1
|
De S, Zhou M, Brown ZP, Burton-Smith RN, Hashem Y, Pestova TV, Hellen CUT, Frank J. Inconsistencies in the published rabbit ribosomal rRNAs: a proposal for uniformity in sequence and site numbering. RNA (NEW YORK, N.Y.) 2025; 31:781-790. [PMID: 40050069 DOI: 10.1261/rna.080294.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 02/24/2025] [Indexed: 03/12/2025]
Abstract
Examination of all publicly available Oryctolagus cuniculus (rabbit) ribosome cryo-EM structures reveals numerous confusing inconsistencies. First, there are a plethora of single-nucleotide differences among the various rabbit 28S and 18S rRNA structures. Second, two nucleotides are absent from the NCBI Reference Sequence for the 18S rRNA gene. Moving forward, we propose using the Broad Institute's rabbit whole-genome shotgun sequence and numbering to reduce modeling ambiguity and improve consistency between ribosome models.
Collapse
Affiliation(s)
- Swastik De
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Michelle Zhou
- Irvington High School, Irvington, New York 10533, USA
| | - Zuben P Brown
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | - Raymond N Burton-Smith
- Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki, Aichi 444-8787, Japan
| | - Yaser Hashem
- Institut Européen de Chimie et Biologie, U1212 Inserm, Université de Bordeaux, 33607 Pessac, France
| | - Tatyana V Pestova
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Christopher U T Hellen
- Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, New York 11203, USA
| | - Joachim Frank
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
- Department of Biological Sciences, Columbia University, New York, New York 10027, USA
| |
Collapse
|
2
|
Jones CP, Ferré-D’Amaré AR. Structural switching dynamically controls the doubly pseudoknotted Rous sarcoma virus-programmed ribosomal frameshifting element. Proc Natl Acad Sci U S A 2025; 122:e2418418122. [PMID: 40172966 PMCID: PMC12002268 DOI: 10.1073/pnas.2418418122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
A hallmark of retrovirus replication is the translation of two different polyproteins from one RNA through programmed -1 frameshifting. This is a mechanism in which the actively translating ribosome is induced to slip in the 5' direction at a defined codon and then continues translating in the new reading frame. Programmed frameshifting controls the stoichiometry of viral proteins and is therefore under stringent evolutionary selection. Forty years ago, the first frameshifting stimulatory element was discovered in the Rous sarcoma virus. The ~120 nt RNA segment was predicted to contain a pseudoknot, but its 3D structure has remained elusive. Now, we have determined cryoEM and X-ray crystallographic structures of this classic retroviral element, finding that it adopts a butterfly-like double-pseudoknot fold. One "wing" contains a dynamic pyrimidine-rich helix, observed crystallographically in two conformations and in a third conformation via cryoEM. The other wing encompasses the predicted pseudoknot, which interacts with a second unexpected pseudoknot through a toggle residue, A2546. This key purine switches conformations between structural states and tunes the stability of interacting residues in the two wings. We find that its mutation can modulate frameshifting by as much as 50-fold, likely by altering the relative abundance of different structural states in the conformational ensemble of the RNA. Taken together, our structure-function analyses reveal how a dynamic double pseudoknot junction stimulates frameshifting by taking advantage of conformational heterogeneity, supporting a multistate model in which high Shannon entropy enhances frameshifting efficiency.
Collapse
Affiliation(s)
- Christopher P. Jones
- Laboratory of Nucleic Acids, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD20892-8012
| | - Adrian R. Ferré-D’Amaré
- Laboratory of Nucleic Acids, Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, MD20892-8012
| |
Collapse
|
3
|
Zhao Y, Xu C, Chen X, Jin H, Li H. Structural basis for hygromycin B inhibition of yeast pseudouridine-deficient ribosomes. SCIENCE ADVANCES 2025; 11:eadu0151. [PMID: 40173234 PMCID: PMC11963973 DOI: 10.1126/sciadv.adu0151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 02/27/2025] [Indexed: 04/04/2025]
Abstract
Eukaryotic ribosomes are enriched with pseudouridine, particularly at the functional centers targeted by antibiotics. Here, we investigated the roles of pseudouridine in aminoglycoside-mediated translation inhibition by comparing the structural and functional properties of the yeast wild-type and the pseudouridine-free ribosomes. We showed that the pseudouridine-free ribosomes have decreased thermostability and high sensitivity to aminoglycosides. When presented with a model internal ribosomal entry site RNA, elongation factor eEF2, GTP (guanosine triphosphate), and sordarin, hygromycin B preferentially binds to the pseudouridine-free ribosomes during initiation by blocking eEF2 binding, stalling ribosomes in a nonrotated conformation. The structures captured hygromycin B bound at the intersubunit bridge B2a enriched with pseudouridine and a deformed codon-anticodon duplex, revealing a functional link between pseudouridine and aminoglycoside inhibition. Our results suggest that pseudouridine enhances both thermostability and conformational fitness of the ribosomes, thereby influencing their susceptibility to aminoglycosides.
Collapse
Affiliation(s)
- Yu Zhao
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
| | - Chong Xu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Xin Chen
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
| | - Hong Jin
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
- Department of Biochemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 West Gregory Drive, Urbana, IL 61801, USA
| | - Hong Li
- Institute of Molecular Biophysics, Florida State University, Tallahassee, FL 32306, USA
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|
4
|
Helena-Bueno K, Kopetschke S, Filbeck S, Chan LI, Birsan S, Baslé A, Hudson M, Pfeffer S, Hill CH, Melnikov SV. Structurally heterogeneous ribosomes cooperate in protein synthesis in bacterial cells. Nat Commun 2025; 16:2751. [PMID: 40113756 PMCID: PMC11926189 DOI: 10.1038/s41467-025-57955-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 03/05/2025] [Indexed: 03/22/2025] Open
Abstract
Ribosome heterogeneity is a paradigm in biology, pertaining to the existence of structurally distinct populations of ribosomes within a single organism or cell. This concept suggests that structurally distinct pools of ribosomes have different functional properties and may be used to translate specific mRNAs. However, it is unknown to what extent structural heterogeneity reflects genuine functional specialization rather than stochastic variations in ribosome assembly. Here, we address this question by combining cryo-electron microscopy and tomography to observe individual structurally heterogeneous ribosomes in bacterial cells. We show that 70% of ribosomes in Psychrobacter urativorans contain a second copy of the ribosomal protein bS20 at a previously unknown binding site on the large ribosomal subunit. We then determine that this second bS20 copy appears to be functionally neutral. This demonstrates that ribosome heterogeneity does not necessarily lead to functional specialization, even when it involves significant variations such as the presence or absence of a ribosomal protein. Instead, we show that heterogeneous ribosomes can cooperate in general protein synthesis rather than specialize in translating discrete populations of mRNA.
Collapse
Affiliation(s)
| | - Sophie Kopetschke
- Centre for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Sebastian Filbeck
- Centre for Molecular Biology, Heidelberg University, Heidelberg, Germany
| | - Lewis I Chan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sonia Birsan
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Arnaud Baslé
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Maisie Hudson
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Stefan Pfeffer
- Centre for Molecular Biology, Heidelberg University, Heidelberg, Germany.
| | - Chris H Hill
- York Structural Biology Laboratory, University of York, York, UK.
- York Biomedical Research Institute, University of York, York, UK.
- Department of Biology, University of York, York, UK.
| | - Sergey V Melnikov
- Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK.
| |
Collapse
|
5
|
Zhaguparov D, Zhao M, Sekar RV, Woodside MT. Identifying the interactions conferring functional mechanical rigidity on RNase-resistant RNA from Zika virus. Proc Natl Acad Sci U S A 2025; 122:e2417234122. [PMID: 40063803 PMCID: PMC11929477 DOI: 10.1073/pnas.2417234122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 01/14/2025] [Indexed: 03/25/2025] Open
Abstract
Some viruses counter host-cell efforts to digest invading viral RNA by using special structures resistant to host RNases, known as exoribonuclease-resistant RNAs (xrRNAs). xrRNAs typically form an unusual fold with the 5'-end threaded through a ring consisting of a multihelix junction closed by a pseudoknot. By using single-molecule force spectroscopy (SMFS), we previously showed that a Zika virus xrRNA is extremely rigid mechanically, withstanding very high forces, and that this mechanical resistance-not simply the knot-like fold topology-is essential for RNase resistance. Here, we have determined which interactions are most important for generating mechanical rigidity in the Zika virus xrRNA, by systematically mutating tertiary contacts. We found that removing any of the tertiary contacts involving the threaded 5' end was sufficient to abrogate mechanical resistance. In contrast, breaking a single pseudoknot base pair was not sufficient to do so: Two broken pairs were needed. This hierarchy of interaction importance for mechanical rigidity was supported by simulations mapping how mechanical tension was distributed within the xrRNA. For all mutants, RNase resistance varied in lock-step with mechanical resistance, confirming the primary role of mechanical rigidity in xrRNA function. This work reveals which interactions are most important for Zika xrRNA function, with implications for targeting the xrRNA therapeutically.
Collapse
Affiliation(s)
- Daniiar Zhaguparov
- Department of Physics, University of Alberta, Edmonton, ABT6G2E1, Canada
| | - Meng Zhao
- Department of Physics, University of Alberta, Edmonton, ABT6G2E1, Canada
| | | | - Michael T. Woodside
- Department of Physics, University of Alberta, Edmonton, ABT6G2E1, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, ABT6G2E1, Canada
- Li Ka Shing Institute of Virology, University of Alberta, Edmonton, ABT6G2E1, Canada
| |
Collapse
|
6
|
Ceylan B, Adam J, Toews S, Kaiser F, Dörr J, Scheppa D, Tants JN, Smart A, Schoth J, Philipp S, Stirnal E, Ferner J, Richter C, Sreeramulu S, Caliskan N, Schlundt A, Weigand JE, Göbel M, Wacker A, Schwalbe H. Optimization of Structure-Guided Development of Chemical Probes for the Pseudoknot RNA of the Frameshift Element in SARS-CoV-2. Angew Chem Int Ed Engl 2025; 64:e202417961. [PMID: 39887818 DOI: 10.1002/anie.202417961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/12/2024] [Accepted: 01/28/2025] [Indexed: 02/01/2025]
Abstract
Targeting the RNA genome of SARS-CoV-2 is a viable option for antiviral drug development. We explored three ligand binding sites of the core pseudoknot RNA of the SARS-CoV-2 frameshift element. We iteratively optimized ligands, based on improved affinities, targeting these binding sites and report on structural and dynamic properties of the three identified binding sites. Available experimental 3D structures of the pseudoknot element were compared to SAXS and NMR data to validate its dominant folding state in solution. In order to experimentally map in silico predicted binding sites, NMR assignments of the majority of nucleobases were achieved by segmental labeling of the pseudoknot RNA and isotope-filtered NMR experiments at 1.2 GHz, demonstrating the value of NMR spectroscopy to supplement modelling and docking data. Optimized ligands with enhanced affinity were shown to specifically inhibit frameshifting without affecting 0-frame translation in cell-free translation assays, establishing the frameshift element as target for drug-like ligands of low molecular weight.
Collapse
Affiliation(s)
- Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Jennifer Adam
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Sabrina Toews
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Frank Kaiser
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Jonas Dörr
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Daniel Scheppa
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Jan-Niklas Tants
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Alexandria Smart
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Straße 2/D15, 97080, Würzburg, Germany
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Universitätsstraße 31, 93053, Regensburg
| | - Julian Schoth
- Institute of Pharmaceutical Chemistry, University of Marburg, 35032, Marburg, Germany
| | - Susanne Philipp
- Institute of Pharmaceutical Chemistry, University of Marburg, 35032, Marburg, Germany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Jan Ferner
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Neva Caliskan
- Helmholtz Institute for RNA-based Infection Research, Helmholtz Centre for Infection Research (HIRI-HZI), Josef-Schneider-Straße 2/D15, 97080, Würzburg, Germany
- Regensburg Center for Biochemistry (RCB), University of Regensburg, Universitätsstraße 31, 93053, Regensburg
| | - Andreas Schlundt
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
- Institute for Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
- Institute of Biochemistry, University of Greifswald, 17489, Greifswald, Germany
| | - Julia E Weigand
- Institute of Pharmaceutical Chemistry, University of Marburg, 35032, Marburg, Germany
| | - Michael Göbel
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
| | - Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Goethe University Frankfurt, Max-von-Laue-Straße 7, 60438, Frankfurt am Main, Germany
- Center of Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue-Straße 9, 60438, Frankfurt am Main, Germany
| |
Collapse
|
7
|
Stiving AQ, Roose BW, Tubbs C, Haverick M, Gruber A, Rustandi RR, Kuiper J, Schombs M, Schuessler H, Li X. Functionality and translation fidelity characterization of mRNA vaccines using platform based mass spectrometry detection. NPJ Vaccines 2025; 10:38. [PMID: 39988579 PMCID: PMC11847942 DOI: 10.1038/s41541-025-01082-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/23/2025] [Indexed: 02/25/2025] Open
Abstract
The success of mRNA-based therapeutics and vaccines is attributed to their rapid development, adaptability, and scalable production. Modified ribonucleotides like N1-methylpseudouridine enhance stability and reduce immunogenicity but were recently found to induce cellular immunity to off-target, +1 ribosomal frameshifted protein. We developed a new platform using cell-free translation (CFT) and liquid chromatography-tandem mass spectrometry (MS) to detect, characterize, and quantify antigen proteins from mRNA constructs. This workflow enabled evaluation of mRNA functionality under thermal stress and assessment of multivalent formulations with high sequence homology. The MS approach was further applied following cell-based translation and demonstrated high sensitivity and specificity, accurately identifying all six translated proteins and their relative abundances from a hexavalent mRNA drug product in a dose-dependent manner. Furthermore, the CFT-MS approach successfully identified +1 ribosomal frameshifting linked to N1-methylpseudouridylation. This methodology provides a valuable analytical tool for assessing mRNA quality and functionality in vaccine development and beyond.
Collapse
Affiliation(s)
- Alyssa Q Stiving
- Analytical Research & Development, Merck & Co., Inc, 126 E Lincoln Ave., Rahway, NJ, USA.
| | - Benjamin W Roose
- Analytical Research & Development, Merck & Co., Inc, 126 E Lincoln Ave., Rahway, NJ, USA
| | - Christopher Tubbs
- Analytical Research & Development, Merck & Co., Inc, 126 E Lincoln Ave., Rahway, NJ, USA
| | - Mark Haverick
- Analytical Research & Development, Merck & Co., Inc, 126 E Lincoln Ave., Rahway, NJ, USA
| | - Ashley Gruber
- Analytical Research & Development, Merck & Co., Inc, 126 E Lincoln Ave., Rahway, NJ, USA
| | - Richard R Rustandi
- Analytical Research & Development, Merck & Co., Inc, 126 E Lincoln Ave., Rahway, NJ, USA
| | - Jesse Kuiper
- Analytical Research & Development, Merck & Co., Inc, 126 E Lincoln Ave., Rahway, NJ, USA
| | - Matthew Schombs
- Analytical Research & Development, Merck & Co., Inc, 126 E Lincoln Ave., Rahway, NJ, USA
| | - Hillary Schuessler
- Analytical Research & Development, Merck & Co., Inc, 126 E Lincoln Ave., Rahway, NJ, USA
| | - Xuanwen Li
- Analytical Research & Development, Merck & Co., Inc, 126 E Lincoln Ave., Rahway, NJ, USA.
| |
Collapse
|
8
|
Lee S, Yan S, Dey A, Laederach A, Schlick T. A Cascade of Conformational Switches in SARS-CoV-2 Frameshifting: Coregulation by Upstream and Downstream Elements. Biochemistry 2025; 64:953-966. [PMID: 39907285 PMCID: PMC11840926 DOI: 10.1021/acs.biochem.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Targeting ribosomal frameshifting has emerged as a potential therapeutic intervention strategy against COVID-19. In this process, a -1 shift in the ribosomal reading frame encodes alternative viral proteins. Any interference with this process profoundly affects viral replication and propagation. For SARS-CoV-2, two RNA sites associated with ribosomal frameshifting are positioned on the 5' and 3' of the frameshifting residues. Although much attention has been focused on the 3' frameshift element (FSE), the 5' stem-loop (attenuator hairpin, AH) can play a role. Yet the relationship between the two regions is unknown. In addition, multiple folds of the FSE and FSE-containing RNA regions have been discovered. To gain more insight into these RNA folds in the larger sequence context that includes AH, we apply our graph-theory-based modeling tools to represent RNA secondary structures, "RAG" (RNA-As-Graphs), to generate conformational landscapes that suggest length-dependent conformational distributions. We show that the AH region can coexist as a stem-loop with main and alternative 3-stem pseudoknots of the FSE (dual graphs 3_6 and 3_3 in our notation) but that an alternative stem 1 (AS1) can disrupt the FSE pseudoknots and trigger other folds. A critical length for AS1 of 10-bp regulates key folding transitions. Together with designed mutants and available experimental data, we present a sequential view of length-dependent folds during frameshifting and suggest their mechanistic roles. These structural and mutational insights into both ends of the FSE advance our understanding of the SARS-CoV-2 frameshifting mechanism by suggesting how alternative folds play a role in frameshifting and defining potential therapeutic intervention techniques that target specific folds.
Collapse
Affiliation(s)
- Samuel Lee
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Shuting Yan
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Abhishek Dey
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttar Pradesh 226002, India
| | - Alain Laederach
- Department
of Biology, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tamar Schlick
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Courant
Institute of Mathematical Sciences, New
York University, New York, New York 10012, United States
- NYU-ECNU
Center for Computational Chemistry, NYU
Shanghai, Shanghai 200062, PR China
- NYU Simons
Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
9
|
Ramamonjiharisoa MBM, Liu S. Biological Significance and Therapeutic Promise of Programmed Ribosomal Frameshifting. Int J Mol Sci 2025; 26:1294. [PMID: 39941062 PMCID: PMC11818727 DOI: 10.3390/ijms26031294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 01/24/2025] [Accepted: 02/01/2025] [Indexed: 02/16/2025] Open
Abstract
Programmed Ribosomal Frameshifting (PRF) is a mechanism that alters the mRNA reading frame during translation, resulting in the production of out-of-frame proteins. PRF plays crucial roles in maintaining cellular homeostasis and contributes significantly to disease pathogenesis, particularly in viral infections. Notably, PRF can induce immune responses in the SARS-CoV-2 mRNA vaccine, further extending its biological significance. These multiple aspects of PRF highlight its potential as a therapeutic target. Since PRF efficiency can be modulated by cellular factors, its expression or silencing is context-dependent. Therefore, a deeper understanding of PRF is essential for harnessing its therapeutic potential. This review explores PRF biological significance in disease and homeostasis. Such knowledge would serve as a foundation to advance therapeutic strategies targeting PRF modulation, especially in viral infections and vaccine development.
Collapse
Affiliation(s)
- Miora Bruna Marielle Ramamonjiharisoa
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China;
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| | - Sen Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Key Laboratory of Fermentation Engineering (Ministry of Education), Wuhan 430068, China;
- Hubei Key Laboratory of Industrial Microbiology, National “111” Center for Cellular Regulation and Molecular Pharmaceutics, School of Life and Health Sciences, Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
10
|
Wieczór M, Schlick T. Phase Space Invaders' podcast episode with Tamar Schlick: a trajectory from mathematics to biology. Biophys Rev 2025; 17:15-23. [PMID: 40060012 PMCID: PMC11885711 DOI: 10.1007/s12551-025-01271-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 01/10/2025] [Indexed: 03/30/2025] Open
Abstract
We present a transcript of the Phase Space Invaders podcast interview, with Tamar Schlick interviewed by Miłosz Wieczór. The conversation covers topics in computational biophysics and beyond: DNA and RNA research from genome organization to viral RNA frameshifting, transitioning from applied math to biology, developing algorithms and their utility in molecular dynamics and complex multiscale systems, the role of computers in biophysical research, writing reviews and books, collaborating in science, and using long-distance running as a template for building supportive communities.
Collapse
Affiliation(s)
- Miłosz Wieczór
- Molecular Modeling and Bioinformatics, Institute for Research in Biomedicine (IRB) Barcelona, 08028 Barcelona, Spain
- Department of Physical Chemistry, Gdansk University of Technology, 80-233 Gdańsk, Poland
| | - Tamar Schlick
- Department of Chemistry, New York University, 100 Washington Square East, Silver Building, New York, NY 10003 USA
- Courant Institute of Mathematical Sciences, New York University, 251 Mercer St., New York, NY 10012 USA
- Simons Center for Computational Physical Chemistry, New York University, 24 Waverly Place, Silver Building, New York, NY 10003 USA
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai, 200122 China
| |
Collapse
|
11
|
Han HJ, Yu D, Yu J, Kim J, Do Heo W, Tark D, Kang SM. Targeting pseudoknots with Cas13b inhibits porcine epidemic diarrhoea virus replication. J Gen Virol 2025; 106:002071. [PMID: 39903512 PMCID: PMC11793167 DOI: 10.1099/jgv.0.002071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/07/2025] [Indexed: 02/06/2025] Open
Abstract
Clustered regularly interspaced short palindromic repeats-associated protein 13 (CRISPR-Cas13), an RNA editing technology, has shown potential in combating RNA viruses by degrading viral RNA within mammalian cells. In this study, we demonstrate the effective inhibition of porcine epidemic diarrhoea virus (PEDV) replication and spread using CRISPR-Cas13. We analysed the sequence similarity of the pseudoknot region between PEDV and severe acute respiratory syndrome coronavirus 2, both belonging to the Coronaviridae family, as well as the similarity of the RNA-dependent RNA polymerase (RdRp) gene region among three different strains of the PED virus. Based on this analysis, we synthesized three CRISPR RNAs (crRNAs) targeting the pseudoknot region and the nonpseudoknot region, each for comparison. In cells treated with crRNA #3 targeting the pseudoknot region, RdRp gene expression decreased by 95%, membrane (M) gene expression by 89% and infectious PEDV titre within the cells reduced by over 95%. Additionally, PED viral nucleocapsid (N) and M protein expression levels decreased by 83 and 98%, respectively. The optimal concentration for high antiviral efficacy without cytotoxicity was determined. Treating cells with 1.5 µg of Cas13b mRNA and 0.5 µg of crRNA resulted in no cytotoxicity while achieving over 95% inhibition of PEDV replication. The Cas13b mRNA therapeutics approach was validated as significantly more effective through a comparative study with merafloxacin, a drug targeting the pseudoknot region of the viral genome. Our results indicate that the pseudoknot region plays a crucial role in the degradation of the PEDV genome through the CRISPR-Cas13 system. Therefore, targeting Cas13b to the pseudoknot offers a promising new approach for treating coronavirus infections.
Collapse
Affiliation(s)
- Hee-Jeong Han
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
- ViEL-T Corporate Research Institute, ViEL-T lnc., Jeonju Innovation Startup Hub (SJ Bldg) 204, Jeonju 54852, Republic of Korea
| | - Daseuli Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jeonghye Yu
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihye Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Won Do Heo
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Dongseob Tark
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
| | - Sang-Min Kang
- Laboratory for Infectious Disease Prevention, Korea Zoonosis Research Institute, Jeonbuk National University, Iksan 54531, Republic of Korea
- ViEL-T Corporate Research Institute, ViEL-T lnc., Jeonju Innovation Startup Hub (SJ Bldg) 204, Jeonju 54852, Republic of Korea
| |
Collapse
|
12
|
Bu F, Adam Y, Adamiak RW, Antczak M, de Aquino BRH, Badepally NG, Batey RT, Baulin EF, Boinski P, Boniecki MJ, Bujnicki JM, Carpenter KA, Chacon J, Chen SJ, Chiu W, Cordero P, Das NK, Das R, Dawson WK, DiMaio F, Ding F, Dock-Bregeon AC, Dokholyan NV, Dror RO, Dunin-Horkawicz S, Eismann S, Ennifar E, Esmaeeli R, Farsani MA, Ferré-D'Amaré AR, Geniesse C, Ghanim GE, Guzman HV, Hood IV, Huang L, Jain DS, Jaryani F, Jin L, Joshi A, Karelina M, Kieft JS, Kladwang W, Kmiecik S, Koirala D, Kollmann M, Kretsch RC, Kurciński M, Li J, Li S, Magnus M, Masquida B, Moafinejad SN, Mondal A, Mukherjee S, Nguyen THD, Nikolaev G, Nithin C, Nye G, Pandaranadar Jeyeram IPN, Perez A, Pham P, Piccirilli JA, Pilla SP, Pluta R, Poblete S, Ponce-Salvatierra A, Popenda M, Popenda L, Pucci F, Rangan R, Ray A, Ren A, Sarzynska J, Sha CM, Stefaniak F, Su Z, Suddala KC, Szachniuk M, Townshend R, Trachman RJ, Wang J, Wang W, Watkins A, Wirecki TK, Xiao Y, Xiong P, Xiong Y, Yang J, Yesselman JD, Zhang J, Zhang Y, Zhang Z, Zhou Y, Zok T, Zhang D, Zhang S, Żyła A, Westhof E, Miao Z. RNA-Puzzles Round V: blind predictions of 23 RNA structures. Nat Methods 2025; 22:399-411. [PMID: 39623050 PMCID: PMC11810798 DOI: 10.1038/s41592-024-02543-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 10/29/2024] [Indexed: 01/16/2025]
Abstract
RNA-Puzzles is a collective endeavor dedicated to the advancement and improvement of RNA three-dimensional structure prediction. With agreement from structural biologists, RNA structures are predicted by modeling groups before publication of the experimental structures. We report a large-scale set of predictions by 18 groups for 23 RNA-Puzzles: 4 RNA elements, 2 Aptamers, 4 Viral elements, 5 Ribozymes and 8 Riboswitches. We describe automatic assessment protocols for comparisons between prediction and experiment. Our analyses reveal some critical steps to be overcome to achieve good accuracy in modeling RNA structures: identification of helix-forming pairs and of non-Watson-Crick modules, correct coaxial stacking between helices and avoidance of entanglements. Three of the top four modeling groups in this round also ranked among the top four in the CASP15 contest.
Collapse
Grants
- T32 GM066706 NIGMS NIH HHS
- NSFC T2225007 National Natural Science Foundation of China (National Science Foundation of China)
- R35 GM134919 NIGMS NIH HHS
- R35GM145409 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R35 GM145409 NIGMS NIH HHS
- 32270707 National Natural Science Foundation of China (National Science Foundation of China)
- R35 GM122579 NIGMS NIH HHS
- R35 GM134864 NIGMS NIH HHS
- T32 grant GM066706 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- P20GM121342 Foundation for the National Institutes of Health (Foundation for the National Institutes of Health, Inc.)
- R21 CA219847 NCI NIH HHS
- 32171191 National Natural Science Foundation of China (National Science Foundation of China)
- P20 GM121342 NIGMS NIH HHS
- R35 GM152029 NIGMS NIH HHS
- R01 GM073850 NIGMS NIH HHS
- F32 GM112294 NIGMS NIH HHS
- ZIA DK075136 Intramural NIH HHS
- Z.M. is supported by Major Projects of Guangzhou National Laboratory, (Grant No. GZNL2023A01006, GZNL2024A01002, SRPG22-003, SRPG22-006, SRPG22-007, HWYQ23-003, YW-YFYJ0102), the National Key R&D Programs of China (2023YFF1204700, 2023YFF1204701, 2021YFF1200900, 2021YFF1200903). This work is part of the ITI 2021-2028 program and supported by IdEx Unistra (ANR-10-IDEX-0002 to E.W.), SFRI-STRAT’US project (ANR-20-SFRI-0012) and EUR IMCBio (IMCBio ANR-17-EURE-0023 to E.W.) under the framework of the French Investments for the Future Program.
- E.W. acknowledges also support from Wenzhou Institute, University of Chinese Academy of Sciences (WIUCASQD2024002).
- E.F.B. was additionally supported by European Molecular Biology Organization (EMBO) fellowship (ALTF 525-2022).
- Boniecki’s research was supported by the Polish National Science Center Poland (NCN) (grant 2016/23/B/ST6/03433 to Michal J. Boniecki). Predictions were performed using computational resources of the Interdisciplinary Centre for Mathematical and Computational Modelling of the University of Warsaw (ICM) (grant G66-9).
- J.M.B. is supported by the National Science Centre in Poland (NCN grants: 2017/26/A/NZ1/01083 to J.M.B., 2021/43/D/NZ1/03360 to S.M., 2020/39/B/NZ2/03127 to F.S., 2020/39/D/NZ2/02837 to T.K.W.). J.M.B. acknowledge Poland high-performance computing Infrastructure PLGrid (HPC Centers: ACK Cyfronet AGH, PCSS, CI TASK, WCSS) for providing computer facilities and support within the computational grant PLG/2023/016080.
- S.J.C. is supported by the National Institutes of Health under Grant R35-GM134919.
- R.D. is supported by Stanford Bio-X (to R.D., R.O.D., R.C.K., and S.E.); Stanford Gerald J. Lieberman Fellowship (to R.R.); the National Institutes of Health (R21 CA219847 and R35 GM122579 to R.D.), the Howard Hughes Medical Institute (HHMI, to R.D.); Consejo Nacional de Ciencia y Tecnología CONACyT Fellowship 312765 (P.C.); the Ruth L. Kirschstein National Research Service Award Postdoctoral Fellowships GM112294 (to J.D.Y.); National Science Foundation Graduate Research Fellowships (R.J.L.T. and R.R.); the National Library of Medicine T15 Training Grant (NLM T15007033 to K.A.C.); the U.S. Department of Energy, Office of Science Graduate Student Research program (R.J.L.T.).
- The National Institutes of Health grants 1R35 GM134864 and the Passan Foundation.
- R.O.D. is supported by the U.S. Department of Energy, Office of Science, Scientific Discovery through Advanced Computing (SciDAC) program (R.O.D.); Intel (R.O.D.).
- A.F.D. is supported, in part, by the intramural program of the National Heart, Lung and Blood Institute, National Institutes of Health, USA.
- Guangdong Science and Technology Department (2022A1515010328, 2023B1212060013, 2020B1212030004), Fundamental Research Funds for the Central Universities, Sun Yat-sen University (23ptpy41).
- D.K. is supported by the NSF CAREER award MCB-2236996, and start-up, SURFF, and START awards from the University of Maryland Baltimore County to D.K.
- BM is supported by the Interdisciplinary Thematic Institute IMCBio, as part of the ITI 2021-2028 program at the University of Strasbourg, CNRS and Inserm, by IdEx Unistra (ANR-10-IDEX-0002), and EUR (IMCBio ANR-17-EUR-0023), under the framework of the French Investments Program for the Future.
- T.H.D.N. is supported by UKRI-Medical Research Council grant MC_UP_1201/19.
- C.N. and M.K. acknowledge funding from the National Science Centre, Poland [OPUS 2019/33/B/NZ2/02100]; S.P.P. acknowledges funding from the National Science Centre, Poland [OPUS 2020/39/B/NZ2/01301]; S.K. acknowledges funding from the National Science Centre, Poland [Sheng 2021/40/Q/NZ2/00078]; C.N. acknowledge Polish high-performance computing infrastructure PLGrid (HPC Centers: PCSS, ACK Cyfronet AGH, CI TASK, WCSS) for providing computer facilities and support within the computational grants PLG/2022/016043, PLG/2022/015327 and PLG/2020/013424.
- AP is supported by an NSF-CAREER award CHE-2235785
- A.R. is supported by grants from the Natural Science Foundation of China (32325029, 32022039, 91940302, and 91640104), the National Key Research and Development Project of China (2021YFC2300300 and 2023YFC2604300).
- Marta Szachniuk are supported by the National Science Centre, Poland (2019/35/B/ST6/03074 to M.S.), the statutory funds of IBCH PAS and Poznan University of Technology.
- J.W. is supported by the Penn State College of Medicine’s Artificial Intelligence and Biomedical Informatics Program.
- J.Z. is supported by the Intramural Research Program of the NIH, the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK) (ZIADK075136 to J.Z.), and an NIH Deputy Director for Intramural Research (DDIR) Challenge Award to J.Z.
Collapse
Affiliation(s)
- Fan Bu
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yagoub Adam
- Inter-institutional Graduate Program on Bioinformatics, Department of Computer Science and Mathematics, FFCLRP, University of São Paulo, Ribeirão Preto, Brazil
- Covenant University Bioinformatics Research (CUBRe), Covenant University, Ota, Nigeria
| | - Ryszard W Adamiak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Maciej Antczak
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Belisa Rebeca H de Aquino
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Nagendar Goud Badepally
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Robert T Batey
- Department of Biochemistry, University of Colorado at Boulder, Boulder, CO, USA
| | - Eugene F Baulin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Pawel Boinski
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Michal J Boniecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Kristy A Carpenter
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Jose Chacon
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Department of Cell and Developmental Biology, University of California San Diego, San Diego, CA, USA
| | - Shi-Jie Chen
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Wah Chiu
- Department of Bioengineering and James H. Clark Center, Stanford University, Stanford, CA, USA
| | - Pablo Cordero
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Stripe, South San Francisco, CA, USA
| | - Naba Krishna Das
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Rhiju Das
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Biophysics program, Stanford University, Stanford, CA, USA
| | - Wayne K Dawson
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Frank DiMaio
- Department of Biochemistry, University of Washington, Seattle, WA, USA
- Institute for Protein Design, University of Washington, Seattle, WA, USA
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Anne-Catherine Dock-Bregeon
- Laboratory of Integrative Biology of Marine Models (LBI2M), Sorbonne University-CNRS UMR8227, Roscoff, France
| | - Nikolay V Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Ron O Dror
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Institute for Computational and Mathematical Engineering, Stanford University, Stanford, CA, USA
| | - Stanisław Dunin-Horkawicz
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Stephan Eismann
- Department of Applied Physics, Stanford University, Stanford, CA, USA
- Atomic AI, South San Francisco, CA, USA
| | - Eric Ennifar
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France
| | - Reza Esmaeeli
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Masoud Amiri Farsani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Adrian R Ferré-D'Amaré
- Laboratory of Nucleic Acids, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Caleb Geniesse
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - George E Ghanim
- Medical Research Council Laboratory of Molecular Biology, Cambridge, UK
| | - Horacio V Guzman
- Instituto de Ciencia de Materials de Barcelona, ICMAB-CSIC, Bellaterra E-08193, Spain & Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid, Spain
| | - Iris V Hood
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Lin Huang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University Guangzhou, Guangdong, China
| | - Dharm Skandh Jain
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Farhang Jaryani
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Lei Jin
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Astha Joshi
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Masha Karelina
- Biophysics program, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver School of Medicine, Aurora, CO, USA
- New York Structural Biology Center, New York, NY, USA
| | - Wipapat Kladwang
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Sebastian Kmiecik
- Laboratory of Computational Biology, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Deepak Koirala
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County, Baltimore, MD, USA
| | - Markus Kollmann
- Department of Computer Science, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | | | - Mateusz Kurciński
- Laboratory of Computational Biology, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Jun Li
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Shuang Li
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Marcin Magnus
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - BenoÎt Masquida
- UMR 7156, CNRS - Université de Strasbourg, IPCB, Strasbourg, France
| | - S Naeim Moafinejad
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Arup Mondal
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Sunandan Mukherjee
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | | | - Grigory Nikolaev
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Chandran Nithin
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
- Laboratory of Computational Biology, Biological and Chemical Research Center, Faculty of Chemistry, University of Warsaw, Warsaw, Poland
| | - Grace Nye
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Iswarya P N Pandaranadar Jeyeram
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Alberto Perez
- Department of Chemistry and Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Phillip Pham
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Joseph A Piccirilli
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL, USA
- Department of Chemistry, The University of Chicago, Chicago, IL, USA
| | - Smita Priyadarshini Pilla
- Laboratory of Computational Biology, Biological and Chemical Research Center, University of Warsaw, Warsaw, Poland
| | - Radosław Pluta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Simón Poblete
- Facultad de Ingeniería, Arquitectura y Diseño, Universidad San Sebastián, Santiago, Chile
- Centro BASAL Ciencia & Vida, Universidad San Sebastián, Santiago, Chile
| | - Almudena Ponce-Salvatierra
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Mariusz Popenda
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Lukasz Popenda
- NanoBioMedical Centre, Adam Mickiewicz University, Poznan, Poland
| | - Fabrizio Pucci
- Computational Biology and Bioinformatics, Université Libre de Bruxelles, Brussels, Belgium
| | - Ramya Rangan
- Biophysics program, Stanford University, Stanford, CA, USA
- Atomic AI, South San Francisco, CA, USA
| | - Angana Ray
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Aiming Ren
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Joanna Sarzynska
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
| | - Congzhou Mike Sha
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Filip Stefaniak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Zhaoming Su
- The State Key Laboratory of Biotherapy, West China Hospital, Chengdu, China
| | - Krishna C Suddala
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Marta Szachniuk
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznan, Poland
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Raphael Townshend
- Department of Computer Science, Stanford University, Stanford, CA, USA
- Atomic AI, South San Francisco, CA, USA
| | - Robert J Trachman
- Laboratory of Nucleic Acids, National Heart, Lung and Blood Institute, Bethesda, MD, USA
| | - Jian Wang
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA, USA
| | - Wenkai Wang
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China
| | - Andrew Watkins
- Department of Biochemistry, Stanford University, Stanford, CA, USA
- Prescient Design, Genentech Research and Early Development, South San Francisco, CA, USA
| | - Tomasz K Wirecki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Yi Xiao
- School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Peng Xiong
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- Department of Biomedical Engineering, Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, China
| | - Yiduo Xiong
- School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Jianyi Yang
- MOE Frontiers Science Center for Nonlinear Expectations, Research Center for Mathematics and Interdisciplinary Sciences, Shandong University, Qingdao, China
| | - Joseph David Yesselman
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
- Department of Chemistry, University of Nebraska, Lincoln, NE, USA
| | - Jinwei Zhang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, Bethesda, MD, USA
| | - Yi Zhang
- School of Physics and Key Laboratory of Molecular Biophysics of the Ministry of Education, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenzhen Zhang
- Department of Physics and Astronomy, Clemson University, Clemson, SC, USA
| | - Yuanzhe Zhou
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Tomasz Zok
- Institute of Computing Science, Poznan University of Technology, Poznan, Poland
| | - Dong Zhang
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Sicheng Zhang
- Department of Physics, Department of Biochemistry and Institute for Data Science and Informatics, University of Missouri, Columbia, MO, USA
| | - Adriana Żyła
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland
| | - Eric Westhof
- Architecture et Réactivité de l'ARN, Institut de Biologie Moléculaire et Cellulaire du CNRS, Université de Strasbourg, Strasbourg, France.
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| | - Zhichao Miao
- GMU-GIBH Joint School of Life Sciences, The Guangdong-Hong Kong-Macao Joint Laboratory for Cell Fate Regulation and Diseases, Guangzhou National Laboratory, Guangzhou Medical University, Guangzhou, China.
- Shanghai Key Laboratory of Anesthesiology and Brain Functional Modulation, Clinical Research Center for Anesthesiology and Perioperative Medicine, Translational Research Institute of Brain and Brain-Like Intelligence, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai, China.
- European Bioinformatics Institute, European Molecular Biology Laboratory, Wellcome Genome Campus, Cambridge, UK.
| |
Collapse
|
13
|
Huang X, Du Z. Elaborated pseudoknots that stimulate -1 programmed ribosomal frameshifting or stop codon readthrough in RNA viruses. J Biomol Struct Dyn 2025; 43:1566-1578. [PMID: 38095458 PMCID: PMC11176267 DOI: 10.1080/07391102.2023.2292296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/25/2023] [Indexed: 05/08/2024]
Abstract
Pseudoknots assume various functions including stimulation of -1 programmed ribosomal frameshifting (PRF) or stop codon readthrough (SCR) in RNA viruses. These pseudoknots vary greatly in sizes and structural complexities. Recent biochemical and structural studies confirm the three-stemmed pseudoknots as the -1 PRF stimulators in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and related coronaviruses. We reexamined previously reported -1 PRF or SCR stimulating pseudoknots, especially those containing a relatively long connecting loop between the two pseudoknot-forming stems, for their ability to form elaborated structures. Many potential elaborated pseudoknots were identified that contain one or more of the following extra structural elements: stem-loop, embedded pseudoknot, kissing hairpins, and additional loop-loop interactions. The elaborated pseudoknots are found in several different virus families that utilize either the -1 PRF or SCR recoding mechanisms. Model-building studies were performed to not only establish the structural feasibility of the elaborated pseudoknots but also reveal potential additional structural features that cannot be readily inferred from the predicted secondary structures. Some of the structures, such as embedded double pseudoknots and compact loop-loop pseudoknots mediated by the previously established common pseudoknot motif-1 (CPK-1), represent the first of its kind in the literatures. By advancing discovery of new functional RNA structures, we significantly expand the repertoire of known elaborated pseudoknots that could potentially play a role in -1 PRF and SCR regulation. These results contribute to a better understanding of RNA structures in general, facilitating the design of engineering RNA molecules with certain desired functions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaolan Huang
- School of Computing, Southern Illinois University at Carbondale, IL 62901, USA
| | - Zhihua Du
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL 62901, USA
| |
Collapse
|
14
|
Yan S, Schlick T. Heterogeneous and multiple conformational transition pathways between pseudoknots of the SARS-CoV-2 frameshift element. Proc Natl Acad Sci U S A 2025; 122:e2417479122. [PMID: 39854230 PMCID: PMC11789066 DOI: 10.1073/pnas.2417479122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 11/25/2024] [Indexed: 01/26/2025] Open
Abstract
Frameshifting is an essential mechanism employed by many viruses including coronaviruses to produce viral proteins from a compact RNA genome. It is facilitated by specific RNA folds in the frameshift element (FSE), which has emerged as an important therapeutic target. For SARS-CoV-2, a specific 3-stem pseudoknot has been identified to stimulate frameshifting. However, prior studies and our RNA-As-Graphs analysis coupled to chemical reactivity experiments revealed other folds, including a different pseudoknot. Although structural plasticity has been proposed to play a key role in frameshifting, paths between different FSE RNA folds have not been yet identified. Here, we capture atomic-level transition pathways between two key FSE pseudoknots by transition path sampling coupled to Markov State Modeling and our BOLAS free energy method. We reveal multiple transition paths within a heterogeneous, multihub conformational landscape. A shared folding mechanism involves RNA stem unpairing followed by a 5'-chain end release. Significantly, this pseudoknot transition critically tunes the tension through the RNA spacer region and places the viral RNA in the narrow ribosomal channel. Our work further explains the role of the alternative pseudoknot in ribosomal pausing and clarifies why the experimentally captured pseudoknot is preferred for frameshifting. Our capturing of this large-scale transition of RNA secondary and tertiary structure highlights the complex pathways of biomolecules and the inherent multifarious aspects that viruses developed to ensure virulence and survival. This enhanced understanding of viral frameshifting also provides insights to target key transitions for therapeutic applications. Our methods are generally applicable to other large-scale biomolecular transitions.
Collapse
Affiliation(s)
- Shuting Yan
- Department of Chemistry, New York University, New York, NY10003
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, NY10003
- Department of Mathematics and Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
- New York University - East China Normal University Center for Computational Chemistry, NYU Shanghai, Shanghai200062, People’s Republic of China
- Simons Center for Computational Physical Chemistry, New York University, New York, NY10003
| |
Collapse
|
15
|
Aleksashin NA, Langeberg CJ, Shelke RR, Yin T, Cate JD. RNA elements required for the high efficiency of West Nile virus-induced ribosomal frameshifting. Nucleic Acids Res 2025; 53:gkae1248. [PMID: 39698810 PMCID: PMC11797035 DOI: 10.1093/nar/gkae1248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
West Nile virus (WNV) requires programmed -1 ribosomal frameshifting for translation of the viral genome. The efficiency of WNV frameshifting is among the highest known. However, it remains unclear why WNV exhibits such a high frameshifting efficiency. Here, we employed dual-luciferase reporter assays in multiple human cell lines to probe the RNA requirements for highly efficient frameshifting by the WNV genome. We find that both the sequence and structure of a predicted RNA pseudoknot downstream of the slippery sequence-the codons in the genome on which frameshifting occurs-are required for efficient frameshifting. We also show that multiple proposed RNA secondary structures downstream of the slippery sequence are inconsistent with efficient frameshifting. We also find that the base of the pseudoknot structure likely is unfolded prior to frameshifting. Finally, we show that many mutations in the WNV slippery sequence allow efficient frameshifting, but often result in aberrant shifting into other reading frames. Mutations in the slippery sequence also support a model in which frameshifting occurs concurrent with or after ribosome translocation. These results provide a comprehensive analysis of the molecular determinants of WNV-programmed ribosomal frameshifting and provide a foundation for the development of new antiviral strategies targeting viral gene expression.
Collapse
Affiliation(s)
- Nikolay A Aleksashin
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Conner J Langeberg
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Rohan R Shelke
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Tianhao Yin
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Jamie H D Cate
- Innovative Genomics Institute, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
16
|
Dantsu Y, Zhang Y, Zhang W. Selection of a Fluorinated Aptamer Targeting the Viral RNA Frameshift Element with Different Chiralities. Biochemistry 2025; 64:448-457. [PMID: 39772548 DOI: 10.1021/acs.biochem.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The development of RNA aptamers with high specificity and affinity for target molecules is a critical advancement in the field of therapeutic and diagnostic applications. This study presents the selection of a 2'-fluoro-modified mirror-image RNA aptamer through the in vitro SELEX process. Using a random RNA library, we performed iterative rounds of selection and amplification to enrich aptamers that bind specifically to the viral attenuator hairpin RNA containing the opposite chirality, which is an important part of the frameshift element. The unnatural chirality of the aptamer improved its enzymatic stability, and the incorporation of 2'-fluoro modifications was crucial in enhancing the binding affinity of the aptamers. After nine rounds of SELEX, the enriched RNA pool was sequenced and analyzed, revealing the dominant aptamer sequences. The selected 2'-fluoro-modified mirror-image RNA aptamer demonstrated a dissociation constant of approximately 1.6 μM, indicating moderate binding affinity with the target and exceptional stability against nuclease degradation. Our findings highlight the potential of 2'-fluoro-modified mirror-image RNA aptamers in enhancing the stability and utility of RNA-based therapeutics and diagnostics, paving the way for future applications in diverse biomedical fields.
Collapse
Affiliation(s)
- Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
17
|
Loughran G, De Pace R, Ding N, Zhang J, Jungreis I, Carancini G, Mudge JM, Wang J, Kellis M, Atkins JF, Baranov PV, Firth AE, Li X, Bonifacino JS, Khan YA. Programmed ribosomal frameshifting during PLEKHM2 mRNA decoding generates a constitutively active proteoform that supports myocardial function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.08.30.610563. [PMID: 39372779 PMCID: PMC11451614 DOI: 10.1101/2024.08.30.610563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Programmed ribosomal frameshifting is a process where a proportion of ribosomes change their reading frame on an mRNA1, rephasing the ribosome relative to the mRNA. While frameshifting is commonly employed by viruses2, very few phylogenetically conserved examples are known in nuclear encoded genes and some of the evidence is controversial3,4. Here we report a +1 frameshifting event during decoding of the human gene PLEKHM2 5. This frameshifting occurs at the sequence UCC_UUU_CGG, which is conserved in vertebrates and is similar to an influenza virus sequence that frameshifts with similar efficiency6,7. The new C-terminal domain generated by this frameshift forms an α-helix, which relieves PLEKHM2 from autoinhibition and allows it to move to the tips of cells via association with kinesin-1 without requiring activation by ARL8. Reintroducing both the canonically-translated and frameshifted protein are necessary to restore normal contractile function of PLEKHM2-knockout cardiomyocytes, demonstrating the necessity of frameshifting for normal cardiac activity.
Collapse
Affiliation(s)
- Gary Loughran
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Raffaella De Pace
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Ningyu Ding
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, Republic of China and Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Jianchao Zhang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, Republic of China and Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Irwin Jungreis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Jonathan M. Mudge
- European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton CB10 1SD, Cambridge, UK
| | - Ji Wang
- Department of Pathology, University of Cambridge, Cambridge, UK
- Institute of Precision Medicine, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou 510080, Republic of China
| | - Manolis Kellis
- MIT Computer Science and Artificial Intelligence Laboratory, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - John F. Atkins
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Pavel V. Baranov
- School of Biochemistry and Cell Biology, University College Cork, Cork, Ireland
| | - Andrew E. Firth
- Department of Pathology, University of Cambridge, Cambridge, UK
| | - Xiaowei Li
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, Republic of China and Henan Key Laboratory of Hereditary Cardiovascular Diseases, Zhengzhou 450052, China
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Yousuf A. Khan
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
- Department of Neurology and Neurological Sciences, Stanford University, Stanford, CA, USA
- Department of Structural Biology, Stanford University, Stanford, CA, USA
- Department of Photon Science, Stanford University, Stanford, CA, USA
| |
Collapse
|
18
|
Lyon KR, Morisaki T, Stasevich TJ. Imaging and Quantifying Ribosomal Frameshifting Dynamics with Single-RNA Precision in Live Cells. Methods Mol Biol 2025; 2875:99-110. [PMID: 39535643 PMCID: PMC11633442 DOI: 10.1007/978-1-0716-4248-1_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Recent advances in fluorescence microscopy have now made it possible to measure the translation dynamics of individual RNA in living cells and in multiple colors. Here we describe a protocol that exploits these recent advances to simultaneously image the translation of two open reading frames encoded on a single reporter RNA yet frameshifted with respect to each other. This enables precise measurements of frameshifting dynamics and efficiency from specific frameshift stimulatory sequences, all with single-RNA precision.
Collapse
Affiliation(s)
- Kenneth R Lyon
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
19
|
Grelewska‐Nowotko K, Elhag AE, Turowski TW. Transcription Kinetics in the Coronavirus Life Cycle. WILEY INTERDISCIPLINARY REVIEWS. RNA 2025; 16:e70000. [PMID: 39757745 PMCID: PMC11701415 DOI: 10.1002/wrna.70000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 01/07/2025]
Abstract
Coronaviruses utilize a positive-sense single-strand RNA, functioning simultaneously as mRNA and the genome. An RNA-dependent RNA polymerase (RdRP) plays a dual role in transcribing genes and replicating the genome, making RdRP a critical target in therapies against coronaviruses. This review explores recent advancements in understanding the coronavirus transcription machinery, discusses it within virus infection context, and incorporates kinetic considerations on RdRP activity. We also address steric limitations in coronavirus replication, particularly during early infection phases, and outline hypothesis regarding translation-transcription conflicts, postulating the existence of mechanisms that resolve these issues. In cells infected by coronaviruses, abundant structural proteins are synthesized from subgenomic RNA fragments (sgRNAs) produced via discontinuous transcription. During elongation, RdRP can skip large sections of the viral genome, resulting in the creation of shorter sgRNAs that reflects the stoichiometry of viral structural proteins. Although the precise mechanism of discontinuous transcription remains unknown, we discuss recent hypotheses involving long-distance RNA-RNA interactions, helicase-mediated RdRP backtracking, dissociation and reassociation of RdRP, and RdRP dimerization.
Collapse
Affiliation(s)
| | - Ahmed Eisa Elhag
- Institute of Biochemistry and BiophysicsPolish Academy of SciencesWarsawPoland
- Department of Preventive Medicine and Clinical Studies, Faculty of Veterinary SciencesUniversity of GadarifAl QadarifSudan
| | | |
Collapse
|
20
|
Neilsen G, Mathew AM, Castro JM, McFadden WM, Wen X, Ong YT, Tedbury PR, Lan S, Sarafianos SG. Dimming the corona: studying SARS-coronavirus-2 at reduced biocontainment level using replicons and virus-like particles. mBio 2024; 15:e0336823. [PMID: 39530689 PMCID: PMC11633226 DOI: 10.1128/mbio.03368-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The coronavirus-induced disease 19 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) infections, has had a devastating impact on millions of lives globally, with severe mortality rates and catastrophic social implications. Developing tools for effective vaccine strategies and platforms is essential for controlling and preventing the recurrence of such pandemics. Moreover, molecular virology tools that facilitate the study of viral pathogens, impact of viral mutations, and interactions with various host proteins are essential. Viral replicon- and virus-like particle (VLP)-based systems are excellent examples of such tools. This review outlines the importance, advantages, and disadvantages of both the replicon- and VLP-based systems that have been developed for SARS-CoV-2 and have helped the scientific community in dimming the intensity of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Grace Neilsen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Asha Maria Mathew
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Jose M. Castro
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - William M. McFadden
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Xin Wen
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Yee T. Ong
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Philip R. Tedbury
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Shuiyun Lan
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| | - Stefan G. Sarafianos
- Laboratory of Biochemical Pharmacology, Department of Pediatrics, Center for ViroScience and Cure, Emory University School of Medicine, Atlanta, Georgia, USA
- Children’s Healthcare of Atlanta, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Zhou Y, Chen SJ. Harnessing Computational Approaches for RNA-Targeted Drug Discovery. RNA NANOMED 2024; 1:1-15. [PMID: 40201452 PMCID: PMC11975998 DOI: 10.59566/isrnn.2024.0101001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
RNA molecules have emerged as promising therapeutic targets due to their diverse functional and regulatory roles within cells. Computational modeling in RNA-targeted drug discovery presents a significant opportunity to expedite the discovery of novel small molecule compounds. However, this field encounters unique challenges compared to protein-targeted drug design, primarily due to limited experimental data availability and current models' inability to adequately address RNA's conformational flexibility during ligand recognition. Despite these challenges, several studies have successfully identified active RNA-targeting compounds using structure-based approaches or quantitative structure-activity relationship (QSAR) models. This review offers an overview of recent advancements in modeling RNA-small molecule interactions, emphasizing practical applications of computational methods in RNA-targeted drug discovery. Additionally, we survey existing databases that catalog nucleic acid-small molecule interactions. As interest in RNA-small molecule interactions grows and curated databases expand, the field anticipates rapid development. Novel computational models are poised to enhance the identification of potent and selective small-molecule modulators for therapeutic needs.
Collapse
Affiliation(s)
- Yuanzhe Zhou
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
| | - Shi-Jie Chen
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA
- Department of Biochemistry, MU Institute for Data Science and Informatics, University of Missouri, Columbia, MO 65211, USA
| |
Collapse
|
22
|
Iannuzzelli JA, Bonn R, Hong AS, Anitha AS, Jenkins JL, Wedekind JE, Fasan R. Cyclic peptides targeting the SARS-CoV-2 programmed ribosomal frameshifting RNA from a multiplexed phage display library. Chem Sci 2024; 15:19520-19533. [PMID: 39568906 PMCID: PMC11575553 DOI: 10.1039/d4sc04026k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/03/2024] [Indexed: 11/22/2024] Open
Abstract
RNA provides the genetic blueprint for many pathogenic viruses, including SARS-CoV-2. The propensity of RNA to fold into specific tertiary structures enables the biomolecular recognition of cavities and crevices suited for the binding of drug-like molecules. Despite increasing interest in RNA as a target for chemical biology and therapeutic applications, the development of molecules that recognize RNA with high affinity and specificity represents a significant challenge. Here, we report a strategy for the discovery and selection of RNA-targeted macrocyclic peptides derived from combinatorial libraries of peptide macrocycles displayed by bacteriophages. Specifically, a platform for phage display of macrocyclic organo-peptide hybrids (MOrPH-PhD) was combined with a diverse set of non-canonical amino acid-based cyclization modules to produce large libraries of 107 structurally diverse, genetically encoded peptide macrocycles. These libraries were panned against the -1 programmed ribosomal frameshifting stimulatory sequence (FSS) RNA pseudoknot of SARS-CoV-2, which revealed specific macrocyclic peptide sequences that bind this essential motif with high affinity and selectivity. Peptide binding localizes to the FSS dimerization loop based on chemical modification analysis and binding assays and the cyclic peptides show specificity toward the target RNA over unrelated RNA pseudoknots. This work introduces a novel system for the generation and high-throughput screening of topologically diverse cyclopeptide scaffolds (multiplexed MOrPH-PhD), and it provides a blueprint for the exploration and evolution of genetically encoded macrocyclic peptides that target specific RNAs.
Collapse
Affiliation(s)
| | - Rachel Bonn
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
| | - Andrew S Hong
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
| | - Abhijith Saseendran Anitha
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
- Department of Chemistry & Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| | - Jermaine L Jenkins
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
| | - Joseph E Wedekind
- Department of Biochemistry and Biophysics, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
- Center for RNA Biology, University of Rochester School of Medicine and Dentistry Rochester NY 14642 USA
| | - Rudi Fasan
- Department of Chemistry, University of Rochester Rochester NY 14627 USA
- Department of Chemistry & Biochemistry, The University of Texas at Dallas Richardson TX 75080 USA
| |
Collapse
|
23
|
Zhu X, Cruz VE, Zhang H, Erzberger JP, Mendell JT. Specific tRNAs promote mRNA decay by recruiting the CCR4-NOT complex to translating ribosomes. Science 2024; 386:eadq8587. [PMID: 39571015 PMCID: PMC11583848 DOI: 10.1126/science.adq8587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/16/2024] [Indexed: 11/24/2024]
Abstract
The CCR4-NOT complex is a major regulator of eukaryotic messenger RNA (mRNA) stability. Slow decoding during translation promotes association of CCR4-NOT with ribosomes, accelerating mRNA degradation. We applied selective ribosome profiling to further investigate the determinants of CCR4-NOT recruitment to ribosomes in mammalian cells. This revealed that specific arginine codons in the P-site are strong signals for ribosomal recruitment of human CNOT3, a CCR4-NOT subunit. Cryo-electron microscopy and transfer RNA (tRNA) mutagenesis demonstrated that the D-arms of select arginine tRNAs interact with CNOT3 and promote its recruitment whereas other tRNA D-arms sterically clash with CNOT3. These effects link codon content to mRNA stability. Thus, in addition to their canonical decoding function, tRNAs directly engage regulatory complexes during translation, a mechanism we term P-site tRNA-mediated mRNA decay.
Collapse
MESH Headings
- Humans
- Arginine/metabolism
- Codon
- Cryoelectron Microscopy
- HEK293 Cells
- Protein Biosynthesis
- Ribosomes/metabolism
- RNA Stability
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- RNA, Transfer/metabolism
- RNA, Transfer/genetics
- RNA, Transfer, Arg/metabolism
- RNA, Transfer, Arg/chemistry
- RNA, Transfer, Arg/genetics
- Transcription Factors/metabolism
- Jurkat Cells
Collapse
Affiliation(s)
- Xiaoqiang Zhu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victor Emmanuel Cruz
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - He Zhang
- Quantitative Biomedical Research Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Department of Clinical Sciences, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jan P. Erzberger
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Joshua T. Mendell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
- Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
24
|
Bonet-Aleta J, Maehara T, Craig BA, Bernardes GJL. Small Molecule RNA Degraders. Angew Chem Int Ed Engl 2024; 63:e202412925. [PMID: 39162084 DOI: 10.1002/anie.202412925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
RNA is a central molecule in life, involved in a plethora of biological processes and playing a key role in many diseases. Targeting RNA emerges as a significant endeavor in drug discovery, diverging from conventional protein-centric approaches to tackle various pathologies. Whilst identifying small molecules that bind to specific RNA regions is the first step, the abundance of non-functional RNA segments renders many interactions biologically inert. Consequently, small molecule binding does not necessarily meet stringent criteria for clinical translation, calling for solutions to push the field forward. Converting RNA-binders into RNA-degraders presents a promising avenue to enhance RNA-targeting. This mini-review outlines strategies and exemplars wherein simple small molecule RNA binders are reprogrammed into active degraders through the linkage of functional groups. These approaches encompass mechanisms that induce degradation via endogenous enzymes, termed RIBOTACs, as well as those with functional moieties acting autonomously to degrade RNA. Through this exploration, we aim to offer insights into advancing RNA-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Tomoaki Maehara
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Benjamin A Craig
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| |
Collapse
|
25
|
Sharma P, Kim CY, Keys HR, Imada S, Joseph AB, Ferro L, Kunchok T, Anderson R, Yilmaz O, Weng JK, Jain A. Genetically encoded fluorescent reporter for polyamines. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.24.609500. [PMID: 39253442 PMCID: PMC11383275 DOI: 10.1101/2024.08.24.609500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Polyamines are abundant and evolutionarily conserved metabolites that are essential for life. Dietary polyamine supplementation extends life-span and health-span. Dysregulation of polyamine homeostasis is linked to Parkinson's disease and cancer, driving interest in therapeutically targeting this pathway. However, measuring cellular polyamine levels, which vary across cell types and states, remains challenging. We introduce a first-in-class genetically encoded polyamine reporter for real-time measurement of polyamine concentrations in single living cells. This reporter utilizes the polyamine-responsive ribosomal frameshift motif from the OAZ1 gene. We demonstrate broad applicability of this approach and reveal dynamic changes in polyamine levels in response to genetic and pharmacological perturbations. Using this reporter, we conducted a genome-wide CRISPR screen and uncovered an unexpected link between mitochondrial respiration and polyamine import, which are both risk factors for Parkinson's disease. By offering a new lens to examine polyamine biology, this reporter may advance our understanding of these ubiquitous metabolites and accelerate therapy development.
Collapse
Affiliation(s)
- Pushkal Sharma
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Colin Y Kim
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, USA
| | - Heather R Keys
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Shinya Imada
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
| | - Alex B Joseph
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Luke Ferro
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Tenzin Kunchok
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
| | - Rachel Anderson
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Omer Yilmaz
- The David H. Koch Institute for Integrative Cancer Research at MIT, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jing-Ke Weng
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Institute for Plant-Human Interface, Northeastern University, Boston, MA, USA
- Department of Chemistry and Chemical Biology, Department of Bioengineering and Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ankur Jain
- Whitehead Institute of Biomedical Research, Cambridge, MA, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Mertinkus K, Oxenfarth A, Richter C, Wacker A, Mata CP, Carazo JM, Schlundt A, Schwalbe H. Dissecting the Conformational Heterogeneity of Stem-Loop Substructures of the Fifth Element in the 5'-Untranslated Region of SARS-CoV-2. J Am Chem Soc 2024; 146:30139-30154. [PMID: 39442924 PMCID: PMC11544613 DOI: 10.1021/jacs.4c08406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 10/25/2024]
Abstract
Throughout the family of coronaviruses, structured RNA elements within the 5' region of the genome are highly conserved. The fifth stem-loop element from SARS-CoV-2 (5_SL5) represents an example of an RNA structural element, repeatedly occurring in coronaviruses. It contains a conserved, repetitive fold within its substructures SL5a and SL5b. We herein report the detailed characterization of the structure and dynamics of elements SL5a and SL5b that are located immediately upstream of the SARS-CoV-2 ORF1a/b start codon. Exploiting the unique ability of solution NMR methods, we show that the structures of both apical loops are modulated by structural differences in the remote parts located in their stem regions. We further integrated our high-resolution models of SL5a/b into the context of full-length 5_SL5 structures by combining different structural biology methods. Finally, we evaluated the impact of the two most common VoC mutations within 5_SL5 with respect to individual base-pair stability.
Collapse
Affiliation(s)
- Klara
R. Mertinkus
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center
for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Andreas Oxenfarth
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center
for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Christian Richter
- Center
for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Anna Wacker
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center
for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| | - Carlos P. Mata
- Biocomputing
Unit, Department of Macromolecular Structures, National Centre for Biotechnology (CSIC), Darwin 3, Madrid 28049, Spain
| | - Jose Maria Carazo
- Biocomputing
Unit, Department of Macromolecular Structures, National Centre for Biotechnology (CSIC), Darwin 3, Madrid 28049, Spain
| | - Andreas Schlundt
- Center
for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Institute
of Biochemistry, University of Greifswald, Greifswald 17489, Germany
| | - Harald Schwalbe
- Institute
for Organic Chemistry and Chemical Biology, Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
- Center
for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt Am Main, Frankfurt/Main, Hessen 60438, Germany
| |
Collapse
|
27
|
Hernández-Marín M, Cantero-Camacho Á, Mena I, López-Núñez S, García-Sastre A, Gallego J. Sarbecovirus programmed ribosome frameshift RNA element folding studied by NMR spectroscopy and comparative analyses. Nucleic Acids Res 2024; 52:11960-11972. [PMID: 39149904 PMCID: PMC11514460 DOI: 10.1093/nar/gkae704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
The programmed ribosomal frameshift (PRF) region is found in the RNA genome of all coronaviruses and shifts the ribosome reading frame through formation of a three-stem pseudoknot structure, allowing the translation of essential viral proteins. Using NMR spectroscopy, comparative sequence analyses and functional assays we show that, in the absence of the ribosome, a 123-nucleotide sequence encompassing the PRF element of SARS-CoV-2 adopts a well-defined two-stem loop structure that is conserved in all SARS-like coronaviruses. In this conformation, the attenuator hairpin and slippery site nucleotides are exposed in the first stem-loop and two pseudoknot stems are present in the second stem-loop, separated by an 8-nucleotide bulge. Formation of the third pseudoknot stem depends on pairing between bulge nucleotides and base-paired nucleotides of the upstream stem-loop, as shown by a PRF construct where residues of the upstream stem were removed, which formed the pseudoknot structure and had increased frameshifting activity in a dual-luciferase assay. The base-pair switch driving PRF pseudoknot folding was found to be conserved in several human non-SARS coronaviruses. The collective results suggest that the frameshifting pseudoknot structure of these viruses only forms transiently in the presence of the translating ribosome. These findings clarify the frameshifting mechanism in coronaviruses and can have a beneficial impact on antiviral drug discovery.
Collapse
Affiliation(s)
- María Hernández-Marín
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001 Valencia, Spain
- Escuela de Doctorado, Universidad Católica de Valencia, 46001 Valencia, Spain
| | - Ángel Cantero-Camacho
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001 Valencia, Spain
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Sergio López-Núñez
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001 Valencia, Spain
- Escuela de Doctorado, Universidad Católica de Valencia, 46001 Valencia, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - José Gallego
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001 Valencia, Spain
| |
Collapse
|
28
|
De S, Zhou M, Brown ZP, Burton-Smith RN, Hashem Y, Pestova T, Hellen CUT, Frank J. Inconsistencies in the published rabbit ribosomal rRNAs: a proposal for uniformity in sequence and site numbering. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.11.617640. [PMID: 39416079 PMCID: PMC11482936 DOI: 10.1101/2024.10.11.617640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Examination of all publicly available Oryctolagus cuniculus (rabbit) ribosome cryo-EM structures reveals numerous confusing inconsistencies. First, there are a plethora of single nucleotide differences among the various rabbit 28S and 18S rRNA structures. Second, two nucleotides are absent from the NCBI Reference Sequence for the 18S rRNA gene. Moving forward, we propose using the Broad Institute's rabbit whole genome shotgun sequence and numbering to reduce modeling ambiguity and improve consistency between ribosome models.
Collapse
|
29
|
Aleksashin NA, Langeberg CJ, Shelke RR, Yin T, Cate JHD. RNA elements required for the high efficiency of West Nile Virus-induced ribosomal frameshifting. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.16.618579. [PMID: 39464146 PMCID: PMC11507841 DOI: 10.1101/2024.10.16.618579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
West Nile Virus (WNV), a member of the Flaviviridae family, requires programmed -1 ribosomal frameshifting (PRF) for translation of the viral genome. The efficiency of WNV frameshifting is among the highest observed to date. Despite structural similarities to frameshifting sites in other viruses, it remains unclear why WNV exhibits such a high frameshifting efficiency. Here we employed dual-luciferase reporter assays in multiple human cell lines to probe the RNA requirements for highly efficient frameshifting by the WNV genome. We find that both the sequence and structure of a predicted RNA pseudoknot downstream of the slippery sequence-the codons in the genome on which frameshifting occurs-are required for efficient frameshifting. We also show that multiple proposed RNA secondary structures downstream of the slippery sequence are inconsistent with efficient frameshifting. We mapped the most favorable distance between the slippery site and the pseudoknot essential for optimal frameshifting, and found the base of the pseudoknot structure likely is unfolded prior to frameshifting. Finally, we find that many mutations in the WNV slippery sequence allow efficient frameshifting, but often result in aberrant shifting into other reading frames. Mutations in the slippery sequence also support a model in which frameshifting occurs concurrent with or after translocation of the mRNA and tRNA on the ribosome. These results provide a comprehensive analysis of the molecular determinants of WNV-programmed ribosomal frameshifting and provide a foundation for the development of new antiviral strategies targeting viral gene expression.
Collapse
Affiliation(s)
- Nikolay A. Aleksashin
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Conner J. Langeberg
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Rohan R. Shelke
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Tianhao Yin
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
| | - Jamie H. D. Cate
- Innovative Genomics Institute, University of California-Berkeley, Berkeley, CA, USA
- Department of Molecular & Cell Biology, University of California-Berkeley, Berkeley, CA, USA
- Department of Chemistry, University of California-Berkeley, Berkeley, CA, USA
| |
Collapse
|
30
|
Dey A, Yan S, Schlick T, Laederach A. Abolished frameshifting for predicted structure-stabilizing SARS-CoV-2 mutants: implications to alternative conformations and their statistical structural analyses. RNA (NEW YORK, N.Y.) 2024; 30:1437-1450. [PMID: 39084880 PMCID: PMC11482603 DOI: 10.1261/rna.080035.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/21/2024] [Indexed: 08/02/2024]
Abstract
The SARS-CoV-2 frameshifting element (FSE) has been intensely studied and explored as a therapeutic target for coronavirus diseases, including COVID-19. Besides the intriguing virology, this small RNA is known to adopt many length-dependent conformations, as verified by multiple experimental and computational approaches. However, the role these alternative conformations play in the frameshifting mechanism and how to quantify this structural abundance has been an ongoing challenge. Here, we show by DMS and dual-luciferase functional assays that previously predicted FSE mutants (using the RAG graph theory approach) suppress structural transitions and abolish frameshifting. Furthermore, correlated mutation analysis of DMS data by three programs (DREEM, DRACO, and DANCE-MaP) reveals important differences in their estimation of specific RNA conformations, suggesting caution in the interpretation of such complex conformational landscapes. Overall, the abolished frameshifting in three different mutants confirms that all alternative conformations play a role in the pathways of ribosomal transition.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research (NIPER-R)-Raebareli, Lucknow 226002, India
| | - Shuting Yan
- Department of Chemistry, New York University, New York, New York 10003, USA
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, New York 10003, USA
- Courant Institute of Mathematical Sciences, New York University, New York, New York 10012, USA
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai 200062, P.R. China
- NYU Simons Center for Computational Physical Chemistry, New York University, New York, New York 10003, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| |
Collapse
|
31
|
Carmody PJ, Roushar FJ, Tedman A, Wang W, Herwig M, Kim M, McDonald EF, Noguera K, Wong-Roushar J, Poirier JL, Zelt NB, Pockrass BT, McKee AG, Kuntz CP, Raju SV, Plate L, Penn WD, Schlebach JP. Ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. Proc Natl Acad Sci U S A 2024; 121:e2414768121. [PMID: 39388263 PMCID: PMC11494300 DOI: 10.1073/pnas.2414768121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 10/12/2024] Open
Abstract
The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of CF. The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery. In this work, we identify a structural motif within the CFTR transcript that stimulates efficient -1 ribosomal frameshifting and triggers the premature termination of translation. Though this motif does not appear to impact the interactome of wild-type CFTR, silent mutations that disrupt this RNA structure alter the association of nascent ΔF508 CFTR with numerous translation and quality control proteins. Moreover, disrupting this RNA structure enhances the functional gating of the ΔF508 CFTR channel at the plasma membrane and its pharmacological rescue by the CFTR modulators contained in the CF drug Trikafta. The effects of the RNA structure on ΔF508 CFTR appear to be attenuated in the absence of the ER membrane protein complex, which was previously found to modulate ribosome collisions during "preemptive quality control" of a misfolded CFTR homolog. Together, our results reveal that ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. These findings suggest that interactions between the nascent chain, quality control machinery, and ribosome may dynamically modulate ribosomal frameshifting in order to tune the processivity of translation in response to cotranslational misfolding.
Collapse
Affiliation(s)
- Patrick J. Carmody
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Francis J. Roushar
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Austin Tedman
- The James Tarpo Junior and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - Wei Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL35233
| | - Madeline Herwig
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN37240
| | - Eli F. McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
| | - Karen Noguera
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | | | - Jon-Luc Poirier
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Nathan B. Zelt
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Ben T. Pockrass
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Andrew G. McKee
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Charles P. Kuntz
- The James Tarpo Junior and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| | - S. Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL35233
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN37240
- Department of Biological Sciences, Vanderbilt University, Nashville, TN37240
| | - Wesley D. Penn
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN47401
| | - Jonathan P. Schlebach
- The James Tarpo Junior and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN47907
| |
Collapse
|
32
|
Nazir F, John Kombe Kombe A, Khalid Z, Bibi S, Zhang H, Wu S, Jin T. SARS-CoV-2 replication and drug discovery. Mol Cell Probes 2024; 77:101973. [PMID: 39025272 DOI: 10.1016/j.mcp.2024.101973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/14/2024] [Accepted: 07/15/2024] [Indexed: 07/20/2024]
Abstract
The coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has killed millions of people and continues to wreak havoc across the globe. This sudden and deadly pandemic emphasizes the necessity for anti-viral drug development that can be rapidly administered to reduce morbidity, mortality, and virus propagation. Thus, lacking efficient anti-COVID-19 treatment, and especially given the lengthy drug development process as well as the critical death tool that has been associated with SARS-CoV-2 since its outbreak, drug repurposing (or repositioning) constitutes so far, the ideal and ready-to-go best approach in mitigating viral spread, containing the infection, and reducing the COVID-19-associated death rate. Indeed, based on the molecular similarity approach of SARS-CoV-2 with previous coronaviruses (CoVs), repurposed drugs have been reported to hamper SARS-CoV-2 replication. Therefore, understanding the inhibition mechanisms of viral replication by repurposed anti-viral drugs and chemicals known to block CoV and SARS-CoV-2 multiplication is crucial, and it opens the way for particular treatment options and COVID-19 therapeutics. In this review, we highlighted molecular basics underlying drug-repurposing strategies against SARS-CoV-2. Notably, we discussed inhibition mechanisms of viral replication, involving and including inhibition of SARS-CoV-2 proteases (3C-like protease, 3CLpro or Papain-like protease, PLpro) by protease inhibitors such as Carmofur, Ebselen, and GRL017, polymerases (RNA-dependent RNA-polymerase, RdRp) by drugs like Suramin, Remdesivir, or Favipiravir, and proteins/peptides inhibiting virus-cell fusion and host cell replication pathways, such as Disulfiram, GC376, and Molnupiravir. When applicable, comparisons with SARS-CoV inhibitors approved for clinical use were made to provide further insights to understand molecular basics in inhibiting SARS-CoV-2 replication and draw conclusions for future drug discovery research.
Collapse
Affiliation(s)
- Farah Nazir
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Arnaud John Kombe Kombe
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Zunera Khalid
- Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China
| | - Shaheen Bibi
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China
| | - Hongliang Zhang
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China
| | - Songquan Wu
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China.
| | - Tengchuan Jin
- Center of Disease Immunity and Investigation, College of Medicine, Lishui University, Lishui, 323000, China; Laboratory of Structural Immunology, Key Laboratory of Immune Response and Immunotherapy, School of Basic Medical Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230027, China; Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, University of Science and Technology of China, Anhui, China; Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, Anhui, China; Biomedical Sciences and Health Laboratory of Anhui Province, University of Science & Technology of China, Hefei, 230027, China; Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
33
|
Aruda J, Grote SL, Rouskin S. Untangling the pseudoknots of SARS-CoV-2: Insights into structural heterogeneity and plasticity. Curr Opin Struct Biol 2024; 88:102912. [PMID: 39168046 DOI: 10.1016/j.sbi.2024.102912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/23/2024]
Abstract
Since the onset of the COVID-19 pandemic, one productive area of research has focused on the intricate two- and three-dimensional structures taken on by SARS-CoV-2's RNA genome. These structures control essential viral processes, making them tempting targets for therapeutic intervention. This review focuses on two such structured regions, the frameshift stimulation element (FSE), which controls the translation of viral protein, and the 3' untranslated region (3' UTR), which is thought to regulate genome replication. For the FSE, we discuss its canonical pseudoknot's threaded and unthreaded topologies, as well as the diversity of competing two-dimensional structures formed by local and long-distance base pairing. For the 3' UTR, we review the evidence both for and against the formation of its replication-enabling pseudoknot.
Collapse
Affiliation(s)
- Justin Aruda
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA; Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA 02115, USA
| | - Scott L Grote
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Ke Z, Zhang H, Wang Y, Wang J, Peng F, Wang J, Liu X, Hu H, Li Y. N terminus of SARS-CoV-2 nonstructural protein 3 interrupts RNA-driven phase separation of N protein by displacing RNA. J Biol Chem 2024; 300:107828. [PMID: 39341499 PMCID: PMC11538861 DOI: 10.1016/j.jbc.2024.107828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 10/01/2024] Open
Abstract
The connection between SARS-CoV-2 replication-transcription complexes and nucleocapsid (N) protein is critical for regulating genomic RNA replication and virion packaging over the viral life cycle. However, the mechanism that dynamically regulates genomic RNA packaging and replication remains elusive. Here, we demonstrate that the N-terminal domain of SARS-CoV-2 nonstructural protein 3, a core component of viral replication-transcription complexes, binds N protein and displaces RNA in a concentration-dependent manner. This interaction disrupts liquid-liquid phase separation of N protein driven by N protein-RNA interactions which is crucial for virion packaging and viral replication. We also report a high-resolution crystal structure of the nonstructural protein 3 ubiquitin-like domain 1 (Ubl1) at 1.49 Å, which reveals abundant negative charges on the protein surface. Sequence and structural analyses identify several conserved motifs at the Ubl1-N protein interface and a previously unexplored highly negative groove, providing insights into the molecular mechanism of Ubl1-mediated modulation of N protein-RNA binding. Our findings elucidate the mechanism of dynamic regulation of SARS-CoV-2 genomic RNA replication and packaging over the viral life cycle. Targeting the conserved Ubl1-N protein interaction hotspots also promises to aid in the development of broad-spectrum antivirals against pathogenic coronaviruses.
Collapse
Affiliation(s)
- Zunhui Ke
- Department of Blood Transfusion, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Wang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Kowloon, Hong Kong, China
| | - Jingning Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Fei Peng
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jia Wang
- Department of Blood Transfusion, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Xiaotian Liu
- School of Life Sciences, Southern University of Science and Technology, Shenzhen, China.
| | - Hongbing Hu
- Department of Blood Transfusion, Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China; Department of Pediatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China; Tongji-Rongcheng Center for Biomedicine, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
Diogo MA, Cabral AGT, de Oliveira RB. Advances in the Search for SARS-CoV-2 M pro and PL pro Inhibitors. Pathogens 2024; 13:825. [PMID: 39452697 PMCID: PMC11510351 DOI: 10.3390/pathogens13100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/19/2024] [Accepted: 09/22/2024] [Indexed: 10/26/2024] Open
Abstract
SARS-CoV-2 is a spherical, positive-sense, single-stranded RNA virus with a large genome, responsible for encoding both structural proteins, vital for the viral particle's architecture, and non-structural proteins, critical for the virus's replication cycle. Among the non-structural proteins, two cysteine proteases emerge as promising molecular targets for the design of new antiviral compounds. The main protease (Mpro) is a homodimeric enzyme that plays a pivotal role in the formation of the viral replication-transcription complex, associated with the papain-like protease (PLpro), a cysteine protease that modulates host immune signaling by reversing post-translational modifications of ubiquitin and interferon-stimulated gene 15 (ISG15) in host cells. Due to the importance of these molecular targets for the design and development of novel anti-SARS-CoV-2 drugs, the purpose of this review is to address aspects related to the structure, mechanism of action and strategies for the design of inhibitors capable of targeting the Mpro and PLpro. Examples of covalent and non-covalent inhibitors that are currently being evaluated in preclinical and clinical studies or already approved for therapy will be also discussed to show the advances in medicinal chemistry in the search for new molecules to treat COVID-19.
Collapse
Affiliation(s)
| | | | - Renata Barbosa de Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte 31270-901, Brazil; (M.A.D.); (A.G.T.C.)
| |
Collapse
|
36
|
Zhao Y, Xu C, Chen X, Jin H, Li H. Unveil the Molecular Interplay between Aminoglycosides and Pseudouridine in IRES Translation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.20.614200. [PMID: 39345397 PMCID: PMC11429969 DOI: 10.1101/2024.09.20.614200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Eukaryotic ribosomes are enriched with pseudouridine, particularly at the functional centers targeted by antibiotics. Here we investigated the roles of pseudouridine in aminoglycoside-mediated translation inhibition by comparing the structural and functional properties of the wild-type ribosomes and those lacking pseudouridine ( cbf5 -D95A). We showed that the cbf5 -D95A ribosomes have decreased thermostability and high sensitivity to aminoglycosides. When presented with an internal ribosome entry site (IRES) RNA, elongation factor eEF2, GTP, sordarin, hygromycin B preferentially binds to the cbf5 -D95A ribosomes during initiation by blocking eEF2 binding and stalls the ribosomes in a non-rotated conformation, further hindering translocation. Hygromycin B binds to the inter-subunit bridge B2a that is known to be sensitive to pseudouridine, revealing a functional link between pseudouridine and aminoglycoside inhibition. Our results suggest that pseudouridine enhances both thermostability and conformational fitness of the ribosomes, thereby influencing their susceptibility to aminoglycosides. Highlights Loss of pseudouridine increases cell sensitivity to aminoglycosidesPseudouridine enhances ribosome thermostabilityHygromycin B competes with eEF2 for the non-rotated ribosomeHygromycin B deforms the codon-anticodon duplex.
Collapse
|
37
|
Boon WX, Sia BZ, Ng CH. Prediction of the effects of the top 10 synonymous mutations from 26645 SARS-CoV-2 genomes of early pandemic phase. F1000Res 2024; 10:1053. [PMID: 39268187 PMCID: PMC11391198 DOI: 10.12688/f1000research.72896.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/11/2024] [Indexed: 09/15/2024] Open
Abstract
Background The emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) had led to a global pandemic since December 2019. SARS-CoV-2 is a single-stranded RNA virus, which mutates at a higher rate. Multiple works had been done to study nonsynonymous mutations, which change protein sequences. However, there is little study on the effects of SARS-CoV-2 synonymous mutations, which may affect viral fitness. This study aims to predict the effect of synonymous mutations on the SARS-CoV-2 genome. Methods A total of 26645 SARS-CoV-2 genomic sequences retrieved from Global Initiative on Sharing all Influenza Data (GISAID) database were aligned using MAFFT. Then, the mutations and their respective frequency were identified. Multiple RNA secondary structures prediction tools, namely RNAfold, IPknot++ and MXfold2 were applied to predict the effect of the mutations on RNA secondary structure and their base pair probabilities was estimated using MutaRNA. Relative synonymous codon usage (RSCU) analysis was also performed to measure the codon usage bias (CUB) of SARS-CoV-2. Results A total of 150 synonymous mutations were identified. The synonymous mutation identified with the highest frequency is C3037U mutation in the nsp3 of ORF1a. Of these top 10 highest frequency synonymous mutations, C913U, C3037U, U16176C and C18877U mutants show pronounced changes between wild type and mutant in all 3 RNA secondary structure prediction tools, suggesting these mutations may have some biological impact on viral fitness. These four mutations show changes in base pair probabilities. All mutations except U16176C change the codon to a more preferred codon, which may result in higher translation efficiency. Conclusion Synonymous mutations in SARS-CoV-2 genome may affect RNA secondary structure, changing base pair probabilities and possibly resulting in a higher translation rate. However, lab experiments are required to validate the results obtained from prediction analysis.
Collapse
Affiliation(s)
- Wan Xin Boon
- Faculty of Information Science and Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
| | - Boon Zhan Sia
- Faculty of Information Science and Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
| | - Chong Han Ng
- Faculty of Information Science and Technology, Multimedia University, Bukit Beruang, Melaka, 75450, Malaysia
| |
Collapse
|
38
|
Mathez G, Brancale A, Cagno V. Novel Inhibitors of SARS-CoV-2 RNA Identified through Virtual Screening. J Chem Inf Model 2024; 64:6190-6196. [PMID: 39037082 PMCID: PMC11323243 DOI: 10.1021/acs.jcim.4c00758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/08/2024] [Accepted: 07/10/2024] [Indexed: 07/23/2024]
Abstract
We currently lack antivirals for most human viruses. In a quest for new molecules, focusing on viral RNA, instead of viral proteins, can represent a promising strategy. In this study, new inhibitors were identified starting from a published crystal structure of the tertiary SARS-CoV-2 RNA involved in the -1 programmed ribosomal frameshift. The pseudoknot structure was refined, and a virtual screening was performed using the repository of binders to the nucleic acid library, taking into consideration RNA flexibility. Hit compounds were validated against the wild-type virus and with a dual-luciferase assay measuring the frameshift efficiency. Several active molecules were identified. Our study reveals new inhibitors of SARS-CoV-2 but also highlights the feasibility of targeting RNA starting from virtual screening, a strategy that could be broadly applied to drug development.
Collapse
Affiliation(s)
- Gregory Mathez
- Institute
of Microbiology, University Hospital of
Lausanne, University of Lausanne, 1011 Lausanne, Switzerland
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, 16628 Prague 6, Czech Republic
| | - Andrea Brancale
- Department
of Organic Chemistry, University of Chemistry
and Technology Prague, 16628 Prague 6, Czech Republic
| | - Valeria Cagno
- Institute
of Microbiology, University Hospital of
Lausanne, University of Lausanne, 1011 Lausanne, Switzerland
| |
Collapse
|
39
|
Allan MF, Aruda J, Plung JS, Grote SL, des Taillades YJM, de Lajarte AA, Bathe M, Rouskin S. Discovery and Quantification of Long-Range RNA Base Pairs in Coronavirus Genomes with SEARCH-MaP and SEISMIC-RNA. RESEARCH SQUARE 2024:rs.3.rs-4814547. [PMID: 39149495 PMCID: PMC11326378 DOI: 10.21203/rs.3.rs-4814547/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
RNA molecules perform a diversity of essential functions for which their linear sequences must fold into higher-order structures. Techniques including crystallography and cryogenic electron microscopy have revealed 3D structures of ribosomal, transfer, and other well-structured RNAs; while chemical probing with sequencing facilitates secondary structure modeling of any RNAs of interest, even within cells. Ongoing efforts continue increasing the accuracy, resolution, and ability to distinguish coexisting alternative structures. However, no method can discover and quantify alternative structures with base pairs spanning arbitrarily long distances - an obstacle for studying viral, messenger, and long noncoding RNAs, which may form long-range base pairs. Here, we introduce the method of Structure Ensemble Ablation by Reverse Complement Hybridization with Mutational Profiling (SEARCH-MaP) and software for Structure Ensemble Inference by Sequencing, Mutation Identification, and Clustering of RNA (SEISMIC-RNA). We use SEARCH-MaP and SEISMIC-RNA to discover that the frameshift stimulating element of SARS coronavirus 2 base-pairs with another element 1 kilobase downstream in nearly half of RNA molecules, and that this structure competes with a pseudoknot that stimulates ribosomal frameshifting. Moreover, we identify long-range base pairs involving the frameshift stimulating element in other coronaviruses including SARS coronavirus 1 and transmissible gastroenteritis virus, and model the full genomic secondary structure of the latter. These findings suggest that long-range base pairs are common in coronaviruses and may regulate ribosomal frameshifting, which is essential for viral RNA synthesis. We anticipate that SEARCH-MaP will enable solving many RNA structure ensembles that have eluded characterization, thereby enhancing our general understanding of RNA structures and their functions. SEISMIC-RNA, software for analyzing mutational profiling data at any scale, could power future studies on RNA structure and is available on GitHub and the Python Package Index.
Collapse
Affiliation(s)
- Matthew F. Allan
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
- Computational and Systems Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
| | - Justin Aruda
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Harvard Program in Biological and Biomedical Sciences, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA 02115
| | - Jesse S. Plung
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
- Harvard Program in Virology, Division of Medical Sciences, Harvard Medical School, Boston, MA, USA 02115
| | - Scott L. Grote
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| | | | - Albéric A. de Lajarte
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| | - Mark Bathe
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA 02139
| | - Silvi Rouskin
- Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA 02115
| |
Collapse
|
40
|
Holvec S, Barchet C, Lechner A, Fréchin L, De Silva SNT, Hazemann I, Wolff P, von Loeffelholz O, Klaholz BP. The structure of the human 80S ribosome at 1.9 Å resolution reveals the molecular role of chemical modifications and ions in RNA. Nat Struct Mol Biol 2024; 31:1251-1264. [PMID: 38844527 DOI: 10.1038/s41594-024-01274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/14/2024] [Indexed: 08/17/2024]
Abstract
The ribosomal RNA of the human protein synthesis machinery comprises numerous chemical modifications that are introduced during ribosome biogenesis. Here we present the 1.9 Å resolution cryo electron microscopy structure of the 80S human ribosome resolving numerous new ribosomal RNA modifications and functionally important ions such as Zn2+, K+ and Mg2+, including their associated individual water molecules. The 2'-O-methylation, pseudo-uridine and base modifications were confirmed by mass spectrometry, resulting in a complete investigation of the >230 sites, many of which could not be addressed previously. They choreograph key interactions within the RNA and at the interface with proteins, including at the ribosomal subunit interfaces of the fully assembled 80S ribosome. Uridine isomerization turns out to be a key mechanism for U-A base pair stabilization in RNA in general. The structural environment of chemical modifications and ions is primordial for the RNA architecture of the mature human ribosome, hence providing a structural framework to address their role in healthy states and in human diseases.
Collapse
Affiliation(s)
- Samuel Holvec
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Charles Barchet
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Antony Lechner
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Architecture et Réactivité de l'ARN, CNRS UPR9002, Institute of Molecular and Cellular Biology, Université de Strasbourg, Strasbourg, France
| | - Léo Fréchin
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - S Nimali T De Silva
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Philippe Wolff
- Architecture et Réactivité de l'ARN, CNRS UPR9002, Institute of Molecular and Cellular Biology, Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France.
- Centre National de la Recherche Scientifique UMR, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France.
- Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
41
|
Allan MF, Aruda J, Plung JS, Grote SL, Martin des Taillades YJ, de Lajarte AA, Bathe M, Rouskin S. Discovery and Quantification of Long-Range RNA Base Pairs in Coronavirus Genomes with SEARCH-MaP and SEISMIC-RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.29.591762. [PMID: 38746332 PMCID: PMC11092567 DOI: 10.1101/2024.04.29.591762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
RNA molecules perform a diversity of essential functions for which their linear sequences must fold into higher-order structures. Techniques including crystallography and cryogenic electron microscopy have revealed 3D structures of ribosomal, transfer, and other well-structured RNAs; while chemical probing with sequencing facilitates secondary structure modeling of any RNAs of interest, even within cells. Ongoing efforts continue increasing the accuracy, resolution, and ability to distinguish coexisting alternative structures. However, no method can discover and quantify alternative structures with base pairs spanning arbitrarily long distances - an obstacle for studying viral, messenger, and long noncoding RNAs, which may form long-range base pairs. Here, we introduce the method of Structure Ensemble Ablation by Reverse Complement Hybridization with Mutational Profiling (SEARCH-MaP) and software for Structure Ensemble Inference by Sequencing, Mutation Identification, and Clustering of RNA (SEISMIC-RNA). We use SEARCH-MaP and SEISMIC-RNA to discover that the frameshift stimulating element of SARS coronavirus 2 base-pairs with another element 1 kilobase downstream in nearly half of RNA molecules, and that this structure competes with a pseudoknot that stimulates ribosomal frameshifting. Moreover, we identify long-range base pairs involving the frameshift stimulating element in other coronaviruses including SARS coronavirus 1 and transmissible gastroenteritis virus, and model the full genomic secondary structure of the latter. These findings suggest that long-range base pairs are common in coronaviruses and may regulate ribosomal frameshifting, which is essential for viral RNA synthesis. We anticipate that SEARCH-MaP will enable solving many RNA structure ensembles that have eluded characterization, thereby enhancing our general understanding of RNA structures and their functions. SEISMIC-RNA, software for analyzing mutational profiling data at any scale, could power future studies on RNA structure and is available on GitHub and the Python Package Index.
Collapse
|
42
|
Carmody P, Roushar FJ, Tedman A, Wang W, Herwig M, Kim M, McDonald EF, Noguera K, Wong-Roushar J, Poirier JL, Zelt NB, Pockrass BT, McKee AG, Kuntz CP, Raju SV, Plate L, Penn WD, Schlebach JP. Ribosomal Frameshifting Selectively Modulates the Assembly, Function, and Pharmacological Rescue of a Misfolded CFTR Variant. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.02.539166. [PMID: 39091758 PMCID: PMC11290997 DOI: 10.1101/2023.05.02.539166] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
The cotranslational misfolding of the cystic fibrosis transmembrane conductance regulator chloride channel (CFTR) plays a central role in the molecular basis of cystic fibrosis (CF). The misfolding of the most common CF variant (ΔF508) remodels both the translational regulation and quality control of CFTR. Nevertheless, it is unclear how the misassembly of the nascent polypeptide may directly influence the activity of the translation machinery. In this work, we identify a structural motif within the CFTR transcript that stimulates efficient -1 ribosomal frameshifting and triggers the premature termination of translation. Though this motif does not appear to impact the interactome of wild-type CFTR, silent mutations that disrupt this RNA structure alter the association of nascent ΔF508 CFTR with numerous translation and quality control proteins. Moreover, disrupting this RNA structure enhances the functional gating of the ΔF508 CFTR channel at the plasma membrane and its pharmacological rescue by the CFTR modulators contained in the CF drug Trikafta. The effects of the RNA structure on ΔF508 CFTR appear to be attenuated in the absence of the ER membrane protein complex (EMC), which was previously found to modulate ribosome collisions during "preemptive quality control" of a misfolded CFTR homolog. Together, our results reveal that ribosomal frameshifting selectively modulates the assembly, function, and pharmacological rescue of a misfolded CFTR variant. These findings suggest interactions between the nascent chain, quality control machinery, and ribosome may dynamically modulate ribosomal frameshifting in order to tune the processivity of translation in response to cotranslational misfolding.
Collapse
Affiliation(s)
- Patrick Carmody
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Francis J Roushar
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Austin Tedman
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907
| | - Wei Wang
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA 35233
| | - Madeline Herwig
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37240
| | - Minsoo Kim
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37240
- Program in Chemical and Physical Biology, Vanderbilt University, Nashville, TN, USA 37240
| | - Eli F McDonald
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37240
| | - Karen Noguera
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | | | - Jon-Luc Poirier
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Nathan B Zelt
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Ben T Pockrass
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Andrew G McKee
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Charles P Kuntz
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907
| | - S Vamsee Raju
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA 35233
| | - Lars Plate
- Department of Chemistry, Vanderbilt University, Nashville, TN, USA 37240
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA 37240
| | - Wesley D Penn
- Department of Chemistry, Indiana University Bloomington, Bloomington, IN, USA 47401
| | - Jonathan P Schlebach
- The James Tarpo Jr. and Margaret Tarpo Department of Chemistry, Purdue University, West Lafayette, IN, USA 47907
| |
Collapse
|
43
|
Huang X, Du Z. Possible involvement of three-stemmed pseudoknots in regulating translational initiation in human mRNAs. PLoS One 2024; 19:e0307541. [PMID: 39038036 PMCID: PMC11262651 DOI: 10.1371/journal.pone.0307541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
RNA pseudoknots play a crucial role in various cellular functions. Established pseudoknots show significant variation in both size and structural complexity. Specifically, three-stemmed pseudoknots are characterized by an additional stem-loop embedded in their structure. Recent findings highlight these pseudoknots as bacterial riboswitches and potent stimulators for programmed ribosomal frameshifting in RNA viruses like SARS-CoV2. To investigate the possible presence of functional three-stemmed pseudoknots in human mRNAs, we employed in-house developed computational methods to detect such structures within a dataset comprising 21,780 full-length human mRNA sequences. Numerous three-stemmed pseudoknots were identified. A selected set of 14 potential instances are presented, in which the start codon of the mRNA is found in close proximity either upstream, downstream, or within the identified three-stemmed pseudoknot. These pseudoknots likely play a role in translational initiation regulation. The probability of their existence gains support from their ranking as the most stable pseudoknot identified in the entire mRNA sequence, structural conservation across homologous mRNAs, stereochemical feasibility as demonstrated by structural modeling, and classification as members of the CPK-1 pseudoknot family, which includes many well-established pseudoknots. Furthermore, in four of the mRNAs, two or three closely spaced or tandem three-stemmed pseudoknots were identified. These findings suggest the frequent occurrence of three-stemmed pseudoknots in human mRNAs. A stepwise co-transcriptional folding mechanism is proposed for the formation of a three-stemmed pseudoknot structure. Our results not only provide fresh insights into the structures and functions of pseudoknots but also unveil the potential to target pseudoknots for treating human diseases.
Collapse
Affiliation(s)
- Xiaolan Huang
- School of Computing, Southern Illinois University at Carbondale, IL, United States of America
| | - Zhihua Du
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL, United States of America
| |
Collapse
|
44
|
Rahman MM, Ryan CA, Tessier BR, Rozners E. Peptide nucleic acids (PNAs) control function of SARS-CoV-2 frameshifting stimulatory element trough PNA-RNA-PNA triplex formation. Heliyon 2024; 10:e33914. [PMID: 39071573 PMCID: PMC11282987 DOI: 10.1016/j.heliyon.2024.e33914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 05/30/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
The highly structured nature of the SARS-CoV-2 genome provides many promising antiviral drug targets. One particularly promising target is a cis-acting RNA pseudoknot found within a critical region called the frameshifting stimulatory element (FSE). In this study, peptide nucleic acids (PNAs) binding to stem 2 of FSE RNA inhibited protein translation and frameshifting, as measured by a cell-free dual luciferase assay, more effectively than PNAs binding to stem 1, stem 3, or the slippery site. Surprisingly, simple antisense PNAs were stronger disruptors of frameshifting than PNA tail-clamps, despite higher thermal stability of the PNA-RNA-PNA triplexes formed by the latter. Another unexpected result was a strong and sequence non-specific enhancement of frameshifting inhibition when using a cationic triplex-forming PNA in conjunction with an antisense PNA targeting key regions of the frameshifting element. Our results illustrate both the potential and the challenges of using antisense PNAs to target highly structured RNAs, such as SARS-CoV-2 pseudoknots. While triplex forming PNAs, including PNA tail-clamps, are emerging as promising ligands for RNA recognition, the binding affinity enhancements when using cationic modifications in triplex-forming PNAs must be carefully balanced to avoid loss of sequence specificity in complex biological systems.
Collapse
Affiliation(s)
| | | | - Brandon R. Tessier
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY, 13902, United States
| | - Eriks Rozners
- Department of Chemistry, Binghamton University, The State University of New York, Binghamton, NY, 13902, United States
| |
Collapse
|
45
|
DasGupta S. Synthetic antibodies for accelerated RNA crystallography. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1869. [PMID: 39187256 DOI: 10.1002/wrna.1869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/04/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024]
Abstract
RNA structure is crucial to a wide range of cellular processes. The intimate relationship between macromolecular structure and function necessitates the determination of high-resolution structures of functional RNA molecules. X-ray crystallography is the predominant technique used for macromolecular structure determination; however, solving RNA structures has been more challenging than their protein counterparts, as reflected in their poor representation in the Protein Data Bank (<1%). Antibody-assisted RNA crystallography is a relatively new technique that promises to accelerate RNA structure determination by employing synthetic antibodies (Fabs) as crystallization chaperones that are specifically raised against target RNAs. Antibody chaperones facilitate the formation of ordered crystal lattices by minimizing RNA flexibility and replacing unfavorable RNA-RNA contacts with contacts between chaperone molecules. Atomic coordinates of these antibody fragments can also be used as search models to obtain phase information during structure determination. Antibody-assisted RNA crystallography has enabled the structure determination of 15 unique RNA targets, including 11 in the last 6 years. In this review, I cover the historical development of antibody fragments as crystallization chaperones and their application to diverse RNA targets. I discuss how the first structures of antibody-RNA complexes informed the design of second-generation antibodies and led to the development of portable crystallization modules that have greatly reduced the uncertainties associated with RNA crystallography. Finally, I outline unexplored avenues that can increase the impact of this technology in structural biology research and discuss potential applications of antibodies as affinity reagents for interrogating RNA biology outside of their use in crystallography. This article is categorized under: RNA Structure and Dynamics > RNA Structure, Dynamics and Chemistry RNA Interactions with Proteins and Other Molecules > Protein-RNA Recognition RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes.
Collapse
Affiliation(s)
- Saurja DasGupta
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
46
|
Lee S, Yan S, Dey A, Laederach A, Schlick T. An intricate balancing act: Upstream and downstream frameshift co-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.599960. [PMID: 38979256 PMCID: PMC11230384 DOI: 10.1101/2024.06.27.599960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Targeting ribosomal frameshifting has emerged as a potential therapeutic intervention strategy against Covid-19. During ribosomal translation, a fraction of elongating ribosomes slips by one base in the 5' direction and enters a new reading frame for viral protein synthesis. Any interference with this process profoundly affects viral replication and propagation. For Covid-19, two RNA sites associated with ribosomal frameshifting for SARS-CoV-2 are positioned on the 5' and 3' of the frameshifting residues. Although much attention has been on the 3' frameshift element (FSE), the 5' stem-loop (attenuator hairpin, AH) can play a role. The formation of AH has been suggested to occur as refolding of the 3' RNA structure is triggered by ribosomal unwinding. However, the attenuation activity and the relationship between the two regions are unknown. To gain more insight into these two related viral RNAs and to further enrich our understanding of ribosomal frameshifting for SARS-CoV-2, we explore the RNA folding of both 5' and 3' regions associated with frameshifting. Using our graph-theory-based modeling tools to represent RNA secondary structures, "RAG" (RNA- As-Graphs), and conformational landscapes to analyze length-dependent conformational distributions, we show that AH coexists with the 3-stem pseudoknot of the 3' FSE (graph 3_6 in our dual graph notation) and alternative pseudoknot (graph 3_3) but less likely with other 3' FSE alternative folds (such as 3-way junction 3_5). This is because an alternative length-dependent Stem 1 (AS1) can disrupt the FSE pseudoknots and trigger other folds. In addition, we design four mutants for long lengths that stabilize or disrupt AH, AS1 or FSE pseudoknot to illustrate the deduced AH/AS1 roles and favor the 3_5, 3_6 or stem-loop. These mutants further show how a strengthened pseudoknot can result from a weakened AS1, while a dominant stem-loop occurs with a strengthened AS1. These structural and mutational insights into both ends of the FSE in SARS-CoV-2 advance our understanding of the SARS-CoV-2 frameshifting mechanism by suggesting a sequence of length-dependent folds, which in turn define potential therapeutic intervention techniques involving both elements. Our work also highlights the complexity of viral landscapes with length-dependent folds, and challenges in analyzing these multiple conformations.
Collapse
Affiliation(s)
- Samuel Lee
- Department of Chemistry, New York University, New York, 10003, NY, U.S.A
| | - Shuting Yan
- Department of Chemistry, New York University, New York, 10003, NY, U.S.A
| | - Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, 226002, Uttar Pradesh, India
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, U.S.A
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, 10003, NY, U.S.A
- Courant Institute of Mathematical Sciences, New York University, New York, 10012, NY, U.S.A
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, 200062, P.R.China
- NYU Simons Center for Computational Physical Chemistry, New York University, New York, 10003, NY, U.S.A
| |
Collapse
|
47
|
Roesmann F, Müller L, Klaassen K, Heß S, Widera M. Interferon-Regulated Expression of Cellular Splicing Factors Modulates Multiple Levels of HIV-1 Gene Expression and Replication. Viruses 2024; 16:938. [PMID: 38932230 PMCID: PMC11209495 DOI: 10.3390/v16060938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/31/2024] [Accepted: 06/03/2024] [Indexed: 06/28/2024] Open
Abstract
Type I interferons (IFN-Is) are pivotal in innate immunity against human immunodeficiency virus I (HIV-1) by eliciting the expression of IFN-stimulated genes (ISGs), which encompass potent host restriction factors. While ISGs restrict the viral replication within the host cell by targeting various stages of the viral life cycle, the lesser-known IFN-repressed genes (IRepGs), including RNA-binding proteins (RBPs), affect the viral replication by altering the expression of the host dependency factors that are essential for efficient HIV-1 gene expression. Both the host restriction and dependency factors determine the viral replication efficiency; however, the understanding of the IRepGs implicated in HIV-1 infection remains greatly limited at present. This review provides a comprehensive overview of the current understanding regarding the impact of the RNA-binding protein families, specifically the two families of splicing-associated proteins SRSF and hnRNP, on HIV-1 gene expression and viral replication. Since the recent findings show specifically that SRSF1 and hnRNP A0 are regulated by IFN-I in various cell lines and primary cells, including intestinal lamina propria mononuclear cells (LPMCs) and peripheral blood mononuclear cells (PBMCs), we particularly discuss their role in the context of the innate immunity affecting HIV-1 replication.
Collapse
Affiliation(s)
- Fabian Roesmann
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Lisa Müller
- Institute of Virology, Medical Faculty, University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Katleen Klaassen
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Stefanie Heß
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| | - Marek Widera
- Institute for Medical Virology, University Hospital Frankfurt, Goethe University Frankfurt, Paul-Ehrlich-Str. 40, 60596 Frankfurt am Main, Germany
| |
Collapse
|
48
|
Jäger N, Pöhlmann S, Rodnina MV, Ayyub SA. Interferon-Stimulated Genes that Target Retrovirus Translation. Viruses 2024; 16:933. [PMID: 38932225 PMCID: PMC11209297 DOI: 10.3390/v16060933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/27/2024] [Accepted: 06/01/2024] [Indexed: 06/28/2024] Open
Abstract
The innate immune system, particularly the interferon (IFN) system, constitutes the initial line of defense against viral infections. IFN signaling induces the expression of interferon-stimulated genes (ISGs), and their products frequently restrict viral infection. Retroviruses like the human immunodeficiency viruses and the human T-lymphotropic viruses cause severe human diseases and are targeted by ISG-encoded proteins. Here, we discuss ISGs that inhibit the translation of retroviral mRNAs and thereby retrovirus propagation. The Schlafen proteins degrade cellular tRNAs and rRNAs needed for translation. Zinc Finger Antiviral Protein and RNA-activated protein kinase inhibit translation initiation factors, and Shiftless suppresses translation recoding essential for the expression of retroviral enzymes. We outline common mechanisms that underlie the antiviral activity of multifunctional ISGs and discuss potential antiretroviral therapeutic approaches based on the mode of action of these ISGs.
Collapse
Affiliation(s)
- Niklas Jäger
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (N.J.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Stefan Pöhlmann
- Infection Biology Unit, German Primate Center—Leibniz Institute for Primate Research, 37077 Göttingen, Germany; (N.J.); (S.P.)
- Faculty of Biology and Psychology, University Göttingen, 37073 Göttingen, Germany
| | - Marina V. Rodnina
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
| | - Shreya Ahana Ayyub
- Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany;
| |
Collapse
|
49
|
Li H, Li J, Li J, Li H, Wang X, Jiang J, Lei L, Sun H, Tang M, Dong B, He W, Si S, Hong B, Li Y, Song D, Peng Z, Che Y, Jiang JD. Carrimycin inhibits coronavirus replication by decreasing the efficiency of programmed -1 ribosomal frameshifting through directly binding to the RNA pseudoknot of viral frameshift-stimulatory element. Acta Pharm Sin B 2024; 14:2567-2580. [PMID: 38828157 PMCID: PMC11143517 DOI: 10.1016/j.apsb.2024.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 01/08/2024] [Accepted: 02/04/2024] [Indexed: 06/05/2024] Open
Abstract
The pandemic of SARS-CoV-2 worldwide with successive emerging variants urgently calls for small-molecule oral drugs with broad-spectrum antiviral activity. Here, we show that carrimycin, a new macrolide antibiotic in the clinic and an antiviral candidate for SARS-CoV-2 in phase III trials, decreases the efficiency of programmed -1 ribosomal frameshifting of coronaviruses and thus impedes viral replication in a broad-spectrum fashion. Carrimycin binds directly to the coronaviral frameshift-stimulatory element (FSE) RNA pseudoknot, interrupting the viral protein translation switch from ORF1a to ORF1b and thereby reducing the level of the core components of the viral replication and transcription complexes. Combined carrimycin with known viral replicase inhibitors yielded a synergistic inhibitory effect on coronaviruses. Because the FSE mechanism is essential in all coronaviruses, carrimycin could be a new broad-spectrum antiviral drug for human coronaviruses by directly targeting the conserved coronaviral FSE RNA. This finding may open a new direction in antiviral drug discovery for coronavirus variants.
Collapse
Affiliation(s)
- Hongying Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jianrui Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jiayu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hu Li
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuekai Wang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jing Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lei Lei
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Han Sun
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Mei Tang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Biao Dong
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Weiqing He
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Shuyi Si
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Bin Hong
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yinghong Li
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Danqing Song
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zonggen Peng
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yongsheng Che
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jian-Dong Jiang
- CAMS Key Laboratory of Antiviral Drug Research, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Antimicrobial Agents, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Key Laboratory of Biotechnology of Antibiotics, the National Health and Family Planning Commission (NHFPC), Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
50
|
Peterson JM, Becker ST, O'Leary CA, Juneja P, Yang Y, Moss WN. Structure of the SARS-CoV-2 Frameshift Stimulatory Element with an Upstream Multibranch Loop. Biochemistry 2024; 63:1287-1296. [PMID: 38727003 DOI: 10.1021/acs.biochem.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) frameshift stimulatory element (FSE) is necessary for programmed -1 ribosomal frameshifting (-1 PRF) and optimized viral efficacy. The FSE has an abundance of context-dependent alternate conformations, but two of the structures most crucial to -1 PRF are an attenuator hairpin and a three-stem H-type pseudoknot structure. A crystal structure of the pseudoknot alone features three RNA stems in a helically stacked linear structure, whereas a 6.9 Å cryo-EM structure including the upstream heptameric slippery site resulted in a bend between two stems. Our previous research alluded to an extended upstream multibranch loop that includes both the attenuator hairpin and the slippery site-a conformation not previously modeled. We aim to provide further context to the SARS-CoV-2 FSE via computational and medium resolution cryo-EM approaches, by presenting a 6.1 Å cryo-EM structure featuring a linear pseudoknot structure and a dynamic upstream multibranch loop.
Collapse
Affiliation(s)
- Jake M Peterson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Scott T Becker
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Collin A O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Puneet Juneja
- Cryo-EM Facility, Iowa State University, Ames, Iowa 50011, United States
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|