H3K27me3-mediated chromatin interaction networks. Overall, our results demonstrated that DMVs are a key genomic feature in rice and are precisely regulated by epigenetic modifications, including DNA methylation and histone modifications. OsDRM2 maintained DNA methylation at sDMV shores, while OsDRM2 deficiency strongly affected three-dimensional (3D) genome architectures.
Collapse
Affiliation(s)
- Wei Zhang
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Huanhuan Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Yuning Ma
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Baibai Gao
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Pengpeng Guan
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Xingyu Huang
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Weizhi Ouyang
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Minrong Guo
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
| | - Guoting Chen
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
| | - Guoliang Li
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of InformaticsHuazhong Agricultural UniversityWuhanChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
| | - Xingwang Li
- National Key Laboratory of Crop Genetic ImprovementHubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhanChina
- Shenzhen BranchGuangdong Laboratory for Lingnan Modern AgricultureGenome Analysis Laboratory of the Ministry of AgricultureAgricultural Genomics Institute at ShenzhenChinese Academy of Agricultural SciencesShenzhenChina
- Shenzhen Institute of Nutrition and HealthHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
26
|
Yakhou L, Azogui A, Gupta N, Richard Albert J, Miura F, Ferry L, Yamaguchi K, Battault S, Therizols P, Bonhomme F, Bethuel E, Sarkar A, Greenberg MC, Arimondo P, Cristofari G, Kirsh O, Ito T, Defossez PA. A genetic screen identifies BEND3 as a regulator of bivalent gene expression and global DNA methylation. Nucleic Acids Res 2023; 51:10292-10308. [PMID: 37650637 PMCID: PMC10602864 DOI: 10.1093/nar/gkad719] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 07/20/2023] [Accepted: 08/18/2023] [Indexed: 09/01/2023] Open
Abstract
Epigenetic mechanisms are essential to establish and safeguard cellular identities in mammals. They dynamically regulate the expression of genes, transposable elements and higher-order chromatin structures. Consequently, these chromatin marks are indispensable for mammalian development and alterations often lead to disease, such as cancer. Bivalent promoters are especially important during differentiation and development. Here we used a genetic screen to identify new regulators of a bivalent repressed gene. We identify BEND3 as a regulator of hundreds of bivalent promoters, some of which it represses, and some of which it activates. We show that BEND3 is recruited to a CpG-containg consensus site that is present in multiple copies in many bivalent promoters. Besides having direct effect on the promoters it binds, the loss of BEND3 leads to genome-wide gains of DNA methylation, which are especially marked at regions normally protected by the TET enzymes. DNA hydroxymethylation is reduced in Bend3 mutant cells, possibly as consequence of altered gene expression leading to diminished alpha-ketoglutarate production, thus lowering TET activity. Our results clarify the direct and indirect roles of an important chromatin regulator, BEND3, and, more broadly, they shed light on the regulation of bivalent promoters.
Collapse
Affiliation(s)
- Lounis Yakhou
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Anaelle Azogui
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Nikhil Gupta
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | | | - Fumihito Miura
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka 812-8582, Japan
| | - Laure Ferry
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Kosuke Yamaguchi
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Sarah Battault
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Pierre Therizols
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Frédéric Bonhomme
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | - Elouan Bethuel
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Arpita Sarkar
- Université Côte d’Azur, Inserm, CNRS, IRCAN, Nice, France
| | | | - Paola B Arimondo
- Institut Pasteur, Université Paris Cité, CNRS, Epigenetic Chemical Biology, UMR 3523, F-75724 Paris, France
| | | | - Olivier Kirsh
- Université Paris Cité, CNRS, Epigenetics and Cell Fate, F-75013 Paris, France
| | - Takashi Ito
- Department of Biochemistry, Kyushu University Graduate School of Medical Sciences, Fukuoka, Fukuoka 812-8582, Japan
| | | |
Collapse
|
27
|
Irie N, Lee SM, Lorenzi V, Xu H, Chen J, Inoue M, Kobayashi T, Sancho-Serra C, Drousioti E, Dietmann S, Vento-Tormo R, Song CX, Surani MA. DMRT1 regulates human germline commitment. Nat Cell Biol 2023; 25:1439-1452. [PMID: 37709822 PMCID: PMC10567552 DOI: 10.1038/s41556-023-01224-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Germline commitment following primordial germ cell (PGC) specification during early human development establishes an epigenetic programme and competence for gametogenesis. Here we follow the progression of nascent PGC-like cells derived from human embryonic stem cells in vitro. We show that switching from BMP signalling for PGC specification to Activin A and retinoic acid resulted in DMRT1 and CDH5 expression, the indicators of migratory PGCs in vivo. Moreover, the induction of DMRT1 and SOX17 in PGC-like cells promoted epigenetic resetting with striking global enrichment of 5-hydroxymethylcytosine and locus-specific loss of 5-methylcytosine at DMRT1 binding sites and the expression of DAZL representing DNA methylation-sensitive genes, a hallmark of the germline commitment programme. We provide insight into the unique role of DMRT1 in germline development for advances in human germ cell biology and in vitro gametogenesis.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Metabolic Systems Laboratory, Live Imaging Center, Central Institute for Experimental Animals, Kanagawa, Japan.
| | - Sun-Min Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Department of Physics, Konkuk University, Seoul, Republic of Korea
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jinfeng Chen
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Masato Inoue
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
| | | | - Elena Drousioti
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
| | - Sabine Dietmann
- Department of Developmental Biology and Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Chun-Xiao Song
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
28
|
Kotekar A, Singh AK, Devaiah BN. BRD4 and MYC: power couple in transcription and disease. FEBS J 2023; 290:4820-4842. [PMID: 35866356 PMCID: PMC9867786 DOI: 10.1111/febs.16580] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/16/2022] [Accepted: 07/20/2022] [Indexed: 01/26/2023]
Abstract
The MYC proto-oncogene and BRD4, a BET family protein, are two cardinal proteins that have a broad influence in cell biology and disease. Both proteins are expressed ubiquitously in mammalian cells and play central roles in controlling growth, development, stress responses and metabolic function. As chromatin and transcriptional regulators, they play a critical role in regulating the expression of a burgeoning array of genes, maintaining chromatin architecture and genome stability. Consequently, impairment of their function or regulation leads to many diseases, with cancer being the most predominant. Interestingly, accumulating evidence indicates that regulation of the expression and functions of MYC are tightly intertwined with BRD4 at both transcriptional and post-transcriptional levels. Here, we review the mechanisms by which MYC and BRD4 are regulated, their functions in governing various molecular mechanisms and the consequences of their dysregulation that lead to disease. We present a perspective of how the regulatory mechanisms for the two proteins could be entwined at multiple points in a BRD4-MYC nexus that leads to the modulation of their functions and disease upon dysregulation.
Collapse
Affiliation(s)
- Aparna Kotekar
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | - Amit Kumar Singh
- Experimental Immunology Branch, NCI, NIH, Bethesda, MD 20892, USA
| | | |
Collapse
|
29
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
30
|
Luo R, Yan J, Oh JW, Xi W, Shigaki D, Wong W, Cho HS, Murphy D, Cutler R, Rosen BP, Pulecio J, Yang D, Glenn RA, Chen T, Li QV, Vierbuchen T, Sidoli S, Apostolou E, Huangfu D, Beer MA. Dynamic network-guided CRISPRi screen identifies CTCF-loop-constrained nonlinear enhancer gene regulatory activity during cell state transitions. Nat Genet 2023; 55:1336-1346. [PMID: 37488417 PMCID: PMC11012226 DOI: 10.1038/s41588-023-01450-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Accepted: 06/20/2023] [Indexed: 07/26/2023]
Abstract
Comprehensive enhancer discovery is challenging because most enhancers, especially those contributing to complex diseases, have weak effects on gene expression. Our gene regulatory network modeling identified that nonlinear enhancer gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Using human embryonic stem cell definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen. We discovered a comprehensive set of enhancers for each of the core endoderm-specifying transcription factors. Many enhancers had strong effects mid-transition but weak effects post-transition, consistent with the nonlinear temporal responses to enhancer perturbation predicted by the modeling. Integrating three-dimensional genomic information, we were able to develop a CTCF-loop-constrained Interaction Activity model that can better predict functional enhancers compared to models that rely on Hi-C-based enhancer-promoter contact frequency. Our study provides generalizable strategies for sensitive and systematic enhancer discovery in both normal and pathological cell state transitions.
Collapse
Affiliation(s)
- Renhe Luo
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jielin Yan
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Jin Woo Oh
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Wang Xi
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Dustin Shigaki
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Wilfred Wong
- Computational & Systems Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Hyein S Cho
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
| | - Dylan Murphy
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York City, NY, USA
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Ronald Cutler
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Bess P Rosen
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Julian Pulecio
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
| | - Rachel A Glenn
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Weill Cornell Graduate School of Medical Sciences, Weill Cornell Medicine, New York City, NY, USA
| | - Tingxu Chen
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Qing V Li
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
- Louis V. Gerstner Jr. Graduate School of Biomedical Sciences, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Thomas Vierbuchen
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Effie Apostolou
- Department of Medicine, Weill Cornell Medicine, New York City, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York City, NY, USA.
| | - Michael A Beer
- Department of Biomedical Engineering and McKusick-Nathans Department of Genetic Medicine, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
31
|
Sun T, Xu Y, Xiang Y, Ou J, Soderblom EJ, Diao Y. Crosstalk between RNA m 6A and DNA methylation regulates transposable element chromatin activation and cell fate in human pluripotent stem cells. Nat Genet 2023; 55:1324-1335. [PMID: 37474847 PMCID: PMC10766344 DOI: 10.1038/s41588-023-01452-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 06/20/2023] [Indexed: 07/22/2023]
Abstract
Transposable elements (TEs) are parasitic DNA sequences accounting for over half of the human genome. Tight control of the repression and activation states of TEs is critical for genome integrity, development, immunity and diseases, including cancer. However, precisely how this regulation is achieved remains unclear. Here we develop a targeted proteomic proximity labeling approach to capture TE-associated proteins in human embryonic stem cells (hESCs). We find that the RNA N6-methyladenosine (m6A) reader, YTHDC2, occupies genomic loci of the primate-specific TE, LTR7/HERV-H, specifically through its interaction with m6A-modified HERV-H RNAs. Unexpectedly, YTHDC2 recruits the DNA 5-methylcytosine (5mC)-demethylase, TET1, to remove 5mC from LTR7/HERV-H and prevent epigenetic silencing. Functionally, the YTHDC2/LTR7 axis inhibits neural differentiation of hESCs. Our results reveal both an underappreciated crosstalk between RNA m6A and DNA 5mC, the most abundant regulatory modifications of RNA and DNA in eukaryotes, and the fact that in hESCs this interplay controls TE activity and cell fate.
Collapse
Affiliation(s)
- Tongyu Sun
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
| | - Yueyuan Xu
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Yu Xiang
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
| | - Jianhong Ou
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA
| | - Erik J Soderblom
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA
- Proteomics and Metabolomics Shared Resource, Duke Center for Genomic and Computational Biology, Duke University, Durham, NC, USA
| | - Yarui Diao
- Department of Cell Biology, Duke University Medical Center, Durham, NC, USA.
- Duke Regeneration Center, Duke University Medical Center, Durham, NC, USA.
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA.
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA.
- Department of Orthopaedics Surgery, Duke University Medical Center, Durham, NC, USA.
- Department of Pathology, Duke University Medical Center, Durham, NC, USA.
| |
Collapse
|
32
|
Hsu FM, Wu QY, Fabyanic EB, Wei A, Wu H, Clark AT. TET1 facilitates specification of early human lineages including germ cells. iScience 2023; 26:107191. [PMID: 37456839 PMCID: PMC10345126 DOI: 10.1016/j.isci.2023.107191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/07/2023] [Accepted: 06/18/2023] [Indexed: 07/18/2023] Open
Abstract
Ten Eleven Translocation 1 (TET1) is a regulator of localized DNA demethylation through the conversion of 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC). To examine DNA demethylation in human primordial germ cell-like cells (hPGCLCs) induced from human embryonic stem cells (hESCs), we performed bisulfite-assisted APOBEC coupled epigenetic sequencing (bACEseq) followed by integrated genomics analysis. Our data indicates that 5hmC enriches at hPGCLC-specific NANOG, SOX17 or TFAP2C binding sites on hPGCLC induction, and this is accompanied by localized DNA demethylation. Using CRISPR-Cas9, we show that deleting the catalytic domain of TET1 reduces hPGCLC competency when starting with hESC cultured on mouse embryonic fibroblasts, and this phenotype can be rescued after transitioning hESCs to defined media and a recombinant substrate. Taken together, our study demonstrates the importance of 5hmC in facilitating hPGCLC competency, and the role of hESC culture conditions in modulating this effect.
Collapse
Affiliation(s)
- Fei-Man Hsu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Qiu Ya Wu
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Emily B. Fabyanic
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Alex Wei
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Amander T. Clark
- Department of Molecular, Cell and Developmental Biology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
van der Veer BK, Chen L, Custers C, Athanasouli P, Schroiff M, Cornelis R, Chui JSH, Finnell R, Lluis F, Koh K. Dual functions of TET1 in germ layer lineage bifurcation distinguished by genomic context and dependence on 5-methylcytosine oxidation. Nucleic Acids Res 2023; 51:5469-5498. [PMID: 37021585 PMCID: PMC10287924 DOI: 10.1093/nar/gkad231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/12/2023] [Accepted: 03/22/2023] [Indexed: 04/07/2023] Open
Abstract
Gastrulation begins when the epiblast forms the primitive streak or becomes definitive ectoderm. During this lineage bifurcation, the DNA dioxygenase TET1 has bipartite functions in transcriptional activation and repression, but the mechanisms remain unclear. By converting mouse embryonic stem cells (ESCs) into neuroprogenitors, we defined how Tet1-/- cells switch from neuroectoderm fate to form mesoderm and endoderm. We identified the Wnt repressor Tcf7l1 as a TET1 target that suppresses Wnt/β-catenin and Nodal signalling. ESCs expressing catalytic dead TET1 retain neural potential but activate Nodal and subsequently Wnt/β-catenin pathways to generate also mesoderm and endoderm. At CpG-poor distal enhancers, TET1 maintains accessible chromatin at neuroectodermal loci independently of DNA demethylation. At CpG-rich promoters, DNA demethylation by TET1 affects the expression of bivalent genes. In ESCs, a non-catalytic TET1 cooperation with Polycomb represses primitive streak genes; post-lineage priming, the interaction becomes antagonistic at neuronal genes, when TET1's catalytic activity is further involved by repressing Wnt signalling. The convergence of repressive DNA and histone methylation does not inhibit neural induction in Tet1-deficient cells, but some DNA hypermethylated loci persist at genes with brain-specific functions. Our results reveal versatile switching of non-catalytic and catalytic TET1 activities based on genomic context, lineage and developmental stage.
Collapse
Affiliation(s)
- Bernard K van der Veer
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Lehua Chen
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Colin Custers
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Paraskevi Athanasouli
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell Signaling, B-3000 Leuven, Belgium
| | - Mariana Schroiff
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Riet Cornelis
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
| | - Jonathan Sai-Hong Chui
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell Signaling, B-3000 Leuven, Belgium
| | - Richard H Finnell
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Houston, TX 77030, USA
- Baylor College of Medicine, Department of Molecular and Human Genetics, Department of Medicine, Houston, TX 77030, USA
| | - Frederic Lluis
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell Signaling, B-3000 Leuven, Belgium
| | - Kian Peng Koh
- KU Leuven, Department of Development and Regeneration, Laboratory of Stem Cell and Developmental Epigenetics, B-3000 Leuven, Belgium
- Baylor College of Medicine, Department of Molecular and Cellular Biology, Center for Precision Environmental Health, Houston, TX 77030, USA
| |
Collapse
|
34
|
Pulecio J, Tayyebi Z, Liu D, Wong W, Luo R, Damodaran JR, Kaplan S, Cho H, Yan J, Murphy D, Rickert RW, Shukla A, Zhong A, González F, Yang D, Li W, Zhou T, Apostolou E, Leslie CS, Huangfu D. Discovery of Competent Chromatin Regions in Human Embryonic Stem Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544990. [PMID: 37398096 PMCID: PMC10312725 DOI: 10.1101/2023.06.14.544990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The mechanisms underlying the ability of embryonic stem cells (ESCs) to rapidly activate lineage-specific genes during differentiation remain largely unknown. Through multiple CRISPR-activation screens, we discovered human ESCs have pre-established transcriptionally competent chromatin regions (CCRs) that support lineage-specific gene expression at levels comparable to differentiated cells. CCRs reside in the same topological domains as their target genes. They lack typical enhancer-associated histone modifications but show enriched occupancy of pluripotent transcription factors, DNA demethylation factors, and histone deacetylases. TET1 and QSER1 protect CCRs from excessive DNA methylation, while HDAC1 family members prevent premature activation. This "push and pull" feature resembles bivalent domains at developmental gene promoters but involves distinct molecular mechanisms. Our study provides new insights into pluripotency regulation and cellular plasticity in development and disease. One sentence summary We report a class of distal regulatory regions distinct from enhancers that confer human embryonic stem cells with the competence to rapidly activate the expression of lineage-specific genes.
Collapse
|
35
|
Tan WX, Sim X, Khoo CM, Teo AKK. Prioritization of genes associated with type 2 diabetes mellitus for functional studies. Nat Rev Endocrinol 2023:10.1038/s41574-023-00836-1. [PMID: 37169822 DOI: 10.1038/s41574-023-00836-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/28/2023] [Indexed: 05/13/2023]
Abstract
Existing therapies for type 2 diabetes mellitus (T2DM) show limited efficacy or have adverse effects. Numerous genetic variants associated with T2DM have been identified, but progress in translating these findings into potential drug targets has been limited. Here, we describe the tools and platforms available to identify effector genes from T2DM-associated coding and non-coding variants and prioritize them for functional studies. We discuss QSER1 and SLC12A8 as examples of genes that have been identified as possible T2DM candidate genes using these tools and platforms. We suggest further approaches, including the use of sequencing data with increased sample size and ethnic diversity, single-cell omics data for analyses, glycaemic trait associations to predict gene function and, potentially, human induced pluripotent stem cell 'village' cultures, to strengthen current gene functionalization workflows. Effective prioritization of T2DM-associated genes for experimental validation could expedite our understanding of the genetic mechanisms responsible for T2DM to facilitate the use of precision medicine in its treatment.
Collapse
Affiliation(s)
- Wei Xuan Tan
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Xueling Sim
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore, Singapore
| | - Chin Meng Khoo
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Adrian K K Teo
- Stem Cells and Diabetes Laboratory, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore.
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Precision Medicine Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
36
|
Wang X, Dai L, Liu Y, Li C, Fan D, Zhou Y, Li P, Kong Q, Su J. Partial erosion on under-methylated regions and chromatin reprogramming contribute to oncogene activation in IDH mutant gliomas. Epigenetics Chromatin 2023; 16:13. [PMID: 37118755 PMCID: PMC10142198 DOI: 10.1186/s13072-023-00490-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/21/2023] [Indexed: 04/30/2023] Open
Abstract
BACKGROUND IDH1/2 hotspot mutations are well known to drive oncogenic mutations in gliomas and are well-defined in the WHO 2021 classification of central nervous system tumors. Specifically, IDH mutations lead to aberrant hypermethylation of under-methylated regions (UMRs) in normal tissues through the disruption of TET enzymes. However, the chromatin reprogramming and transcriptional changes induced by IDH-related hypermethylation in gliomas remain unclear. RESULTS Here, we have developed a precise computational framework based on Hidden Markov Model to identify altered methylation states of UMRs at single-base resolution. By applying this framework to whole-genome bisulfite sequencing data from 75 normal brain tissues and 15 IDH mutant glioma tissues, we identified two distinct types of hypermethylated UMRs in IDH mutant gliomas. We named them partially hypermethylated UMRs (phUMRs) and fully hypermethylated UMRs (fhUMRs), respectively. We found that the phUMRs and fhUMRs exhibit distinct genomic features and chromatin states. Genes related to fhUMRs were more likely to be repressed in IDH mutant gliomas. In contrast, genes related to phUMRs were prone to be up-regulated in IDH mutant gliomas. Such activation of phUMR genes is associated with the accumulation of active H3K4me3 and the loss of H3K27me3, as well as H3K36me3 accumulation in gene bodies to maintain gene expression stability. In summary, partial erosion on UMRs was accompanied by locus-specific changes in key chromatin marks, which may contribute to oncogene activation. CONCLUSIONS Our study provides a computational strategy for precise decoding of methylation encroachment patterns in IDH mutant gliomas, revealing potential mechanistic insights into chromatin reprogramming that contribute to oncogenesis.
Collapse
Affiliation(s)
- Xinyu Wang
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Lijun Dai
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Yang Liu
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Chenghao Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Dandan Fan
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Yue Zhou
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China
| | - Pengcheng Li
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China
| | - Qingran Kong
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China
| | - Jianzhong Su
- School of Biomedical Engineering, School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325011, China.
- Oujiang Laboratory, Zhejiang Lab for Regenerative Medicine, Vision and Brain Health, Wenzhou, 325011, Zhejiang, China.
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325011, China.
| |
Collapse
|
37
|
Huang X, Balmer S, Lyu C, Xiang Y, Malik V, Wang H, Zhang Y, Xie W, Hadjantonakis AK, Zhou H, Wang J. ZFP281 coordinates DNMT3 and TET1 for transcriptional and epigenetic control in pluripotent state transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.24.534143. [PMID: 36993548 PMCID: PMC10055359 DOI: 10.1101/2023.03.24.534143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The progression from naive through formative to primed in vitro pluripotent stem cell states recapitulates the development of the epiblast in vivo during the peri-implantation period of mammalian development. Activation of the de novo DNA methyltransferases and reorganization of transcriptional and epigenetic landscapes are key events occurring during these pluripotent state transitions. However, the upstream regulators that coordinate these events are relatively underexplored. Here, using Zfp281 knockout mouse and degron knock-in cell models, we uncover the direct transcriptional activation of Dnmt3a/3b by ZFP281 in pluripotent stem cells. Chromatin co-occupancy of ZFP281 and DNA hydroxylase TET1, dependent on the formation of R loops in ZFP281-targeted gene promoters, undergoes a "high-low-high" bimodal pattern regulating dynamic DNA methylation and gene expression during the naïive-formative-primed transitions. ZFP281 also safeguards DNA methylation in maintaining primed pluripotency. Our study demonstrates a previously unappreciated role for ZFP281 in coordinating DNMT3A/3B and TET1 functions to promote pluripotent state transitions.
Collapse
Affiliation(s)
- Xin Huang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Sophie Balmer
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cong Lyu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunlong Xiang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Vikas Malik
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hailin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yu Zhang
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai 200082, China
| | - Wei Xie
- Tsinghua Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Anna-Katerina Hadjantonakis
- Developmental Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Hongwei Zhou
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jianlong Wang
- Department of Medicine, Columbia Center for Human Development, Columbia Stem Cell Initiative, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY 10032, USA
- Lead contact
| |
Collapse
|
38
|
Luo R, Yan J, Oh JW, Xi W, Shigaki D, Wong W, Cho H, Murphy D, Cutler R, Rosen BP, Pulecio J, Yang D, Glenn R, Chen T, Li QV, Vierbuchen T, Sidoli S, Apostolou E, Huangfu D, Beer MA. Dynamic network-guided CRISPRi screen reveals CTCF loop-constrained nonlinear enhancer-gene regulatory activity in cell state transitions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.07.531569. [PMID: 36945628 PMCID: PMC10028945 DOI: 10.1101/2023.03.07.531569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Comprehensive enhancer discovery is challenging because most enhancers, especially those affected in complex diseases, have weak effects on gene expression. Our network modeling revealed that nonlinear enhancer-gene regulation during cell state transitions can be leveraged to improve the sensitivity of enhancer discovery. Utilizing hESC definitive endoderm differentiation as a dynamic transition system, we conducted a mid-transition CRISPRi-based enhancer screen. The screen discovered a comprehensive set of enhancers (4 to 9 per locus) for each of the core endoderm lineage-specifying transcription factors, and many enhancers had strong effects mid-transition but weak effects post-transition. Through integrating enhancer activity measurements and three-dimensional enhancer-promoter interaction information, we were able to develop a CTCF loop-constrained Interaction Activity (CIA) model that can better predict functional enhancers compared to models that rely on Hi-C-based enhancer-promoter contact frequency. Our study provides generalizable strategies for sensitive and more comprehensive enhancer discovery in both normal and pathological cell state transitions.
Collapse
|
39
|
Zhao X, Fang K, Liu X, Yao R, Wang M, Li F, Hao S, He J, Wang Y, Fan M, Huang W, Li Y, Gao C, Lin C, Luo Z. QSER1 preserves the suppressive status of the pro-apoptotic genes to prevent apoptosis. Cell Death Differ 2023; 30:779-793. [PMID: 36371602 PMCID: PMC9984391 DOI: 10.1038/s41418-022-01085-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 10/20/2022] [Accepted: 10/31/2022] [Indexed: 11/13/2022] Open
Abstract
Activation of the pro-apoptotic genes by the p53 family is a critical step in induction of apoptosis. However, the molecular signaling underlying their suppression remains largely unknown. Here, we report a general role of QSER1 in preventing apoptosis. QSER1 is widely up-regulated in multiple cancers, and its up-regulation correlates with poor clinic outcomes. QSER1 knockdown significantly promotes apoptosis in both p53 wild type and mutant cancer cells. Interestingly, we show that QSER1 and p53 occupy distinct cis-regulatory regions in a common subset of the pro-apoptotic genes, and function antagonistically to maintain their proper expression. Furthermore, we identify a key regulatory DNA element named QSER1 binding site in PUMA (QBP). Deletion of QBP de-represses PUMA and induces apoptosis. Mechanistically, QSER1 functions together with SIN3A to suppress PUMA in a p53-dependent and -independent manner, suggesting that QSER1 inhibition might be a potential therapeutic strategy to induce apoptosis in cancers.
Collapse
Affiliation(s)
- Xiru Zhao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Ke Fang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Xiaoxu Liu
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Ruihuan Yao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Min Wang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Fanfan Li
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Shaohua Hao
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Jingjing He
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Yan Wang
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Menghan Fan
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China
| | - Wei Huang
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, Department of Critical Care Medicine, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Yiping Li
- Department of Pathology, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Chun Gao
- Department of Gastroenterology, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Chengqi Lin
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Nanshan District, Shenzhen, 518063, China.
- Jiangsu Province Hi-Tech Key Laboratory for Biomedical Research, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
| | - Zhuojuan Luo
- Key Laboratory of Developmental Genes and Human Disease, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
- Shenzhen Research Institute, Southeast University, 19 Gaoxin South 4th Road, Nanshan District, Shenzhen, 518063, China.
- Jiangsu Provincial Key Laboratory of Critical Care Medicine, School of Life Science and Technology, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
40
|
Cui J, Zhang C, Lee JE, Bartholdy BA, Yang D, Liu Y, Erler P, Galbo PM, Hodge DQ, Huangfu D, Zheng D, Ge K, Guo W. MLL3 loss drives metastasis by promoting a hybrid epithelial-mesenchymal transition state. Nat Cell Biol 2023; 25:145-158. [PMID: 36604594 PMCID: PMC10003829 DOI: 10.1038/s41556-022-01045-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 11/09/2022] [Indexed: 01/07/2023]
Abstract
Phenotypic plasticity associated with the hybrid epithelial-mesenchymal transition (EMT) is crucial to metastatic seeding and outgrowth. However, the mechanisms governing the hybrid EMT state remain poorly defined. Here we showed that deletion of the epigenetic regulator MLL3, a tumour suppressor frequently altered in human cancer, promoted the acquisition of hybrid EMT in breast cancer cells. Distinct from other EMT regulators that mediate only unidirectional changes, MLL3 loss enhanced responses to stimuli inducing EMT and mesenchymal-epithelial transition in epithelial and mesenchymal cells, respectively. Consequently, MLL3 loss greatly increased metastasis by enhancing metastatic colonization. Mechanistically, MLL3 loss led to increased IFNγ signalling, which contributed to the induction of hybrid EMT cells and enhanced metastatic capacity. Furthermore, BET inhibition effectively suppressed the growth of MLL3-mutant primary tumours and metastases. These results uncovered MLL3 mutation as a key driver of hybrid EMT and metastasis in breast cancer that could be targeted therapeutically.
Collapse
Affiliation(s)
- Jihong Cui
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Chi Zhang
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Ji-Eun Lee
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Boris A Bartholdy
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dapeng Yang
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Yu Liu
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Piril Erler
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Phillip M Galbo
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Dayle Q Hodge
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Danwei Huangfu
- Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA
| | - Deyou Zheng
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA
- Departments of Neurology and Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Wenjun Guo
- Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine, Bronx, NY, USA.
- Albert Einstein Cancer Center, Albert Einstein College of Medicine, Bronx, NY, USA.
| |
Collapse
|
41
|
Abstract
DNA methylation is a highly conserved epigenetic modification that plays essential roles in mammalian gene regulation, genome stability and development. Despite being primarily considered a stable and heritable epigenetic silencing mechanism at heterochromatic and repetitive regions, whole genome methylome analysis reveals that DNA methylation can be highly cell-type specific and dynamic within proximal and distal gene regulatory elements during early embryonic development, stem cell differentiation and reprogramming, and tissue maturation. In this Review, we focus on the mechanisms and functions of regulated DNA methylation and demethylation, highlighting how these dynamics, together with crosstalk between DNA methylation and histone modifications at distinct regulatory regions, contribute to mammalian development and tissue maturation. We also discuss how recent technological advances in single-cell and long-read methylome sequencing, along with targeted epigenome-editing, are enabling unprecedented high-resolution and mechanistic dissection of DNA methylome dynamics.
Collapse
Affiliation(s)
- Alex Wei
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hao Wu
- Department of Genetics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Epigenetics Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Institute of Regenerative Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
42
|
Loaeza-Loaeza J, Cerecedo-Castillo AJ, Rodríguez-Ruiz HA, Castro-Coronel Y, Del Moral-Hernández O, Recillas-Targa F, Hernández-Sotelo D. DNMT3B overexpression downregulates genes with CpG islands, common motifs, and transcription factor binding sites that interact with DNMT3B. Sci Rep 2022; 12:20839. [PMID: 36460706 PMCID: PMC9718745 DOI: 10.1038/s41598-022-24186-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 11/11/2022] [Indexed: 12/04/2022] Open
Abstract
DNA methylation is a key epigenetic modification to regulate gene expression in mammalian cells. Abnormal DNA methylation in gene promoters is common across human cancer types. DNMT3B is the main de novo methyltransferase enhanced in several primary tumors. How de novo methylation is established in genes related to cancer is poorly understood. CpG islands (CGIs), common sequences, and transcription factors (TFs) that interact with DNMT3B have been associated with abnormal de novo methylation. We initially identified cis elements associated with DNA methylation to investigate the contribution of DNMT3B overexpression to the deregulation of its possible target genes in an epithelial cell model. In a set of downregulated genes (n = 146) from HaCaT cells with DNMT3B overexpression, we found CGI, common sequences, and TFs Binding Sites that interact with DNMT3B (we called them P-down-3B). PPL1, VAV3, IRF1, and BRAF are P-down-3B genes that are downregulated and increased their methylation in DNMT3B presence. Together these findings suggest that methylated promoters aberrantly have some cis elements that could conduce de novo methylation by DNMT3B.
Collapse
Affiliation(s)
- Jaqueline Loaeza-Loaeza
- grid.412856.c0000 0001 0699 2934Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Angel Josué Cerecedo-Castillo
- grid.9486.30000 0001 2159 0001Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Hugo Alberto Rodríguez-Ruiz
- grid.412856.c0000 0001 0699 2934Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Yaneth Castro-Coronel
- grid.412856.c0000 0001 0699 2934Laboratorio de Citopatología e Inmunohistoquímica, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Oscar Del Moral-Hernández
- grid.412856.c0000 0001 0699 2934Laboratorio de Virus y Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| | - Félix Recillas-Targa
- grid.9486.30000 0001 2159 0001Departamento de Genética Molecular, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, 04510 Ciudad de México, Mexico
| | - Daniel Hernández-Sotelo
- grid.412856.c0000 0001 0699 2934Laboratorio de Epigenética del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Av. Lázaro Cárdenas S/N Col. Haciendita, 39070 Chilpancingo, Guerrero Mexico
| |
Collapse
|
43
|
Ding JF, Zhou Y, Xu SS, Shi KH, Sun H, Tu B, Song K, Xuan HY, Sha JM, Zhao JY, Tao H. Epigenetic control of LncRNA NEAT1 enables cardiac fibroblast pyroptosis and cardiac fibrosis. Eur J Pharmacol 2022; 938:175398. [PMID: 36455647 DOI: 10.1016/j.ejphar.2022.175398] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 11/13/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022]
Abstract
Cardiac fibroblasts (CFs) drive extracellular matrix remodeling after inflammatory injury, leading to cardiac fibrosis and diastolic dysfunction. Recent studies described the role of epigenetics in cardiac fibrosis. Nevertheless, detailed reports on epigenetics regulating CFs pyroptosis and describing their implication in cardiac fibrosis are still unclear. Here, we found that DNMT3A reduces the expression of lncRNA Neat1 and promotes the NLRP3 axis leading to CFs pyroptosis, using cultured cells, animal models, and clinical samples to shed light on the underlying mechanism. We report that pyroptosis-related genes are increased explicitly in cardiac fibrosis tissue and LPS-treated CFs, while lncRNA Neat1 decreased. Mechanistically, we show that loss of DNMT3A or overexpression of lncRNA Neat1 in CFs after LPS treatment significantly enhances CFs pyroptosis and the production of pyroptosis-related markers in vitro. It has been demonstrated that DNMT3A can decrease lncRNA Neat1, promoting NLRP3 axis activation in CFs treated with LPS. In sum, this study is the first to identify that DNMT3A methylation decreases the expression of lncRNA Neat1 and promotes CFs pyroptosis and cardiac fibrosis, suggesting that DNMT3A and NEAT1 may function as an anti-fibrotic therapy target in cardiac fibrosis.
Collapse
Affiliation(s)
- Ji-Fei Ding
- Department of Cardiothoracic Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Sheng-Song Xu
- Department of Cardiothoracic Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China; Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Kai-Hu Shi
- Department of Cardiothoracic Surgery, Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210028, China.
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Hai-Yang Xuan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Hospital of Anhui Medical University, Hefei, 230601, China
| | - Jian-Yuan Zhao
- Department of Anesthesiology, The Second Hospital of Anhui Medical University, Hefei, 230601, China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200092, China.
| | - Hui Tao
- Department of Anesthesiology, The Second Hospital of Anhui Medical University, Hefei, 230601, China.
| |
Collapse
|
44
|
Frank JA, Singh M, Cullen HB, Kirou RA, Benkaddour-Boumzaouad M, Cortes JL, Garcia-Perez J, Coyne CB, Feschotte C. Evolution and antiviral activity of a human protein of retroviral origin. Science 2022; 378:422-428. [PMID: 36302021 PMCID: PMC10542854 DOI: 10.1126/science.abq7871] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Endogenous retroviruses are abundant components of mammalian genomes descended from ancient germline infections. In several mammals, the envelope proteins encoded by these elements protect against exogenous viruses, but this activity has not been documented with endogenously expressed envelopes in humans. We report that the human genome harbors a large pool of envelope-derived sequences with the potential to restrict retroviral infection. To test this, we characterized an envelope-derived protein, Suppressyn. We found that Suppressyn is expressed in human preimplantation embryos and developing placenta using its ancestral retroviral promoter. Cell culture assays showed that Suppressyn, and its hominoid orthologs, could restrict infection by extant mammalian type D retroviruses. Our data support a generalizable model of retroviral envelope co-option for host immunity and genome defense.
Collapse
Affiliation(s)
- John A. Frank
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Manvendra Singh
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Harrison B. Cullen
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Raphael A. Kirou
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| | - Meriem Benkaddour-Boumzaouad
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government; PTS Granada, Spain
| | - Jose L. Cortes
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government; PTS Granada, Spain
- Eppendorf; Iberica, Spain
| | - Jose Garcia-Perez
- GENYO. Centre for Genomics and Oncological Research: Pfizer/University of Granada/Andalusian Regional Government; PTS Granada, Spain
- MRC-Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital; Edinburgh, UK
| | - Carolyn B. Coyne
- Department of Molecular Genetics and Microbiology, Duke University School of Medicine; Durham, NC, USA
| | - Cédric Feschotte
- Department of Molecular Biology and Genetics, Cornell University; Ithaca, NY, USA
| |
Collapse
|
45
|
Chao L, Yang S, Li H, Long C, Xi Q, Zuo Y. Competitive binding of TET1 and DNMT3A/B cooperates the DNA methylation pattern in human embryonic stem cells. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2022; 1865:194861. [PMID: 35998875 DOI: 10.1016/j.bbagrm.2022.194861] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 08/06/2022] [Accepted: 08/12/2022] [Indexed: 06/15/2023]
Abstract
DNMT3A/B and TET1 play indispensable roles in regulating DNA methylation that undergoes extensive reprogramming during mammalian embryogenesis. Yet the competitive and cooperative relationships between TET1 and DNMT3A/B remain largely unknown in the human embryonic stem cells. Here, we revealed that the main DNA-binding domain of TET1 contains more positive charges by using charge reduction of amino acid alphabet, followed by DNMT3A and DNMT3B. The genome-wide binding profiles showed that TET1 prefers binding to the proximal promoters and CpG islands compared with DNMT3A/B. Moreover, the binding regions of these three transcription factors can be divided into specific and co-binding regions. And a stronger inhibitory effect of DNMT3A on TET1 demethylation was observed in co-binding regions. Furthermore, we integrated TET1 knockout data to further discuss the competitive binding patterns of TET1 and DNMT3A/B. The lack of TET1 increased the occupation of DNMT3A/B at the specific binding regions of TET1 causing focal hypermethylation. The knockout of TET1 was also accompanied by a reduction of DNMT3A/B binding in the co-binding regions, further confirming the cooperative binding function between TET1 and DNMT3A/B. In conclusion, our studies found that the competitive binding of TET1 and DNMT3A/B cooperatively shapes the global DNA methylation pattern in human embryonic stem cells.
Collapse
Affiliation(s)
- Lemuge Chao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Siqi Yang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Hanshuang Li
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Chunshen Long
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Qilemuge Xi
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China
| | - Yongchun Zuo
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot 010070, China..
| |
Collapse
|
46
|
Wang K, Dai R, Xia Y, Tian J, Jiao C, Mikhailova T, Zhang C, Chen C, Liu C. Spatiotemporal specificity of correlated DNA methylation and gene expression pairs across different human tissues and stages of brain development. Epigenetics 2022; 17:1110-1127. [PMID: 34652256 PMCID: PMC9543113 DOI: 10.1080/15592294.2021.1993607] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 09/02/2021] [Accepted: 10/08/2021] [Indexed: 12/16/2022] Open
Abstract
DNA methylation (DNAm) that occurs on promoter regions is primarily considered to repress gene expression. Previous studies indicated that DNAm could also show positive correlations with gene expression. Both DNAm and gene expression profiles are known to be tissue- and development-specific. This study aims to investigate how DNAm and gene expression are coordinated across different human tissues and developmental stages, as well as the biological significance of such correlations. By analyzing 2,239 samples with both DNAm and gene expression data in the same human subjects obtained from six published datasets, we evaluated the correlations between gene and CpG pairs (GCPs) at cis-regions and compared significantly correlated GCPs (cGCPs) across different tissues and brains at different age groups. A total of 37,363 cGCPs was identified in the six datasets; approximately 38% of the cGCPs were positively correlated. The majority (>90%) of cGCPs was tissue- or development-specific. We also observed that the correlation direction can be opposite in different tissues and ages. Further analysis highlights the importance of cGCPs for their cellular functions and potential roles in complex traits and human diseases. For instance, the early developmental brain possessed a highly unique set of cGCPs that were associated with neurogenesis and psychiatric disorders. By assessing the epigenetic factors involved in cGCPs, we discovered novel regulatory mechanisms of positive cGCPs distinct from negative cGCPs, which were related to multiple factors, such as H3K27me3, CTCF, and JARD2. The catalogue of cGCPs compiled can be used to guide functional interpretation of genetic and epigenetic studies.
Collapse
Affiliation(s)
- Kangli Wang
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Rujia Dai
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Yan Xia
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Jianghua Tian
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chuan Jiao
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Tatiana Mikhailova
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
| | - Chunling Zhang
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, Ny, USA
| | - Chao Chen
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center on Mental Disorders, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Chunyu Liu
- Center for Medical Genetics & Hunan Key Laboratory of Medical Genetics, School of Life Sciences, and Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
- Department of Psychiatry, State University of New York Upstate Medical University, Syracuse, NY, USA
- Department of Neuroscience and Physiology, State University of New York Upstate Medical University, Syracuse, Ny, USA
| |
Collapse
|
47
|
Musella M, Guarracino A, Manduca N, Galassi C, Ruggiero E, Potenza A, Maccafeo E, Manic G, Mattiello L, Soliman Abdel Rehim S, Signore M, Pietrosanto M, Helmer-Citterich M, Pallocca M, Fanciulli M, Bruno T, De Nicola F, Corleone G, Di Benedetto A, Ercolani C, Pescarmona E, Pizzuti L, Guidi F, Sperati F, Vitale S, Macchia D, Spada M, Schiavoni G, Mattei F, De Ninno A, Businaro L, Lucarini V, Bracci L, Aricò E, Ziccheddu G, Facchiano F, Rossi S, Sanchez M, Boe A, Biffoni M, De Maria R, Vitale I, Sistigu A. Type I IFNs promote cancer cell stemness by triggering the epigenetic regulator KDM1B. Nat Immunol 2022; 23:1379-1392. [PMID: 36002648 PMCID: PMC9477743 DOI: 10.1038/s41590-022-01290-3] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Accepted: 07/17/2022] [Indexed: 12/14/2022]
Abstract
Cancer stem cells (CSCs) are a subpopulation of cancer cells endowed with high tumorigenic, chemoresistant and metastatic potential. Nongenetic mechanisms of acquired resistance are increasingly being discovered, but molecular insights into the evolutionary process of CSCs are limited. Here, we show that type I interferons (IFNs-I) function as molecular hubs of resistance during immunogenic chemotherapy, triggering the epigenetic regulator demethylase 1B (KDM1B) to promote an adaptive, yet reversible, transcriptional rewiring of cancer cells towards stemness and immune escape. Accordingly, KDM1B inhibition prevents the appearance of IFN-I-induced CSCs, both in vitro and in vivo. Notably, IFN-I-induced CSCs are heterogeneous in terms of multidrug resistance, plasticity, invasiveness and immunogenicity. Moreover, in breast cancer (BC) patients receiving anthracycline-based chemotherapy, KDM1B positively correlated with CSC signatures. Our study identifies an IFN-I → KDM1B axis as a potent engine of cancer cell reprogramming, supporting KDM1B targeting as an attractive adjunctive to immunogenic drugs to prevent CSC expansion and increase the long-term benefit of therapy.
Collapse
Affiliation(s)
- Martina Musella
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Andrea Guarracino
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Genomics Research Centre, Human Technopole, Milan, Italy
| | - Nicoletta Manduca
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Claudia Galassi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ester Maccafeo
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Gwenola Manic
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Luca Mattiello
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy
| | - Sara Soliman Abdel Rehim
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy
| | - Michele Signore
- RPPA Unit, Proteomics Area, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Marco Pietrosanto
- Department of Biology, University of Rome 'Tor Vergata', Rome, Italy
| | | | - Matteo Pallocca
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Tiziana Bruno
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | | | - Giacomo Corleone
- SAFU Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Anna Di Benedetto
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Cristiana Ercolani
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Edoardo Pescarmona
- Pathology Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Laura Pizzuti
- Division of Medical Oncology 2, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Guidi
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario 'A. Gemelli' - IRCCS, Rome, Italy
| | - Francesca Sperati
- UOSD Clinical Trial Center, Biostatistics and Bioinformatics, IRCCS San Gallicano Dermatological Institute, Rome, Italy
| | - Sara Vitale
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Daniele Macchia
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Spada
- Center of Animal Research and Welfare, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Schiavoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Fabrizio Mattei
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Adele De Ninno
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Luca Businaro
- Institute for Photonics and Nanotechnologies, Italian National Research Council, Rome, Italy
| | - Valeria Lucarini
- Department of Paediatric Haematology/Oncology and of Cell and Gene Therapy, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome, Italy
| | - Laura Bracci
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Eleonora Aricò
- FaBioCell, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Giovanna Ziccheddu
- Oncogenomics and Epigenetics, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Francesco Facchiano
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Stefania Rossi
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Massimo Sanchez
- Cytometry Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Alessandra Boe
- Cytometry Unit, Core Facilities, Istituto Superiore di Sanità, Rome, Italy
| | - Mauro Biffoni
- Department of Oncology and Molecular Medicine, Istituto Superiore di Sanità, Rome, Italy
| | - Ruggero De Maria
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario 'A. Gemelli' - IRCCS, Rome, Italy.
| | - Ilio Vitale
- Italian Institute for Genomic Medicine (IIGM), Candiolo, Italy.
- Candiolo Cancer Institute, FPO - IRCCS, Candiolo, Italy.
| | - Antonella Sistigu
- Dipartimento di Medicina e Chirurgia Traslazionale, Università Cattolica del Sacro Cuore, Rome, Italy.
- Fondazione Policlinico Universitario 'A. Gemelli' - IRCCS, Rome, Italy.
- Tumor Immunology and Immunotherapy Unit, IRCCS Regina Elena National Cancer Institute, Rome, Italy.
| |
Collapse
|
48
|
Abstract
Virtually all cell types have the same DNA, yet each type exhibits its own cell-specific pattern of gene expression. During the brief period of mitosis, the chromosomes exhibit changes in protein composition and modifications, a marked condensation, and a consequent reduction in transcription. Yet as cells exit mitosis, they reactivate their cell-specific programs with high fidelity. Initially, the field focused on the subset of transcription factors that are selectively retained in, and hence bookmark, chromatin in mitosis. However, recent studies show that many transcription factors can be retained in mitotic chromatin and that, surprisingly, such retention can be due to nonspecific chromatin binding. Here, we review the latest studies focusing on low-level transcription via promoters, rather than enhancers, as contributing to mitotic memory, as well as new insights into chromosome structure dynamics, histone modifications, cell cycle signaling, and nuclear envelope proteins that together ensure the fidelity of gene expression through a round of mitosis.
Collapse
Affiliation(s)
- Kenji Ito
- Institute for Regenerative Medicine and Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA;
| | | |
Collapse
|
49
|
Cheng S, Mittnenzweig M, Mayshar Y, Lifshitz A, Dunjić M, Rais Y, Ben-Yair R, Gehrs S, Chomsky E, Mukamel Z, Rubinstein H, Schlereth K, Reines N, Orenbuch AH, Tanay A, Stelzer Y. The intrinsic and extrinsic effects of TET proteins during gastrulation. Cell 2022; 185:3169-3185.e20. [PMID: 35908548 PMCID: PMC9432429 DOI: 10.1016/j.cell.2022.06.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 04/18/2022] [Accepted: 06/25/2022] [Indexed: 12/17/2022]
Abstract
Mice deficient for all ten-eleven translocation (TET) genes exhibit early gastrulation lethality. However, separating cause and effect in such embryonic failure is challenging. To isolate cell-autonomous effects of TET loss, we used temporal single-cell atlases from embryos with partial or complete mutant contributions. Strikingly, when developing within a wild-type embryo, Tet-mutant cells retain near-complete differentiation potential, whereas embryos solely comprising mutant cells are defective in epiblast to ectoderm transition with degenerated mesoderm potential. We map de-repressions of early epiblast factors (e.g., Dppa4 and Gdf3) and failure to activate multiple signaling from nascent mesoderm (Lefty, FGF, and Notch) as likely cell-intrinsic drivers of TET loss phenotypes. We further suggest loss of enhancer demethylation as the underlying mechanism. Collectively, our work demonstrates an unbiased approach for defining intrinsic and extrinsic embryonic gene function based on temporal differentiation atlases and disentangles the intracellular effects of the demethylation machinery from its broader tissue-level ramifications. Chimeras with full or partial Tet deficiency are mapped over the course of gastrulation Tet-TKO cells disrupt signaling, leading to skewed whole-embryo mutant gastrulation Tet-TKO cells retain near-complete differentiation potential in a chimera context Loss of TET leads to pervasive hypermethylation and mildly perturbed gene expression
Collapse
Affiliation(s)
- Saifeng Cheng
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Markus Mittnenzweig
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yoav Mayshar
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Aviezer Lifshitz
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Marko Dunjić
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yoach Rais
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Raz Ben-Yair
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Stephanie Gehrs
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Zohar Mukamel
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Hernan Rubinstein
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Katharina Schlereth
- Division of Vascular Oncology and Metastasis, German Cancer Research Center (DKFZ), Heidelberg, Germany; European Center for Angioscience (ECAS), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Netta Reines
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | | | - Amos Tanay
- Department of Computer Science and Applied Mathematics and Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| | - Yonatan Stelzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, 7610001 Rehovot, Israel.
| |
Collapse
|
50
|
Bolondi A, Kretzmer H, Meissner A. Single-cell technologies: a new lens into epigenetic regulation in development. Curr Opin Genet Dev 2022; 76:101947. [PMID: 35839561 DOI: 10.1016/j.gde.2022.101947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/27/2022] [Accepted: 05/30/2022] [Indexed: 11/30/2022]
Abstract
The totipotent zygote gives rise to diverse cell types through a series of well-orchestrated regulatory mechanisms. Epigenetic modifiers play an essential, though still poorly understood, role in the transition from pluripotency towards organogenesis. However, recent advances in single-cell technologies have enabled an unprecedented, high-resolution dissection of this crucial developmental window, highlighting more cell-type-specific functions of these ubiquitous regulators. In this review, we discuss and contextualize several recent studies that explore epigenetic regulation during mouse embryogenesis, emphasizing the opportunities presented by single-cell technologies, in vivo perturbation approaches as well as advanced in vitro models to characterize dynamic developmental transitions.
Collapse
Affiliation(s)
- Adriano Bolondi
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany. https://twitter.com/@adrianobolondi
| | - Helene Kretzmer
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany. https://twitter.com/@helenekretzmer
| | - Alexander Meissner
- Department of Genome Regulation, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany; Institute of Chemistry and Biochemistry, Freie Universität Berlin,14195 Berlin, Germany; Broad Institute of MIT and Harvard, 02142 Cambridge, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, 02138 Cambridge, MA, USA.
| |
Collapse
|