1
|
Wang L, Pan M, Dong J, He Z, Wang W, Shu J, Wang T, Wang Y. Investigating cigarette smoke-induced airway inflammation and sperm activity impairment in rats based on cilia-associated proteins. 3 Biotech 2025; 15:136. [PMID: 40260407 PMCID: PMC12009257 DOI: 10.1007/s13205-025-04302-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Accepted: 04/02/2025] [Indexed: 04/23/2025] Open
Abstract
The aim of this study was to investigate the mechanism of smoking-induced chronic obstructive pulmonary disease (COPD) and its impact on reproductive function in male rats and its relationship with chronic lung inflammation. The study used various methodologies including lung function tests, sperm quality assessment, serum hormone level measurement, and ultrastructural observations of airway cilia and sperm flagella to elucidate the effects of smoking on the reproductive and respiratory systems of rats. The results showed that smoking significantly induced lung damage and reduced sperm quality in rats, and the trend of lung damage and decreased sperm quality became more obvious with the increased duration of smoking. Transmission electron microscopy revealed that smoking exposure led to structural abnormalities of airway cilia and sperm flagella, and exposure after a period of three months showed significant damage to cilia and flagellar structures. Western blot and immunohistochemistry results indicated that the relative expression of NE proteins was significantly higher in the rats of the CS group, whereas the expression of FOXJ1 and SPAG6 proteins was notably lower in these rats after three months of smoking. In summary, smoke causes damage to the respiratory and reproductive systems of male rats, and the mechanism may be related to the destruction of airway cilia and sperm flagellar structures and the down-regulation of the expression of key ciliary proteins by smoke.
Collapse
Affiliation(s)
- Lei Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
- Institutes of Physical Science and Information Technology, Anhui University, Hefei, 230061 China
| | - Min Pan
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Jinhui Dong
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Zengyang He
- Technology Center of China Tobacco Anhui Industrial Co., LTD, Hefei, 230088 China
| | - Wenbin Wang
- Technology Center of China Tobacco Anhui Industrial Co., LTD, Hefei, 230088 China
| | - Junsheng Shu
- Technology Center of China Tobacco Anhui Industrial Co., LTD, Hefei, 230088 China
| | - Tongsheng Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
| | - Yajuan Wang
- Department of Physiology and Pharmacology, Anhui University of Chinese Medicine, Hefei, 230012 China
| |
Collapse
|
2
|
Sakato-Antoku M, Patel N, Inaba M, Rao Q, Yang J, Patel-King RS, Inaba K, Balsbaugh JL, King SM. Phyloproteomics reveals conserved patterns of axonemal dynein methylation across the motile ciliated eukaryotes. Mol Biol Cell 2025; 36:ar49. [PMID: 39969973 PMCID: PMC12005109 DOI: 10.1091/mbc.e25-02-0055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/14/2025] [Indexed: 02/20/2025] Open
Abstract
Axonemal dynein assembly occurs in the cytoplasm and numerous cytosolic factors are specifically required for this process. Recently, one factor (DNAAF3/PF22) was identified as a methyltransferase. Examination of Chlamydomonas dyneins found they are methylated at substoichiometric levels on multiple sites, including Lys and Arg residues in several of the nucleotide-binding domains and on the microtubule-binding region. Given the highly conserved nature of axonemal dyneins, one key question is whether methylation happens only in dyneins from the chlorophyte algae, or whether these modifications occur more broadly throughout the motile ciliated eukaryotes. Here we take a phyloproteomic approach and examine dynein methylation in a wide range of eukaryotic organisms bearing motile cilia. We find unambiguous evidence for methylation of axonemal dyneins in alveolates, chlorophytes, trypanosomes, and a broad range of metazoans. Intriguingly, we were unable to identify a single instance of methylation on Drosophila melanogaster sperm dyneins even though dipterans express a Dnaaf3 orthologue, or in spermatozoids of the fern Ceratopteris, which assembles inner arms but lacks both outer arm dyneins and DNAAF3. Thus, methylation of axonemal dyneins has been broadly conserved in most eukaryotic groups and has the potential to variably modify the function of these motors.
Collapse
Affiliation(s)
- Miho Sakato-Antoku
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Nikisha Patel
- Department of Biology, Trinity College, Hartford, CT 06106
| | - Mayu Inaba
- Department of Cell Biology, University of Connecticut Health Center, Farmington, CT 06030
| | - Qinhui Rao
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - Jun Yang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511
| | - Ramila S. Patel-King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| | - Kazuo Inaba
- Shimoda Marine Research Center, University of Tsukuba, Shizuoka 415-0025, Japan
| | - Jeremy L. Balsbaugh
- Proteomics and Metabolomics Facility, Center for Open Research Resources and Equipment, University of Connecticut, Storrs, CT 06269
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030-3305
| |
Collapse
|
3
|
Xia X, Shimogawa MM, Wang H, Liu S, Wijono A, Langousis G, Kassem AM, Wohlschlegel JA, Hill KL, Zhou ZH. Trypanosome doublet microtubule structures reveal flagellum assembly and motility mechanisms. Science 2025; 387:eadr3314. [PMID: 40080582 DOI: 10.1126/science.adr3314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 01/06/2025] [Indexed: 03/15/2025]
Abstract
The flagellum of Trypanosoma brucei drives the parasite's characteristic screw-like motion and is essential for its replication, transmission, and pathogenesis. However, the molecular details of this process remain unclear. Here, we present high-resolution (up to 2.8 angstrom) cryo-electron microscopy structures of T. brucei flagellar doublet microtubules (DMTs). Integrated modeling identified 154 different axonemal proteins inside and outside the DMT and, together with genetic and proteomic interrogation, revealed conserved and trypanosome-specific foundations of flagellum assembly and motility. We captured axonemal dynein motors in their pre-power stroke state. Comparing atomic models between pre- and post-power strokes defined how dynein structural changes drive sliding of adjacent DMTs during flagellar beating. This study illuminates structural dynamics underlying flagellar motility and identifies pathogen-specific proteins to consider for therapeutic interventions targeting neglected diseases.
Collapse
Affiliation(s)
- Xian Xia
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Michelle M Shimogawa
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Hui Wang
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, CA, USA
| | - Samuel Liu
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| | - Angeline Wijono
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Gerasimos Langousis
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
| | - Ahmad M Kassem
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - James A Wohlschlegel
- Department of Biological Chemistry, University of California, Los Angeles, CA, USA
| | - Kent L Hill
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
- Molecular Biology Institute, University of California, Los Angeles, CA, USA
| | - Z Hong Zhou
- Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA, USA
- California NanoSystems Institute, University of California, Los Angeles, CA, USA
| |
Collapse
|
4
|
Lacey SE, Pigino G. The intraflagellar transport cycle. Nat Rev Mol Cell Biol 2025; 26:175-192. [PMID: 39537792 DOI: 10.1038/s41580-024-00797-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2024] [Indexed: 11/16/2024]
Abstract
Primary and motile cilia are eukaryotic organelles that perform crucial roles in cellular signalling and motility. Intraflagellar transport (IFT) contributes to the formation of the highly specialized ciliary proteome by active and selective transport of soluble and membrane proteins into and out of cilia. IFT is performed by the IFT-A and IFT-B protein complexes, which together link cargoes to the microtubule motors kinesin and dynein. In this Review, we discuss recent structural and mechanistic insights on how the IFT complexes are first recruited to the base of the cilium, how they polymerize into an anterograde IFT train, and how this complex imports cargoes from the cytoplasm. We will describe insights into how kinesin-driven anterograde trains are carried to the ciliary tip, where they are remodelled into dynein-driven retrograde trains for cargo export. We will also present how the interplay between IFT-A and IFT-B complexes, motor proteins and cargo adaptors is regulated for bidirectional ciliary transport.
Collapse
|
5
|
Wang J, Kidmose RT, Boegholm N, Zacharia NK, Thomsen MB, Christensen A, Malik T, Lechtreck K, Lorentzen E. Integrative in silico and biochemical analyses demonstrate direct Arl3-mediated ODA16 release from the intraflagellar transport machinery. J Biol Chem 2025; 301:108237. [PMID: 39880089 PMCID: PMC11879689 DOI: 10.1016/j.jbc.2025.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/27/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Outer dynein arms (ODAs) are essential for ciliary motility and are preassembled in the cytoplasm before trafficking into cilia by intraflagellar transport (IFT). ODA16 is a key adaptor protein that links ODAs to the IFT machinery via direct interaction with the IFT46 protein. However, the molecular mechanisms regulating the assembly, transport, and release of ODAs remain poorly understood. Here, we employ AlphaPulldown, an in silico screening method, to identify direct interactors of ODA16, including the dynein adaptor IDA3 and the small GTPase Arl3. We use structural modeling, biochemical, and biophysical assays on Chlamydomonas and human proteins to elucidate the interactions and regulatory mechanisms governing the IFT of ODAs. We identify a conserved N-terminal motif in Chlamydomonas IFT46 that mediates its binding to one side of the ODA16 structure. Biochemical dissection reveals that IDA3 and Arl3 bind to the same surface of ODA16 (the C-terminal β-propeller face), which is opposite to the IFT46 binding site, enabling them to dissociate ODA16 from IFT46, likely through an allosteric mechanism. Our findings provide mechanistic insights into the concerted actions of IFT and adaptor proteins in ODA transport and regulation.
Collapse
Affiliation(s)
- Jiaolong Wang
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Rune T Kidmose
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Niels Boegholm
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Nevin K Zacharia
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Mads B Thomsen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Anni Christensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark
| | - Tara Malik
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, Georgia, USA
| | - Esben Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus C, Denmark.
| |
Collapse
|
6
|
Chai P, Loustaunau DS, Zheng W, Yang J, Zhang K. DNAHX: a novel, non-motile dynein heavy chain subfamily, identified by cryo-EM endogenously. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.18.633724. [PMID: 39896649 PMCID: PMC11785096 DOI: 10.1101/2025.01.18.633724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Ciliogenesis and cilia motility rely on the coordinated actions of diverse dyneins, yet the complexity of these motor proteins in cilia has posed challenges for understanding their specific roles. Traditional evolutionary analyses often overlook key family members due to technical limitations. Here, we present a cryo-EM-based, bottom-up approach for large-scale, de novo protein identification and functional prediction of endogenous axonemal dynein complexes. This approach led to the identification of a novel dynein heavy chain subfamily (XP_041462850), designated as DNAHX, from sea urchin sperm. Phylogenetic analysis indicates that DNAHX branches from the outer-arm dynein alpha chain during evolution and is found in specific animal lineages with external fertilization. DNAHX contains multiple insertions throughout the protein, locking DNAHX permanently in a pre-powerstroke state. The AAA1 site exhibits poor conservation of essential ATPase motifs, consistent with DNAHX's non-motile nature. DNAHX also forms a heterodimeric dynein complex, which we named dynein-X, with another dynein heavy chain and accessory chains. Furthermore, a subset of dynein-X displays an autoinhibited phi particle conformation, potentially facilitating the intraflagellar transport of axonemal dyneins. Our discovery of the novel, non-motile dynein heavy chain and the dynein-X complex provides valuable insights into the evolution of dyneins and potentially their diverse cellular functions.
Collapse
Affiliation(s)
- Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University
| | | | - Wan Zheng
- Department of Molecular Biophysics and Biochemistry, Yale University
| | - Jun Yang
- Department of Molecular Biophysics and Biochemistry, Yale University
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University
| |
Collapse
|
7
|
Lei Y, Fukunaga A, Imai H, Yamamoto R, Shimo-Kon R, Kamimura S, Mitsuoka K, Kato-Minoura T, Yagi T, Kon T. Heterodimeric Ciliary Dynein f/I1 Adopts a Distinctive Structure, Providing Insight Into the Autoinhibitory Mechanism Common to the Dynein Family. Cytoskeleton (Hoboken) 2025. [PMID: 39754393 DOI: 10.1002/cm.21987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 12/13/2024] [Accepted: 12/26/2024] [Indexed: 01/06/2025]
Abstract
Dyneins are huge motor protein complexes that are essential for cell motility, cell division, and intracellular transport. Dyneins are classified into three major subfamilies, namely cytoplasmic, intraflagellar-transport (IFT), and ciliary dyneins, based on their intracellular localization and functions. Recently, several near-atomic resolution structures have been reported for cytoplasmic/IFT dyneins. In contrast, the structures of ciliary dyneins, as well as their regulatory mechanisms, have yet to be fully elucidated. Here, we isolated a heterodimeric ciliary dynein (IDA-f/I1) from Chlamydomonas reinhardtii, a ciliated green alga, and studied its structure in the presence or absence of ATP by negative-stain electron microscopy and single-particle analysis. Surprisingly, a population of IDA-f adopted a distinctive compact structure, which has been scarcely reported for ciliary dyneins but is very similar to the "phi-particle" structure widely recognized as the autoinhibited/inactivated conformation for cytoplasmic/IFT dyneins. Our results suggest that the inactivation mechanism of dimeric dyneins is conserved in all three dynein subfamilies, regardless of their cellular functions, highlighting the intriguing intrinsic regulatory mechanism that may have been acquired at an early stage in the evolution of dynein motors.
Collapse
Affiliation(s)
- Yici Lei
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Akira Fukunaga
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Hiroshi Imai
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Rieko Shimo-Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Shinji Kamimura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Takako Kato-Minoura
- Department of Biological Sciences, Faculty of Science and Engineering, Chuo University, Tokyo, Japan
| | - Toshiki Yagi
- Department of Life and Environmental Sciences, Faculty of Bioresource Sciences, Prefectural University of Hiroshima, Hiroshima, Japan
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| |
Collapse
|
8
|
Geohring IC, Chai P, Iyer BR, Ton WD, Yang J, Ide AH, George SC, Bagri JS, Baird SV, Zhang K, Markus SM. A nucleotide code governs Lis1's ability to relieve dynein autoinhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.30.630615. [PMID: 39803478 PMCID: PMC11722441 DOI: 10.1101/2024.12.30.630615] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2025]
Abstract
Dynein-1 is a microtubule motor responsible for the transport of cytoplasmic cargoes. Activation of motility requires it first overcome an autoinhibited state prior to its assembly with dynactin and a cargo adaptor. Studies suggest that Lis1 may relieve dynein's autoinhibited state. However, evidence for this mechanism is lacking. We first set out to determine the rules governing dynein-Lis1 binding, which reveals that their binding affinity is regulated by the nucleotide-bound states of each of three nucleotide-binding pockets within the dynein motor domain. We also find that distinct nucleotide 'codes' coordinate dynein-Lis1 binding stoichiometry by impacting binding affinity at two different sites within the dynein motor domain. Electron microscopy reveals that a 1 Lis1:1 dynein complex directly promotes an open, uninhibited conformational state of dynein, whereas a 2:1 complex resembles the autoinhibited state. Cryo-EM analysis reveals the structural basis for Lis1 opening dynein relies on interactions with the linker domain.
Collapse
|
9
|
King SM. Inherently disordered regions of axonemal dynein assembly factors. Cytoskeleton (Hoboken) 2024; 81:515-528. [PMID: 37712517 PMCID: PMC10940205 DOI: 10.1002/cm.21789] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/16/2023]
Abstract
The dynein-driven beating of cilia is required to move individual cells and to generate fluid flow across surfaces and within cavities. These motor enzymes are highly complex and can contain upwards of 20 different protein components with a total mass approaching 2 MDa. The dynein heavy chains are enormous proteins consisting of ~4500 residues and ribosomes take approximately 15 min to synthesize one. Studies in a broad array of organisms ranging from the green alga Chlamydomonas to humans has identified 19 cytosolic factors (DNAAFs) that are needed to specifically build axonemal dyneins; defects in many of these proteins lead to primary ciliary dyskinesia in mammals which can result in infertility, severe bronchial problems, and situs inversus. How all these factors cooperate in a spatially and temporally regulated manner to promote dynein assembly in cytoplasm remains very uncertain. These DNAAFs contain a variety of well-folded domains many of which provide protein interaction surfaces. However, many also exhibit large regions that are predicted to be inherently disordered. Here I discuss the nature of these unstructured segments, their predicted propensity for driving protein phase separation, and their potential for adopting more defined conformations during the dynein assembly process.
Collapse
Affiliation(s)
- Stephen M King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, Connecticut, USA
| |
Collapse
|
10
|
Zimmermann N, Ishikawa T. Comparative structural study on axonemal and cytoplasmic dyneins. Cytoskeleton (Hoboken) 2024; 81:681-690. [PMID: 39073294 DOI: 10.1002/cm.21897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Axonemal dyneins are the driving force of motile cilia, while cytoplasmic dyneins play an essential role in minus-end oriented intracellular transport. Their molecular structure is indispensable for an understanding of the molecular mechanism of ciliary beating and cargo transport. After some initial structural analysis of cytoplasmic dyneins, which are easier to manipulate with genetic engineering, using X-ray crystallography and single-particle cryo-electron microscopy, a number of atomic and pseudo-atomic structural analyses of axonemal dyneins have been published. Currently, several structures of dyneins in the post-power stroke conformation as well as a few structures in the pre-power stroke conformation are available. It will be worth systematically comparing conformations of dynein motor proteins from different sources and at different states, to understand their role in biological function. In this review, we will overview published high- and intermediate-resolution structures of cytoplasmic and axonemal dyneins, compare the high-resolution structures of their core motor domains and overall tail conformations at various nucleotide states, and discuss their force generation mechanism.
Collapse
Affiliation(s)
- Noemi Zimmermann
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zürich, Switzerland
| | - Takashi Ishikawa
- Laboratory of Nanoscale Biology, Paul Scherrer Institute, Villigen, Switzerland
- Department of Biology, ETH Zurich, Zürich, Switzerland
| |
Collapse
|
11
|
Kubo S, Okada Y, Takada S. Theoretical insights into rotary mechanism of MotAB in the bacterial flagellar motor. Biophys J 2024; 123:3587-3599. [PMID: 39262115 PMCID: PMC11494522 DOI: 10.1016/j.bpj.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/06/2024] [Accepted: 09/09/2024] [Indexed: 09/13/2024] Open
Abstract
Many bacteria enable locomotion by rotating their flagellum. It has been suggested that this rotation is realized by the rotary motion of the stator unit, MotAB, which is driven by proton transfer across the membrane. Recent cryo-electron microscopy studies have revealed a 5:2 MotAB configuration, in which a MotB dimer is encircled by a ring-shaped MotA pentamer. Although the structure implicates the rotary motion of the MotA wheel around the MotB axle, the molecular mechanisms of rotary motion and how they are coupled with proton transfer across the membrane remain elusive. In this study, we built a structure-based computational model for Campylobacter jejuni MotAB, conducted comprehensive protonation-state-dependent molecular dynamics simulations, and revealed a plausible proton-transfer-coupled rotation pathway. The model assumes rotation-dependent proton transfer, in which proton uptake from the periplasmic side to the conserved aspartic acid in MotB is followed by proton hopping to the MotA proton-carrying site, followed by proton export to the CP. We suggest that, by maintaining two of the proton-carrying sites of MotA in the deprotonated state, the MotA pentamer robustly rotates by ∼36° per proton transfer across the membrane. Our results provide a structure-based mechanistic model of the rotary motion of MotAB in bacterial flagellar motors and provide insights into various ion-driven rotary molecular motors.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Cell Biology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.
| | - Yasushi Okada
- Department of Cell Biology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan; Department of Physics, Graduate School of Science, the University of Tokyo, Tokyo, Japan; Universal Biology Institute and International Research Center for Neurointelligence, the University of Tokyo, Tokyo, Japan; Laboratory for Cell Polarity Regulation, Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka, Japan
| | - Shoji Takada
- Department of Biophysics, Graduate School of Science, Kyoto University, Kyoto, Japan
| |
Collapse
|
12
|
Huang Y, Dong X, Sun SY, Lim TK, Lin Q, He CY. ARL3 GTPases facilitate ODA16 unloading from IFT in motile cilia. SCIENCE ADVANCES 2024; 10:eadq2950. [PMID: 39231220 PMCID: PMC11373600 DOI: 10.1126/sciadv.adq2950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 07/30/2024] [Indexed: 09/06/2024]
Abstract
Eukaryotic cilia and flagella are essential for cell motility and sensory functions. Their biogenesis and maintenance rely on the intraflagellar transport (IFT). Several cargo adapters have been identified to aid IFT cargo transport, but how ciliary cargos are discharged from the IFT remains largely unknown. During our explorations of small GTPases ARL13 and ARL3 in Trypanosoma brucei, we found that ODA16, a known IFT cargo adapter present exclusively in motile cilia, is a specific effector of ARL3. In the cilia, active ARL3 GTPases bind to ODA16 and dissociate ODA16 from the IFT complex. Depletion of ARL3 GTPases stabilizes ODA16 interaction with the IFT, leading to ODA16 accumulation in cilia and defects in axonemal assembly. The interactions between human ODA16 homolog HsDAW1 and ARL GTPases are conserved, and these interactions are altered in HsDAW1 disease variants. These findings revealed a conserved function of ARL GTPases in IFT transport of motile ciliary components, and a mechanism of cargo unloading from the IFT.
Collapse
Affiliation(s)
- Yameng Huang
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Xiaoduo Dong
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Stella Y Sun
- Department of Structural Biology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Teck-Kwang Lim
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Qingsong Lin
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
| | - Cynthia Y He
- Department of Biological Sciences, National University of Singapore, Singapore, Singapore
- The Centre for BioImaging Sciences, National University of Singapore, Singapore, Singapore
| |
Collapse
|
13
|
Singh K, Lau CK, Manigrasso G, Gama JB, Gassmann R, Carter AP. Molecular mechanism of dynein-dynactin complex assembly by LIS1. Science 2024; 383:eadk8544. [PMID: 38547289 PMCID: PMC7615804 DOI: 10.1126/science.adk8544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 02/09/2024] [Indexed: 04/02/2024]
Abstract
Cytoplasmic dynein is a microtubule motor vital for cellular organization and division. It functions as a ~4-megadalton complex containing its cofactor dynactin and a cargo-specific coiled-coil adaptor. However, how dynein and dynactin recognize diverse adaptors, how they interact with each other during complex formation, and the role of critical regulators such as lissencephaly-1 (LIS1) protein (LIS1) remain unclear. In this study, we determined the cryo-electron microscopy structure of dynein-dynactin on microtubules with LIS1 and the lysosomal adaptor JIP3. This structure reveals the molecular basis of interactions occurring during dynein activation. We show how JIP3 activates dynein despite its atypical architecture. Unexpectedly, LIS1 binds dynactin's p150 subunit, tethering it along the length of dynein. Our data suggest that LIS1 and p150 constrain dynein-dynactin to ensure efficient complex formation.
Collapse
Affiliation(s)
- Kashish Singh
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Clinton K. Lau
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - Giulia Manigrasso
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| | - José B. Gama
- Instituto de Investigação e Inovação em Saúde – i3S / Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde – i3S / Instituto de Biologia Molecular e Celular – IBMC, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrew P. Carter
- MRC Laboratory of Molecular Biology, Francis Crick Ave, Cambridge, CB2 0QH, UK
| |
Collapse
|
14
|
Rao L, Gennerich A. Structure and Function of Dynein's Non-Catalytic Subunits. Cells 2024; 13:330. [PMID: 38391943 PMCID: PMC10886578 DOI: 10.3390/cells13040330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/24/2024] Open
Abstract
Dynein, an ancient microtubule-based motor protein, performs diverse cellular functions in nearly all eukaryotic cells, with the exception of land plants. It has evolved into three subfamilies-cytoplasmic dynein-1, cytoplasmic dynein-2, and axonemal dyneins-each differentiated by their cellular functions. These megadalton complexes consist of multiple subunits, with the heavy chain being the largest subunit that generates motion and force along microtubules by converting the chemical energy of ATP hydrolysis into mechanical work. Beyond this catalytic core, the functionality of dynein is significantly enhanced by numerous non-catalytic subunits. These subunits are integral to the complex, contributing to its stability, regulating its enzymatic activities, targeting it to specific cellular locations, and mediating its interactions with other cofactors. The diversity of non-catalytic subunits expands dynein's cellular roles, enabling it to perform critical tasks despite the conservation of its heavy chains. In this review, we discuss recent findings and insights regarding these non-catalytic subunits.
Collapse
Affiliation(s)
- Lu Rao
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | - Arne Gennerich
- Department of Biochemistry and Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| |
Collapse
|
15
|
Ghanaeian A, Majhi S, McCafferty CL, Nami B, Black CS, Yang SK, Legal T, Papoulas O, Janowska M, Valente-Paterno M, Marcotte EM, Wloga D, Bui KH. Integrated modeling of the Nexin-dynein regulatory complex reveals its regulatory mechanism. Nat Commun 2023; 14:5741. [PMID: 37714832 PMCID: PMC10504270 DOI: 10.1038/s41467-023-41480-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, using cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localize 12 DRC subunits in the N-DRC structure of Tetrahymena thermophila. We also find that the CCDC96/113 complex is in close contact with the DRC9/10 in the linker region. In addition, we reveal that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.
Collapse
Affiliation(s)
- Avrin Ghanaeian
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Sumita Majhi
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Caitlyn L McCafferty
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, USA
| | - Babak Nami
- Genetics and Genome Biology Program, Hospital for Sick Children, Toronto, Canada
| | - Corbin S Black
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Shun Kai Yang
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, USA
| | - Martyna Janowska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
- Laboratory of Immunology, Mossakowski Institute of Experimental and Clinical Medicine, Polish Academy of Science, Pawinskiego 5, 02-106, Warsaw, Poland
| | - Melissa Valente-Paterno
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX, USA
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland.
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada.
| |
Collapse
|
16
|
Ko S, Toda A, Tanaka H, Yu J, Kurisu G. Crystal structure of the stalk region of axonemal inner-arm dynein-d reveals unique features in the coiled-coil and microtubule-binding domain. FEBS Lett 2023; 597:2149-2160. [PMID: 37400274 DOI: 10.1002/1873-3468.14690] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 06/09/2023] [Accepted: 06/12/2023] [Indexed: 07/05/2023]
Abstract
Axonemal dynein is an ATP-dependent microtubular motor protein responsible for cilia and flagella beating, and its dysfunction can cause diseases such as primary ciliary dyskinesia and sperm dysmotility. Despite its biological importance, structure-based mechanisms underlying axonemal dynein motors remain unclear. Here, we determined the X-ray crystal structure of the human inner-arm dynein-d (DNAH1) stalk region, which contains a long antiparallel coiled-coil and a microtubule-binding domain (MTBD), at 2.7 Å resolution. Notably, differences in the relative orientation of the coiled-coil and MTBD in comparison with other dyneins, as well as the diverse orientations of the MTBD flap region among various isoforms, lead us to propose a 'spike shoe model' with an altered stepping angle for the interaction between IAD-d and microtubules. Based on these findings, we discuss isoform-specific functions of the axonemal dynein stalk MTBDs.
Collapse
Affiliation(s)
- Seolmin Ko
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Akiyuki Toda
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Hideaki Tanaka
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
| | - Jian Yu
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
| | - Genji Kurisu
- Protein Crystallography Laboratory, Institute for Protein Research, Osaka University, Suita, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, Japan
- Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Japan
| |
Collapse
|
17
|
Ghanaeian A, Majhi S, McCaffrey CL, Nami B, Black CS, Yang SK, Legal T, Papoulas O, Janowska M, Valente-Paterno M, Marcotte EM, Wloga D, Bui KH. Integrated modeling of the Nexin-dynein regulatory complex reveals its regulatory mechanism. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.31.543107. [PMID: 37398254 PMCID: PMC10312493 DOI: 10.1101/2023.05.31.543107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Cilia are hairlike protrusions that project from the surface of eukaryotic cells and play key roles in cell signaling and motility. Ciliary motility is regulated by the conserved nexin-dynein regulatory complex (N-DRC), which links adjacent doublet microtubules and regulates and coordinates the activity of outer doublet complexes. Despite its critical role in cilia motility, the assembly and molecular basis of the regulatory mechanism are poorly understood. Here, utilizing cryo-electron microscopy in conjunction with biochemical cross-linking and integrative modeling, we localized 12 DRC subunits in the N-DRC structure of Tetrahymena thermophila . We also found that the CCDC96/113 complex is in close contact with the N-DRC. In addition, we revealed that the N-DRC is associated with a network of coiled-coil proteins that most likely mediates N-DRC regulatory activity.
Collapse
Affiliation(s)
- Avrin Ghanaeian
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Sumita Majhi
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Caitie L McCaffrey
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, United States
| | - Babak Nami
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Corbin S Black
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Shun Kai Yang
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Thibault Legal
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, United States
| | - Martyna Janowska
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
- current address: Laboratory of Immunology, Mossakowski Institute of Experimental and Clinical Medicine, Polish Academy of Science, Pawinskiego 5, 02-106 Warsaw, Poland
| | - Melissa Valente-Paterno
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, United States
| | - Dorota Wloga
- Laboratory of Cytoskeleton and Cilia Biology, Nencki Institute of Experimental Biology of Polish Academy of Sciences, 3 Pasteur Street, 02-093, Warsaw, Poland
| | - Khanh Huy Bui
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, McGill University, Québec, Canada
| |
Collapse
|
18
|
Zimmermann N, Noga A, Obbineni JM, Ishikawa T. ATP-induced conformational change of axonemal outer dynein arms revealed by cryo-electron tomography. EMBO J 2023:e112466. [PMID: 37051721 DOI: 10.15252/embj.2022112466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 03/08/2023] [Accepted: 03/16/2023] [Indexed: 04/14/2023] Open
Abstract
Axonemal outer dynein arm (ODA) motors generate force for ciliary beating. We analyzed three states of the ODA during the power stroke cycle using in situ cryo-electron tomography, subtomogram averaging, and classification. These states of force generation depict the prepower stroke, postpower stroke, and intermediate state conformations. Comparison of these conformations to published in vitro atomic structures of cytoplasmic dynein, ODA, and the Shulin-ODA complex revealed differences in the orientation and position of the dynein head. Our analysis shows that in the absence of ATP, all dynein linkers interact with the AAA3/AAA4 domains, indicating that interactions with the adjacent microtubule doublet B-tubule direct dynein orientation. For the prepower stroke conformation, there were changes in the tail that is anchored on the A-tubule. We built models starting with available high-resolution structures to generate a best-fitting model structure for the in situ pre- and postpower stroke ODA conformations, thereby showing that ODA in a complex with Shulin adopts a similar conformation as the active prepower stroke ODA in the axoneme.
Collapse
Affiliation(s)
- Noemi Zimmermann
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
| | - Akira Noga
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
| | - Jagan Mohan Obbineni
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
- VIT School for Agricultural Innovations and Advanced, Learning (VAIAL), VIT, Vellore, India
| | - Takashi Ishikawa
- Paul Scherrer Institut (PSI), Laboratory of Nanoscale Biology, Villigen PSI, Switzerland
| |
Collapse
|
19
|
Towards an atomic model of a beating ciliary axoneme. Curr Opin Struct Biol 2023; 78:102516. [PMID: 36586349 DOI: 10.1016/j.sbi.2022.102516] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 11/23/2022] [Indexed: 12/30/2022]
Abstract
The axoneme of motile cilia and eukaryotic flagella is an ordered assembly of hundreds of proteins that powers the locomotion of single cells and generates flow of liquid and particles across certain mammalian tissues. The symmetric and organized structure of the axoneme has invited structural biologists to unravel its intricate architecture at different scales. In the last few years, single-particle cryo-electron microscopy provided high-resolution structures of axonemal complexes that comprise dozens of proteins and are key to cilia function. This review summarizes unique structural features of the axoneme and the framework they provide to understand cilia assembly, the mechanism of ciliary beating, and clinical conditions associated with impaired cilia motility.
Collapse
|
20
|
Abstract
The assembly and maintenance of most cilia and eukaryotic flagella depends on intraflagellar transport (IFT), the bidirectional movement of multi-megadalton IFT trains along the axonemal microtubules. These IFT trains function as carriers, moving ciliary proteins between the cell body and the organelle. Whereas tubulin, the principal protein of cilia, binds directly to IFT particle proteins, the transport of other ciliary proteins and complexes requires adapters that link them to the trains. Large axonemal substructures, such as radial spokes, outer dynein arms and inner dynein arms, assemble in the cell body before attaching to IFT trains, using the adapters ARMC2, ODA16 and IDA3, respectively. Ciliary import of several membrane proteins involves the putative adapter tubby-like protein 3 (TULP3), whereas membrane protein export involves the BBSome, an octameric complex that co-migrates with IFT particles. Thus, cells employ a variety of adapters, each of which is substoichiometric to the core IFT machinery, to expand the cargo range of the IFT trains. This Review summarizes the individual and shared features of the known cargo adapters and discusses their possible role in regulating the transport capacity of the IFT pathway.
Collapse
Affiliation(s)
- Karl Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
21
|
Godar S, Oristian J, Hinsch V, Wentworth K, Lopez E, Amlashi P, Enverso G, Markley S, Alper JD. Light chain 2 is a Tctex-type related axonemal dynein light chain that regulates directional ciliary motility in Trypanosoma brucei. PLoS Pathog 2022; 18:e1009984. [PMID: 36155669 PMCID: PMC9536576 DOI: 10.1371/journal.ppat.1009984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/06/2022] [Accepted: 08/26/2022] [Indexed: 01/04/2023] Open
Abstract
Flagellar motility is essential for the cell morphology, viability, and virulence of pathogenic kinetoplastids. Trypanosoma brucei flagella beat with a bending wave that propagates from the flagellum's tip to its base, rather than base-to-tip as in other eukaryotes. Thousands of dynein motor proteins coordinate their activity to drive ciliary bending wave propagation. Dynein-associated light and intermediate chains regulate the biophysical mechanisms of axonemal dynein. Tctex-type outer arm dynein light chain 2 (LC2) regulates flagellar bending wave propagation direction, amplitude, and frequency in Chlamydomonas reinhardtii. However, the role of Tctex-type light chains in regulating T. brucei motility is unknown. Here, we used a combination of bioinformatics, in-situ molecular tagging, and immunofluorescence microscopy to identify a Tctex-type light chain in the procyclic form of T. brucei (TbLC2). We knocked down TbLC2 expression using RNAi in both wild-type and FLAM3, a flagellar attachment zone protein, knockdown cells and quantified TbLC2's effects on trypanosome cell biology and biophysics. We found that TbLC2 knockdown reduced the directional persistence of trypanosome cell swimming, induced an asymmetric ciliary bending waveform, modulated the bias between the base-to-tip and tip-to-base beating modes, and increased the beating frequency. Together, our findings are consistent with a model of TbLC2 as a down-regulator of axonemal dynein activity that stabilizes the forward tip-to-base beating ciliary waveform characteristic of trypanosome cells. Our work sheds light on axonemal dynein regulation mechanisms that contribute to pathogenic kinetoplastids' unique tip-to-base ciliary beating nature and how those mechanisms underlie dynein-driven ciliary motility more generally.
Collapse
Affiliation(s)
- Subash Godar
- Department of Physics and Astronomy, College of Science, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
| | - James Oristian
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Valerie Hinsch
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Katherine Wentworth
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Ethan Lopez
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Genetics and Biochemistry, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Parastoo Amlashi
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Gerald Enverso
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Samantha Markley
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| | - Joshua Daniel Alper
- Department of Physics and Astronomy, College of Science, Clemson University, Clemson, South Carolina, United States of America
- Eukaryotic Pathogens Innovation Center, Clemson University, Clemson, South Carolina, United States of America
- Department of Biological Sciences, College of Science, Clemson University, Clemson, South Carolina, United States of America
| |
Collapse
|
22
|
Wang L, Li X, Liu G, Pan J. FBB18 participates in preassembly of almost all axonemal dyneins independent of R2TP complex. PLoS Genet 2022; 18:e1010374. [PMID: 36026524 PMCID: PMC9455862 DOI: 10.1371/journal.pgen.1010374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 09/08/2022] [Accepted: 08/04/2022] [Indexed: 11/19/2022] Open
Abstract
Assembly of dynein arms requires cytoplasmic processes which are mediated by dynein preassembly factors (DNAAFs). CFAP298, which is conserved in organisms with motile cilia, is required for assembly of dynein arms but with obscure mechanisms. Here, we show that FBB18, a Chlamydomonas homologue of CFAP298, localizes to the cytoplasm and functions in folding/stabilization of almost all axonemal dyneins at the early steps of dynein preassembly. Mutation of FBB18 causes no or short cilia accompanied with partial loss of both outer and inner dynein arms. Comparative proteomics using 15N labeling suggests partial degradation of almost all axonemal dynein heavy chains (DHCs). A mutant mimicking a patient variant induces particular loss of DHCα. FBB18 associates with 9 DNAAFs and 14 out of 15 dynein HCs but not with IC1/IC2. FBB18 interacts with RuvBL1/2, components of the HSP90 co-chaperone R2TP complex but not the holo-R2TP complex. Further analysis suggests simultaneous formation of multiple DNAAF complexes involves dynein folding/stability and thus provides new insights into axonemal dynein preassembly.
Collapse
Affiliation(s)
- Limei Wang
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xuecheng Li
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Guang Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Junmin Pan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong Province, China
| |
Collapse
|
23
|
Braschi B, Omran H, Witman GB, Pazour GJ, Pfister KK, Bruford EA, King SM. Consensus nomenclature for dyneins and associated assembly factors. J Cell Biol 2022; 221:e202109014. [PMID: 35006274 PMCID: PMC8754002 DOI: 10.1083/jcb.202109014] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/10/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
Dyneins are highly complex, multicomponent, microtubule-based molecular motors. These enzymes are responsible for numerous motile behaviors in cytoplasm, mediate retrograde intraflagellar transport (IFT), and power ciliary and flagellar motility. Variants in multiple genes encoding dyneins, outer dynein arm (ODA) docking complex subunits, and cytoplasmic factors involved in axonemal dynein preassembly (DNAAFs) are associated with human ciliopathies and are of clinical interest. Therefore, clear communication within this field is particularly important. Standardizing gene nomenclature, and basing it on orthology where possible, facilitates discussion and genetic comparison across species. Here, we discuss how the human gene nomenclature for dyneins, ODA docking complex subunits, and DNAAFs has been updated to be more functionally informative and consistent with that of the unicellular green alga Chlamydomonas reinhardtii, a key model organism for studying dyneins and ciliary function. We also detail additional nomenclature updates for vertebrate-specific genes that encode dynein chains and other proteins involved in dynein complex assembly.
Collapse
Affiliation(s)
- Bryony Braschi
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
| | - Heymut Omran
- Department of General Pediatrics, University Hospital Muenster, Muenster, Germany
| | - George B. Witman
- Division of Cell Biology and Imaging, Department of Radiology, University of Massachusetts Medical School, Worcester, MA
| | - Gregory J. Pazour
- Program in Molecular Medicine, University of Massachusetts Medical School, Biotech II, Worcester, MA
| | - K. Kevin Pfister
- Cell Biology Department, School of Medicine University of Virginia, Charlottesville, VA
| | - Elspeth A. Bruford
- HUGO Gene Nomenclature Committee, European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton, Cambridgeshire, UK
- Department of Haematology, University of Cambridge School of Clinical Medicine, Cambridge, Cambridgeshire, UK
| | - Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT
| |
Collapse
|
24
|
Qiu T, Roy S. Ciliary dynein arms: Cytoplasmic preassembly, intraflagellar transport, and axonemal docking. J Cell Physiol 2022; 237:2644-2653. [DOI: 10.1002/jcp.30689] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/04/2022] [Accepted: 01/14/2022] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Qiu
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
| | - Sudipto Roy
- Institute of Molecular and Cell Biology, Proteos Singapore Singapore
- Department of Biological Sciences National University of Singapore Singapore Singapore
- Department of Pediatrics, Yong Loo Ling School of Medicine National University of Singapore Singapore Singapore
| |
Collapse
|
25
|
Abstract
Cilia are tail-like organelles responsible for motility, transportation, and sensory functions in eukaryotic cells. Cilia research has been providing multifaceted questions, attracting biologists of various areas and inducing interdisciplinary studies. In this chapter, we mainly focus on efforts to elucidate the molecular mechanism of ciliary beating motion, a field of research that has a long history and is still ongoing. We also overview topics closely related to the motility mechanism, such as ciliogenesis, cilia-related diseases, and sensory cilia. Subnanometer-scale to submillimeter-scale 3D imaging of the axoneme and the basal body resulted in a wide variety of insights into these questions.
Collapse
Affiliation(s)
- Takashi Ishikawa
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen, Switzerland.
| |
Collapse
|
26
|
Kubo S, Yang SK, Black CS, Dai D, Valente-Paterno M, Gaertig J, Ichikawa M, Bui KH. Remodeling and activation mechanisms of outer arm dyneins revealed by cryo-EM. EMBO Rep 2021; 22:e52911. [PMID: 34338432 PMCID: PMC8419702 DOI: 10.15252/embr.202152911] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 12/11/2022] Open
Abstract
Cilia are thin microtubule-based protrusions of eukaryotic cells. The swimming of ciliated protists and sperm cells is propelled by the beating of cilia. Cilia propagate the flow of mucus in the trachea and protect the human body from viral infections. The main force generators of ciliary beating are the outer dynein arms (ODAs) which attach to the doublet microtubules. The bending of cilia is driven by the ODAs' conformational changes caused by ATP hydrolysis. Here, we report the native ODA complex structure attaching to the doublet microtubule by cryo-electron microscopy. The structure reveals how the ODA complex is attached to the doublet microtubule via the docking complex in its native state. Combined with coarse-grained molecular dynamic simulations, we present a model of how the attachment of the ODA to the doublet microtubule induces remodeling and activation of the ODA complex.
Collapse
Affiliation(s)
- Shintaroh Kubo
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | - Shun Kai Yang
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | - Corbin S Black
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | - Daniel Dai
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
| | | | - Jacek Gaertig
- Department of Cellular BiologyUniversity of GeorgiaAthensGAUSA
| | - Muneyoshi Ichikawa
- Division of Biological ScienceGraduate School of Science and TechnologyNara Institute of Science and TechnologyIkomaJapan
- PRESTOJapan Science and Technology AgencyKawaguchiJapan
| | - Khanh Huy Bui
- Department of Anatomy and Cell BiologyMcGill UniversityMontréalQCCanada
- Centre de Recherche en Biologie StructuraleMcGill UniversityMontréalQCCanada
| |
Collapse
|
27
|
Edmonds KA, Jordan MR, Giedroc DP. COG0523 proteins: a functionally diverse family of transition metal-regulated G3E P-loop GTP hydrolases from bacteria to man. Metallomics 2021; 13:6327566. [PMID: 34302342 PMCID: PMC8360895 DOI: 10.1093/mtomcs/mfab046] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/15/2021] [Indexed: 01/13/2023]
Abstract
Transition metal homeostasis ensures that cells and organisms obtain sufficient metal to meet cellular demand while dispensing with any excess so as to avoid toxicity. In bacteria, zinc restriction induces the expression of one or more Zur (zinc-uptake repressor)-regulated Cluster of Orthologous Groups (COG) COG0523 proteins. COG0523 proteins encompass a poorly understood sub-family of G3E P-loop small GTPases, others of which are known to function as metallochaperones in the maturation of cobalamin (CoII) and NiII cofactor-containing metalloenzymes. Here, we use genomic enzymology tools to functionally analyse over 80 000 sequences that are evolutionarily related to Acinetobacter baumannii ZigA (Zur-inducible GTPase), a COG0523 protein and candidate zinc metallochaperone. These sequences segregate into distinct sequence similarity network (SSN) clusters, exemplified by the ZnII-Zur-regulated and FeIII-nitrile hydratase activator CxCC (C, Cys; X, any amino acid)-containing COG0523 proteins (SSN cluster 1), NiII-UreG (clusters 2, 8), CoII-CobW (cluster 4), and NiII-HypB (cluster 5). A total of five large clusters that comprise ≈ 25% of all sequences, including cluster 3 which harbors the only structurally characterized COG0523 protein, Escherichia coli YjiA, and many uncharacterized eukaryotic COG0523 proteins. We also establish that mycobacterial-specific protein Y (Mpy) recruitment factor (Mrf), which promotes ribosome hibernation in actinomycetes under conditions of ZnII starvation, segregates into a fifth SSN cluster (cluster 17). Mrf is a COG0523 paralog that lacks all GTP-binding determinants as well as the ZnII-coordinating Cys found in CxCC-containing COG0523 proteins. On the basis of this analysis, we discuss new perspectives on the COG0523 proteins as cellular reporters of widespread nutrient stress induced by ZnII limitation.
Collapse
Affiliation(s)
- Katherine A Edmonds
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA
| | - Matthew R Jordan
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, IN 47405-7102, USA.,Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
28
|
Abstract
Axonemal dyneins power the beating of motile cilia and flagella. These massive multimeric motor complexes are assembled in the cytoplasm, and subsequently trafficked to cilia and incorporated into the axonemal superstructure. Numerous cytoplasmic factors are required for the dynein assembly process, and, in mammals, defects lead to primary ciliary dyskinesia, which results in infertility, bronchial problems and failure to set up the left-right body axis correctly. Liquid-liquid phase separation (LLPS) has been proposed to underlie the formation of numerous membrane-less intracellular assemblies or condensates. In multiciliated cells, cytoplasmic assembly of axonemal dyneins also occurs in condensates that exhibit liquid-like properties, including fusion, fission and rapid exchange of components both within condensates and with bulk cytoplasm. However, a recent extensive meta-analysis suggests that the general methods used to define LLPS systems in vivo may not readily distinguish LLPS from other mechanisms. Here, I consider the time and length scales of axonemal dynein heavy chain synthesis, and the possibility that during translation of dynein heavy chain mRNAs, polysomes are crosslinked via partially assembled proteins. I propose that axonemal dynein factory formation in the cytoplasm may be a direct consequence of the sheer scale and complexity of the assembly process itself.
Collapse
Affiliation(s)
- Stephen M. King
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, Connecticut 06030-3305, USA
| |
Collapse
|
29
|
Abstract
The intraflagellar transport (IFT) system is a remarkable molecular machine used by cells to assemble and maintain the cilium, a long organelle extending from eukaryotic cells that gives rise to motility, sensing and signaling. IFT plays a critical role in building the cilium by shuttling structural components and signaling receptors between the ciliary base and tip. To provide effective transport, IFT-A and IFT-B adaptor protein complexes assemble into highly repetitive polymers, called IFT trains, that are powered by the motors kinesin-2 and IFT-dynein to move bidirectionally along the microtubules. This dynamic system must be precisely regulated to shuttle different cargo proteins between the ciliary tip and base. In this Cell Science at a Glance article and the accompanying poster, we discuss the current structural and mechanistic understanding of IFT trains and how they function as macromolecular machines to assemble the structure of the cilium.
Collapse
Affiliation(s)
- Mareike A Jordan
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Gaia Pigino
- Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG), Pfotenhauerstraße 108, 01307 Dresden, Germany.,Human Technopole, Via Cristina Belgioioso 171, 20157 Milan, Italy
| |
Collapse
|
30
|
Abstract
Dyneins make up a family of AAA+ motors that move toward the minus end of microtubules. Cytoplasmic dynein is responsible for transporting intracellular cargos in interphase cells and mediating spindle assembly and chromosome positioning during cell division. Other dynein isoforms transport cargos in cilia and power ciliary beating. Dyneins were the least studied of the cytoskeletal motors due to challenges in the reconstitution of active dynein complexes in vitro and the scarcity of high-resolution methods for in-depth structural and biophysical characterization of these motors. These challenges have been recently addressed, and there have been major advances in our understanding of the activation, mechanism, and regulation of dyneins. This review synthesizes the results of structural and biophysical studies for each class of dynein motors. We highlight several outstanding questions about the regulation of bidirectional transport along microtubules and the mechanisms that sustain self-coordinated oscillations within motile cilia.
Collapse
Affiliation(s)
- John T Canty
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Ruensern Tan
- Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA
| | - Emre Kusakci
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA;
| | - Jonathan Fernandes
- Department of Chemistry, University of California, Berkeley, California 94720, USA
| | - Ahmet Yildiz
- Biophysics Graduate Group, University of California, Berkeley, California 94720, USA; .,Department of Molecular and Cellular Biology, University of California, Berkeley, California 94720, USA.,Physics Department, University of California, Berkeley, California 94720, USA
| |
Collapse
|
31
|
Yamamoto R, Hwang J, Ishikawa T, Kon T, Sale WS. Composition and function of ciliary inner-dynein-arm subunits studied in Chlamydomonas reinhardtii. Cytoskeleton (Hoboken) 2021; 78:77-96. [PMID: 33876572 DOI: 10.1002/cm.21662] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/30/2021] [Accepted: 04/15/2021] [Indexed: 11/09/2022]
Abstract
Motile cilia (also interchangeably called "flagella") are conserved organelles extending from the surface of many animal cells and play essential functions in eukaryotes, including cell motility and environmental sensing. Large motor complexes, the ciliary dyneins, are present on ciliary outer-doublet microtubules and drive movement of cilia. Ciliary dyneins are classified into two general types: the outer dynein arms (ODAs) and the inner dynein arms (IDAs). While ODAs are important for generation of force and regulation of ciliary beat frequency, IDAs are essential for control of the size and shape of the bend, features collectively referred to as waveform. Also, recent studies have revealed unexpected links between IDA components and human diseases. In spite of their importance, studies on IDAs have been difficult since they are very complex and composed for several types of IDA motors, each unique in composition and location in the axoneme. Thanks in part to genetic, biochemical, and structural analysis of Chlamydomonas reinhardtii, we are beginning to understand the organization and function of the ciliary IDAs. In this review, we summarize the composition of Chlamydomonas IDAs particularly focusing on each subunit, and discuss the assembly, conservation, and functional role(s) of these IDA subunits. Furthermore, we raise several additional questions/challenges regarding IDAs, and discuss future perspectives of IDA studies.
Collapse
Affiliation(s)
- Ryosuke Yamamoto
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Juyeon Hwang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Takashi Ishikawa
- Department of Biology and Chemistry, Paul Scherrer Institute, Villigen PSI, Switzerland.,Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Takahide Kon
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Winfield S Sale
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|