1
|
Zhang Z, Jia G, Wang Q, Yu Y, Tang X, Zheng H, Yang X, Xiao Y, Ou Y, Jiang J, Guo H, Wang Y, Li S. Atherosclerosis enhances the efficacy of liposome-encapsulated bromocriptine in reducing the incidence of prolactinemia in pituitary tumors. J Nanobiotechnology 2025; 23:392. [PMID: 40442804 PMCID: PMC12121278 DOI: 10.1186/s12951-025-03465-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Accepted: 05/14/2025] [Indexed: 06/02/2025] Open
Abstract
Intranasal drug delivery via nanocarriers has long been a research focus for enhancing drug concentration in the brain. However, the strategy of exploiting blood-brain barrier (BBB) alterations in atherosclerotic mouse models to enhance nanoparticle-mediated delivery of bromocriptine to the hypothalamus for the treatment of prolactinomas with hyperprolactinemia has not yet been reported. This study reveals that in patients with prolactinomas complicated by arteriosclerosis, bromocriptine therapy more effectively attenuates postoperative elevations in prolactin levels. In a mouse model, liposome-encapsulated bromocriptine efficiently traversed the nasal mucosa and entered the intracranial space. Compared with normal mice, bromocriptine-loaded liposomes delivered higher bromocriptine concentrations to the hypothalamus. Single-cell RNA sequencing revealed a significant upregulation of organic anion-transporting polypeptide 1a4 (Oatp1a4) expression in the brain endothelial cells of atherosclerotic mice. Importantly, bromocriptine-loaded liposomes more effectively reduced prolactin levels in a mouse model of prolactinoma with concurrent atherosclerosis. This study provides a theoretical foundation for the precision treatment of prolactinomas in arteriosclerosis.
Collapse
Affiliation(s)
- Zhe Zhang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
| | - Guangyu Jia
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
| | - Qi Wang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
| | - Yamei Yu
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
| | - Xiaolong Tang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
| | - Heqing Zheng
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
| | - Xinyu Yang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
| | - Yao Xiao
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
| | - Yangrui Ou
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
| | - Jingjing Jiang
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi, China
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China
| | - Hua Guo
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China.
| | - Ye Wang
- Department of Neurology, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China.
| | - Shiyong Li
- Department of Neurosurgery, The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Key Laboratory of Neurological Tumors and Cerebrovascular Diseases, Nanchang, Jiangxi, China.
- Institute of Neuroscience, Nanchang University, Nanchang, Jiangxi, China.
- Jiangxi Province Key Laboratory of Neurological Diseases, Nanchang, Jiangxi, China.
- JXHC Key Laboratory of Neurological Medicine, Nanchang, Jiangxi, China.
| |
Collapse
|
2
|
Yu G, Li J, Zhang H, Zi H, Liu M, An Q, Qiu T, Li P, Song J, Liu P, Quan K, Li S, Liu Y, Zhu W, Du J. Single-cell analysis reveals the implication of vascular endothelial cell-intrinsic ANGPT2 in human intracranial aneurysm. Cardiovasc Res 2025; 121:658-673. [PMID: 39187926 DOI: 10.1093/cvr/cvae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/04/2024] [Accepted: 06/13/2024] [Indexed: 08/28/2024] Open
Abstract
AIMS While previous single-cell RNA sequencing (scRNA-seq) studies have attempted to dissect intracranial aneurysm (IA), the primary molecular mechanism for IA pathogenesis remains unknown. Here, we uncovered the alterations of cellular compositions, especially the transcriptome changes of vascular endothelial cells (ECs), in human IA. METHODS AND RESULTS We performed scRNA-seq to compare the cell atlas of sporadic IA and the control artery. The transcriptomes of 43 462 cells were profiled for further analysis. In general, IA had increased immune cells (T/NK cells, B cells, myeloid cells, mast cells, neutrophils) and fewer vascular cells (ECs, vascular smooth muscle cells, and fibroblasts). Based on the obtained high-quantity and high-quality EC data, we found genes associated with angiogenesis in ECs from IA patients. By EC-specific expression of candidate genes in vivo, we observed the involvement of angpt2a in causing cerebral vascular abnormality. Furthermore, an IA zebrafish model mimicking the main features of human IA was generated through targeting pdgfrb gene, and knockdown of angpt2a alleviated the vascular dilation in the IA zebrafish model. CONCLUSION By performing a landscape view of the single-cell transcriptomes of IA and the control artery, we contribute to a deeper understanding of the cellular composition and the molecular changes of ECs in IA. The implication of angiogenic regulator ANGPT2 in IA formation and progression, provides a novel potential therapeutical target for IA interventions.
Collapse
Affiliation(s)
- Guo Yu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Jia Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
| | - Hongfei Zhang
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Huaxing Zi
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
| | - Mingjian Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Qingzhu An
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Tianming Qiu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Peiliang Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Jianping Song
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Peixi Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Kai Quan
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Sichen Li
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Yingjun Liu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Wei Zhu
- Department of Neurosurgery, Huashan Hospital, Shanghai Medical College, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
- National Center for Neurological Disorders, 12 Middle Wulumuqi Road, Shanghai 200040, China
- Shanghai Key Laboratory of Brain Function and Restoration and Neural Regeneration, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Neurosurgical Institute of Fudan University, 12 Middle Wulumuqi Road,Shanghai 200040, China
- Shanghai Clinical Medical Center of Neurosurgery,12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai 200031, China
- University of Chinese Academy of Sciences, 19A Yu-Quan Road, Beijing 100049, China
- School of Life Science and Technology, ShanghaiTech University, 319 Yue-Yang Road, Shanghai 200031, China
| |
Collapse
|
3
|
Sun Y, Xu H, Zhu Y, Rao Y, Fan X, Wang Z, Gu H, Yue X, Zhao X, Su L, Cai R. Single-cell and spatial transcriptomic analyses reveal transcriptional cell lineage heterogeneity in extracranial arteriovenous malformation. J Dermatol Sci 2025; 118:66-75. [PMID: 40118698 DOI: 10.1016/j.jdermsci.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/05/2025] [Accepted: 02/20/2025] [Indexed: 03/23/2025]
Abstract
BACKGROUND Extracranial arteriovenous malformations (eAVMs) are rare congenital vascular anomalies consisting of abnormal artery-vein bypass with no intervening capillary network, and can lead to disability and death. The critical genetic determination factors and key transcriptional pathways of the eAVMs genesis process are still unclear. OBJECTIVE To generate an overview of the molecular information within eAVMs at the single-cell level. METHODS We performed single-cell RNA sequencing (scRNA-seq) on nine samples of eAVMs receiving a confirmatory histopathologic evaluation from a board-certified dermatopathologist and two nonlesional tissue sample controls. 10x Visium spatial transcriptomics (ST) was performed on one eAVM to spatially localize heterogeneous cells and profile the gene expression dynamics of the cells in their morphological context. The scRNA-seq and ST data were integrated and analyzed to further query for spatially restricted mapping of intrapopulation heterogeneous cells. RESULTS We identified different cell states of endothelial cells (ECs), perivascular cells and immune cells in eAVMs, uncovered the presence of MAFB+ nidus ECs, characterized mesenchymal activation in ECs, and identified transcriptional variation within perivascular cells and the presence of smooth muscle-like pericytes in eAVMs. Dysregulated cell to cell interactions among ECs, perivascular cells and immune cells that are associated with eAVMs, including those involving MDK, VEGF, ANGPT, SEMA3 and GALECTIN-9 were cataloged. Together, our results depicted the heterogeneity underlying cell function and interaction of eAVMs at a single-cell resolution. CONCLUSION We present a comprehensive picture of the cell-resolution atlas that describes the transcriptomic heterogeneity underlying cell function and interaction in eAVMs.
Collapse
Affiliation(s)
- Yi Sun
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyang Xu
- Department of Radiology, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yanze Zhu
- School of Automation, Northwestern Polytechnical University, Xi 'an, China
| | - Yamin Rao
- Department of Pathology, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xindong Fan
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenfeng Wang
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hao Gu
- Department of Burn and Plastic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiaojie Yue
- Department of Burn and Plastic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Xiong Zhao
- Department of Burn and Plastic Surgery, The Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, China
| | - Lixin Su
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Ren Cai
- Department of Interventional Therapy, Multidisciplinary Team of Vascular Anomalies, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Guo B, Wen X, Yu S, Yang J. Single-cell sequencing reveals PHLDA1-positive smooth muscle cells promote local invasion in head and neck squamous cell carcinoma. Transl Oncol 2025; 55:102301. [PMID: 40132389 PMCID: PMC11985064 DOI: 10.1016/j.tranon.2025.102301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 03/27/2025] Open
Abstract
BACKGROUND Smooth muscle cells within the tumor microenvironment play a crucial role in cancer progression. However, their involvement in the local invasion of head and neck squamous cell carcinoma remains poorly understood. In this research, we aim to investigate the role of smooth muscle cells-mediated cell interactions in facilitating the local invasion of head and neck squamous cell carcinoma. METHODS Single-cell sequencing data from the public databases GSE164690 and GSE181919 were utilized to identify a specific smooth muscle cells cluster. Smooth muscle cells were isolated from tumor microenvironment of head and neck squamous cell carcinoma. PHLDA1 expression in smooth muscle cells was assessed through immunofluorescence staining. The role of THBS1 was investigated through in vitro studies. RESULTS PHLDA1-positive smooth muscle cells were significantly enriched in head and neck squamous cell carcinoma. PHLDA1 promoted the expression of THBS1 in smooth muscle cells. In vitro, THBS1 facilitated head and neck squamous cell carcinoma migration and invasion through SDC1 receptor. CONCLUSION PHLDA1-positive smooth muscle cells play a critical role in head and neck squamous cell carcinoma invasion through THBS1. Targeting PHLDA1-positive smooth muscle cells or THBS1 may offer a promising therapeutic approach for head and neck squamous cell carcinoma treatment.
Collapse
Affiliation(s)
- Bing Guo
- Department of Burns and Plastic Surgery, Institute of Traumatic Medicine and Department of Plastic Surgery and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xutao Wen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, School of Medicine, College of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai Engineering Research Center of Advanced Dental Technology and Materials, Shanghai Jiao Tong University, Shanghai, China
| | - Shun Yu
- Department of Plastic Surgery, Affiliated Hospital of Jiangnan University, Wuxi, China.
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
5
|
Ai D, Ming T, Li X, Wang S, Bi Z, Zuo J, Cheng Z, Sun W, Xie M, Li F, Wang X, Qi X, Luan G, Ge W, Guan Y. Transcriptomic Profiling Unveils EDN3 + Meningeal Fibroblasts as Key Players in Sturge-Weber Syndrome Pathogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408888. [PMID: 39921427 PMCID: PMC12061316 DOI: 10.1002/advs.202408888] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 12/30/2024] [Indexed: 02/10/2025]
Abstract
Sturge-Weber syndrome (SWS) is characterized by leptomeningeal vascular malformation, resulting in significant risks of life-threatening seizures and strokes. The current absence of specific treatments underscores the need to define the molecular and cellular mechanisms that drive the progression of SWS. Here, the transcriptome of 119 446 cells isolated from both malformed tissues and peri-lesion tissues from the brains of patients with SWS is examined. This comprehensive analysis finds a complex landscape of cell heterogeneity and distinct cell substate associated with the evolution of this disease are revealed. Notably, a unique fibroblast cluster and molecular mechanism are identified that contribute to the development of SWS. These findings not only expand the understanding of SWS but also open up promising avenues for therapeutic interventions.
Collapse
Affiliation(s)
- Daosheng Ai
- Academy for Advanced Interdisciplinary Studies (AAIS)Peking UniversityBeijing100871China
- Beijing Institute for Brain ResearchChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing102206China
- Chinese Institute for Brain Research (CIBR)BeijingBeijing102206China
| | - Tianyue Ming
- Academy for Advanced Interdisciplinary Studies (AAIS)Peking UniversityBeijing100871China
- Beijing Institute for Brain ResearchChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing102206China
- Chinese Institute for Brain Research (CIBR)BeijingBeijing102206China
| | - Xiaoli Li
- Department of NeurologyAffiliated Zhongda HospitalSoutheast UniversityNanjing210009China
| | - Shu Wang
- Department of NeurosurgerySanBo Brain HospitalCapital Medical UniversityBeijing100093China
| | - Zhanying Bi
- Beijing Institute for Brain ResearchChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing102206China
- Chinese Institute for Brain Research (CIBR)BeijingBeijing102206China
- College of Life SciencesNankai UniversityTianjin300071China
| | - Jinyi Zuo
- Department of NeurosurgerySanBo Brain HospitalCapital Medical UniversityBeijing100093China
| | - Zizhang Cheng
- Department of NeurosurgerySanBo Brain HospitalCapital Medical UniversityBeijing100093China
| | - Weijin Sun
- Department of NeurosurgerySanBo Brain HospitalCapital Medical UniversityBeijing100093China
| | - Mingguo Xie
- Department of NeurosurgerySanBo Brain HospitalCapital Medical UniversityBeijing100093China
| | - Fengzhi Li
- Beijing Institute for Brain ResearchChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing102206China
- Chinese Institute for Brain Research (CIBR)BeijingBeijing102206China
- State Key Laboratory of Cognitive Neuroscience and LearningBeijing Normal UniversityBeijing100875China
| | - Xiongfei Wang
- Department of NeurosurgerySanBo Brain HospitalCapital Medical UniversityBeijing100093China
| | - Xueling Qi
- Department of PathologySanBo Brain HospitalCapital Medical UniversityBeijing100093China
| | - Guoming Luan
- Department of NeurosurgerySanBo Brain HospitalCapital Medical UniversityBeijing100093China
- Beijing Key Laboratory of EpilepsyBeijing100093China
- Center of EpilepsyBeijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100093China
| | - Woo‐ping Ge
- Beijing Institute for Brain ResearchChinese Academy of Medical Sciences & Peking Union Medical CollegeBeijing102206China
- Chinese Institute for Brain Research (CIBR)BeijingBeijing102206China
- China International Neuroscience InstituteDepartment of NeurosurgeryXuanwu HospitalBeijing Institute of Brain Disorders (BIBD)Capital Medical UniversityBeijing100053China
| | - Yuguang Guan
- Department of NeurosurgerySanBo Brain HospitalCapital Medical UniversityBeijing100093China
- Beijing Key Laboratory of EpilepsyBeijing100093China
- Center of EpilepsyBeijing Institute of Brain DisordersCollaborative Innovation Center for Brain DisordersCapital Medical UniversityBeijing100093China
| |
Collapse
|
6
|
Wang J, Ye F, Chai H, Jiang Y, Wang T, Ran X, Xia Q, Xu Z, Fu Y, Zhang G, Wu H, Guo G, Guo H, Ruan Y, Wang Y, Xing D, Xu X, Zhang Z. Advances and applications in single-cell and spatial genomics. SCIENCE CHINA. LIFE SCIENCES 2025; 68:1226-1282. [PMID: 39792333 DOI: 10.1007/s11427-024-2770-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/10/2024] [Indexed: 01/12/2025]
Abstract
The applications of single-cell and spatial technologies in recent times have revolutionized the present understanding of cellular states and the cellular heterogeneity inherent in complex biological systems. These advancements offer unprecedented resolution in the examination of the functional genomics of individual cells and their spatial context within tissues. In this review, we have comprehensively discussed the historical development and recent progress in the field of single-cell and spatial genomics. We have reviewed the breakthroughs in single-cell multi-omics technologies, spatial genomics methods, and the computational strategies employed toward the analyses of single-cell atlas data. Furthermore, we have highlighted the advances made in constructing cellular atlases and their clinical applications, particularly in the context of disease. Finally, we have discussed the emerging trends, challenges, and opportunities in this rapidly evolving field.
Collapse
Affiliation(s)
- Jingjing Wang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Fang Ye
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Haoxi Chai
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China
| | - Yujia Jiang
- BGI Research, Shenzhen, 518083, China
- BGI Research, Hangzhou, 310030, China
| | - Teng Wang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xia Ran
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China
| | - Qimin Xia
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China
| | - Ziye Xu
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Yuting Fu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guodong Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Hanyu Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China
| | - Guoji Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Zhejiang Provincial Key Lab for Tissue Engineering and Regenerative Medicine, Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Hongshan Guo
- Bone Marrow Transplantation Center of the First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
- Institute of Hematology, Zhejiang University, Hangzhou, 310000, China.
| | - Yijun Ruan
- Life Sciences Institute and The Second Affiliated Hospital, Zhejiang University, Hangzhou, 310058, China.
| | - Yongcheng Wang
- Department of Laboratory Medicine of The First Affiliated Hospital & Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, 310058, China.
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, 100871, China.
| | - Xun Xu
- BGI Research, Shenzhen, 518083, China.
- BGI Research, Hangzhou, 310030, China.
- Guangdong Provincial Key Laboratory of Genome Read and Write, BGI Research, Shenzhen, 518083, China.
| | - Zemin Zhang
- Biomedical Pioneering Innovation Center (BIOPIC) and School of Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
7
|
Rust R, Sagare AP, Zhang M, Zlokovic BV, Kisler K. The blood-brain barrier as a treatment target for neurodegenerative disorders. Expert Opin Drug Deliv 2025; 22:673-692. [PMID: 40096820 DOI: 10.1080/17425247.2025.2480654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 02/14/2025] [Accepted: 03/13/2025] [Indexed: 03/19/2025]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is a vascular endothelial membrane which restricts entry of toxins, cells, and microorganisms into the brain. At the same time, the BBB supplies the brain with nutrients, key substrates for DNA and RNA synthesis, and regulatory molecules, and removes metabolic waste products from brain to blood. BBB breakdown and/or dysfunction have been shown in neurogenerative disorders including Alzheimer's disease (AD). Current data suggests that these BBB changes may initiate and/or contribute to neuronal, synaptic, and cognitive dysfunction, and possibly other aspects of neurodegenerative processes. AREAS COVERED We first briefly review recent studies uncovering molecular composition of brain microvasculature and examine the BBB as a possible therapeutic target in neurodegenerative disorders with a focus on AD. Current strategies aimed at protecting and/or restoring altered BBB functions are considered. The relevance of BBB-directed approaches to improve neuronal and synaptic function, and to slow progression of neurodegenerative processes are also discussed. Lastly, we review recent advancements in drug delivery across the BBB. EXPERT OPINION BBB breakdown and/or dysfunction can significantly affect neuronal and synaptic function and neurodegenerative processes. More attention should focus on therapeutics to preserve or restore BBB functions when considering treatments of neurodegenerative diseases and AD.
Collapse
Affiliation(s)
- Ruslan Rust
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Abhay P Sagare
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Mingzi Zhang
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Berislav V Zlokovic
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience and the Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
8
|
Rust R, Sagare AP, Kisler K, Kim Y, Zhang M, Griffin C, Wang Y, Clementel V, Torres-Sepulveda C, Tcw J, Zlokovic BV, Coba MP. Molecular signature and functional properties of human pluripotent stem cell-derived brain pericytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.06.26.546577. [PMID: 40291694 PMCID: PMC12026417 DOI: 10.1101/2023.06.26.546577] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
Brain pericytes maintain the blood-brain barrier (BBB), secrete neurotrophic factors and clear toxic proteins. Their loss in neurological disorders leads to BBB breakdown, neuronal dysfunction, and cognitive decline. Therefore, cell therapy to replace lost pericytes holds potential to restore impaired cerebrovascular and brain functions. However, the molecular composition and function of human iPSC-derived brain pericytes (iPSC-PC) remains poorly characterized. Here, we show by a quantitative analysis of 8,344 proteins and 20,572 phosphopeptides that iPSC-PC share 96% of total proteins and 98% of protein phosphorylation sites with primary human brain pericytes. This includes cell adhesion and tight junction proteins, transcription factors, and different protein kinase families of the human kinome. In pericyte-deficient mice, iPSC-PC home to host brain capillaries to form hybrid human-mouse microvessels with ligand-receptor associations. They repair BBB leaks and protect against neuron loss, which we show requires PDGRFB and pleiotrophin. They also clear Alzheimer's amyloid-β and tau neurotoxins via lipoprotein receptor. Thus, iPSC-PC may have potential as a replacement therapy for pericyte-deficient neurological disorders.
Collapse
|
9
|
Zhao N, Pessell AF, Chung TD, Searson PC. Brain vascular basement membrane: comparison of human and mouse brain at the transcriptomic and proteomic levels. Matrix Biol 2025:S0945-053X(25)00036-8. [PMID: 40294830 DOI: 10.1016/j.matbio.2025.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/30/2025]
Abstract
The cerebrovascular basement membrane (BM) is a key component of the blood-brain barrier (BBB). The BM provides structural support for brain microvascular endothelial cells and the supporting cells of the neurovascular unit, and facilitates cell signaling through adhesion receptors, regulates the concentration of soluble factors, and serves as an additional barrier for transport. However, our understanding of the composition of BM remains incomplete. Here we analyze recent proteomic and genomic data to assess the composition of BM in human and mouse brain, and in tissue-engineered BBB models. All data sets confirm that the main components of brain BM are collagen IV a1/2, laminin, along with agrin, perlecan, and nidogen. Transcriptomic data from human BMECs suggests that the main laminin isoform is Laminin 321, while transcriptomic data from mice and proteomic data from mice and humans suggest that Laminin 521 is the predominant isoform. Transcriptomic data from iBMECs suggest that Laminin 511 is the predominant isoform. The supporting molecules agrin, perlecan, and nidogen were detected at significant levels in all studies, although only nidogen 1 was detected in the human transcriptomic data sets. No significant differences in human BM composition were observed in BMECs along the arterio-venous axis, or in comparison of healthy and AD brains.
Collapse
Affiliation(s)
- Nan Zhao
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Alexander F Pessell
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Tracy D Chung
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Peter C Searson
- Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA; Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA.
| |
Collapse
|
10
|
Li R, Tang Y, Wang H, Hu P, Yu L, Lv C, Zhang Y, Gerdes AM, Wang Y. Local DIO2 Elevation Is an Adaption in Malformed Cerebrovasculature. Circ Res 2025; 136:1010-1027. [PMID: 40130314 DOI: 10.1161/circresaha.124.325857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/28/2025] [Accepted: 03/10/2025] [Indexed: 03/26/2025]
Abstract
BACKGROUND Cerebrovascular malformations are a pivotal cause of hemorrhage and neurological disability alongside lacking effective medication. Thyroid hormones (THs), including thyroxine and triiodothyronine, are essential for vascular development, yet whether they participate in malformed cerebrovascular pathology remains elusive. METHODS Single-cell transcriptome analysis characterized human cerebral cavernous malformations and brain arteriovenous malformations, 2 typical cerebrovascular malformation diseases. Adeno-associated virus-mediated Dio2 (iodothyronine deiodinase 2; an enzyme that converts thyroxine to active triiodothyronine) overexpression/knockdown or triiodothyronine/methimazole (an antithyroid drug) treatment was applied to mouse models of cerebral cavernous malformations (endothelial-specific Pdcd10 knockout mice, Pdcd10 endothelial-specific knockout [KO]) and brain arteriovenous malformations (endothelial-specific KrasG12D mutant mice, KrasG12D) to evaluate the involvement of DIO2 and TH signaling in cerebrovascular malformations. RESULTS TH signaling was markedly activated in fibroblasts of human cerebral cavernous malformation and arteriovenous malformation single-cell samples, accompanied by elevated DIO2 expression. Similar DIO2 upregulation was observed in cerebrovascular fibroblasts of Pdcd10 KO/KrasG12D mice and patient brain sections. Exogenous Dio2 or triiodothyronine replenishment effectively reduced brain hemorrhage, excessive ECM (extracellular matrix) remodeling, and vascular leakage in juvenile and adult male and female Pdcd10 KO/KrasG12D mice. In contrast, Dio2 silencing or TH inhibition deteriorated vascular anomalies. Mechanistically, transcription factor FOXK1 (forkhead box K1) was determined to interact with the DIO2 promoter region. The activation of fibroblast PI3K (phosphoinositide 3-kinase)-Akt (protein kinase B)-mTOR (mammalian target of rapamycin) signaling in Pdcd10 KO/KrasG12D mice triggered Foxk1 nuclear translocation to promote Dio2 transcription. Triiodothyronine treatment mitigated inflammatory infiltration, normalized mitochondrial morphology, and restored mitochondrial biogenesis in malformed brain vessels by activating the Pgc1a (peroxisome proliferator-activated receptor gamma coactivator 1-alpha)-Sod2 (superoxide dismutase 2)/Prdx3 (peroxiredoxin 3)/Gpx1 (glutathione peroxidase 1) axis to reduce reactive oxygen species accumulation. We also determined that the vascular repair effects of triiodothyronine were Pgc1a-dependent. CONCLUSIONS We delineate a novel DIO2-mediated adaption in malformed cerebrovasculature and conclude that targeting TH signaling may represent a potential therapy for cerebrovascular disorders.
Collapse
Affiliation(s)
- Ruofei Li
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - Yushan Tang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - Haiyue Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - Pengyan Hu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - Liang Yu
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - Cheng Lv
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - Yu Zhang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
| | - A Martin Gerdes
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology, Old Westbury (A.M.G.)
| | - Yibo Wang
- State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China (R.L., Y.T., H.W., P.H., L.Y., C.L., Y.Z., Y.W.)
- Central China Sub-center of the National Center for Cardiovascular Diseases, Zhengzhou, Henan, China (Y.W.)
- Institute of Cardiovascular Disease, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan, China (Y.W.)
| |
Collapse
|
11
|
Jiang H, Zhou Y, Zhang W, Li H, Ma W, Ji X, Zhou C. Molecular mechanisms of endothelial-mesenchymal transition and its pathophysiological feature in cerebrovascular disease. Cell Biosci 2025; 15:49. [PMID: 40253404 PMCID: PMC12008988 DOI: 10.1186/s13578-025-01393-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 04/10/2025] [Indexed: 04/21/2025] Open
Abstract
The phenomenon of endothelial-mesenchymal transition (EndMT), a distinct subtype of epithelial-mesenchymal transition (EMT), has garnered significant attention from scholars. EndMT refers to the process whereby endothelial cells (ECs) transform into mesenchymal cells in response to various stimuli, resulting in the loss of their original characteristics. This process has diverse implications in both physiological and pathological states. Under physiological conditions, EndMT plays a crucial role in the development of the cardiovascular system. Conversely, under pathological conditions, EndMT has been identified as a pivotal factor in the development of cardiovascular diseases. Nonetheless, a comprehensive overview of EndMT in cerebrovascular disease is currently lacking. Here, we discuss the heterogeneity of EndMT occurrence and the regulatory factors involved in its development and analyze the feasibility of EndMT as a therapeutic target, aiming to provide a solid theoretical foundation and evidence to address diseases caused by pathological EndMT.
Collapse
Affiliation(s)
- Huimin Jiang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Yifan Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Weiyue Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hui Li
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Ma
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China
| | - Xunming Ji
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China.
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
| | - Chen Zhou
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Collaborative Innovation Center for Brain Disorders, Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Ministry of Science and Technology, Capital Medical University, Beijing, 100069, China.
| |
Collapse
|
12
|
Weber RZ, Achón Buil B, Rentsch NH, Bosworth A, Zhang M, Kisler K, Tackenberg C, Rust R. A molecular brain atlas reveals cellular shifts during the repair phase of stroke. J Neuroinflammation 2025; 22:112. [PMID: 40251566 PMCID: PMC12008922 DOI: 10.1186/s12974-025-03437-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 04/02/2025] [Indexed: 04/20/2025] Open
Abstract
Ischemic stroke triggers a cascade of pathological events that affect multiple cell types and often lead to incomplete functional recovery. Despite advances in single-cell technologies, the molecular and cellular responses that contribute to long-term post-stroke impairment remain poorly understood. To gain better insight into the underlying mechanisms, we generated a single-cell transcriptomic atlas from distinct brain regions using a mouse model of permanent focal ischemia at one month post-injury. Our findings reveal cell- and region-specific changes within the stroke-injured and peri-infarct brain tissue. For instance, GABAergic and glutamatergic neurons exhibited upregulated genes in signaling pathways involved in axon guidance and synaptic plasticity, and downregulated pathways associated with aerobic metabolism. Using cell-cell communication analysis, we identified increased strength in predicted interactions within stroke tissue among both neural and non-neural cells via signaling pathways such as those involving collagen, protein tyrosine phosphatase receptor, neuronal growth regulator, laminin, and several cell adhesion molecules. Furthermore, we found a strong correlation between mouse transcriptome responses after stroke and those observed in human nonfatal brain stroke lesions. Common molecular features were linked to inflammatory responses, extracellular matrix organization, and angiogenesis. Our findings provide a detailed resource for advancing our molecular understanding of stroke pathology and for discovering therapeutic targets in the repair phase of stroke recovery.
Collapse
Affiliation(s)
- Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland
| | - Beatriz Achón Buil
- Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland
| | - Nora H Rentsch
- Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland
| | - Allison Bosworth
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Mingzi Zhang
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kassandra Kisler
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Christian Tackenberg
- Institute for Regenerative Medicine, University of Zurich, Schlieren, 8952, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, Zurich, 8057, Switzerland
| | - Ruslan Rust
- Department of Physiology and Neuroscience, University of Southern California, Los Angeles, CA, 90033, USA.
- Zilkha Neurogenetic Institute, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
13
|
Wu SR, Nowakowski TJ. Exploring human brain development and disease using assembloids. Neuron 2025; 113:1133-1150. [PMID: 40107269 PMCID: PMC12022838 DOI: 10.1016/j.neuron.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 01/10/2025] [Accepted: 02/12/2025] [Indexed: 03/22/2025]
Abstract
How the human brain develops and what goes awry in neurological disorders represent two long-lasting questions in neuroscience. Owing to the limited access to primary human brain tissue, insights into these questions have been largely gained through animal models. However, there are fundamental differences between developing mouse and human brain, and neural organoids derived from human pluripotent stem cells (hPSCs) have recently emerged as a robust experimental system that mimics self-organizing and multicellular features of early human brain development. Controlled integration of multiple organoids into assembloids has begun to unravel principles of cell-cell interactions. Moreover, patient-derived or genetically engineered hPSCs provide opportunities to investigate phenotypic correlates of neurodevelopmental disorders and to develop therapeutic hypotheses. Here, we outline the advances in technologies that facilitate studies by using assembloids and summarize their applications in brain development and disease modeling. Lastly, we discuss the major roadblocks of the current system and potential solutions.
Collapse
Affiliation(s)
- Sih-Rong Wu
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Tomasz J Nowakowski
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA; Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA; Department of Anatomy, University of California, San Francisco, San Francisco, CA, USA; Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA; Eli and Edythe Broad Center for Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
14
|
Liu L, Li Y, Li P. Effects of Breviscapine injection on coagulation function and cerebrovascular endothelial functional status in focal cerebral ischemia rats. Neurol Res 2025:1-11. [PMID: 40235060 DOI: 10.1080/01616412.2025.2485333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/21/2025] [Indexed: 04/17/2025]
Abstract
OBJECTIVE In this study, we investigated the effects of Breviscapine injection on coagulation function and cerebrovascular endothelial functional status in focal cerebral ischemia (CI) rats. METHODS Rats were divided into four groups: Sham, Model, low-dose Breviscapine (Bre-L, 25 mg/kg), and high-dose Breviscapine (Bre-H, 50 mg/kg). Except for the Sham group, focal CI models were induced in the other groups. Neurological function was assessed, and blood and brain tissue samples were collected to measure inflammatory cytokine levels, coagulation function indicators, and cerebrovascular endothelial function indicators. HE staining was performed to observe pathological brain damage. RESULTS Compared with the Sham group, the Model group showed increased levels of TNF-α, IL-1β, IL-6, and ICAM-1, shortened CT, TT, and BT, decreased levels of NO, eNOS, PGI2, and t-PA, increased levels ofTXA2, PAI activity, thrombin, and coagulation factor Xa, higher Longa scores, and marked focal CI-related brain damage. Compared with the Model group, both the Bre-L and Bre-H groups exhibited prolonged CT, TT, and BT, increased levels of NO, eNOS, PGI2, and t-PA, decreased levels of TNF-α, IL-1β, IL-6, ICAM-1, TXA2, PAI activity, thrombin, and coagulation factor Xa, and lower Longa scores. Histopathological analysis indicated reduced brain tissue damage, with the high-dose group showing more pronounced improvements than the low-dose group (p < 0.05). CONCLUSION Breviscapine injection can ameliorate inflammation, improves neurological and coagulation function, and restores cerebrovascular endothelial function in rats with focal CI, with a dose-dependent effect.
Collapse
Affiliation(s)
- Liangtian Liu
- Department of Transfusion, Shenzhen Baoan District Shiyan People's Hospital, Shenzhen, China
| | - Yuan Li
- Department of Postpartum Rehabilitation Unit, Shenzhen Luohu Maternal and Child Health Hospital, Shenzhen, China
| | - Ping Li
- Department of Pathology, Shenzhen Baoan District Shiyan People's Hospital, Shenzhen, China
| |
Collapse
|
15
|
Bejarano L, Lourenco J, Kauzlaric A, Lamprou E, Costa CF, Galland S, Maas RR, Guerrero Aruffo P, Fournier N, Brouland JP, Hottinger AF, Daniel RT, Hegi ME, Joyce JA. Single-cell atlas of endothelial and mural cells across primary and metastatic brain tumors. Immunity 2025; 58:1015-1032.e6. [PMID: 40107274 DOI: 10.1016/j.immuni.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Central nervous system (CNS) malignancies include primary tumors, such as gliomas, and brain metastases (BrMs) originating from diverse extracranial cancers. The blood-brain barrier (BBB) is a key structural component of both primary and metastatic brain cancers. Here, we comprehensively analyzed the two major BBB cell types, endothelial and mural cells, across non-tumor brain tissue, isocitrate dehydrogenase (IDH) mutant (IDH mut) low-grade gliomas, IDH wild-type (IDH WT) high-grade glioblastomas (GBMs), and BrMs from various primary tumors. Bulk and single-cell RNA sequencing, integrated with spatial analyses, revealed that GBMs, but not low-grade gliomas, exhibit significant alterations in the tumor vasculature, including the emergence of diverse pathological vascular cell subtypes. However, these alterations are less pronounced in GBMs than in BrMs. Notably, the BrM vasculature shows higher permeability and more extensive interactions with distinct immune cell populations. This vascular atlas presents a resource toward understanding of tumor-specific vascular features in the brain, providing a foundation for developing vascular- and immune-targeting therapies.
Collapse
Affiliation(s)
- Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Joao Lourenco
- Agora Cancer Research Centre, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Agora Cancer Research Centre, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eleni Lamprou
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Catia F Costa
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sabine Galland
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roeltje R Maas
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Paola Guerrero Aruffo
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roy T Daniel
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Monika E Hegi
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
16
|
Dalkara T, Østergaard L, Heusch G, Attwell D. Pericytes in the brain and heart: functional roles and response to ischaemia and reperfusion. Cardiovasc Res 2025; 120:2336-2348. [PMID: 39074200 PMCID: PMC11976724 DOI: 10.1093/cvr/cvae147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 03/28/2024] [Accepted: 05/03/2024] [Indexed: 07/31/2024] Open
Abstract
In the last 20 years, there has been a revolution in our understanding of how blood flow is regulated in many tissues. Whereas it used to be thought that essentially all blood flow control occurred at the arteriole level, it is now recognized that control of capillary blood flow by contractile pericytes plays a key role both in regulating blood flow physiologically and in reducing it in clinically relevant pathological conditions. In this article, we compare and contrast how brain and cardiac pericytes regulate cerebral and coronary blood flow, focusing mainly on the pathological events of cerebral and cardiac ischaemia. The cerebral and coronary capillary beds differ dramatically in morphology, yet in both cases, pericyte-mediated capillary constriction plays a key role in restricting blood flow after ischaemia and possibly in other pathological conditions. We conclude with suggestions for therapeutic approaches to relaxing pericytes, which may prove useful in the long-term for reducing pericyte-induced ischaemia.
Collapse
Affiliation(s)
- Turgay Dalkara
- Department of Neuroscience, Bilkent University, Ankara 06800 Türkiye
- Department of Molecular Biology and Genetics, Bilkent University, Ankara 06800 Türkiye
| | - Leif Østergaard
- Center of Functionally Integrative Neuroscience (CFIN), Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Gerd Heusch
- Institute for Pathophysiology, West German Heart and Vascular Center, University of Duisburg-Essen, Essen, Germany
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower St., London WC1E 6BT, UK
| |
Collapse
|
17
|
Albertson AJ, Winkler EA, Yang AC, Buckwalter MS, Dingman AL, Fan H, Herson PS, McCullough LD, Perez-Pinzon M, Sansing LH, Sun D, Alkayed NJ. Single-Cell Analysis in Cerebrovascular Research: Primed for Breakthroughs and Clinical Impact. Stroke 2025; 56:1082-1091. [PMID: 39772596 PMCID: PMC11932790 DOI: 10.1161/strokeaha.124.049001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Data generated using single-cell RNA-sequencing has the potential to transform understanding of the cerebral circulation and advance clinical care. However, the high volume of data, sometimes generated and presented without proper pathophysiological context, can be difficult to interpret and integrate into current understanding of the cerebral circulation and its disorders. Furthermore, heterogeneity in the representation of brain regions and vascular segments makes it difficult to compare results across studies. There are currently no standards for tissue collection and processing that allow easy comparisons across studies and analytical platforms. There are no standards either for single-cell data analysis and presentation. This topical review introduces single-cell RNA-sequencing to physicians and scientists in the cerebrovascular field, with the goals of highlighting opportunities and challenges of applying this technology in the cerebrovascular field and discussing key concepts and knowledge gaps that can be addressed by single-cell RNA-sequencing.
Collapse
Affiliation(s)
- Asher J. Albertson
- Department of Neurology, Washington University School of Medicine, St. Louis, MO
| | - Ethan A. Winkler
- Department of Neurological Surgery, University of California San Francisco, CA
| | - Andrew C. Yang
- Gladstone Institute of Neurological Disease and Department of Neurology, University of California San Francisco, CA
| | - Marion S. Buckwalter
- Department of Neurology and Neurological Sciences, Stanford University, Palo Alto, CA
| | - Andra L. Dingman
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO
| | - Huihui Fan
- Department of Neurology, University of Texas Health Science Center, Houston, TX
| | - Paco S. Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH
| | | | | | - Lauren H. Sansing
- Departments of Neurology and Immunobiology, Yale University School of Medicine, New Haven, CT
| | - Dandan Sun
- Department of Neurology and Pittsburgh Institute of Neurological Degeneration Diseases, University of Pittsburgh, Pittsburgh, PA
| | - Nabil J. Alkayed
- Department of Anesthesiology & Perioperative Medicine and Knight Cardiovascular Institute Portland, OR
| |
Collapse
|
18
|
Zhong J, Gao RR, Zhang X, Yang JX, Liu Y, Ma J, Chen Q. Dissecting endothelial cell heterogeneity with new tools. CELL REGENERATION (LONDON, ENGLAND) 2025; 14:10. [PMID: 40121354 PMCID: PMC11929667 DOI: 10.1186/s13619-025-00223-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 02/20/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025]
Abstract
The formation of a blood vessel network is crucial for organ development and regeneration. Over the past three decades, the central molecular mechanisms governing blood vessel growth have been extensively studied. Recent evidence indicates that vascular endothelial cells-the specialized cells lining the inner surface of blood vessels-exhibit significant heterogeneity to meet the specific needs of different organs. This review focuses on the current understanding of endothelial cell heterogeneity, which includes both intra-organ and inter-organ heterogeneity. Intra-organ heterogeneity encompasses arterio-venous and tip-stalk endothelial cell specialization, while inter-organ heterogeneity refers to organ-specific transcriptomic profiles and functions. Advances in single-cell RNA sequencing (scRNA-seq) have enabled the identification of new endothelial subpopulations and the comparison of gene expression patterns across different subsets of endothelial cells. Integrating scRNA-seq with other high-throughput sequencing technologies promises to deepen our understanding of endothelial cell heterogeneity at the epigenetic level and in a spatially resolved context. To further explore human endothelial cell heterogeneity, vascular organoids offer powerful tools for studying gene function in three-dimensional culture systems and for investigating endothelial-tissue interactions using human cells. Developing organ-specific vascular organoids presents unique opportunities to unravel inter-organ endothelial cell heterogeneity and its implications for human disease. Emerging technologies, such as scRNA-seq and vascular organoids, are poised to transform our understanding of endothelial cell heterogeneity and pave the way for innovative therapeutic strategies to address human vascular diseases.
Collapse
Affiliation(s)
- Jing Zhong
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Rong-Rong Gao
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China
| | - Xin Zhang
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
- University of Chinese Academy of Sciences, Beijing, China
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Jia-Xin Yang
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China
| | - Yang Liu
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
| | - Jinjin Ma
- The Innovation Centre of Ministry of Education for Development and Diseases, School of Medicine, South China University of Technology, Guangzhou, 510006, China.
- The Institute of Future Health, South China of Technology, Guangzhou International Campus, Guangzhou, 511442, China.
| | - Qi Chen
- Center for Cell Lineage Atlas, CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
- China-New Zealand Belt and Road Joint Laboratory on Biomedicine and Health, Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Center for Cell Lineage Atlas, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China.
- Biomedical Sciences College & Shandong Medicinal Biotechnology Centre, Shandong First Medical University & Shandong Academy of Medical Sciences, NHC Key Laboratory of Biotechnology Drugs (Shandong Academy of Medical Sciences); Key Lab for Rare & Uncommon Diseases of Shandong Province, Ji'nan 250117, Shandong, China.
| |
Collapse
|
19
|
Katdare KA, Kjar A, O’Brown NM, Neal EH, Sorets AG, Shostak A, Romero-Fernandez W, Kwiatkowski AJ, Mlouk K, Kim H, Cowell RP, Schwensen KR, Carvajal Tapia CO, Venslovaite G, Horner KB, Wilson JT, Schrag MS, Megason SG, Lippmann ES. IQGAP2 regulates blood-brain barrier immune dynamics. iScience 2025; 28:111994. [PMID: 40071147 PMCID: PMC11894336 DOI: 10.1016/j.isci.2025.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/03/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025] Open
Abstract
Brain endothelial cells (BECs) play an important role in maintaining central nervous system (CNS) homeostasis through blood-brain barrier (BBB) functions. BECs express low baseline levels of adhesion receptors, which limits entry of leukocytes. However, the molecular mediators governing this phenotype remain mostly unclear. Here, we explored how infiltration of immune cells across the BBB is influenced by the scaffold protein IQ motif containing GTPase-activating protein 2 (IQGAP2). In mice and zebrafish, we demonstrate that loss of Iqgap2 increases infiltration of peripheral leukocytes into the CNS under homeostatic and inflammatory conditions. Using single-cell RNA sequencing and immunohistology, we further show that BECs from mice lacking Iqgap2 exhibit a profound inflammatory signature, including extensive upregulation of adhesion receptors and antigen-processing machinery. Human tissue analyses also reveal that Alzheimer's disease is associated with reduced hippocampal IQGAP2. Overall, our results implicate IQGAP2 as an essential regulator of BBB immune privilege and immune cell entry into the CNS.
Collapse
Affiliation(s)
- Ketaki A. Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Andrew Kjar
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Emma H. Neal
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alexander G. Sorets
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Alena Shostak
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | | | - Kate Mlouk
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Hyosung Kim
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Rebecca P. Cowell
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Katrina R. Schwensen
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | | | - Guste Venslovaite
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Kensley B. Horner
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - John T. Wilson
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
| | - Matthew S. Schrag
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Sean G. Megason
- Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Ethan S. Lippmann
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN, USA
- Department of Neurology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
20
|
Bohannon DG, Long D, Okhravi HR, Lee SC, De Jesus CL, Neubert TA, Rostagno AA, Ghiso JA, Kim W. Functionally distinct pericyte subsets differently regulate amyloid-β deposition in patients with Alzheimer's disease. Brain Pathol 2025; 35:e13282. [PMID: 38932696 PMCID: PMC11835444 DOI: 10.1111/bpa.13282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
Although the concept that the blood-brain barrier (BBB) plays an important role in the etiology and pathogenesis of Alzheimer's disease (AD) has become increasingly accepted, little is known yet about how it actually contributes. We and others have recently identified a novel functionally distinct subset of BBB pericytes (PCs). In the present study, we sought to determine whether these PC subsets differentially contribute to AD-associated pathologies by immunohistochemistry and amyloid beta (Aβ) peptidomics. We demonstrated that a disease-associated PC subset (PC2) expanded in AD patients compared to age-matched, cognitively unimpaired controls. Surprisingly, we found that this increase in the percentage of PC2 (%PC2) was correlated negatively with BBB breakdown in AD patients, unlike in natural aging or other reported disease conditions. The higher %PC2 in AD patients was also correlated with a lower Aβ42 plaque load and a lower Aβ42:Aβ40 ratio in the brain as determined by immunohistochemistry. Colocalization analysis of multicolor confocal immunofluorescence microscopy images suggests that AD patient with low %PC2 have higher BBB breakdown due to internalization of Aβ42 by the physiologically normal PC subset (PC1) and their concomitant cell death leading to more vessels without PCs and increased plaque load. On the contrary, it appears that PC2 can secrete cathepsin D to cleave and degrade Aβ built up outside of PC2 into more soluble forms, ultimately contributing to less BBB breakdown and reducing Aβ plaque load. Collectively our data shows functionally distinct mechanisms for PC1 and PC2 in high Aβ conditions, demonstrating the importance of correctly identifying these populations when investigating the contribution of neurovascular dysfunction to AD pathogenesis.
Collapse
Affiliation(s)
- Diana G. Bohannon
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Danielle Long
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | - Hamid R. Okhravi
- Glennan Center for Geriatrics and GerontologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Integrated Neurodegenerative Disorders CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
| | | | | | - Thomas A. Neubert
- Department of Neuroscience and PhysiologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Agueda A. Rostagno
- Department of PathologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Jorge A. Ghiso
- Department of PathologyNew York University Grossman School of MedicineNew YorkNew YorkUSA
- Department of PsychiatryNew York University Grossman School of MedicineNew YorkNew YorkUSA
| | - Woong‐Ki Kim
- Department of Microbiology and Molecular Cell BiologyEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Integrated Neurodegenerative Disorders CenterEastern Virginia Medical SchoolNorfolkVirginiaUSA
- Division of MicrobiologyTulane National Primate Research CenterCovingtonLouisianaUSA
- Department of Microbiology and ImmunologyTulane University School of MedicineNew OrleansLouisianaUSA
| |
Collapse
|
21
|
Ricciardelli AR, Genet G, Genet N, McClugage ST, Kan PT, Hirschi KK, Fish JE, Wythe JD. From bench to bedside: murine models of inherited and sporadic brain arteriovenous malformations. Angiogenesis 2025; 28:15. [PMID: 39899215 PMCID: PMC11790818 DOI: 10.1007/s10456-024-09953-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/06/2024] [Indexed: 02/04/2025]
Abstract
Brain arteriovenous malformations are abnormal vascular structures in which an artery shunts high pressure blood directly to a vein without an intervening capillary bed. These lesions become highly remodeled over time and are prone to rupture. Historically, brain arteriovenous malformations have been challenging to treat, using primarily surgical approaches. Over the past few decades, the genetic causes of these malformations have been uncovered. These can be divided into (1) familial forms, such as loss of function mutations in TGF-β (BMP9/10) components in hereditary hemorrhagic telangiectasia, or (2) sporadic forms, resulting from somatic gain of function mutations in genes involved in the RAS-MAPK signaling pathway. Leveraging these genetic discoveries, preclinical mouse models have been developed to uncover the mechanisms underlying abnormal vessel formation, and thus revealing potential therapeutic targets. Impressively, initial preclinical studies suggest that pharmacological treatments disrupting these aberrant pathways may ameliorate the abnormal pathologic vessel remodeling and inflammatory and hemorrhagic nature of these high-flow vascular anomalies. Intriguingly, these studies also suggest uncontrolled angiogenic signaling may be a major driver in bAVM pathogenesis. This comprehensive review describes the genetics underlying both inherited and sporadic bAVM and details the state of the field regarding murine models of bAVM, highlighting emerging therapeutic targets that may transform our approach to treating these devastating lesions.
Collapse
Affiliation(s)
| | - Gael Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Nafiisha Genet
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Samuel T McClugage
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA
- Division of Pediatric Neurosurgery, Texas Children's Hospital, Houston, TX, USA
| | - Peter T Kan
- Department of Neurosurgery, University of Texas Medical Branch, Galveston, TX, 77598, USA
| | - Karen K Hirschi
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Jason E Fish
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, ON, Canada
- Peter Munk Cardiac Centre, University Health Network, Toronto, ON, Canada
| | - Joshua D Wythe
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX, 77030, USA.
- Department of Cell Biology, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Developmental Genomics Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Department of Neuroscience, University of Virginia School of Medicine, Charlottesville, VA, USA.
- Brain, Immunology, and Glia Center, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
22
|
Lee CJ, Jang SH, Lim J, Park H, Ahn SH, Park SY, Seo H, Song SJ, Shin JA, Choi C, Gee HY, Choi YH. Exosome-based targeted delivery of NF-κB ameliorates age-related neuroinflammation in the aged mouse brain. Exp Mol Med 2025; 57:235-248. [PMID: 39833561 PMCID: PMC11799301 DOI: 10.1038/s12276-024-01388-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 01/22/2025] Open
Abstract
Neuroinflammation, a significant contributor to various neurodegenerative diseases, is strongly associated with the aging process; however, to date, no efficacious treatments for neuroinflammation have been developed. In aged mouse brains, the number of infiltrating immune cells increases, and the key transcription factor associated with increased chemokine levels is nuclear factor kappa B (NF-κB). Exosomes are potent therapeutics or drug delivery vehicles for various materials, including proteins and regulatory genes, to target cells. In the present study, we evaluated the therapeutic efficacy of exosomes loaded with a nondegradable form of IκB (Exo-srIκB), which inhibits the nuclear translocation of NF-κB to suppress age-related neuroinflammation. Single-cell RNA sequencing revealed that these anti-inflammatory exosomes targeted macrophages and microglia, reducing the expression of inflammation-related genes. Treatment with Exo-srIκB also suppressed the interactions between macrophages/microglia and T and B cells in the aged brain. We demonstrated that Exo-srIκB successfully alleviates neuroinflammation by primarily targeting activated macrophages and partially modulating the functions of age-related interferon-responsive microglia in the brain. Thus, our findings highlight Exo-srIκB as a potential therapeutic agent for treating age-related neuroinflammation.
Collapse
Affiliation(s)
- Chae-Jeong Lee
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea
| | - Seung Hyun Jang
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Jiwoo Lim
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea
| | - Hyunju Park
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea
| | - So-Hee Ahn
- ILIAS Biologics Inc., Daejeon, 34014, Republic of Korea
| | | | - Hyangmi Seo
- ILIAS Biologics Inc., Daejeon, 34014, Republic of Korea
| | - Soo-Jin Song
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea
| | - Jung-A Shin
- Department of Anatomy, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea
| | - Chulhee Choi
- ILIAS Biologics Inc., Daejeon, 34014, Republic of Korea.
| | - Heon Yung Gee
- Department of Pharmacology, Brain Korea 21 PLUS Project for Medical Sciences, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea.
| | - Youn-Hee Choi
- Department of Physiology, Inflammation-Cancer Microenvironment Research Center, Ewha Womans University College of Medicine, Seoul, 07804, Republic of Korea.
| |
Collapse
|
23
|
Sun D, Zhang K, Zheng F, Yang G, Yang M, Xu Y, Qin Y, Lin M, Li Y, Tan J, Li Q, Qu X, Li G, Bian L, Zhu C. Matrix Viscoelasticity Controls Differentiation of Human Blood Vessel Organoids into Arterioles and Promotes Neovascularization in Myocardial Infarction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2410802. [PMID: 39686788 DOI: 10.1002/adma.202410802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 12/04/2024] [Indexed: 12/18/2024]
Abstract
Stem cell-derived blood vessel organoids are embedded in extracellular matrices to stimulate vessel sprouting. Although vascular organoids in 3D collagen I-Matrigel gels are currently available, they are primarily capillaries composed of endothelial cells (ECs), pericytes, and mesenchymal stem-like cells, which necessitate mature arteriole differentiation for neovascularization. In this context, the hypothesis that matrix viscoelasticity regulates vascular development is investigated in 3D cultures by encapsulating blood vessel organoids within viscoelastic gelatin/β-CD assembly dynamic hydrogels or methacryloyl gelatin non-dynamic hydrogels. The vascular organoids within the dynamic hydrogel demonstrate enhanced angiogenesis and differentiation into arterioles containing smooth muscle cells. The dynamic hydrogel mechanical microenvironment promotes vascular patterning and arteriolar differentiation by elevating notch receptor 3 signaling in mesenchymal stem cells and downregulating platelet-derived growth factor B expression in ECs. Transplantation of vascular organoids in vivo, along with the dynamic hydrogel, leads to the reassembly of arterioles and restoration of cardiac function in infarcted hearts. These findings indicate that the viscoelastic properties of the matrix play a crucial role in controlling the vascular organization and differentiation processes, suggesting an exciting potential for its application in regenerative medicine.
Collapse
Affiliation(s)
- Dayu Sun
- Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China
| | - Kunyu Zhang
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Feiyang Zheng
- Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China
| | - Guanyuan Yang
- Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China
| | - Mingcan Yang
- Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China
| | - Youqian Xu
- Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China
| | - Yinhua Qin
- Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China
| | - Mingxin Lin
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Yanzhao Li
- Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China
| | - Ju Tan
- Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China
| | - Qiyu Li
- Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China
| | - Xiaohang Qu
- Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China
| | - Gang Li
- Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China
| | - Liming Bian
- School of Biomedical Sciences and Engineering, Guangzhou International Campus, South China University of Technology, Guangzhou, 511442, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangdong Provincial Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou, 510006, P. R. China
| | - Chuhong Zhu
- Department of Anatomy, Engineering Research Center of the Ministry of Education for Tissue and Organ Regeneration and Manufacturing, Engineering Research Center for Organ Intelligent Biological Manufacturing of Chongqing, Third Military Medical University, Chongqing, 400038, P. R. China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing, 400038, P. R. China
| |
Collapse
|
24
|
Sewell M, Fialova N, Montagne A. Unraveling the transcriptomic landscape of brain vascular cells in dementia: A systematic review. Alzheimers Dement 2025; 21:e14512. [PMID: 39807599 PMCID: PMC11851133 DOI: 10.1002/alz.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 01/16/2025]
Abstract
INTRODUCTION Cerebrovascular dysfunction plays a critical role in the pathogenesis of dementia and related neurodegenerative disorders. Recent omics-driven research has revealed associations between vascular abnormalities and transcriptomic alterations in brain vascular cells, particularly endothelial cells (ECs) and pericytes (PCs). However, the impact of these molecular changes on dementia remains unclear. METHODS We conducted a comparative analysis of gene expression in ECs and PCs across neurodegenerative conditions, including Alzheimer's disease (AD), Huntington's disease, and arteriovenous malformation, utilizing transcriptomic data from published postmortem human tissue studies. RESULTS We identified differentially expressed genes (DEGs) consistently dysregulated in ECs and PCs across these pathologies. Notably, several DEGs are linked to vascular cell zonation and genetic risks for AD and cerebral small vessel disease. DISCUSSION Our findings provide insights into the cellular and molecular mechanisms underlying vascular dysfunction in dementia, highlight the knowledge gaps, and suggest potential novel vascular therapeutic targets, including genes not previously investigated in this context. HIGHLIGHTS Systematic review of differentially expressed genes (DEGs) in vascular cells from neurodegenerative single-nuclear RNA-sequencing (snRNA-seq) studies. Identify overlapping DEGs in multiple vascular cell types across studies. Examine functional relevance and associations with genetic risk for common DEGs. Outline future directions for the vascular omics field.
Collapse
Affiliation(s)
- Michael Sewell
- UK Dementia Research Institute at the University of EdinburghEdinburghUK
- British Heart Foundation ‐ UK Dementia Research Institute Centre for Vascular Dementia Research at the University of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Nela Fialova
- UK Dementia Research Institute at the University of EdinburghEdinburghUK
- British Heart Foundation ‐ UK Dementia Research Institute Centre for Vascular Dementia Research at the University of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| | - Axel Montagne
- UK Dementia Research Institute at the University of EdinburghEdinburghUK
- British Heart Foundation ‐ UK Dementia Research Institute Centre for Vascular Dementia Research at the University of EdinburghEdinburghUK
- Centre for Clinical Brain SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
25
|
Nakisli S, Fanelli K, LaComb J, Arnold LJ, Nielsen CM. CNS resident macrophages exhibit region-specific states and immunogenic responses during Rbpj-deficient brain arteriovenous malformation. Sci Rep 2025; 15:3932. [PMID: 39890825 PMCID: PMC11785973 DOI: 10.1038/s41598-025-86150-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 01/08/2025] [Indexed: 02/03/2025] Open
Abstract
Microglia are heterogeneous macrophage cells that serve as the central nervous system's resident immune cells. During neuro-related diseases, CNS resident macrophages change their molecular, cellular, and functional properties-that collectively define "states"-in response to specific neural perturbations. Neurovascular diseases elicit state changes, by promoting increased vascular permeability among microvessels and thus altering blood-brain barrier integrity. Here, we used a mouse model of brain arteriovenous malformation (bAVM)-mediated by endothelial loss of Recombination signal binding protein for immunoglobulin kappa J region (Rbpj)-to investigate changes to brain resident macrophage states during neurovascular disease pathogenesis. We found increased area of Ionized calcium-binding adapter molecule 1 (Iba1) expression in Rbpj-deficient bAVM tissue, as well as Iba1 + cell hypertrophy, increased cell number, and hyperproliferation within areas of increased Iba1 + density. Hypertrophic cells had increased cell body areas and decreased process length, suggesting a transition in surveillance state. Gene expression data revealed region-specific molecular changes to Iba + cells, suggestive of altered metabolic activity. CNS resident macrophages isolated from cortical and cerebellar regions showed profiles consistent with cytokine-associated immunogenic responses and an immunovigilant pathogen-recognition response, respectively. Thus, our findings demonstrate region-specific changes to CNS resident macrophages during Rbpj-deficient bAVM.
Collapse
Affiliation(s)
- Sera Nakisli
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA
- Neuroscience Program, Ohio University, Athens, OH, USA
| | - Kayleigh Fanelli
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA
- Neuroscience Program, Ohio University, Athens, OH, USA
| | - Julia LaComb
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA
| | - Lily J Arnold
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA
- Honors Tutorial College Biological Sciences Program, Ohio University, Athens, OH, USA
| | - Corinne M Nielsen
- Department of Biological Sciences, Ohio University, 57 Oxbow Trail, Irvine 107, Athens, OH, 45701, USA.
- Neuroscience Program, Ohio University, Athens, OH, USA.
- Molecular and Cellular Biology Program, Ohio University, Athens, OH, USA.
| |
Collapse
|
26
|
Chaudhuri S, Cho M, Stumpff JC, Bice PJ, İş Ö, Ertekin-Taner N, Saykin AJ, Nho K. Cell-specific transcriptional signatures of vascular cells in Alzheimer's disease: perspectives, pathways, and therapeutic directions. Mol Neurodegener 2025; 20:12. [PMID: 39876020 PMCID: PMC11776188 DOI: 10.1186/s13024-025-00798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025] Open
Abstract
Alzheimer's disease (AD) is a debilitating neurodegenerative disease that is marked by profound neurovascular dysfunction and significant cell-specific alterations in the brain vasculature. Recent advances in high throughput single-cell transcriptomics technology have enabled the study of the human brain vasculature at an unprecedented depth. Additionally, the understudied niche of cerebrovascular cells, such as endothelial and mural cells, and their subtypes have been scrutinized for understanding cellular and transcriptional heterogeneity in AD. Here, we provide an overview of rich transcriptional signatures derived from recent single-cell and single-nucleus transcriptomic studies of human brain vascular cells and their implications for targeted therapy for AD. We conducted an in-depth literature search using Medline and Covidence to identify pertinent AD studies that utilized single-cell technologies in human post-mortem brain tissue by focusing on understanding the transcriptional differences in cerebrovascular cell types and subtypes in AD and cognitively normal older adults. We also discuss impaired cellular crosstalk between vascular cells and neuroglial units, as well as astrocytes in AD. Additionally, we contextualize the findings from single-cell studies of distinct endothelial cells, smooth muscle cells, fibroblasts, and pericytes in the human AD brain and highlight pathways for potential therapeutic interventions as a concerted multi-omic effort with spatial transcriptomics technology, neuroimaging, and neuropathology. Overall, we provide a detailed account of the vascular cell-specific transcriptional signatures in AD and their crucial cellular crosstalk with the neuroglial unit.
Collapse
Affiliation(s)
- Soumilee Chaudhuri
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Medical Neuroscience Graduate Program, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Minyoung Cho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
- Department of Digital Health, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Samsung Medical Center, Sungkyunkwan University, Seoul, Republic of Korea
| | - Julia C Stumpff
- Ruth Lilly Medical Library, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Paula J Bice
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Özkan İş
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| | - Kwangsik Nho
- Department of Radiology and Imaging Sciences, Center for Neuroimaging, Indiana University School of Medicine, Indianapolis, IN, USA.
- Indiana Alzheimer's Disease Research Center, Indiana University School of Medicine, Indianapolis, IN, USA.
- Center for Computational Biology and Bioinformatics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
27
|
Garcia FJ, Heiman M. Molecular and cellular characteristics of cerebrovascular cell types and their contribution to neurodegenerative diseases. Mol Neurodegener 2025; 20:13. [PMID: 39881338 PMCID: PMC11780804 DOI: 10.1186/s13024-025-00799-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 01/07/2025] [Indexed: 01/31/2025] Open
Abstract
Many diseases and disorders of the nervous system suffer from a lack of adequate therapeutics to halt or slow disease progression, and to this day, no cure exists for any of the fatal neurodegenerative diseases. In part this is due to the incredible diversity of cell types that comprise the brain, knowledge gaps in understanding basic mechanisms of disease, as well as a lack of reliable strategies for delivering new therapeutic modalities to affected areas. With the advent of single cell genomics, it is now possible to interrogate the molecular characteristics of diverse cell populations and their alterations in diseased states. More recently, much attention has been devoted to cell populations that have historically been difficult to profile with bulk single cell technologies. In particular, cell types that comprise the cerebrovasculature have become increasingly better characterized in normal and neurodegenerative disease contexts. In this review, we describe the current understanding of cerebrovasculature structure, function, and cell type diversity and its role in the mechanisms underlying various neurodegenerative diseases. We focus on human and mouse cerebrovasculature studies and discuss both origins and consequences of cerebrovascular dysfunction, emphasizing known cell type-specific vulnerabilities in neuronal and cerebrovascular cell populations. Lastly, we highlight how novel insights into cerebrovascular biology have impacted the development of modern therapeutic approaches and discuss outstanding questions in the field.
Collapse
Affiliation(s)
- Francisco J Garcia
- The Picower Institute for Learning and Memory, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA
| | - Myriam Heiman
- The Picower Institute for Learning and Memory, Cambridge, MA, USA.
- Department of Brain and Cognitive Sciences, MIT, Cambridge, MA, USA.
| |
Collapse
|
28
|
Mirchia K, Choudhury A, Joseph T, Birrueta JO, Phillips JJ, Bhaduri A, Crouch EE, Perry A, Raleigh DR. Meningeal solitary fibrous tumor cell states phenocopy cerebral vascular development and homeostasis. Neuro Oncol 2025; 27:155-166. [PMID: 39207122 PMCID: PMC11726342 DOI: 10.1093/neuonc/noae172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Meningeal solitary fibrous tumors (SFTs) are rare mesenchymal neoplasms that are associated with local recurrence and hematogenous metastasis. The cell states and spatial transcriptomic architecture underlying the unique clinical behavior of meningeal SFTs are unknown. METHODS Single-cell (n = 4), spatial (n = 8), and bulk RNA sequencing (n = 22) were used to define the cell states and spatial transcriptomic architecture of meningeal SFTs across histological grades and in patient-matched pairs of primary/recurrent or intracranial/metastatic samples. Immunofluorescence, immunohistochemistry, and comparison of single-cell types to meningiomas, or to cerebral vascular development or homeostasis, were used for validation. RESULTS Here we show meningeal SFTs are comprised of regionally distinct gene expression programs that resemble cerebral vascular development or homeostasis. Single-cell trajectory analysis and pseudotemporal ordering of single cells suggest that meningeal SFT cell fate decisions are dynamic and interchangeable. Cell-cell communication analyses demonstrate receptor-ligand interactions throughout the meningeal SFT microenvironment, particularly between SFT cells, endothelia, and immature neurons. A direct comparison of single-cell transcriptomes from meningeal SFTs versus meningiomas shows that SFT cells are enriched in the expression of endothelial markers while meningioma cells are enriched in the expression of mural cell markers. Meningeal SFT spatial transcriptomes show regionally distinct intratumor heterogeneity in cell states, gene expression programs, and cell-cell interactions across World Health Organization histological grades and in patient-matched pairs of primary/recurrent or intracranial/metastatic samples. CONCLUSIONS These results shed light on pathways underlying meningeal SFT biology in comparison to other central nervous system tumors and provide a framework for integrating single-cell, spatial, and bulk RNA sequencing data across human cancers and normal tissues.
Collapse
Affiliation(s)
- Kanish Mirchia
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Abrar Choudhury
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| | - Tara Joseph
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Janeth Ochoa Birrueta
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Joanna J Phillips
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, California, USA (A.B.)
| | - Elizabeth E Crouch
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, California, USA
- Department of Pediatrics, University of California San Francisco, San Francisco, California, USA
| | - Arie Perry
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
| | - David R Raleigh
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
| |
Collapse
|
29
|
Jin S, Plikus MV, Nie Q. CellChat for systematic analysis of cell-cell communication from single-cell transcriptomics. Nat Protoc 2025; 20:180-219. [PMID: 39289562 DOI: 10.1038/s41596-024-01045-4] [Citation(s) in RCA: 85] [Impact Index Per Article: 85.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 06/27/2024] [Indexed: 09/19/2024]
Abstract
Recent advances in single-cell sequencing technologies offer an opportunity to explore cell-cell communication in tissues systematically and with reduced bias. A key challenge is integrating known molecular interactions and measurements into a framework to identify and analyze complex cell-cell communication networks. Previously, we developed a computational tool, named CellChat, that infers and analyzes cell-cell communication networks from single-cell transcriptomic data within an easily interpretable framework. CellChat quantifies the signaling communication probability between two cell groups using a simplified mass-action-based model, which incorporates the core interaction between ligands and receptors with multisubunit structure along with modulation by cofactors. Importantly, CellChat performs a systematic and comparative analysis of cell-cell communication using a variety of quantitative metrics and machine-learning approaches. CellChat v2 is an updated version that includes additional comparison functionalities, an expanded database of ligand-receptor pairs along with rich functional annotations, and an Interactive CellChat Explorer. Here we provide a step-by-step protocol for using CellChat v2 on single-cell transcriptomic data, including inference and analysis of cell-cell communication from one dataset and identification of altered intercellular communication, signals and cell populations from different datasets across biological conditions. The R implementation of CellChat v2 toolkit and its tutorials together with the graphic outputs are available at https://github.com/jinworks/CellChat . This protocol typically takes ~5 min depending on dataset size and requires a basic understanding of R and single-cell data analysis but no specialized bioinformatics training for its implementation.
Collapse
Affiliation(s)
- Suoqin Jin
- School of Mathematics and Statistics, Wuhan University, Wuhan, China.
- Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan, China.
| | - Maksim V Plikus
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA
| | - Qing Nie
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA.
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, USA.
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
30
|
Ren C, Kui L, Xu J, Tong F, Wang X, Ma J, Tian X, Wang G, Liu F, Li S, Ji X. Single-Cell Insights Into Cellular Response in Abdominal Aortic Occlusion-Induced Hippocampal Injury. CNS Neurosci Ther 2025; 31:e70154. [PMID: 39834143 PMCID: PMC11746957 DOI: 10.1111/cns.70154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/21/2024] [Accepted: 11/17/2024] [Indexed: 01/22/2025] Open
Abstract
OBJECTIVE Ischemia-reperfusion of the abdominal aorta often results in damage to distant organs, such as the heart and brain. This cellular heterogeneity within affected tissues complicates the roles of specific cell subsets in abdominal aorta occlusion model (AAO) injury. However, cell type-specific molecular pathology in the hippocampus after ischemia is poorly understood. AIMS In this study, we adopted a mouse AAO to investigate the single-cell transcriptome in the hippocampi in AAO mice. METHODS Male C57BL/6 mice (8 weeks old) were used to create an AAO model, with animals divided into Sham and I/R groups. The I/R group was subjected to 2 h of ischemia followed by 24 h of reperfusion, after which hippocampal tissues were collected for single-cell RNA sequencing and histological analysis. Behavioral tests, including the Rotarod, Y-maze, and new object recognition tests, were performed daily for 28 days post-surgery to evaluate neurological function. A total of 62,624 cells were corresponding 7 cell types with neuronal, glial, and vascular lineages. We next analyzed cell-specific gene alterations in AAO mice and the function of these cell-specific Genes. RESULTS AAO injury upregulated astrocyte and oligodendrocyte precursor cell (OPC) proportions (p-value < 0.05). Astrocytes showed unique gene expression related to neurogenesis and mRNA processing. Five distinct astrocyte subtypes emerged post-injury. OPCs exhibited enhanced synapse organization. Microglia activation and the elevated expression level of the epithelial cell oxidative phosphorylation protein-protein interaction (PPI) module indicate an inflammatory response and metabolic changes in response to AAO injury. CONCLUSIONS Our scRNA-seq analysis provides insights into transcriptional changes at the single-cell level in response to AAO-induced hippocampal injury. This study illustrates how the hippocampal region responds to such injury and identifies potential therapeutic targets for intervention, thereby paving the way for future research and treatment strategies.
Collapse
Affiliation(s)
- Changhong Ren
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain DisorderCapital Medical UniversityBeijingChina
| | - Ling Kui
- Bioinformatics CenterShenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Jun Xu
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain DisorderCapital Medical UniversityBeijingChina
| | - Fang Tong
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain DisorderCapital Medical UniversityBeijingChina
| | - Xiaojie Wang
- Department of NeurologyShenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Jianping Ma
- Department of NeurologyShenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Xiaomei Tian
- Department of Interventional Radiology, Senior Department of OncologyFifth Medical Center of PLA General HospitalBeijingChina
| | - Guoyun Wang
- Bioinformatics CenterShenzhen Qianhai Shekou Free Trade Zone HospitalShenzhenChina
| | - Feng‐Yong Liu
- Department of Interventional Radiology, Senior Department of OncologyFifth Medical Center of PLA General HospitalBeijingChina
| | - Sijie Li
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain DisorderCapital Medical UniversityBeijingChina
| | - Xunming Ji
- Beijing Key Laboratory of Hypoxia Translational Medicine, Xuanwu Hospital, Center of Stroke, Beijing Institute of Brain DisorderCapital Medical UniversityBeijingChina
| |
Collapse
|
31
|
Liu Y, Li X, Cao C, Ding H, Shi X, Zhang J, Li H. Critical role of Slc22a8 in maintaining blood-brain barrier integrity after experimental cerebral ischemia-reperfusion. J Cereb Blood Flow Metab 2025; 45:85-101. [PMID: 39068534 PMCID: PMC11572098 DOI: 10.1177/0271678x241264401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 06/02/2024] [Accepted: 06/05/2024] [Indexed: 07/30/2024]
Abstract
Blood-brain barrier (BBB) damage significantly affects the prognosis of ischemic stroke patients. This project employed multi-omics analysis to identify key factors regulating BBB disruption during cerebral ischemia-reperfusion. An integrated analysis of three transcriptome sequencing datasets from mouse middle cerebral artery occlusion/reperfusion (MCAO/R) models identified eight downregulated genes in endothelial cells. Additionally, transcriptome analysis of BBB (cortex) and non-BBB (lung) endothelium of E13.5 mice revealed 2,102 upregulated genes potentially associated with BBB integrity. The eight downregulated genes were intersected with the 2,102 BBB-related genes and mapped using single-cell RNA sequencing data, revealing that solute carrier family 22 member 8 (Slc22a8) is specifically expressed in endothelial cells and pericytes and significantly decreases after MCAO/R. This finding was validated in the mouse MCAO/R model at both protein and mRNA levels in this study. External overexpression of Slc22a8 using a lentivirus carrying Tie2 improved Slc22a8 and tight junction protein levels and reduced BBB leakage after MCAO/R, accompanied by Wnt/β-catenin signaling activation. In conclusion, this study suggested that MCAO/R-induced downregulation of Slc22a8 expression may be a crucial mechanism underlying BBB disruption. Interventions that promote Slc22a8 expression or enhance its function hold promise for improving the prognosis of patients with cerebral ischemia.
Collapse
Affiliation(s)
- Yangyang Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xiang Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Chang Cao
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haojie Ding
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Xuan Shi
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Juyi Zhang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| | - Haiying Li
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Stroke Research, Soochow University, Suzhou, China
| |
Collapse
|
32
|
Maia TM, Van Haver D, Dufour S, Van der Linden M, Dendooven A, Impens F, Devos S. Proteomics-Based Analysis of Laser-Capture Micro-dissected, Formalin-Fixed Paraffin-Embedded Tissue Samples. Methods Mol Biol 2025; 2884:333-354. [PMID: 39716012 DOI: 10.1007/978-1-0716-4298-6_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024]
Abstract
The ability to bring spatial resolution to omics studies enables a deeper understanding of cell populations and interactions in biological tissues. In the case of proteomics, single-cell and spatial approaches have been particularly challenging, due to limitations in sensitivity and throughput relative to other omics fields. Recent developments at the level of sample handling, chromatography, and mass spectrometry have set the stage for proteomics to be established in these new disciplines.
Collapse
Affiliation(s)
- Teresa Mendes Maia
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Delphi Van Haver
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Sara Dufour
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Malaïka Van der Linden
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Amélie Dendooven
- Department of Pathology, Ghent University Hospital, Ghent, Belgium
- Department of Diagnostic Sciences, Ghent University, Ghent, Belgium
| | - Francis Impens
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium
- VIB Proteomics Core, Ghent, Belgium
| | - Simon Devos
- VIB-UGent Center for Medical Biotechnology, Ghent, Belgium.
- Department of Biomolecular Medicine, Ghent University, Ghent, Belgium.
- VIB Proteomics Core, Ghent, Belgium.
| |
Collapse
|
33
|
Gould A, Luan Y, Hou Y, Korobova FV, Chen L, Arrieta VA, Amidei C, Ward R, Gomez C, Castro B, Habashy K, Zhang D, Youngblood M, Dmello C, Bebawy J, Bouchoux G, Stupp R, Canney M, Yue F, Iruela-Arispe ML, Sonabend AM. Endothelial response to blood-brain barrier disruption in the human brain. JCI Insight 2024; 10:e187328. [PMID: 39724015 PMCID: PMC11949064 DOI: 10.1172/jci.insight.187328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024] Open
Abstract
Cerebral endothelial cell (EC) injury and blood-brain barrier (BBB) permeability contribute to neuronal injury in acute neurological disease states. Preclinical experiments have used animal models to study this phenomenon, yet the response of human cerebral ECs to BBB disruption remains unclear. In our phase I clinical trial (ClinicalTrials.gov NCT04528680), we used low-intensity pulsed ultrasound with microbubbles (LIPU/MB) to induce transient BBB disruption of peritumoral brain in patients with recurrent glioblastoma. We found radiographic evidence that BBB integrity was mostly restored within 1 hour of this procedure. Using single-cell RNA sequencing and transmission electron microscopy, we analyzed the acute response of human brain ECs to ultrasound-mediated BBB disruption. Our analysis revealed distinct EC gene expression changes after LIPU/MB, particularly in genes related to neurovascular barrier function and structure, including changes to genes involved in the basement membrane, EC cytoskeleton, and junction complexes, as well as caveolar transcytosis and various solute transporters. Ultrastructural analysis showed that LIPU/MB led to a decrease in luminal caveolae, the emergence of cytoplasmic vacuoles, and the disruption of the basement membrane and tight junctions, among other things. These findings suggested that acute BBB disruption by LIPU/MB led to specific transcriptional and ultrastructural changes and could represent a conserved mechanism of BBB repair after neurovascular injury in humans.
Collapse
Affiliation(s)
- Andrew Gould
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
| | - Yu Luan
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Ye Hou
- Institute of Biomedicine, College of Life Sciences, Inner Mongolia University, Hohhot, China
| | - Farida V. Korobova
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Li Chen
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
| | - Victor A. Arrieta
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
| | - Christina Amidei
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
| | - Rachel Ward
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
| | - Cristal Gomez
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
| | - Brandyn Castro
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
- Department of Neurosurgery, University of Chicago, Chicago, Illinois, USA
| | - Karl Habashy
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
| | - Daniel Zhang
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
- Rush Medical College, Chicago, Illinois, USA
| | - Mark Youngblood
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
| | - Crismita Dmello
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
| | - John Bebawy
- Department of Neurological Surgery
- Department of Anesthesiology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Roger Stupp
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
- Department of Neurology and
- Division of Hematology and Oncology, Department of Medicine, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Feng Yue
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - M. Luisa Iruela-Arispe
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adam M. Sonabend
- Department of Neurological Surgery
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, and
| |
Collapse
|
34
|
Boutom SM, Silva TP, Palecek SP, Shusta EV, Fernandes TG, Ashton RS. Central nervous system vascularization in human embryos and neural organoids. Cell Rep 2024; 43:115068. [PMID: 39693224 PMCID: PMC11975460 DOI: 10.1016/j.celrep.2024.115068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 09/25/2024] [Accepted: 11/22/2024] [Indexed: 12/20/2024] Open
Abstract
In recent years, neural organoids derived from human pluripotent stem cells (hPSCs) have offered a transformative pre-clinical platform for understanding central nervous system (CNS) development, disease, drug effects, and toxicology. CNS vasculature plays an important role in all these scenarios; however, most published studies describe CNS organoids that lack a functional vasculature or demonstrate rudimentary incorporation of endothelial cells or blood vessel networks. Here, we review the existing knowledge of vascularization during the development of different CNS regions, including the brain, spinal cord, and retina, and compare it to vascularized CNS organoid models. We highlight several areas of contrast where further bioengineering innovation is needed and discuss potential applications of vascularized neural organoids in modeling human CNS development, physiology, and disease.
Collapse
Affiliation(s)
- Sarah M Boutom
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Teresa P Silva
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | - Sean P Palecek
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Eric V Shusta
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA; Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Tiago G Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Randolph S Ashton
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA; Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
35
|
McGinnis JP, Ortiz-Guzman J, Mallannagari S, Guevara MC, Belfort BDW, Bao S, Srivastava S, Morkas M, Ji E, Katlowitz KA, Addison A, Tantry EK, Blessing MM, Mohila CA, Gadgil N, McClugage SG, Bauer DF, Whitehead WE, Aldave G, Tanweer O, Jaleel N, Jalali A, Patel AJ, Sheth SA, Weiner HL, Gopinath S, Rao G, Harmanci AS, Curry D, Arenkiel BR. Cell type transcriptional identities are maintained in cultured ex vivo human brain tissue. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.19.629223. [PMID: 39763930 PMCID: PMC11702615 DOI: 10.1101/2024.12.19.629223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
It is becoming more broadly accepted that human-based models are needed to better understand the complexities of the human nervous system and its diseases. The recently developed human brain organotypic culture model is one highly promising model that requires the involvement of neurosurgeons and neurosurgical patients. Studies have investigated the electrophysiological properties of neurons in such ex vivo human tissues, but the maintenance of other cell types within explanted brain remains largely unknown. Here, using single-nucleus RNA sequencing, we systematically evaluate the transcriptional identities of the various cell types found in six patient samples after fourteen days in culture (83,501 nuclei from day 0 samples and 45,738 nuclei from day 14 samples). We used two pediatric temporal lobectomy samples, an adult frontal cortex sample, two IDH wild-type glioblastoma samples, and one medulloblastoma sample. We found remarkably high correlations of day 14 transcriptional identities to day 0 tissue, especially in tumor cells (r = 0.90 to 0.93), though microglia (r = 0.86), oligodendrocytes (r = 0.80), pericytes (r = 0.77), endothelial cells (r = 0.78), and fibroblasts (r = 0.76) showed strong preservation of their transcriptional profiles as well. Astrocytes and excitatory neurons showed more moderate preservation (r = 0.66 and 0.47, respectively). Because the main difficulty with organotypic brain cultures is the acquisition of human tissue, which is readily available to neurosurgeons, this model is easily accessible to neurosurgeon-scientists and neurosurgeons affiliated with research laboratories. Broad uptake of this more representative model should prompt advances in our understanding of many uniquely human diseases, lead to more reliable clinical trial performance, and ultimately yield better therapies for our patients.
Collapse
Affiliation(s)
- JP McGinnis
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| | - Joshua Ortiz-Guzman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| | - Sai Mallannagari
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| | - Maria Camila Guevara
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| | - Benjamin D. W. Belfort
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Suyang Bao
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Snigdha Srivastava
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
- Medical Scientist Training Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Maria Morkas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
| | - Emily Ji
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
| | - Kalman A. Katlowitz
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Angela Addison
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Development, Disease Models & Therapeutics Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Evelyne K. Tantry
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| | - Melissa M. Blessing
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Carrie A. Mohila
- Department of Pathology, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nisha Gadgil
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Samuel G. McClugage
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - David F. Bauer
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - William E. Whitehead
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Guillermo Aldave
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Omar Tanweer
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Naser Jaleel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ali Jalali
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akash J. Patel
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Sameer A. Sheth
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Howard L. Weiner
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Shankar Gopinath
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ganesh Rao
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
| | - Akdes Serin Harmanci
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| | - Daniel Curry
- Department of Neurosurgery, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Neurosurgery, Texas Children’s Hospital, Baylor College of Medicine, Houston, TX 77030, USA
| | - Benjamin R. Arenkiel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX,77030, USA
- Jan and Dan Duncan Neurological Research Institute, Texas Children’s Hospital, Houston, TX,77030, USA
| |
Collapse
|
36
|
Devraj K, Kulkarni O, Liebner S. Regulation of the blood-brain barrier function by peripheral cues in health and disease. Metab Brain Dis 2024; 40:61. [PMID: 39671124 PMCID: PMC11645320 DOI: 10.1007/s11011-024-01468-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/12/2024] [Indexed: 12/14/2024]
Abstract
The blood-brain barrier (BBB) is formed by microvascular endothelial cells which are ensembled with pericytes, astrocytes, microglia and neurons in the neurovascular unit (NVU) that is crucial for neuronal function. Given that the NVU and the BBB are highly dynamic and regulated structures, their integrity is continuously challenged by intrinsic and extrinsic factors. Herein, factors from peripheral organs such as gonadal and adrenal hormones may influence vascular function also in CNS endothelial cells in a sex- and age-dependent manner. The communication between the periphery and the CNS likely takes place in specific areas of the brain among which the circumventricular organs have a central position due to their neurosensory or neurosecretory function, owing to physiologically leaky blood vessels. In acute and chronic pathological conditions like liver, kidney, pulmonary disease, toxins and metabolites are generated that reach the brain via the circulation and may directly or indirectly affect BBB functionality via the activation of the immunes system. For example, chronic kidney disease (CKD) currently affects more than 840 million people worldwide and is likely to increase along with western world comorbidities of the cardio-vascular system in continuously ageing societies. Toxins leading to the uremic syndrome, may further lead to neurological complications such as cognitive impairment and uremic encephalopathy. Here we summarize the effects of hormones, toxins and inflammatory reactions on the brain vasculature, highlighting the urgent demand for mechanistically exploring the communication between the periphery and the CNS, focusing on the BBB as a last line of defense for brain protection.
Collapse
Affiliation(s)
- Kavi Devraj
- Department of Biological Sciences, Birla Institute of Technology & Science, Pilani, Hyderabad, 500078, Telangana, India.
| | - Onkar Kulkarni
- Metabolic Disorders and Neuroscience Research Laboratory, Department of Pharmacy, Birla Institute of Technology & Science, Pilani, Hyderabad, 500078, Telangana, India
| | - Stefan Liebner
- Institute of Neurology (Edinger Institute), University Hospital, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Excellence Cluster Cardio-Pulmonary Institute (CPI), Partner Site Frankfurt, Frankfurt am Main, Germany.
- German Center for Cardiovascular Research (DZHK), Partner Site Frankfurt/Mainz, Frankfurt, Germany.
| |
Collapse
|
37
|
Tu T, Zhang S, Li J, Jiang C, Ren J, Zhang S, Meng X, Peng H, Xing D, Zhang H, Hong T, Yu J. Inhibition of Angiopoietin-2 rescues sporadic brain arteriovenous malformations by reducing pericyte loss. Angiogenesis 2024; 28:3. [PMID: 39636449 DOI: 10.1007/s10456-024-09957-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Accepted: 10/11/2024] [Indexed: 12/07/2024]
Abstract
Brain arteriovenous malformations (bAVMs) are a major cause of hemorrhagic stroke in children and young adults. These lesions are thought to result from somatic KRAS/BRAF mutations in brain endothelial cells (bECs). In this study, we introduce a new bAVM model by inducing a brain endothelial-specific BrafV600E mutation using the Slc1o1c1(BAC)-CreER driver line. The pathological characteristics of this model resemble human bAVMs, including dilated and hyperpermeable vessels, as well as parenchymal hemorrhage. We observed that these lesions showed a typical reduction in pericyte coverage and disruption of the pericyte-endothelial cell connection. Additionally, we found that ANGPT2 levels were significantly increased in the endothelium of bAVM lesions, which may be a critical factor in the pericyte deficits of the malformed vessels. Treatment with an ANGPT2 neutralizing antibody confirmed that blocking ANGPT2 can restore pericyte density in bAVM lesions, improve pericyte coverage around microvessels, enhance tight junction protein coverage related to endothelial cells, and normalize endothelial barrier function. In summary, our findings suggest that increased ANGPT2 expression in endothelial cells with the BrafV600E mutation is a key factor in pericyte deficiencies in bAVMs, highlighting the potential effectiveness of anti-ANGPT2 therapy in treating bAVMs.
Collapse
Affiliation(s)
- Tianqi Tu
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Neurosurgery, The Affiliated Hospital, Southwest Medical University, Luzhou, China
| | - Shikun Zhang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Jingwei Li
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Chendan Jiang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Jian Ren
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Shiju Zhang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Xiaosheng Meng
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China
| | - Hao Peng
- Department of Neurosurgery in Hainan General Hospital, Hainan Medical University, Hainan, China
- Department of neurosurgery, The second people's hospital of hainan province, Hainan, China
| | - Dong Xing
- Biomedical Pioneering Innovation Center (BIOPIC), School of Life Sciences, Peking University, Beijing, China
- Beijing Advanced Innovation Center for Genomics (ICG), Peking University, Beijing, China
| | - Hongqi Zhang
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Tao Hong
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| | - Jiaxing Yu
- Department of Neurosurgery, Xuanwu Hospital, International Neuroscience Institute, Capital Medical University, Beijing, 100053, China.
- Department of Neurosurgery, Xuanwu Hospital, Capital Medical University, 45 Changchun St, Beijing, 100053, China.
| |
Collapse
|
38
|
Zhang J, Ryu JY, Tirado SR, Dickinson LD, Abosch A, Aziz-Sultan MA, Boulos AS, Barrow DL, Batjer HH, Binyamin TR, Blackburn SL, Chang EF, Chen PR, Colby GP, Cosgrove GR, David CA, Day AL, Folkerth RD, Frerichs KU, Howard BM, Jahromi BR, Niemela M, Ojemann SG, Patel NJ, Richardson RM, Shi X, Valle-Giler EP, Wang AC, Welch BG, Williams Z, Zusman EE, Weiss ST, Du R. A Transcriptomic Comparative Study of Cranial Vasculature. Transl Stroke Res 2024; 15:1108-1122. [PMID: 37612482 DOI: 10.1007/s12975-023-01186-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/06/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
In genetic studies of cerebrovascular diseases, the optimal vessels to use as controls remain unclear. Our goal is to compare the transcriptomic profiles among 3 different types of control vessels: superficial temporal artery (STA), middle cerebral arteries (MCA), and arteries from the circle of Willis obtained from autopsies (AU). We examined the transcriptomic profiles of STA, MCA, and AU using RNAseq. We also investigated the effects of using these control groups on the results of the comparisons between aneurysms and the control arteries. Our study showed that when comparing pathological cerebral arteries to control groups, all control groups presented similar responses in the activation of immunological processes, the regulation of intracellular signaling pathways, and extracellular matrix productions, despite their intrinsic biological differences. When compared to STA, AU exhibited upregulation of stress and apoptosis genes, whereas MCA showed upregulation of genes associated with tRNA/rRNA processing. Moreover, our results suggest that the matched case-control study design, which involves control STA samples collected from the same subjects of matched aneurysm samples in our study, can improve the identification of non-inherited disease-associated genes. Given the challenges associated with obtaining fresh intracranial arteries from healthy individuals, our study suggests that using MCA, AU, or paired STA samples as controls are feasible strategies for future large-scale studies investigating cerebral vasculopathies. However, the intrinsic differences of each type of control should be taken into consideration when interpreting the results. With the limitations of each control type, it may be most optimal to use multiple tissues as controls.
Collapse
Affiliation(s)
- Jianing Zhang
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Jee-Yeon Ryu
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Selena-Rae Tirado
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | | | - Aviva Abosch
- Department of Neurosurgery, University of Nebraska Medical Center, Omaha, NE, USA
| | - M Ali Aziz-Sultan
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Alan S Boulos
- Department of Neurosurgery, Albany Medical Center, Albany, NY, USA
| | - Daniel L Barrow
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - H Hunt Batjer
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, USA
| | | | - Spiros L Blackburn
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Edward F Chang
- Department of Neurosurgery, University of California San Francisco, San Francisco, CA, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - P Roc Chen
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Geoffrey P Colby
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - G Rees Cosgrove
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Carlos A David
- Department of Neurosurgery, University of North Carolina Chapel Hill, Chapel Hill, NC, USA
| | - Arthur L Day
- Department of Neurosurgery, University of Texas Health Science Center, Houston, TX, USA
| | - Rebecca D Folkerth
- Department of Forensic Medicine, New York University Grossman School of Medicine, New York, NY, USA
| | - Kai U Frerichs
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - Brian M Howard
- Department of Neurosurgery, Emory University, Atlanta, GA, USA
| | - Behnam R Jahromi
- Department of Neurosurgery, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Mika Niemela
- Department of Neurosurgery, Helsinki University and Helsinki University Hospital, Helsinki, Finland
| | - Steven G Ojemann
- Department of Neurosurgery, University of Colorado, Denver, CO, USA
| | - Nirav J Patel
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - R Mark Richardson
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Xiangen Shi
- Department of Neurosurgery, Affiliated Fuxing Hospital, Capital Medical University, Beijing, China
| | | | - Anthony C Wang
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | - Babu G Welch
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, USA
| | - Ziv Williams
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Scott T Weiss
- Channing Division of Network Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Rose Du
- Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
39
|
He Q, Huo R, Sun Y, Zheng Z, Xu H, Zhao S, Ni Y, Yu Q, Jiao Y, Zhang W, Zhao J, Cao Y. Cerebral vascular malformations: pathogenesis and therapy. MedComm (Beijing) 2024; 5:e70027. [PMID: 39654683 PMCID: PMC11625509 DOI: 10.1002/mco2.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 10/30/2024] [Accepted: 11/13/2024] [Indexed: 12/12/2024] Open
Abstract
Cerebral vascular malformations (CVMs), particularly cerebral cavernous malformations and cerebral arteriovenous malformations, pose significant neurological challenges due to their complex etiologies and clinical implications. Traditionally viewed as congenital conditions with structural abnormalities, CVMs have been treated primarily through resection, embolization, and stereotactic radiosurgery. While these approaches offer some efficacy, they often pose risks to neurological integrity due to their invasive nature. Advances in next-generation sequencing, particularly high-depth whole-exome sequencing and bioinformatics, have facilitated the identification of gene variants from neurosurgically resected CVMs samples. These advancements have deepened our understanding of CVM pathogenesis. Somatic mutations in key mechanistic pathways have been identified as causative factors, leading to a paradigm shift in CVM treatment. Additionally, recent progress in noninvasive and minimally invasive techniques, including gene imaging genomics, liquid biopsy, or endovascular biopsies (endovascular sampling of blood vessel lumens), has enabled the identification of gene variants associated with CVMs. These methods, in conjunction with clinical data, offer potential for early detection, dynamic monitoring, and targeted therapies that could be used as monotherapy or adjuncts to surgery. This review highlights advancements in CVM pathogenesis and precision therapies, outlining the future potential of precision medicine in CVM management.
Collapse
Affiliation(s)
- Qiheng He
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Ran Huo
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yingfan Sun
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Zhiyao Zheng
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Research Unit of Accurate DiagnosisTreatment, and Translational Medicine of Brain Tumors Chinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
- Department of Neurosurgery Peking Union Medical College HospitalChinese Academy of Medical Sciences and Peking Union Medical College Beijing ChinaBeijingChina
| | - Hongyuan Xu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Shaozhi Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yang Ni
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Qifeng Yu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yuming Jiao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Wenqian Zhang
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Jizong Zhao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
| | - Yong Cao
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
- Basic and Translational Medicine CenterChina National Clinical Research Center for Neurological DiseasesBeijingChina
- Collaborative Innovation CenterBeijing Institute of Brain DisordersBeijingChina
| |
Collapse
|
40
|
Crouch EE. The molecular landscape of vascular cells in the human brain. Nat Rev Cardiol 2024; 21:847-848. [PMID: 39304749 DOI: 10.1038/s41569-024-01079-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Affiliation(s)
- Elizabeth E Crouch
- Department of Pediatrics, University of California, San Francisco, CA, USA.
| |
Collapse
|
41
|
Park H, Lee S, Furtado J, Robinson M, Schwartz M, Young L, Eichmann A. PIEZO1 overexpression in hereditary hemorrhagic telangiectasia arteriovenous malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.27.625696. [PMID: 39651206 PMCID: PMC11623632 DOI: 10.1101/2024.11.27.625696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Background Hereditary hemorrhagic telangiectasia (HHT) is an inherited vascular disorder characterized by arteriovenous malformations (AVMs). Loss-of-function mutations in Activin receptor-like kinase 1 (ALK1) cause type 2 HHT and Alk1 knockout (KO) mice develop AVMs due to overactivation of VEGFR2/PI3K/AKT signaling pathways. However, the full spectrum of signaling alterations in Alk1 mutants remains unknown and means to combat AVM formation in patients are yet to be developed. Methods Single-cell RNA sequencing of endothelial-specific Alk1 KO mouse retinas and controls identified a cluster of endothelial cells (ECs) that was unique to Alk1 mutants and that overexpressed fluid shear stress (FSS) signaling signatures including upregulation of the mechanosensitive ion channel PIEZO1. PIEZO1 overexpression was confirmed in human HHT lesions, and genetic and pharmacological PIEZO1 inhibition was tested in Alk1 KO mice, as well as downstream PIEZO1 signaling. Results Pharmacological PIEZO1 inhibition, and genetic Piezo1 deletion in Alk1 -deficient mice effectively mitigated AVM formation. Furthermore, we identified that elevated VEGFR2/AKT, ERK5-p62-KLF4, hypoxia and proliferation signaling were significantly reduced in Alk1 - Piezo1 double ECKO mice. Conclusions PIEZO1 overexpression and signaling is integral to HHT2, and PIEZO1 blockade reduces AVM formation and alleviates cellular and molecular hallmarks of ALK1-deficient cells. This finding provides new insights into the mechanistic underpinnings of ALK1-related vascular diseases and identifies potential therapeutic targets to prevent AVMs.
Collapse
|
42
|
Saito S, Nakamura Y, Miyashita S, Sato T, Hoshina K, Okada M, Hasegawa H, Oishi M, Fujii Y, Körbelin J, Kubota Y, Tainaka K, Natsumeda M, Ueno M. CRISPR/CasRx suppresses KRAS-induced brain arteriovenous malformation developed in postnatal brain endothelial cells in mice. JCI Insight 2024; 9:e179729. [PMID: 39576014 PMCID: PMC11601911 DOI: 10.1172/jci.insight.179729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 10/02/2024] [Indexed: 11/29/2024] Open
Abstract
Brain arteriovenous malformations (bAVMs) are anomalies forming vascular tangles connecting the arteries and veins, which cause hemorrhagic stroke in young adults. Current surgical approaches are highly invasive, and alternative therapeutic methods are warranted. Recent genetic studies identified KRAS mutations in endothelial cells of bAVMs; however, the underlying process leading to malformation in the postnatal stage remains unknown. Here we established a mouse model of bAVM developing during the early postnatal stage. Among 4 methods tested, mutant KRAS specifically introduced in brain endothelial cells by brain endothelial cell-directed adeno-associated virus (AAV) and endothelial cell-specific Cdh5-CreERT2 mice successfully induced bAVMs in the postnatal period. Mutant KRAS led to the development of multiple vascular tangles and hemorrhage in the brain with increased MAPK/ERK signaling and growth in endothelial cells. Three-dimensional analyses in cleared tissue revealed dilated vascular networks connecting arteries and veins, similar to human bAVMs. Single-cell RNA-Seq revealed dysregulated gene expressions in endothelial cells and multiple cell types involved in the pathological process. Finally, we employed CRISPR/CasRx to knock down mutant KRAS expression, which efficiently suppressed bAVM development. The present model reveals pathological processes that lead to postnatal bAVMs and demonstrates the efficacy of therapeutic strategies with CRISPR/CasRx.
Collapse
Affiliation(s)
- Shoji Saito
- Department of Neurosurgery and
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Yuka Nakamura
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Satoshi Miyashita
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Tokiharu Sato
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kana Hoshina
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | | | | | - Jakob Körbelin
- Department of Oncology, Hematology and Bone Marrow Transplantation, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Yoshiaki Kubota
- Department of Anatomy, Keio University School of Medicine, Tokyo, Japan
| | - Kazuki Tainaka
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| | | | - Masaki Ueno
- Department of System Pathology for Neurological Disorders, Brain Research Institute, Niigata University, Niigata, Japan
| |
Collapse
|
43
|
Fan Y, Chen J, Fan Z, Chirinos J, Stein JL, Sullivan PF, Wang R, Nadig A, Zhang DY, Huang S, Jiang Z, Guan PY, Qian X, Li T, Li H, Sun Z, Ritchie MD, O’Brien J, Witschey W, Rader DJ, Li T, Zhu H, Zhao B. Mapping rare protein-coding variants on multi-organ imaging traits. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.16.24317443. [PMID: 39606337 PMCID: PMC11601754 DOI: 10.1101/2024.11.16.24317443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Human organ structure and function are important endophenotypes for clinical outcomes. Genome-wide association studies (GWAS) have identified numerous common variants associated with phenotypes derived from magnetic resonance imaging (MRI) of the brain and body. However, the role of rare protein-coding variations affecting organ size and function is largely unknown. Here we present an exome-wide association study that evaluates 596 multi-organ MRI traits across over 50,000 individuals from the UK Biobank. We identified 107 variant-level associations and 224 gene-based burden associations (67 unique gene-trait pairs) across all MRI modalities, including PTEN with total brain volume, TTN with regional peak circumferential strain in the heart left ventricle, and TNFRSF13B with spleen volume. The singleton burden model and AlphaMissense annotations contributed 8 unique gene-trait pairs including the association between an approved drug target gene of KCNA5 and brain functional activity. The identified rare coding signals elucidate some shared genetic regulation across organs, prioritize previously identified GWAS loci, and are enriched for drug targets. Overall, we demonstrate how rare variants enhance our understanding of genetic effects on human organ morphology and function and their connections to complex diseases.
Collapse
Affiliation(s)
- Yijun Fan
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jie Chen
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zirui Fan
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Julio Chirinos
- Division of Cardiovascular Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA
- University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Jason L. Stein
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- UNC Neuroscience Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Patrick F. Sullivan
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rujin Wang
- Regeneron Genetics Center, 777 Old Saw Mill River Rd., Tarrytown, NY, 10591, USA
| | - Ajay Nadig
- Department of Biomedical Informatics, Harvard Medical School, Boston, MA 02115, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
- Analytic and Translational Genetics Unit, Massachusetts General Hospital, Boston, MA 02114, USA
| | - David Y. Zhang
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Shuai Huang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zhiwen Jiang
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Peter Yi Guan
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xinjie Qian
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ting Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Haoyue Li
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Zehui Sun
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marylyn D. Ritchie
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
| | - Joan O’Brien
- Scheie Eye Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Medicine Center for Ophthalmic Genetics in Complex Diseases, Philadelphia, PA 19104, USA
| | - Walter Witschey
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J. Rader
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Tengfei Li
- Department of Radiology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hongtu Zhu
- Department of Biostatistics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Biomedical Research Imaging Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Computer Science, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bingxin Zhao
- Graduate Group in Applied Mathematics and Computational Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Statistics and Data Science, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Biomedical Informatics, Perelman School of Medicine, University of Pennsylvania Philadelphia, PA 19104, USA
- Center for AI and Data Science for Integrated Diagnostics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Population Aging Research Center, University of Pennsylvania, Philadelphia, PA 19104, USA
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Penn Center for Eye-Brain Health, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
44
|
Qiu J, Peng S, Qu R, Wu L, Xing L, Zhang L, Sun J. New evidence of vascular defects in neurodegenerative diseases revealed by single cell RNA sequencing. Clin Sci (Lond) 2024; 138:1377-1394. [PMID: 39469930 DOI: 10.1042/cs20241658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/07/2024] [Accepted: 10/21/2024] [Indexed: 10/30/2024]
Abstract
Neurodegenerative diseases (NDs) involve the progressive loss of neuronal structure or function in the brain and spinal cord. Despite their diverse etiologies, NDs manifest similar pathologies. Emerging research identifies vascular defects as a previously neglected hallmark of NDs. The development and popularization of single-cell RNA sequencing (scRNA-seq) technologies have significantly advanced our understanding of brain vascular cell types and their molecular characteristics, including gene expression changes at the single-cell level in NDs. These unprecedented insights deepen our understanding of the pathogenic mechanisms underlying NDs. However, the occurrence and role of vascular defects in disease progression remain largely unexplored. In this paper, we systematically summarize recent advances in the structure and organization of the central nervous system vasculature in mice, healthy individuals, and patients with NDs, focussing primarily on disease-specific alterations in vascular cell types or subtypes. Combining scRNA-seq with pathology evidence, we propose that vascular defects, characterized by disruptions in cell types and structural integrity, may serve as common early features of NDs. Finally, we discuss several pathways through which vascular defects in NDs lead to neuronal degeneration. A deeper understanding of the causes and contributions of vascular defects to NDs aids in elucidating the pathogenic mechanisms and developing meaningful therapeutic interventions.
Collapse
Affiliation(s)
- Jiaying Qiu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
- Department of Prenatal Screening and Diagnosis Center, Affiliated Maternity and Child Health Care Hospital of Nantong University, Nantong, China
| | - Siwan Peng
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Ruobing Qu
- Biomedical Polymers Laboratory, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Liucheng Wu
- Laboratory Animal Center, Nantong University, Nantong 226001, China
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| | - Junjie Sun
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, China
| |
Collapse
|
45
|
Xie J, Yang A, Liu Q, Deng X, Lv G, Ou X, Zheng S, Situ M, Yu Y, Liang J, Zou Y, Tang H, Zhao Z, Lin F, Liu W, Xiao W. Single-cell RNA sequencing elucidated the landscape of breast cancer brain metastases and identified ILF2 as a potential therapeutic target. Cell Prolif 2024; 57:e13697. [PMID: 38943472 PMCID: PMC11533045 DOI: 10.1111/cpr.13697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/13/2024] [Accepted: 06/07/2024] [Indexed: 07/01/2024] Open
Abstract
Distant metastasis remains the primary cause of morbidity in patients with breast cancer. Hence, the development of more efficacious strategies and the exploration of potential targets for patients with metastatic breast cancer are urgently needed. The data of six patients with breast cancer brain metastases (BCBrM) from two centres were collected, and a comprehensive landscape of the entire tumour ecosystem was generated through the utilisation of single-cell RNA sequencing. We utilised the Monocle2 and CellChat algorithms to investigate the interrelationships among each subcluster. In addition, multiple signatures were collected to evaluate key components of the subclusters through multi-omics methodologies. Finally, we elucidated common expression programs of malignant cells, and experiments were conducted in vitro and in vivo to determine the functions of interleukin enhancer-binding factor 2 (ILF2), which is a key gene in the metastasis module, in BCBrM progression. We found that subclusters in each major cell type exhibited diverse characteristics. Besides, our study indicated that ILF2 was specifically associated with BCBrM, and experimental validations further demonstrated that ILF2 deficiency hindered BCBrM progression. Our study offers novel perspectives on the heterogeneity of BCBrM and suggests that ILF2 could serve as a promising biomarker or therapeutic target for BCBrM.
Collapse
Affiliation(s)
- Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Anli Yang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Qianwen Liu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Guangzhao Lv
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Xueqi Ou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Shaoquan Zheng
- The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Min‐Yi Situ
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Yang Yu
- The First Affiliated HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Jie‐Ying Liang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Department of Medical Oncology, Sun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhouChina
| | - Yutian Zou
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Zijin Zhao
- Department of Neurosurgery, Xiangya HospitalCentral South UniversityChangshaHunanChina
| | - Fuhua Lin
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhouChina
| | - Wei Liu
- Department of Breast, Guangzhou Red Cross Hospital, Medical CollegeJinan UniversityGuangzhouGuangdongChina
| | - Weikai Xiao
- Department of Breast Cancer, Guangdong Provincial People's Hospital and Guangdong Academy of Medical SciencesSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
46
|
Karim S, Jain S, Martinez ML, Chen K. Intracranial Vascular Malformations in Children. Neuroimaging Clin N Am 2024; 34:545-565. [PMID: 39461764 DOI: 10.1016/j.nic.2024.08.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Intracranial vascular malformations (IVMs) represent a significant challenge in pediatric medicine due to their diagnostic and therapeutic complexity. Despite their rarity, the severity of potential neurologic outcomes necessitates a comprehensive understanding and approach to management. This article aims to provide an overview of pediatric IVMs, specifically nidal arteriovenous malformations, cavernous malformations, capillary telangiectasias, and developmental venous anomalies, and highlight the importance of advanced diagnostic imaging and therapeutic strategies in improving outcomes. Vein of Galen malformations, pial arteriovenous fistulas, dural sinus malformations, and intracranial venous malformations will be addressed in other articles. Following a discussion of imaging and clinical considerations within the field, novel imaging techniques will be discussed.
Collapse
Affiliation(s)
- Sulaiman Karim
- Texas Tech University Health Science Center School of Medicine, 3601 4th Street, Lubbock, TX 79430, USA; Edward B. Singleton Department of Radiology, Texas Children's Hospital, 6701 Fannin Street, Suite 470, Houston, TX 77030, USA
| | - Samagra Jain
- Baylor College of Medicine, 1 Baylor Plaza, Houston, TX 77030, USA
| | - Mesha L Martinez
- Department of Radiology, Texas Children's Hospital, 9835 North Lake Creek Parkway, Suite PA120, Austin, TX 78717, USA; Department of Radiology, Baylor College of Medicine, Houston, TX, USA
| | - Karen Chen
- Edward B. Singleton Department of Radiology, Texas Children's Hospital, 6701 Fannin Street, Suite 470, Houston, TX 77030, USA; Department of Radiology, Baylor College of Medicine, Houston, TX, USA; Department of Neurosurgery, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
47
|
Hale AT, Liu S, Huang F, Song Y, Crowley MR, Crossman DK, Caudill C, Arynchyna-Smith A, Chapman L, Feldman MJ, Saccomano BW, Rocque BG, Rozzelle CJ, Blount JP, Johnston JM, Chong Z, Jones JG. Endoluminal Biopsy for Vein of Galen Malformation. Neurosurgery 2024; 95:1082-1088. [PMID: 38747605 PMCID: PMC11449423 DOI: 10.1227/neu.0000000000002986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/11/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Vein of Galen malformation (VOGM), the result of arteriovenous shunting between choroidal and/or subependymal arteries and the embryologic prosencephalic vein, is among the most severe cerebrovascular disorders of childhood. We hypothesized that in situ analysis of the VOGM lesion using endoluminal tissue sampling (ETS) is feasible and may advance our understanding of VOGM genetics, pathogenesis, and maintenance. METHODS We collected germline DNA (cheek swab) from patients and their families for genetic analysis. In situ VOGM "endothelial" cells (ECs), defined as CD31 + and CD45 - , were obtained from coils through ETS during routine endovascular treatment. Autologous peripheral femoral ECs were also collected from the access sheath. Single-cell RNA sequencing of both VOGM and peripheral ECs was performed to demonstrate feasibility to define the transcriptional architecture. Comparison was also made with a published normative cerebrovascular transcriptome atlas. A subset of VOGM ECs was reserved for future DNA sequencing to assess for somatic and second-hit mutations. RESULTS Our cohort contains 6 patients who underwent 10 ETS procedures from arterial and/or venous access during routine VOGM treatment (aged 12 days to ∼6 years). No periprocedural complications attributable to ETS occurred. Six unique coil types were used. ETS captured 98 ± 88 (mean ± SD; range 17-256) experimental ECs (CD31 + and CD45 - ). There was no discernible correlation between cell yield and coil type or route of access. Single-cell RNA sequencing demonstrated hierarchical clustering and unique cell populations within the VOGM EC compartment compared with peripheral EC controls when annotated using a publicly available cerebrovascular cell atlas. CONCLUSION ETS may supplement investigations aimed at development of a molecular-genetic taxonomic classification scheme for VOGM. Moreover, results may eventually inform the selection of personalized pharmacologic or genetic therapies for VOGM and cerebrovascular disorders more broadly.
Collapse
Affiliation(s)
- Andrew T. Hale
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Shanrun Liu
- Single Cell and Flow Cytometry Core, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Fengyuan Huang
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Yuwei Song
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Michael R. Crowley
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - David K. Crossman
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Caroline Caudill
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Anastasia Arynchyna-Smith
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Lindsey Chapman
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Michael J. Feldman
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Benjamin W. Saccomano
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Brandon G. Rocque
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Curtis J. Rozzelle
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Jeffrey P. Blount
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - James M. Johnston
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| | - Zechen Chong
- Heflin Genetics Center and Genetics Research Division, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Jesse G. Jones
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatric Neurosurgery, Children's of Alabama, Birmingham, Alabama, USA
| |
Collapse
|
48
|
Eremina OE, Vazquez C, Larson KN, Mouchawar A, Fernando A, Zavaleta C. The evolution of immune profiling: will there be a role for nanoparticles? NANOSCALE HORIZONS 2024; 9:1896-1924. [PMID: 39254004 PMCID: PMC11887860 DOI: 10.1039/d4nh00279b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Immune profiling provides insights into the functioning of the immune system, including the distribution, abundance, and activity of immune cells. This understanding is essential for deciphering how the immune system responds to pathogens, vaccines, tumors, and other stimuli. Analyzing diverse immune cell types facilitates the development of personalized medicine approaches by characterizing individual variations in immune responses. With detailed immune profiles, clinicians can tailor treatment strategies to the specific immune status and needs of each patient, maximizing therapeutic efficacy while minimizing adverse effects. In this review, we discuss the evolution of immune profiling, from interrogating bulk cell samples in solution to evaluating the spatially-rich molecular profiles across intact preserved tissue sections. We also review various multiplexed imaging platforms recently developed, based on immunofluorescence and imaging mass spectrometry, and their impact on the field of immune profiling. Identifying and localizing various immune cell types across a patient's sample has already provided important insights into understanding disease progression, the development of novel targeted therapies, and predicting treatment response. We also offer a new perspective by highlighting the unprecedented potential of nanoparticles (NPs) that can open new horizons in immune profiling. NPs are known to provide enhanced detection sensitivity, targeting specificity, biocompatibility, stability, multimodal imaging features, and multiplexing capabilities. Therefore, we summarize the recent developments and advantages of NPs, which can contribute to advancing our understanding of immune function to facilitate precision medicine. Overall, NPs have the potential to offer a versatile and robust approach to profile the immune system with improved efficiency and multiplexed imaging power.
Collapse
Affiliation(s)
- Olga E Eremina
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Celine Vazquez
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Kimberly N Larson
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Anthony Mouchawar
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Augusta Fernando
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| | - Cristina Zavaleta
- Department of Biomedical Engineering, University of Southern California, Los Angeles, California 90089, USA.
- Michelson Center for Convergent Bioscience, University of Southern California, Los Angeles, California 90089, USA
| |
Collapse
|
49
|
Hou X, Liang F, Li J, Yang Y, Wang C, Qi T, Sheng W. Mapping cell diversity in human sporadic cerebral cavernous malformations. Gene 2024; 924:148605. [PMID: 38788816 DOI: 10.1016/j.gene.2024.148605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Cerebral cavernous malformation (CCM) is a low-flow, bleeding-prone vascular disease that can cause cerebral hemorrhage, seizure and neurological deficits. Its inheritance mode includes sporadic or autosomal dominant inheritance with incomplete penetrance, namely sporadic CCM (SCCM) and familial CCM. SCCM is featured by single lesion and single affection in a family. Among CCM patients especially SCCM, the pathogenesis of the corresponding phenotypes and pathological features or candidate genes have not been fully elucidated yet. METHODS Here, we performed in-depth single-cell RNA sequencing (scRNA-Seq) and bulk assay for transposase-accessible chromatin sequencing (ATAC-Seq) in SCCM and control patients. Further validation was conducted for the gene of interest using qPCR and RNA in situ hybridization (RNA FISH) techniques to provide further atlas and evidence for SCCM generative process. RESULTS We identified six cell types in the SCCM and control vessels and found that the expression of NEK1, RNPC3, FBRSL1, IQGAP2, MCUB, AP3B1, ESCO1, MYO9B and PVT1 were up-regulated in SCCM tissues. Among the six cell types, we found that compared with control conditions, PVT1 showed a rising peak which followed the pseudo-time axis in endothelial cell clusters of SCCM samples, while showed an increasing trend in smooth muscle cell clusters of SCCM samples. Further experiments indicated that, compared with the control vessels, PVT1 exhibited significantly elevated expression in SCCM samples. CONCLUSION In SCCM conditions, We found that in the process of development from control to lesion conditions, PVT1 showed a rising peak in endothelial cells and showed an increasing trend in smooth muscle cells at the same time. Overall, there was a significantly elevated expression of NEK1, RNPC3, FBRSL1, IQGAP2, MCUB, AP3B1, ESCO1, MYO9B and PVT1 in SCCM specimens compared to control samples.
Collapse
Affiliation(s)
- Xiaocan Hou
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Feng Liang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Jiaoxing Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Yibing Yang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China
| | - Chuhuai Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Tiewei Qi
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-sen University, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| | - Wenli Sheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University; Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, No.58 Zhongshan Road 2, Guangzhou, 510080, China.
| |
Collapse
|
50
|
Choudhury A, Cady MA, Lucas CHG, Najem H, Phillips JJ, Palikuqi B, Zakimi N, Joseph T, Birrueta JO, Chen WC, Bush NAO, Hervey-Jumper SL, Klein OD, Toedebusch CM, Horbinski CM, Magill ST, Bhaduri A, Perry A, Dickinson PJ, Heimberger AB, Ashworth A, Crouch EE, Raleigh DR. Perivascular NOTCH3+ Stem Cells Drive Meningioma Tumorigenesis and Resistance to Radiotherapy. Cancer Discov 2024; 14:1823-1837. [PMID: 38742767 PMCID: PMC11452293 DOI: 10.1158/2159-8290.cd-23-1459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/29/2024] [Accepted: 05/10/2024] [Indexed: 05/16/2024]
Abstract
Meningiomas are the most common primary intracranial tumors. Treatments for patients with meningiomas are limited to surgery and radiotherapy, and systemic therapies remain ineffective or experimental. Resistance to radiotherapy is common in high-grade meningiomas and the cell types and signaling mechanisms that drive meningioma tumorigenesis and resistance to radiotherapy are incompletely understood. Here, we report that NOTCH3 drives meningioma tumorigenesis and resistance to radiotherapy and find that perivascular NOTCH3+ stem cells are conserved across meningiomas from humans, dogs, and mice. Integrating single-cell transcriptomics with lineage tracing and imaging approaches in genetically engineered mouse models and xenografts, we show NOTCH3 drives tumor-initiating capacity, cell proliferation, angiogenesis, and resistance to radiotherapy to increase meningioma growth and reduce survival. To translate these findings to patients, we show that an antibody stabilizing the extracellular negative regulatory region of NOTCH3 blocks meningioma tumorigenesis and sensitizes meningiomas to radiotherapy, reducing tumor growth and improving survival. Significance: There are no effective systemic therapies to treat meningiomas, and meningioma stem cells are poorly understood. Here, we report perivascular NOTCH3+ stem cells to drive meningioma tumorigenesis and resistance to radiotherapy. Our results identify a conserved mechanism and a therapeutic vulnerability to treat meningiomas that are resistant to standard interventions.
Collapse
Affiliation(s)
- Abrar Choudhury
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Medical Scientist Training Program, University of California San Francisco, San Francisco, CA, USA
| | - Martha A. Cady
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
- Tetrad Graduate Program, University of California, San Francisco, San Francisco, CA, USA
| | - Calixto-Hope G. Lucas
- Department of Pathology, Johns Hopkins University, Baltimore, MD, USA
- Department of Neurosurgery, Johns Hopkins University, Baltimore, MD, USA
| | - Hinda Najem
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Joanna J. Phillips
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Brisa Palikuqi
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Naomi Zakimi
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Tara Joseph
- Department of Pediatrics, University of California San Francisco, San Francisco, CA,USA
| | - Janeth Ochoa Birrueta
- Department of Pediatrics, University of California San Francisco, San Francisco, CA,USA
| | - William C. Chen
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | | | - Shawn L. Hervey-Jumper
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Ophir D. Klein
- Department of Orofacial Sciences, University of California San Francisco, San Francisco, CA, USA
| | - Christine M. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Craig M. Horbinski
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
- Department of Pathology, Northwestern University, Chicago, IL, USA
| | - Stephen T. Magill
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, USA
| | - Arie Perry
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, USA
| | - Amy B. Heimberger
- Department of Neurological Surgery, Northwestern University, Chicago, IL, USA
| | - Alan Ashworth
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA, USA
| | - Elizabeth E. Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA,USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - David R. Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|