1
|
Jones MWM, Flannery DT, Hurowitz JA, Tice MM, Schrank CE, Allwood AC, Tosca NJ, Catling DC, VanBommel SJ, Knight AL, Ganly B, Siebach KL, Benison KC, Broz AP, Zorzano MP, Heirwegh CM, Orenstein BJ, Clark BC, Sinclair KP, Shumway AO, Wade LA, Davidoff S, Nemere P, Wright AP, Galvin AE, Randazzo N, Martinez-Frias J, O’Neil LP. In situ crystallographic mapping constrains sulfate precipitation and timing in Jezero crater, Mars. SCIENCE ADVANCES 2025; 11:eadt3048. [PMID: 40238880 PMCID: PMC12002120 DOI: 10.1126/sciadv.adt3048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 03/12/2025] [Indexed: 04/18/2025]
Abstract
Late-stage Ca-sulfate-filled fractures are common on Mars. Notably, the Shenandoah formation in the western edge of Jezero crater preserves a variety of Ca-sulfate minerals in the fine-grained siliciclastic rocks explored by the Perseverance rover. However, the depositional environment and timing of the formation of these sulfates are unknown. To address this outstanding problem, we developed a technique to map the crystal orientations of these sulfates in situ at two stratigraphically similar locations in the Shenandoah formation, allowing us to constrain the burial depth and paleoenvironment at the time of their precipitation. Our crystal orientation mapping results and outcrop-scale fracture analyses reveal two different generations of Ca-sulfates: one likely precipitated in the shallow subsurface and a second one that formed at a burial depth below 80 meters. These results indicate that two studied locations capture two different times and distinct chemical conditions in the sedimentary history of the Shenandoah formation, providing multiple opportunities to evaluate surface and subsurface habitability.
Collapse
Affiliation(s)
- Michael W. M. Jones
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, 4000, Australia
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, 4000, Australia
- Planetary Surface Exploration Group, Queensland University of Technology, Brisbane, 4000, Australia
| | - David T. Flannery
- Planetary Surface Exploration Group, Queensland University of Technology, Brisbane, 4000, Australia
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, 4000, Australia
| | - Joel A. Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - Michael M. Tice
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - Christoph E. Schrank
- Planetary Surface Exploration Group, Queensland University of Technology, Brisbane, 4000, Australia
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, 4000, Australia
| | - Abigail C. Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Nicholas J. Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge, UK
| | - David C. Catling
- Department of Earth and Space Sciences, University of Washington, Seattle WA 98195, USA
| | - Scott J. VanBommel
- Department of Earth, Environmental, and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Abigail L. Knight
- Department of Earth, Environmental, and Planetary Sciences, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Briana Ganly
- Mineral Resources, Commonwealth Scientific and Industrial Research Organisation, Sydney, NSW, Australia
| | - Kirsten L. Siebach
- Department of Earth, Environmental and Planetary Sciences, Rice University, Houston, TX 77005, USA
| | - Kathleen C. Benison
- Department of Geology and Geography, West Virginia University, Morgantown, WV 26506, USA
| | - Adrian P. Broz
- Department of Earth, Atmospheric and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Maria-Paz Zorzano
- Centro de Astrobiología (CAB), CSIC-INTA, 28850 Torrejón de Ardoz, Madrid, Spain
| | - Chris M. Heirwegh
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Brendan J. Orenstein
- Planetary Surface Exploration Group, Queensland University of Technology, Brisbane, 4000, Australia
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, 4000, Australia
| | | | - Kimberly P. Sinclair
- Department of Earth and Space Sciences, University of Washington, Seattle WA 98195, USA
| | - Andrew O. Shumway
- Department of Earth and Space Sciences, University of Washington, Seattle WA 98195, USA
| | - Lawrence A. Wade
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Scott Davidoff
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Peter Nemere
- Planetary Surface Exploration Group, Queensland University of Technology, Brisbane, 4000, Australia
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, 4000, Australia
| | - Austin P. Wright
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adrian E. Galvin
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Nicholas Randazzo
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | | - Lauren P. O’Neil
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Li J, Liu H, Meng X, Duan D, Lu H, Zhang J, Zhang F, Elsworth D, Cardenas BT, Manga M, Zhou B, Fang G. Ancient ocean coastal deposits imaged on Mars. Proc Natl Acad Sci U S A 2025; 122:e2422213122. [PMID: 39993194 DOI: 10.1073/pnas.2422213122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 01/14/2025] [Indexed: 02/26/2025] Open
Abstract
The northern lowlands of early Mars could have contained a significant quantity of liquid water. However, the ocean hypothesis remains controversial due to the lack of conclusive evidence from the Martian subsurface. We use data from the Zhurong Rover Penetrating Radar on the southern Utopia Planitia to identify subsurface dipping reflectors indicative of an ancient prograding shoreline. The reflectors dip unidirectionally with inclinations in the range 6° to 20° and are imaged to a thickness of 10 to 35 m along an uninterrupted 1.3 km northward shoreline-perpendicular traverse. The consistent dip inclinations, absence of dissection by fluvial channels along the extended traverse, and low permittivity of the sediments are consistent with terrestrial coastal deposits-and discount fluvial, aeolian, or magmatic origins favored elsewhere on Mars. The structure, thickness, and length of the section support voluminous supply of onshore sediments into a large body of water, rather than a merely localized and short-lived melt event. Our findings not only provide support for the existence of an ancient Martian ocean in the northern plains but also offer crucial insights into the evolution of the ancient Martian environment.
Collapse
Affiliation(s)
- Jianhui Li
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Hai Liu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Xu Meng
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Diwen Duan
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Haijing Lu
- School of Civil Engineering and Transportation, Guangzhou University, Guangzhou 510006, China
| | - Jinhai Zhang
- Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China
| | - Fengshou Zhang
- Department of Geotechnical Engineering, Tongji University, Shanghai 200092, China
| | - Derek Elsworth
- Department of Energy and Mineral Engineering, The Pennsylvania State University, University Park, PA 16802
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802
| | - Benjamin T Cardenas
- Department of Geosciences, The Pennsylvania State University, University Park, PA 16802
| | - Michael Manga
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720
| | - Bin Zhou
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| | - Guangyou Fang
- Aerospace Information Research Institute, Chinese Academy of Sciences, Beijing 100094, China
| |
Collapse
|
3
|
Millan M, Campbell KA, Sriaporn C, Handley KM, Teece BL, Mahaffy P, Johnson SS. Recovery of Lipid Biomarkers in Hot Spring Digitate Silica Sinter as Analogs for Potential Biosignatures on Mars: Results from Laboratory and Flight-Like Experiments. ASTROBIOLOGY 2025; 25:225-252. [PMID: 40014383 DOI: 10.1089/ast.2024.0020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Digitate siliceous sinter deposits are common in geothermal environments. They form via evaporation and precipitation of cooling silica-rich fluids and passive microbial templating. Increasing interest in these "finger-like" microstromatolitic sinters is related to their morphological and mineralogical resemblance to opaline silica-rich rocks discovered by NASA's Spirit rover in the Columbia Hills, Gusev crater, Mars. However, these terrestrial deposits remain understudied, specifically in terms of biosignature content and long-term preservation potential. In this study, six digitate, opaline (opal-A) sinter deposits were collected from five Taupō Volcanic Zonegeothermal fields, and their lipid biosignatures were investigated as Mars analogs. Samples were collected in pools and discharge channels of varied temperatures, pH, and water chemistries, with spicular to nodular morphologies. Results revealed the presence of biomarkers from unsilicified and silicified communities populating the hot spring sinters, including lipids from terrigenous plants, algae, and bacteria. Although DNA sequencing suggests that the composition and diversity of microbial communities are correlated with temperature, pH, and water chemistry of the springs, these environmental parameters did not seem to affect lipid recovery. However, the morphology of the sinters did play a role in lipid yield, which was higher in the finest, needle-like spicules in comparison to the broad, knobby sinters. The capability of current Mars flight mission techniques such as pyrolysis-gas chromatography-mass spectrometry to detect lipid biomarkers was also evaluated from a subset of samples in a pilot study under flight conditions. The early preservation of lipids in the studied sinters and their detection using flight-like techniques suggest that martian siliceous deposits are strong candidates for the search for biosignatures on Mars.
Collapse
Affiliation(s)
- Maëva Millan
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
- Laboratoire Atmosphère, Observations Spatiales (LATMOS), LATMOS/IPSL, UVSQ Université Paris-Saclay, Sorbonne Université, CNRS, Guyancourt, France
| | - Kathleen A Campbell
- School of Environment, The University of Auckland (UOA), Auckland, New Zealand
- Te Ao Mārama-Centre for Fundamental Inquiry, Faculty of Science, The University of Auckland, Auckland, New Zealand
| | - Chanenath Sriaporn
- Te Ao Mārama-Centre for Fundamental Inquiry, Faculty of Science, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
- Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
| | - Kim M Handley
- Te Ao Mārama-Centre for Fundamental Inquiry, Faculty of Science, The University of Auckland, Auckland, New Zealand
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Bronwyn L Teece
- NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA
| | - Paul Mahaffy
- NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Sarah S Johnson
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
- Science, Technology, and International Affairs Program, Georgetown University, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Hirsch S, Tan JS, Hickman-Lewis K, Sephton MA. Preservation of Extracellular Sheaths Produced by Iron-Oxidizing Bacteria: An Analog for Potential Morphological Biosignatures on Mars. ASTROBIOLOGY 2025; 25:151-160. [PMID: 40000015 DOI: 10.1089/ast.2024.0098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
In the search for life on Mars, evaluating the biogenicity of morphological structures may be important, as they can provide a primary independent line of evidence for past life and can be used to target areas to focus further analyses. However, our experience with terrestrial materials indicates that the deleterious effects of diagenetic processes regularly make the assessment, and even detection, of microfossils and other microscopic biosignatures challenging. To improve our understanding of these effects on Mars, we collected samples that contained sheath-shaped extracellular structures produced by iron-oxidizing bacteria (FeOB) from a Mars analog circumneutral iron deposit and subjected them to artificial maturation by hydrous pyrolysis. Simulated diagenesis induced a phase change in the mineralogy of the structures, from ferrihydrite to crystalline iron oxides. We found that conditions associated with the onset of this phase change were correlated with the start of significant degradation of the extracellular structures. Our results reveal the sensitivity of remains of FeOB to diagenesis, which provides insights for improved targeting of astrobiological missions to areas on Mars that are most conducive to morphological biosignature preservation. Additionally, these results compel increased scrutiny of FeOB-like purported biosignatures if their mineralogy is dominated by crystalline iron oxides.
Collapse
Affiliation(s)
- Solomon Hirsch
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Jonathan S Tan
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| | - Keyron Hickman-Lewis
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
- School of Natural Sciences, Birkbeck, University of London, London WC1E 7HX, United Kingdom
| | - Mark A Sephton
- Department of Earth Science and Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
5
|
Schmidt ME, Kizovski TV, Liu Y, Hernandez-Montenegro JD, Tice MM, Treiman AH, Hurowitz JA, Klevang DA, Knight AL, Labrie J, Tosca NJ, VanBommel SJ, Benaroya S, Crumpler LS, Horgan BHN, Morris RV, Simon JI, Udry A, Yanchilina A, Allwood AC, Cable ML, Christian JR, Clark BC, Flannery DT, Heirwegh CM, Henley TLJ, Henneke J, Jones MWM, Orenstein BJ, Herd CDK, Randazzo N, Shuster D, Wadhwa M. Diverse and highly differentiated lava suite in Jezero crater, Mars: Constraints on intracrustal magmatism revealed by Mars 2020 PIXL. SCIENCE ADVANCES 2025; 11:eadr2613. [PMID: 39854469 PMCID: PMC11778241 DOI: 10.1126/sciadv.adr2613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Accepted: 12/24/2024] [Indexed: 01/26/2025]
Abstract
The Jezero crater floor features a suite of related, iron-rich lavas that were examined and sampled by the Mars 2020 rover Perseverance, and whose textures, minerals, and compositions were characterized by the Planetary Instrument for X-ray Lithochemistry (PIXL). This suite, known as the Máaz formation (fm), includes dark-toned basaltic/trachy-basaltic rocks with intergrown pyroxene, plagioclase feldspar, and altered olivine and overlying trachy-andesitic lava with reversely zoned plagioclase phenocrysts in a K-rich groundmass. Feldspar thermal disequilibrium textures indicate that they were carried from their crustal staging area. Bulk and mafic minerals have very high FeO and low MgO to FeOtotal ratios, which are partially reproduced by thermodynamic models involving high-degree fractional crystallization of a gabbroic assemblage and possibly also assimilation of iron-rich basement. Together, these in situ constraints on petrogenesis provide a uniquely detailed record of intracrustal processes beneath Jezero crater during a time period not represented by Mars samples to date.
Collapse
Affiliation(s)
- Mariek E. Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Tanya V. Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Michael M. Tice
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | | | - Joel A. Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - David A. Klevang
- Technical University of Denmark, DTU Space, Department of Measurement and Instrumentation, Kongens Lyngby, 2800, Denmark
| | - Abigail L. Knight
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Joshua Labrie
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Nicholas J. Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Scott J. VanBommel
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sophie Benaroya
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Larry S. Crumpler
- New Mexico Museum of Natural History and Science, Albuquerque, NM 87104, USA
| | - Briony H. N. Horgan
- Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | | | | | - Arya Udry
- Department of Geosciences, University of Nevada Las Vegas, Las Vegas, NV 89154, USA
| | - Anastasia Yanchilina
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Abigail C. Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Morgan L. Cable
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - John R. Christian
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - David T. Flannery
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | | | - Thomas L. J. Henley
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Jesper Henneke
- Technical University of Denmark, DTU Space, Department of Measurement and Instrumentation, Kongens Lyngby, 2800, Denmark
| | - Michael W. M. Jones
- School of Chemistry and Physics and Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brendan J. Orenstein
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Christopher D. K. Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Nicholas Randazzo
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - David Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720-4767, USA
| | - Meenakshi Wadhwa
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| |
Collapse
|
6
|
Weiss BP, Mansbach EN, Maurel C, Sprain CJ, Swanson-Hysell NL, Williams W. What we can learn about Mars from the magnetism of returned samples. Proc Natl Acad Sci U S A 2025; 122:e2404259121. [PMID: 39761391 PMCID: PMC11745385 DOI: 10.1073/pnas.2404259121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 08/21/2024] [Indexed: 01/23/2025] Open
Abstract
The Red Planet is a magnetic planet. The Martian crust contains strong magnetization from a core dynamo that likely was active during the Noachian period when the surface may have been habitable. The evolution of the dynamo may have played a central role in the evolution of the early atmosphere and the planet's transition to the current cold and dry state. However, the nature and history of the dynamo and crustal magnetization are poorly understood given the lack of well-preserved, oriented, ancient samples with geologic context available for laboratory study. Here, we describe how magnetic measurements of returned samples could transform our understanding of six key unknowns about Mars' planetary evolution and habitability. Such measurements could i) determine the history of the Martian dynamo field's intensity; ii) determine the history of the Martian dynamo field's direction; iii) test the hypothesis that Mars experienced plate tectonics or true polar wander; iv) constrain the thermal and aqueous alteration history of the samples; v) identify sources of Martian crustal magnetization and vi) characterize sedimentary and magmatic processes on Mars. We discuss how these goals can be achieved using future laboratory analyses of samples acquired by the Perseverance rover.
Collapse
Affiliation(s)
- Benjamin P. Weiss
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Elias N. Mansbach
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Clara Maurel
- CNRS, Aix Marseille Université, Institut de Recherche Pour le Développement (IRD), Institut National de Recherche Pour L’Agriculture, L’Alimentation et L’Environnement (INRAE), Centre Européen de Recherche et D’Enseignement des Géosciences de L’Environnement (CEREGE), Aix-en-Provence 13545, France
| | - Courtney J. Sprain
- Department of Geological Sciences, University of Florida, Gainesville, FL32611
| | | | - Wyn Williams
- School of GeoSciences, University of Edinburgh, EdinburghEH9 3FE, United Kingdom
| |
Collapse
|
7
|
Ansari S, Kite ES, Ramirez R, Steele LJ, Mohseni H. Feasibility of keeping Mars warm with nanoparticles. SCIENCE ADVANCES 2024; 10:eadn4650. [PMID: 39110809 PMCID: PMC11305381 DOI: 10.1126/sciadv.adn4650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/09/2024] [Indexed: 08/10/2024]
Abstract
One-third of Mars' surface has shallow-buried H2O, but it is currently too cold for use by life. Proposals to warm Mars using greenhouse gases require a large mass of ingredients that are rare on Mars' surface. However, we show here that artificial aerosols made from materials that are readily available at Mars-for example, conductive nanorods that are ~9 micrometers long-could warm Mars >5 × 103 time smore effectively than the best gases. Such nanoparticles forward-scatter sunlight and efficiently block upwelling thermal infrared. Like the natural dust of Mars, they are swept high into Mars' atmosphere, allowing delivery from the near-surface. For a 10-year particle lifetime, two climate models indicate that sustained release at 30 liters per second would globally warm Mars by ≳30 kelvin and start to melt the ice. Therefore, if nanoparticles can be made at scale on (or delivered to) Mars, then the barrier to warming of Mars appears to be less high than previously thought.
Collapse
Affiliation(s)
- Samaneh Ansari
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| | - Edwin S. Kite
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
| | - Ramses Ramirez
- Department of Physics, University of Central Florida, Orlando, FL, USA
| | - Liam J. Steele
- Department of the Geophysical Sciences, University of Chicago, Chicago, IL, USA
- European Center for Medium-Range Weather Forecasts, Reading, UK
| | - Hooman Mohseni
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, IL, USA
| |
Collapse
|
8
|
Ramkissoon NK, Macey MC, Kucukkilic-Stephens E, Barton T, Steele A, Johnson DN, Stephens BP, Schwenzer SP, Pearson VK, Olsson-Francis K. Experimental Identification of Potential Martian Biosignatures in Open and Closed Systems. ASTROBIOLOGY 2024; 24:538-558. [PMID: 38648554 DOI: 10.1089/ast.2023.0013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
NASA's Perseverance and ESA's Rosalind Franklin rovers have the scientific goal of searching for evidence of ancient life on Mars. Geochemical biosignatures that form because of microbe-mineral interactions could play a key role in achieving this, as they can be preserved for millions of years on Earth, and the same could be true for Mars. Previous laboratory experiments have explored the formation of biosignatures under closed systems, but these do not represent the open systems that are found in natural martian environments, such as channels and lakes. In this study, we have conducted environmental simulation experiments using a global regolith simulant (OUCM-1), a thermochemically modelled groundwater, and an anaerobic microbial community to explore the formation of geochemical biosignatures within plausible open and closed systems on Mars. This initial investigation showed differences in the diversity of the microbial community developed after 28 days. In an open-system simulation (flow-through experiment), the acetogenic Acetobacterium (49% relative abundance) and the sulfate reducer Desulfosporomusa (43% relative abundance) were the dominant genera. Whereas in the batch experiment, the sulfate reducers Desulfovibrio, Desulfomicrobium, and Desulfuromonas (95% relative abundance in total) were dominant. We also found evidence of enhanced mineral dissolution within the flow-through experiment, but there was little evidence of secondary deposits in the presence of biota. In contrast, SiO2 and Fe deposits formed within the batch experiment with biota but not under abiotic conditions. The results from these initial experiments indicate that different geochemical biosignatures can be generated between open and closed systems, and therefore, biosignature formation in open systems warrants further investigation.
Collapse
Affiliation(s)
| | - Michael C Macey
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | | | - Timothy Barton
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution of Washington, Washington, DC, USA
| | - David N Johnson
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | - Ben P Stephens
- AstrobiologyOU, STEM Faculty, The Open University, Milton Keynes, UK
| | | | | | | |
Collapse
|
9
|
Nachon M, Ewing RC, Tice MM, Williford B, Marounina N. Investigating Microbial Biosignatures in Aeolian Environments Using Micro-X-Ray: Simulation of PIXL Instrument Analyses at Jezero Crater Onboard the Perseverance Mars 2020 Rover. ASTROBIOLOGY 2024; 24:498-517. [PMID: 38768431 DOI: 10.1089/ast.2022.0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Assessing the past habitability of Mars and searching for evidence of ancient life at Jezero crater via the Perseverance rover are the key objectives of NASA's Mars 2020 mission. Onboard the rover, PIXL (Planetary Instrument for X-ray Lithochemistry) is one of the best suited instruments to search for microbial biosignatures due to its ability to characterize chemical composition of fine scale textures in geological targets using a nondestructive technique. PIXL is also the first micro-X-ray fluorescence (XRF) spectrometer onboard a Mars rover. Here, we present guidelines for identifying and investigating a microbial biosignature in an aeolian environment using PIXL-analogous micro-XRF (μXRF) analyses. We collected samples from a modern wet aeolian environment at Padre Island, Texas, that contain buried microbial mats, and we analyzed them using μXRF techniques analogous to how PIXL is being operated on Mars. We show via μXRF technique and microscope images the geochemical and textural variations from the surface to ∼40 cm depth. Microbial mats are associated with heavy-mineral lags and show specific textural and geochemical characteristics that make them a distinct biosignature for this environment. Upon burial, they acquire a diffuse texture due to the expansion and contraction of gas-filled voids, and they present a geochemical signature rich in iron and titanium, which is due to the trapping of heavy minerals. We show that these intrinsic characteristics can be detected via μXRF analyses, and that they are distinct from buried abiotic facies such as cross-stratification and adhesion ripple laminations. We also designed and conducted an interactive survey using the Padre Island μXRF data to explore how different users chose to investigate a biosignature-bearing dataset via PIXL-like sampling strategies. We show that investigating biosignatures via PIXL-like analyses is heavily influenced by technical constraints (e.g., the XRF measurement characteristics) and by the variety of approaches chosen by different scientists. Lessons learned for accurately identifying and characterizing this biosignature in the context of rover-mission constraints include defining relative priorities among measurements, favoring a multidisciplinary approach to the decision-making process of XRF measurements selection, and considering abiotic results to support or discard a biosignature interpretation. Our results provide guidelines for PIXL analyses of potential biosignature on Mars.
Collapse
Affiliation(s)
- Marion Nachon
- Department of Geology and Geophysics and Texas A&M University, College Station, Texas, USA
| | - Ryan C Ewing
- Department of Geology and Geophysics and Texas A&M University, College Station, Texas, USA
| | - Michael M Tice
- Department of Geology and Geophysics and Texas A&M University, College Station, Texas, USA
| | - Blake Williford
- Department of Computer Science & Engineering, Texas A&M University, College Station, Texas, USA
| | - Nadejda Marounina
- Department of Astronomy and Astrophysics, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
10
|
Paige DA, Hamran SE, Amundsen HEF, Berger T, Russell P, Kakaria R, Mellon MT, Eide S, Carter LM, Casademont TM, Nunes DC, Shoemaker ES, Plettemeier D, Dypvik H, Holm-Alwmark S, Horgan BHN. Ground penetrating radar observations of the contact between the western delta and the crater floor of Jezero crater, Mars. SCIENCE ADVANCES 2024; 10:eadi8339. [PMID: 38277450 PMCID: PMC10816720 DOI: 10.1126/sciadv.adi8339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 12/26/2023] [Indexed: 01/28/2024]
Abstract
The delta deposits in Jezero crater contain sedimentary records of potentially habitable conditions on Mars. NASA's Perseverance rover is exploring the Jezero western delta with a suite of instruments that include the RIMFAX ground penetrating radar, which provides continuous subsurface images that probe up to 20 meters below the rover. As Perseverance traversed across the contact between the Jezero crater floor and the delta, RIMFAX detected a distinct discontinuity in the subsurface layer structure. Below the contact boundary are older crater floor units exhibiting discontinuous inclined layering. Above the contact boundary are younger basal delta units exhibiting regular horizontal layering. At one location, there is a clear unconformity between the crater floor and delta layers, which implies that the crater floor experienced a period of erosion before the deposition of the overlying delta strata. The regularity and horizontality of the basal delta sediments observed in the radar cross sections indicate that they were deposited in a low-energy lake environment.
Collapse
Affiliation(s)
- David A. Paige
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | - Reva Kakaria
- University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | | | | | - Daniel C. Nunes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | | | | | | | | |
Collapse
|
11
|
Maggiori C, Fernández-Martínez MA, Bourdages LJ, Sánchez-García L, Moreno-Paz M, Sobrado JM, Carrizo D, Vicente-Retortillo Á, Goordial J, Whyte LG. Biosignature Detection and MinION Sequencing of Antarctic Cryptoendoliths After Exposure to Mars Simulation Conditions. ASTROBIOLOGY 2024; 24:44-60. [PMID: 38153386 DOI: 10.1089/ast.2023.0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
In the search for life in our Solar System, Mars remains a promising target based on its proximity and similarity to Earth. When Mars transitioned from a warmer, wetter climate to its current dry and freezing conditions, any putative extant life probably retreated into habitable refugia such as the subsurface or the interior of rocks. Terrestrial cryptoendolithic microorganisms (i.e., those inhabiting rock interiors) thus represent possible modern-day Mars analogs, particularly those from the hyperarid McMurdo Dry Valleys in Antarctica. As DNA is a strong definitive biosignature, given that there is no known abiotic chemistry that can polymerize nucleobases, we investigated DNA detection with MinION sequencing in Antarctic cryptoendoliths after an ∼58-sol exposure in MARTE, a Mars environmental chamber capable of simulating martian temperature, pressure, humidity, ultraviolet (UV) radiation, and atmospheric composition, in conjunction with protein and lipid detection. The MARTE conditions resulted in changes in community composition and DNA, proteins, and cell membrane-derived lipids remained detectable postexposure. Of the multitude of extreme environmental conditions on Mars, UV radiation (specifically UVC) is the most destructive to both cells and DNA. As such, we further investigated if a UVC exposure corresponding to ∼278 martian years would impede DNA detection via MinION sequencing. The MinION was able to successfully detect and sequence DNA after this UVC radiation exposure, suggesting its utility for life detection in future astrobiology missions focused on finding relatively recently exposed biomarkers inside possible martian refugia.
Collapse
Affiliation(s)
- Catherine Maggiori
- Department of Biology, Georgetown University, Washington, District of Columbia, USA
| | - Miguel Angel Fernández-Martínez
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste. Anne-de-Bellevue, Quebec, Canada
- Department of Ecology, Universidad Autónoma de Madrid, Ciudad Universitaria de Cantoblanco, Madrid, Spain
| | - Louis-Jacques Bourdages
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste. Anne-de-Bellevue, Quebec, Canada
| | | | | | | | | | | | - Jacqueline Goordial
- School of Environmental Sciences, University of Guelph, Guelph, Ontario, Canada
| | - Lyle G Whyte
- Department of Natural Resource Sciences, Faculty of Agricultural and Environmental Sciences, McGill University, Ste. Anne-de-Bellevue, Quebec, Canada
| |
Collapse
|
12
|
Tino CJ, Stüeken EE, Arp G, Böttcher ME, Bates SM, Lyons TW. Are Large Sulfur Isotope Variations Biosignatures in an Ancient, Impact-Induced Hydrothermal Mars Analog? ASTROBIOLOGY 2023; 23:1027-1044. [PMID: 37498995 DOI: 10.1089/ast.2022.0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Discrepancies have emerged concerning the application of sulfur stable isotope ratios as a biosignature in impact crater paleolakes. The first in situ δ34S data from Mars at Gale crater display a ∼75‰ range that has been attributed to an abiotic mechanism. Yet biogeochemical studies of ancient environments on Earth generally interpret δ34S fractionations >21‰ as indicative of a biological origin, and studies of δ34S at analog impact crater lakes on Earth have followed the same approach. We performed analyses (including δ34S, total organic carbon wt%, and scanning electron microscope imaging) on multiple lithologies from the Nördlinger Ries impact crater, focusing on hydrothermally altered impact breccias and associated sedimentary lake-fill sequences to determine whether the δ34S properties define a biosignature. The differences in δ34S between the host lithologies may have resulted from thermochemical sulfate reduction, microbial sulfate reduction, hydrothermal equilibrium fractionation, or any combination thereof. Despite abundant samples and instrumental precision currently exclusive to Earth-bound analyses, assertions of biogenicity from δ34S variations >21‰ at the Miocene Ries impact crater are tenuous. This discourages the use of δ34S as a biosignature in similar environments without independent checks that include the full geologic, biogeochemical, and textural context, as well as a comprehensive acknowledgment of alternative hypotheses.
Collapse
Affiliation(s)
- Christopher J Tino
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Eva E Stüeken
- School of Earth and Environmental Sciences, University of St. Andrews, St. Andrews, Scotland, United Kingdom
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
| | - Gernot Arp
- Geowissenschaftliches Zentrum, Georg-August-Universität Göttingen, Göttingen, Germany
| | - Michael Ernst Böttcher
- Geochemistry & Isotope Biogeochemistry, Leibniz Institute for Baltic Sea Research (IOW), Warnemünde, Germany
- Marine Geochemistry, University of Greifswald, Greifswald, Germany
- Department of Maritime Systems, Interdisciplinary Faculty (INF), University of Rostock, Rostock, Germany
| | - Steven M Bates
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
| | - Timothy W Lyons
- Department of Earth and Planetary Sciences, University of California, Riverside, California, USA
- Virtual Planetary Laboratory, University of Washington, Seattle, Washington, USA
| |
Collapse
|
13
|
Birch SPD, Parker G, Corlies P, Soderblom JM, Miller JW, Palermo RV, Lora JM, Ashton AD, Hayes AG, Perron JT. Reconstructing river flows remotely on Earth, Titan, and Mars. Proc Natl Acad Sci U S A 2023; 120:e2206837120. [PMID: 37428909 PMCID: PMC10629578 DOI: 10.1073/pnas.2206837120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/05/2023] [Indexed: 07/12/2023] Open
Abstract
Alluvial rivers are conveyor belts of fluid and sediment that provide a record of upstream climate and erosion on Earth, Titan, and Mars. However, many of Earth's rivers remain unsurveyed, Titan's rivers are not well resolved by current spacecraft data, and Mars' rivers are no longer active, hindering reconstructions of planetary surface conditions. To overcome these problems, we use dimensionless hydraulic geometry relations-scaling laws that relate river channel dimensions to flow and sediment transport rates-to calculate in-channel conditions using only remote sensing measurements of channel width and slope. On Earth, this offers a way to predict flow and sediment flux in rivers that lack field measurements and shows that the distinct dynamics of bedload-dominated, suspended load-dominated, and bedrock rivers give rise to distinct channel characteristics. On Mars, this approach not only predicts grain sizes at Gale Crater and Jezero Crater that overlap with those measured by the Curiosity and Perseverance rovers, it enables reconstructions of past flow conditions that are consistent with proposed long-lived hydrologic activity at both craters. On Titan, our predicted sediment fluxes to the coast of Ontario Lacus could build the lake's river delta in as little as ~1,000 y, and our scaling relationships suggest that Titan's rivers may be wider, slope more gently, and transport sediment at lower flows than rivers on Earth or Mars. Our approach provides a template for predicting channel properties remotely for alluvial rivers across Earth, along with interpreting spacecraft observations of rivers on Titan and Mars.
Collapse
Affiliation(s)
- Samuel P. D. Birch
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Gary Parker
- Department of Geology, University of Illinois at Urbana-Champaign, Urbana, IL61820
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, Urbana, IL61820
| | - Paul Corlies
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Jason M. Soderblom
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| | - Julia W. Miller
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, CA90095
| | - Rose V. Palermo
- Massachusetts Institute of Technology-Woods Hole Oceanographic Institute Joint Program in Oceanography/Applied Ocean Science and Engineering, Cambridge and Woods Hole, MA02139
| | - Juan M. Lora
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT06520
| | - Andrew D. Ashton
- Department of Geology and Geophysics, Woods Hole Oceanographic Institution, Woods Hole, MA02543
| | | | - J. Taylor Perron
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA02139
| |
Collapse
|
14
|
Sharma S, Roppel RD, Murphy AE, Beegle LW, Bhartia R, Steele A, Hollis JR, Siljeström S, McCubbin FM, Asher SA, Abbey WJ, Allwood AC, Berger EL, Bleefeld BL, Burton AS, Bykov SV, Cardarelli EL, Conrad PG, Corpolongo A, Czaja AD, DeFlores LP, Edgett K, Farley KA, Fornaro T, Fox AC, Fries MD, Harker D, Hickman-Lewis K, Huggett J, Imbeah S, Jakubek RS, Kah LC, Lee C, Liu Y, Magee A, Minitti M, Moore KR, Pascuzzo A, Rodriguez Sanchez-Vahamonde C, Scheller EL, Shkolyar S, Stack KM, Steadman K, Tuite M, Uckert K, Werynski A, Wiens RC, Williams AJ, Winchell K, Kennedy MR, Yanchilina A. Diverse organic-mineral associations in Jezero crater, Mars. Nature 2023; 619:724-732. [PMID: 37438522 PMCID: PMC10371864 DOI: 10.1038/s41586-023-06143-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/27/2023] [Indexed: 07/14/2023]
Abstract
The presence and distribution of preserved organic matter on the surface of Mars can provide key information about the Martian carbon cycle and the potential of the planet to host life throughout its history. Several types of organic molecules have been previously detected in Martian meteorites1 and at Gale crater, Mars2-4. Evaluating the diversity and detectability of organic matter elsewhere on Mars is important for understanding the extent and diversity of Martian surface processes and the potential availability of carbon sources1,5,6. Here we report the detection of Raman and fluorescence spectra consistent with several species of aromatic organic molecules in the Máaz and Séítah formations within the Crater Floor sequences of Jezero crater, Mars. We report specific fluorescence-mineral associations consistent with many classes of organic molecules occurring in different spatial patterns within these compositionally distinct formations, potentially indicating different fates of carbon across environments. Our findings suggest there may be a diversity of aromatic molecules prevalent on the Martian surface, and these materials persist despite exposure to surface conditions. These potential organic molecules are largely found within minerals linked to aqueous processes, indicating that these processes may have had a key role in organic synthesis, transport or preservation.
Collapse
Affiliation(s)
- Sunanda Sharma
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA.
| | - Ryan D Roppel
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | | - Andrew Steele
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | | | - Sandra Siljeström
- Department of Methodology, Textiles and Medical Technology, RISE Research Institutes of Sweden, Stockholm, Sweden
| | - Francis M McCubbin
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Sanford A Asher
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - William J Abbey
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Abigail C Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Eve L Berger
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
- Texas State University, Houston, TX, USA
- Jacobs JETS II, Houston, TX, USA
| | | | - Aaron S Burton
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - Sergei V Bykov
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Emily L Cardarelli
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Pamela G Conrad
- Earth and Planets Laboratory, Carnegie Institution for Science, Washington, DC, USA
| | - Andrea Corpolongo
- Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Andrew D Czaja
- Department of Geosciences, University of Cincinnati, Cincinnati, OH, USA
| | - Lauren P DeFlores
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Kenneth A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Teresa Fornaro
- Astrophysical Observatory of Arcetri, INAF, Florence, Italy
| | - Allison C Fox
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
- Texas State University, Houston, TX, USA
- Jacobs JETS II, Houston, TX, USA
| | - Marc D Fries
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
| | - David Harker
- Malin Space Science Systems, Inc., San Diego, CA, USA
| | | | | | - Samara Imbeah
- Malin Space Science Systems, Inc., San Diego, CA, USA
| | - Ryan S Jakubek
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
- Jacobs JETS II, Houston, TX, USA
| | - Linda C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Carina Lee
- Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX, USA
- Texas State University, Houston, TX, USA
- Jacobs JETS II, Houston, TX, USA
| | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Angela Magee
- Malin Space Science Systems, Inc., San Diego, CA, USA
| | | | - Kelsey R Moore
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | | | | | - Eva L Scheller
- Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, MD, USA
- Planetary Geology, Geophysics and Geochemistry Lab, NASA Goddard Space Flight Center, Greenbelt, MD, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | - Kathryn M Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kim Steadman
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Michael Tuite
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kyle Uckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Roger C Wiens
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, Lafayette, IN, USA
| | - Amy J Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL, USA
| | - Katherine Winchell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA
| | | | | |
Collapse
|
15
|
Finkel PL, Carrizo D, Parro V, Sánchez-García L. An Overview of Lipid Biomarkers in Terrestrial Extreme Environments with Relevance for Mars Exploration. ASTROBIOLOGY 2023; 23:563-604. [PMID: 36880883 PMCID: PMC10150655 DOI: 10.1089/ast.2022.0083] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
Lipid molecules are organic compounds, insoluble in water, and based on carbon-carbon chains that form an integral part of biological cell membranes. As such, lipids are ubiquitous in life on Earth, which is why they are considered useful biomarkers for life detection in terrestrial environments. These molecules display effective membrane-forming properties even under geochemically hostile conditions that challenge most of microbial life, which grants lipids a universal biomarker character suitable for life detection beyond Earth, where a putative biological membrane would also be required. What discriminates lipids from nucleic acids or proteins is their capacity to retain diagnostic information about their biological source in their recalcitrant hydrocarbon skeletons for thousands of millions of years, which is indispensable in the field of astrobiology given the time span that the geological ages of planetary bodies encompass. This work gathers studies that have employed lipid biomarker approaches for paleoenvironmental surveys and life detection purposes in terrestrial environments with extreme conditions: hydrothermal, hyperarid, hypersaline, and highly acidic, among others; all of which are analogous to current or past conditions on Mars. Although some of the compounds discussed in this review may be abiotically synthesized, we focus on those with a biological origin, namely lipid biomarkers. Therefore, along with appropriate complementary techniques such as bulk and compound-specific stable carbon isotope analysis, this work recapitulates and reevaluates the potential of lipid biomarkers as an additional, powerful tool to interrogate whether there is life on Mars, or if there ever was.
Collapse
Affiliation(s)
- Pablo L. Finkel
- Centro de Astrobiología (CAB), CSIC-INTA, Madrid, Spain
- Department of Physics and Mathematics and Department of Automatics, University of Alcalá, Madrid, Spain
| | | | - Victor Parro
- Centro de Astrobiología (CAB), CSIC-INTA, Madrid, Spain
| | | |
Collapse
|
16
|
Mukundan A, Patel A, Shastri B, Bhatt H, Phen A, Wang HC. The Dvaraka Initiative: Mars’s First Permanent Human Settlement Capable of Self-Sustenance. AEROSPACE 2023; 10:265. [DOI: 10.3390/aerospace10030265] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
From the farthest reaches of the universe to our own galaxy, there are many different celestial bodies that, even though they are very different, each have their own way of being beautiful. Earth, the planet with the best location, has been home to people for as long as we can remember. Even though we cannot be more thankful for all that Earth has given us, the human population needs to grow so that Earth is not the only place where people can live. Mars, which is right next to Earth, is the answer to this problem. Mars is the closest planet and might be able to support human life because it is close to Earth and shares many things in common. This paper will talk about how the first settlement on Mars could be planned and consider a 1000-person colony and the best place to settle on Mars, and make suggestions for the settlement’s technical, architectural, social, and economic layout. By putting together assumptions, research, and estimates, the first settlement project proposed in this paper will suggest the best way to colonize, explore, and live on Mars, which is our sister planet.
Collapse
Affiliation(s)
- Arvind Mukundan
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Road, Min Hsiung, Chiayi City 62102, Taiwan
| | - Akash Patel
- Robotics & AI Team, Department of Computer, Electrical and Space Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Bharadwaj Shastri
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Road, Min Hsiung, Chiayi City 62102, Taiwan
| | - Heeral Bhatt
- Department of Computer, Electrical and Space Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Alice Phen
- Department of Computer, Electrical and Space Engineering, Luleå University of Technology, SE-97187 Luleå, Sweden
| | - Hsiang-Chen Wang
- Department of Mechanical Engineering, Advanced Institute of Manufacturing with High Tech Innovations (AIM-HI), Center for Innovative Research on Aging Society (CIRAS), National Chung Cheng University, 168, University Road, Min Hsiung, Chiayi City 62102, Taiwan
| |
Collapse
|
17
|
Corenblit D, Decaux O, Delmotte S, Toumazet JP, Arrignon F, André MF, Darrozes J, Davies NS, Julien F, Otto T, Ramillien G, Roussel E, Steiger J, Viles H. Signatures of Life Detected in Images of Rocks Using Neural Network Analysis Demonstrate New Potential for Searching for Biosignatures on the Surface of Mars. ASTROBIOLOGY 2023; 23:308-326. [PMID: 36668995 DOI: 10.1089/ast.2022.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Microorganisms play a role in the construction or modulation of various types of landforms. They are especially notable for forming microbially induced sedimentary structures (MISS). Such microbial structures have been considered to be among the most likely biosignatures that might be encountered on the martian surface. Twenty-nine algorithms have been tested with images taken during a laboratory experiment for testing their performance in discriminating mat cracks (MISS) from abiotic mud cracks. Among the algorithms, neural network types produced excellent predictions with similar precision of 0.99. Following that step, a convolutional neural network (CNN) approach has been tested to see whether it can conclusively detect MISS in images of rocks and sediment surfaces taken at different natural sites where present and ancient (fossil) microbial mat cracks and abiotic desiccation cracks were observed. The CNN approach showed excellent prediction of biotic and abiotic structures from the images (global precision, sensitivity, and specificity, respectively, 0.99, 0.99, and 0.97). The key areas of interest of the machine matched well with human expertise for distinguishing biotic and abiotic forms (in their geomorphological meaning). The images indicated clear differences between the abiotic and biotic situations expressed at three embedded scales: texture (size, shape, and arrangement of the grains constituting the surface of one form), form (outer shape of one form), and pattern of form arrangement (arrangement of the forms over a few square meters). The most discriminative components for biogenicity were the border of the mat cracks with their tortuous enlarged and blistered morphology more or less curved upward, sometimes with thin laminations. To apply this innovative biogeomorphological approach to the images obtained by rovers on Mars, the main physical and biological sources of variation in abiotic and biotic outcomes must now be further considered.
Collapse
Affiliation(s)
- Dov Corenblit
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
- CNRS, Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | | | | | | | | | - José Darrozes
- Université Paul Sabatier, CNRS/IRD, GET, Toulouse, France
| | - Neil S Davies
- Department of Earth Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Frédéric Julien
- CNRS, Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | - Thierry Otto
- CNRS, Laboratoire écologie fonctionnelle et environnement, Université Paul Sabatier, CNRS, INPT, UPS, Toulouse, France
| | | | - Erwan Roussel
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
| | - Johannes Steiger
- Université Clermont Auvergne, CNRS, GEOLAB, Clermont-Ferrand, France
| | - Heather Viles
- School of Geography and the Environment, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Tice MM, Hurowitz JA, Allwood AC, Jones MWM, Orenstein BJ, Davidoff S, Wright AP, Pedersen DA, Henneke J, Tosca NJ, Moore KR, Clark BC, McLennan SM, Flannery DT, Steele A, Brown AJ, Zorzano MP, Hickman-Lewis K, Liu Y, VanBommel SJ, Schmidt ME, Kizovski TV, Treiman AH, O’Neil L, Fairén AG, Shuster DL, Gupta S, The PIXL Team. Alteration history of Séítah formation rocks inferred by PIXL x-ray fluorescence, x-ray diffraction, and multispectral imaging on Mars. SCIENCE ADVANCES 2022; 8:eabp9084. [PMID: 36417516 PMCID: PMC9683721 DOI: 10.1126/sciadv.abp9084] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Collocated crystal sizes and mineral identities are critical for interpreting textural relationships in rocks and testing geological hypotheses, but it has been previously impossible to unambiguously constrain these properties using in situ instruments on Mars rovers. Here, we demonstrate that diffracted and fluoresced x-rays detected by the PIXL instrument (an x-ray fluorescence microscope on the Perseverance rover) provide information about the presence or absence of coherent crystalline domains in various minerals. X-ray analysis and multispectral imaging of rocks from the Séítah formation on the floor of Jezero crater shows that they were emplaced as coarsely crystalline igneous phases. Olivine grains were then partially dissolved and filled by finely crystalline or amorphous secondary silicate, carbonate, sulfate, and chloride/oxychlorine minerals. These results support the hypothesis that Séítah formation rocks represent olivine cumulates altered by fluids far from chemical equilibrium at low water-rock ratios.
Collapse
Affiliation(s)
- Michael M. Tice
- Department of Geology and Geophysics, Texas A&M University, College Station, TX 77843, USA
| | - Joel A. Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA
| | - Abigail C. Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Michael W. M. Jones
- School of Chemistry and Physics and Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Brendan J. Orenstein
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Scott Davidoff
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Austin P. Wright
- School of Computational Science and Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - David A.K. Pedersen
- Technical University of Denmark, DTU Space, Department of Measurement and Instrumentation, Kongbens Lyngby, 2800, Denmark
| | - Jesper Henneke
- Technical University of Denmark, DTU Space, Department of Measurement and Instrumentation, Kongbens Lyngby, 2800, Denmark
| | - Nicholas J. Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - Kelsey R. Moore
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Scott M. McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794-2100, USA
| | - David T. Flannery
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Andrew Steele
- Earth and Planetary Laboratory, Carnegie Institution for Science, Washington, DC 20015, USA
| | | | - Maria-Paz Zorzano
- Centro de Astrobiologia, Instituto National de Tecnica Aerospacial, Madrid, Spain
| | | | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Scott J. VanBommel
- McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University of St. Louis, St. Louis, MO 63130, USA
| | - Mariek E. Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - Tanya V. Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | | | - Lauren O’Neil
- Department of Earth and Space Sciences, University of Washington, Seattle, WA 98052, USA
| | - Alberto G. Fairén
- Centro de Astrobiología (CSIC-INTA), Torrejón de Ardoz, Madrid, Spain
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | - David L. Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, CA 94720, USA
| | - Sanjeev Gupta
- Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK
| | | |
Collapse
|
19
|
Bell JF, Maki JN, Alwmark S, Ehlmann BL, Fagents SA, Grotzinger JP, Gupta S, Hayes A, Herkenhoff KE, Horgan BHN, Johnson JR, Kinch KB, Lemmon MT, Madsen MB, Núñez JI, Paar G, Rice M, Rice JW, Schmitz N, Sullivan R, Vaughan A, Wolff MJ, Bechtold A, Bosak T, Duflot LE, Fairén AG, Garczynski B, Jaumann R, Merusi M, Million C, Ravanis E, Shuster DL, Simon J, St. Clair M, Tate C, Walter S, Weiss B, Bailey AM, Bertrand T, Beyssac O, Brown AJ, Caballo-Perucha P, Caplinger MA, Caudill CM, Cary F, Cisneros E, Cloutis EA, Cluff N, Corlies P, Crawford K, Curtis S, Deen R, Dixon D, Donaldson C, Barrington M, Ficht M, Fleron S, Hansen M, Harker D, Howson R, Huggett J, Jacob S, Jensen E, Jensen OB, Jodhpurkar M, Joseph J, Juarez C, Kah LC, Kanine O, Kristensen J, Kubacki T, Lapo K, Magee A, Maimone M, Mehall GL, Mehall L, Mollerup J, Viúdez-Moreiras D, Paris K, Powell KE, Preusker F, Proton J, Rojas C, Sallurday D, Saxton K, Scheller E, Seeger CH, Starr M, Stein N, Turenne N, Van Beek J, Winhold AG, Yingling R. Geological, multispectral, and meteorological imaging results from the Mars 2020 Perseverance rover in Jezero crater. SCIENCE ADVANCES 2022; 8:eabo4856. [PMID: 36417517 PMCID: PMC9683734 DOI: 10.1126/sciadv.abo4856] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 10/20/2022] [Indexed: 06/15/2023]
Abstract
Perseverance's Mastcam-Z instrument provides high-resolution stereo and multispectral images with a unique combination of spatial resolution, spatial coverage, and wavelength coverage along the rover's traverse in Jezero crater, Mars. Images reveal rocks consistent with an igneous (including volcanic and/or volcaniclastic) and/or impactite origin and limited aqueous alteration, including polygonally fractured rocks with weathered coatings; massive boulder-forming bedrock consisting of mafic silicates, ferric oxides, and/or iron-bearing alteration minerals; and coarsely layered outcrops dominated by olivine. Pyroxene dominates the iron-bearing mineralogy in the fine-grained regolith, while olivine dominates the coarse-grained regolith. Solar and atmospheric imaging observations show significant intra- and intersol variations in dust optical depth and water ice clouds, as well as unique examples of boundary layer vortex action from both natural (dust devil) and Ingenuity helicopter-induced dust lifting. High-resolution stereo imaging also provides geologic context for rover operations, other instrument observations, and sample selection, characterization, and confirmation.
Collapse
Affiliation(s)
- James F. Bell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Justin N. Maki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Sanna Alwmark
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
- Department of Geology, Lund University, 22362 Lund, Sweden
| | - Bethany L. Ehlmann
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Sarah A. Fagents
- Hawai’i Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA
| | | | - Sanjeev Gupta
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | - Alexander Hayes
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | | | - Briony H. N. Horgan
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Jeffrey R. Johnson
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - Kjartan B. Kinch
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Morten B. Madsen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jorge I. Núñez
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | | | - Melissa Rice
- Western Washington University, Bellingham, WA 98225, USA
| | - James W. Rice
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | | | - Robert Sullivan
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | - Alicia Vaughan
- USGS Astrogeology Science Center, Flagstaff, AZ 86001, USA
| | | | - Andreas Bechtold
- Department of Lithospheric Research, University of Vienna, 1090 Vienna, Austria
- Austrian Academy of Sciences, Vienna 1010, Austria
| | - Tanja Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | | | - Alberto G. Fairén
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
- Astrobiology Center (CSIC-INTA), Madrid, Spain
| | - Brad Garczynski
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - Ralf Jaumann
- Institute for Geological Sciences, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Marco Merusi
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | | | - Eleni Ravanis
- Hawai’i Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA
| | - David L. Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Justin Simon
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - Christian Tate
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | - Sebastian Walter
- Institute for Geological Sciences, Freie Universitaet Berlin, 14195 Berlin, Germany
| | - Benjamin Weiss
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Alyssa M. Bailey
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | | | - Olivier Beyssac
- Institut de Minéralogie, Physique des Matériaux et Cosmochimie, CNRS, Muséum National d’Histoire Naturelle, Sorbonne University, Paris 75005, France
| | | | | | | | | | - Francesca Cary
- Hawai’i Institute of Geophysics and Planetology, University of Hawaii, Honolulu, HI 96822, USA
| | - Ernest Cisneros
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | | | - Nathan Cluff
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Paul Corlies
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | - Kelsie Crawford
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Sabrina Curtis
- Western Washington University, Bellingham, WA 98225, USA
| | - Robert Deen
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Darian Dixon
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | | | - Megan Barrington
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | - Michelle Ficht
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | | | | | - David Harker
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | - Rachel Howson
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | - Joshua Huggett
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | - Samantha Jacob
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Elsa Jensen
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | - Ole B. Jensen
- Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Mohini Jodhpurkar
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Jonathan Joseph
- Department of Astronomy, Cornell University, Ithaca, NY 14850, USA
| | | | - Linda C. Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37916, USA
| | - Oak Kanine
- California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Tex Kubacki
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | - Kristiana Lapo
- Western Washington University, Bellingham, WA 98225, USA
| | - Angela Magee
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | | | - Greg L. Mehall
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Laura Mehall
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Jess Mollerup
- Western Washington University, Bellingham, WA 98225, USA
| | - Daniel Viúdez-Moreiras
- Astrobiology Center (CSIC-INTA), Madrid, Spain
- National Institute for Aerospace Technology, Madrid, Spain
| | - Kristen Paris
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | - Kathryn E. Powell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | | | | | - Corrine Rojas
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | | | - Kim Saxton
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Eva Scheller
- California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Mason Starr
- Malin Space Science Systems Inc., San Diego, CA 92121, USA
| | - Nathan Stein
- California Institute of Technology, Pasadena, CA 91125, USA
| | | | - Jason Van Beek
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Andrew G. Winhold
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85281, USA
| | | |
Collapse
|
20
|
Duhamel S, Hamilton CW, Pálsson S, Björnsdóttir SH. Microbial Response to Increased Temperatures Within a Lava-Induced Hydrothermal System in Iceland: An Analogue for the Habitability of Volcanic Terrains on Mars. ASTROBIOLOGY 2022; 22:1176-1198. [PMID: 35920884 DOI: 10.1089/ast.2021.0124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Fossil hydrothermal systems on Mars are important exploration targets because they may have once been habitable and could still preserve evidence of microbial life. We investigated microbial communities within an active lava-induced hydrothermal system associated with the 2014-2015 eruption of Holuhraun in Iceland as a Mars analogue. In 2016, the microbial composition in the lava-heated water differed substantially from that of the glacial river and spring water sources that fed into the system. Several taxonomic and metabolic groups were confined to the water emerging from the lava and some showed the highest sequence similarities to subsurface ecosystems, including to the predicted thermophilic and deeply branching Candidatus Acetothermum autotrophicum. Measurements show that the communities were affected by temperature and other environmental factors. In particular, comparing glacial river water incubated in situ (5.7°C, control) with glacial water incubated within a lava-heated stream (17.5°C, warm) showed that microbial abundance, richness, and diversity increased in the warm treatment compared with the control, with the predicted major metabolism shifting from lithotrophy toward organotrophy and possibly phototrophy. In addition, thermophilic bacteria isolated from the lava-heated water and a nearby acidic hydrothermal system included the known endospore-formers Geobacillus stearothermophilus and Paenibacillus cisolokensis as well as a potentially novel taxon within the order Hyphomicrobiales. Similar lava-water interactions on Mars could therefore have generated habitable environments for microbial communities.
Collapse
Affiliation(s)
- Solange Duhamel
- Molecular and Cellular Biology, University of Arizona, Tucson, Arizona, USA
- Lunar and Planetary Laboratory, University of Arizona, Tucson, Arizona, USA
- Division of Biology and Paleo Environment, Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York, USA
| | | | - Snæbjörn Pálsson
- Department of Biology, University of Iceland, Reykjavík, Iceland
| | | |
Collapse
|
21
|
Hickman-Lewis K, Moore KR, Hollis JJR, Tuite ML, Beegle LW, Bhartia R, Grotzinger JP, Brown AJ, Shkolyar S, Cavalazzi B, Smith CL. In Situ Identification of Paleoarchean Biosignatures Using Colocated Perseverance Rover Analyses: Perspectives for In Situ Mars Science and Sample Return. ASTROBIOLOGY 2022; 22:1143-1163. [PMID: 35862422 PMCID: PMC9508457 DOI: 10.1089/ast.2022.0018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The NASA Mars 2020 Perseverance rover is currently exploring Jezero crater, a Noachian-Hesperian locality that once hosted a delta-lake system with high habitability and biosignature preservation potential. Perseverance conducts detailed appraisals of rock targets using a synergistic payload capable of geological characterization from kilometer to micron scales. The highest-resolution textural and chemical information will be provided by correlated WATSON (imaging), SHERLOC (deep-UV Raman and fluorescence spectroscopy), and PIXL (X-ray lithochemistry) analyses, enabling the distributions of organic and mineral phases within rock targets to be comprehensively established. Herein, we analyze Paleoarchean microbial mats from the ∼3.42 Ga Buck Reef Chert (Barberton greenstone belt, South Africa)-considered astrobiological analogues for a putative ancient martian biosphere-following a WATSON-SHERLOC-PIXL protocol identical to that conducted by Perseverance on Mars during all sampling activities. Correlating deep-UV Raman and fluorescence spectroscopic mapping with X-ray elemental mapping, we show that the Perseverance payload has the capability to detect thermally and texturally mature organic materials of biogenic origin and can highlight organic-mineral interrelationships and elemental colocation at fine spatial scales. We also show that the Perseverance protocol obtains very similar results to high-performance laboratory imaging, Raman spectroscopy, and μXRF instruments. This is encouraging for the prospect of detecting microscale organic-bearing textural biosignatures on Mars using the correlative micro-analytical approach enabled by WATSON, SHERLOC, and PIXL; indeed, laminated, organic-bearing samples such as those studied herein are considered plausible analogues of biosignatures from a potential Noachian-Hesperian biosphere. Were similar materials discovered at Jezero crater, they would offer opportunities to reconstruct aspects of the early martian carbon cycle and search for potential fossilized traces of life in ancient paleoenvironments. Such samples should be prioritized for caching and eventual return to Earth.
Collapse
Affiliation(s)
- Keyron Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
| | - Kelsey R. Moore
- NASA Jet Propulsion Laboratory, Pasadena, California, USA
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | | | | | | | - John P. Grotzinger
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California, USA
| | | | - Svetlana Shkolyar
- Department of Astronomy, University of Maryland, College Park, Maryland, USA
- Planetary Geology, Geophysics and Geochemistry Lab, NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
| | - Barbara Cavalazzi
- Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, Bologna, Italy
- Department of Geology, University of Johannesburg, Johannesburg, South Africa
| | - Caroline L. Smith
- Department of Earth Sciences, The Natural History Museum, London, United Kingdom
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
22
|
Wiens RC, Udry A, Beyssac O, Quantin-Nataf C, Mangold N, Cousin A, Mandon L, Bosak T, Forni O, McLennan SM, Sautter V, Brown A, Benzerara K, Johnson JR, Mayhew L, Maurice S, Anderson RB, Clegg SM, Crumpler L, Gabriel TSJ, Gasda P, Hall J, Horgan BHN, Kah L, Legett C, Madariaga JM, Meslin PY, Ollila AM, Poulet F, Royer C, Sharma SK, Siljeström S, Simon JI, Acosta-Maeda TE, Alvarez-Llamas C, Angel SM, Arana G, Beck P, Bernard S, Bertrand T, Bousquet B, Castro K, Chide B, Clavé E, Cloutis E, Connell S, Dehouck E, Dromart G, Fischer W, Fouchet T, Francis R, Frydenvang J, Gasnault O, Gibbons E, Gupta S, Hausrath EM, Jacob X, Kalucha H, Kelly E, Knutsen E, Lanza N, Laserna J, Lasue J, Le Mouélic S, Leveille R, Lopez Reyes G, Lorenz R, Manrique JA, Martinez-Frias J, McConnochie T, Melikechi N, Mimoun D, Montmessin F, Moros J, Murdoch N, Pilleri P, Pilorget C, Pinet P, Rapin W, Rull F, Schröder S, Shuster DL, Smith RJ, Stott AE, Tarnas J, Turenne N, Veneranda M, Vogt DS, Weiss BP, Willis P, Stack KM, Williford KH, Farley KA, The SuperCam Team. Compositionally and density stratified igneous terrain in Jezero crater, Mars. SCIENCE ADVANCES 2022; 8:eabo3399. [PMID: 36007007 PMCID: PMC9410274 DOI: 10.1126/sciadv.abo3399] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
Before Perseverance, Jezero crater's floor was variably hypothesized to have a lacustrine, lava, volcanic airfall, or aeolian origin. SuperCam observations in the first 286 Mars days on Mars revealed a volcanic and intrusive terrain with compositional and density stratification. The dominant lithology along the traverse is basaltic, with plagioclase enrichment in stratigraphically higher locations. Stratigraphically lower, layered rocks are richer in normative pyroxene. The lowest observed unit has the highest inferred density and is olivine-rich with coarse (1.5 millimeters) euhedral, relatively unweathered grains, suggesting a cumulate origin. This is the first martian cumulate and shows similarities to martian meteorites, which also express olivine disequilibrium. Alteration materials including carbonates, sulfates, perchlorates, hydrated silicates, and iron oxides are pervasive but low in abundance, suggesting relatively brief lacustrine conditions. Orbital observations link the Jezero floor lithology to the broader Nili-Syrtis region, suggesting that density-driven compositional stratification is a regional characteristic.
Collapse
Affiliation(s)
- Roger C. Wiens
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Arya Udry
- Department of Geoscience, University of Nevada Las Vegas, Las Vegas, NV, USA
| | - Olivier Beyssac
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France
| | - Cathy Quantin-Nataf
- Laboratoire de Géologie de Lyon, Université de Lyon, Université Claude Bernard Lyon1, Ecole Normale Supérieure de Lyon, Université Jean Monnet Saint Etienne, CNRS, Villeurbanne, France
| | - Nicolas Mangold
- Laboratoire de Planétologie et Géosciences, CNRS UMR 6112, Nantes Université, Université d’Angers, Université du Mans, Nantes, France
| | - Agnès Cousin
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse 3 Paul Sabatier, UPS, CNRS, CNES, Toulouse, France
| | - Lucia Mandon
- Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-PSL, CNRS, Sorbonne Université, Université de Paris Cité, Meudon, France
| | - Tanja Bosak
- Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Olivier Forni
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse 3 Paul Sabatier, UPS, CNRS, CNES, Toulouse, France
| | | | - Violaine Sautter
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France
| | | | - Karim Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France
| | - Jeffrey R. Johnson
- Space Exploration Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | - Lisa Mayhew
- Department of Geological Sciences, University of Colorado, Boulder, CO, USA
| | - Sylvestre Maurice
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse 3 Paul Sabatier, UPS, CNRS, CNES, Toulouse, France
| | - Ryan B. Anderson
- U.S. Geological Survey Astrogeology Science Center, Flagstaff, AZ, USA
| | - Samuel M. Clegg
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Larry Crumpler
- New Mexico Museum of Natural History, Albuquerque, NM, USA
| | | | - Patrick Gasda
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - James Hall
- Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Briony H. N. Horgan
- Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN, USA
| | - Linda Kah
- Earth and Planetary Sciences, University of Tennessee, Knoxville, TN, USA
| | - Carey Legett
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Pierre-Yves Meslin
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse 3 Paul Sabatier, UPS, CNRS, CNES, Toulouse, France
| | - Ann M. Ollila
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Francois Poulet
- Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Saclay, Orsay, France
| | - Clement Royer
- Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-PSL, CNRS, Sorbonne Université, Université de Paris Cité, Meudon, France
| | | | | | - Justin I. Simon
- Center for Isotope Cosmochemistry and Geochronology, NASA Johnson Space Center, Houston, TX, USA
| | | | | | - S. Michael Angel
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, USA
| | - Gorka Arana
- University of Basque Country, UPV/EHU, Leioa, Bilbao, Spain
| | - Pierre Beck
- Institut de Planétologie et d’Astrophysique de Grenoble, CNRS, Université Grenoble Alpes, Grenoble, France
| | - Sylvain Bernard
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, CNRS, Sorbonne Université, Muséum National d’Histoire Naturelle, Paris, France
| | - Tanguy Bertrand
- Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-PSL, CNRS, Sorbonne Université, Université de Paris Cité, Meudon, France
| | - Bruno Bousquet
- Centre Lasers Intenses et Applications, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Kepa Castro
- University of Basque Country, UPV/EHU, Leioa, Bilbao, Spain
| | - Baptiste Chide
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Elise Clavé
- Centre Lasers Intenses et Applications, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Ed Cloutis
- University of Winnipeg, Winnipeg, MB, Canada
| | | | - Erwin Dehouck
- Laboratoire de Géologie de Lyon, Université de Lyon, Université Claude Bernard Lyon1, Ecole Normale Supérieure de Lyon, Université Jean Monnet Saint Etienne, CNRS, Villeurbanne, France
| | - Gilles Dromart
- Laboratoire de Géologie de Lyon, Université de Lyon, Université Claude Bernard Lyon1, Ecole Normale Supérieure de Lyon, Université Jean Monnet Saint Etienne, CNRS, Villeurbanne, France
| | | | - Thierry Fouchet
- Laboratoire d’Etudes Spatiales et d’Instrumentation en Astrophysique, Observatoire de Paris-PSL, CNRS, Sorbonne Université, Université de Paris Cité, Meudon, France
| | - Raymond Francis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Olivier Gasnault
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse 3 Paul Sabatier, UPS, CNRS, CNES, Toulouse, France
| | | | - Sanjeev Gupta
- Department of Earth Science and Engineering, Imperial College London, London, UK
| | | | - Xavier Jacob
- Institut de Mécanique des Fluides, Université de Toulouse 3 Paul Sabatier, Institut National Polytechnique de Toulouse, Toulouse, France
| | | | - Evan Kelly
- University of Hawai‘i, Honolulu, HI, USA
| | - Elise Knutsen
- Laboratoire Atmosphères, Milieux, Observations Spatiales, CNRS, Université Saint-Quentin-en-Yvelines, Université Paris Saclay, Sorbonne Université, Guyancourt, France
| | - Nina Lanza
- Space and Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM, USA
| | | | - Jeremie Lasue
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse 3 Paul Sabatier, UPS, CNRS, CNES, Toulouse, France
| | - Stéphane Le Mouélic
- Laboratoire de Planétologie et Géosciences, CNRS UMR 6112, Nantes Université, Université d’Angers, Université du Mans, Nantes, France
| | | | | | - Ralph Lorenz
- Space Exploration Sector, Johns Hopkins University Applied Physics Laboratory, Laurel, MD, USA
| | | | | | | | - Noureddine Melikechi
- Department of Physics and Applied Physics, Kennedy College of Sciences, University of Massachusetts, Lowell, MA, USA
| | - David Mimoun
- Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), Université de Toulouse, Toulouse, France
| | - Franck Montmessin
- Laboratoire Atmosphères, Milieux, Observations Spatiales, CNRS, Université Saint-Quentin-en-Yvelines, Université Paris Saclay, Sorbonne Université, Guyancourt, France
| | | | - Naomi Murdoch
- Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), Université de Toulouse, Toulouse, France
| | - Paolo Pilleri
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse 3 Paul Sabatier, UPS, CNRS, CNES, Toulouse, France
| | - Cedric Pilorget
- Institut d’Astrophysique Spatiale, CNRS, Univ. Paris-Saclay, Orsay, France
| | - Patrick Pinet
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse 3 Paul Sabatier, UPS, CNRS, CNES, Toulouse, France
| | - William Rapin
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse 3 Paul Sabatier, UPS, CNRS, CNES, Toulouse, France
| | - Fernando Rull
- Research Group ERICA, Universidad de Valladolid, Valladolid, Spain
| | - Susanne Schröder
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Optical Sensor Systems, Berlin, Germany
| | - David L. Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
| | | | - Alexander E. Stott
- Institut Supérieur de l’Aéronautique et de l’Espace (ISAE-SUPAERO), Université de Toulouse, Toulouse, France
| | - Jesse Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | | | - Marco Veneranda
- Research Group ERICA, Universidad de Valladolid, Valladolid, Spain
| | - David S. Vogt
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institute of Optical Sensor Systems, Berlin, Germany
| | - Benjamin P. Weiss
- Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Peter Willis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kathryn M. Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
| | - Kenneth H. Williford
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- Blue Marble Space Institute of Science, Seattle, WA, USA
| | | | | |
Collapse
|
23
|
Farley KA, Stack KM, Shuster DL, Horgan BHN, Hurowitz JA, Tarnas JD, Simon JI, Sun VZ, Scheller EL, Moore KR, McLennan SM, Vasconcelos PM, Wiens RC, Treiman AH, Mayhew LE, Beyssac O, Kizovski TV, Tosca NJ, Williford KH, Crumpler LS, Beegle LW, Bell JF, Ehlmann BL, Liu Y, Maki JN, Schmidt ME, Allwood AC, Amundsen HEF, Bhartia R, Bosak T, Brown AJ, Clark BC, Cousin A, Forni O, Gabriel TSJ, Goreva Y, Gupta S, Hamran SE, Herd CDK, Hickman-Lewis K, Johnson JR, Kah LC, Kelemen PB, Kinch KB, Mandon L, Mangold N, Quantin-Nataf C, Rice MS, Russell PS, Sharma S, Siljeström S, Steele A, Sullivan R, Wadhwa M, Weiss BP, Williams AJ, Wogsland BV, Willis PA, Acosta-Maeda TA, Beck P, Benzerara K, Bernard S, Burton AS, Cardarelli EL, Chide B, Clavé E, Cloutis EA, Cohen BA, Czaja AD, Debaille V, Dehouck E, Fairén AG, Flannery DT, Fleron SZ, Fouchet T, Frydenvang J, Garczynski BJ, Gibbons EF, Hausrath EM, Hayes AG, Henneke J, Jørgensen JL, Kelly EM, Lasue J, Le Mouélic S, Madariaga JM, Maurice S, Merusi M, Meslin PY, Milkovich SM, Million CC, Moeller RC, Núñez JI, Ollila AM, Paar G, Paige DA, Pedersen DAK, Pilleri P, Pilorget C, Pinet PC, et alFarley KA, Stack KM, Shuster DL, Horgan BHN, Hurowitz JA, Tarnas JD, Simon JI, Sun VZ, Scheller EL, Moore KR, McLennan SM, Vasconcelos PM, Wiens RC, Treiman AH, Mayhew LE, Beyssac O, Kizovski TV, Tosca NJ, Williford KH, Crumpler LS, Beegle LW, Bell JF, Ehlmann BL, Liu Y, Maki JN, Schmidt ME, Allwood AC, Amundsen HEF, Bhartia R, Bosak T, Brown AJ, Clark BC, Cousin A, Forni O, Gabriel TSJ, Goreva Y, Gupta S, Hamran SE, Herd CDK, Hickman-Lewis K, Johnson JR, Kah LC, Kelemen PB, Kinch KB, Mandon L, Mangold N, Quantin-Nataf C, Rice MS, Russell PS, Sharma S, Siljeström S, Steele A, Sullivan R, Wadhwa M, Weiss BP, Williams AJ, Wogsland BV, Willis PA, Acosta-Maeda TA, Beck P, Benzerara K, Bernard S, Burton AS, Cardarelli EL, Chide B, Clavé E, Cloutis EA, Cohen BA, Czaja AD, Debaille V, Dehouck E, Fairén AG, Flannery DT, Fleron SZ, Fouchet T, Frydenvang J, Garczynski BJ, Gibbons EF, Hausrath EM, Hayes AG, Henneke J, Jørgensen JL, Kelly EM, Lasue J, Le Mouélic S, Madariaga JM, Maurice S, Merusi M, Meslin PY, Milkovich SM, Million CC, Moeller RC, Núñez JI, Ollila AM, Paar G, Paige DA, Pedersen DAK, Pilleri P, Pilorget C, Pinet PC, Rice JW, Royer C, Sautter V, Schulte M, Sephton MA, Sharma SK, Sholes SF, Spanovich N, St Clair M, Tate CD, Uckert K, VanBommel SJ, Yanchilina AG, Zorzano MP. Aqueously altered igneous rocks sampled on the floor of Jezero crater, Mars. Science 2022; 377:eabo2196. [PMID: 36007009 DOI: 10.1126/science.abo2196] [Show More Authors] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body. Fe-Mg carbonates along grain boundaries indicate reactions with CO2-rich water, under water-poor conditions. Overlying Séítah is a unit informally named Máaz, which we interpret as lava flows or the chemical complement to Séítah in a layered igneous body. Voids in these rocks contain sulfates and perchlorates, likely introduced by later near-surface brine evaporation. Core samples of these rocks were stored aboard Perseverance for potential return to Earth.
Collapse
Affiliation(s)
- K A Farley
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - K M Stack
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - D L Shuster
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA 94720, USA
| | - B H N Horgan
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - J A Hurowitz
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - J D Tarnas
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J I Simon
- Center for Isotope Cosmochemistry and Geochronology, Astromaterials Research and Exploration Science Division, NASA Johnson Space Center, Houston, TX 77058, USA
| | - V Z Sun
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - E L Scheller
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - K R Moore
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - S M McLennan
- Department of Geosciences, Stony Brook University, Stony Brook, NY 11794, USA
| | - P M Vasconcelos
- School of Earth and Environmental Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| | - R C Wiens
- Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - A H Treiman
- Lunar and Planetary Institute, Universities Space Research Association, Houston, TX 77058, USA
| | - L E Mayhew
- Department of Geological Sciences, University of Colorado, Boulder, Boulder, CO 80309, USA
| | - O Beyssac
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - T V Kizovski
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - N J Tosca
- Department of Earth Sciences, University of Cambridge, Cambridge CB2 3EQ, UK
| | - K H Williford
- Blue Marble Space Institute of Science, Seattle, WA 98104, USA
| | - L S Crumpler
- New Mexico Museum of Natural History and Science, Albuquerque, NM 8710, USA
| | - L W Beegle
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J F Bell
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - B L Ehlmann
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Y Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J N Maki
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - M E Schmidt
- Department of Earth Sciences, Brock University, St. Catharines, ON L2S 3A1, Canada
| | - A C Allwood
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - H E F Amundsen
- Center for Space Sensors and Systems, University of Oslo, 2007 Kjeller, Norway
| | - R Bhartia
- Photon Systems Inc., Covina, CA 91725, USA
| | - T Bosak
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A J Brown
- Plancius Research, Severna Park, MD 21146, USA
| | - B C Clark
- Space Science Institute, Boulder, CO 80301, USA
| | - A Cousin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - O Forni
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - T S J Gabriel
- Astrogeology Science Center, US Geological Survey, Flagstaff, AZ 86001, USA
| | - Y Goreva
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - S Gupta
- Department of Earth Sciences and Engineering, Imperial College London, London SW7 2AZ, UK
| | - S-E Hamran
- Center for Space Sensors and Systems, University of Oslo, 2007 Kjeller, Norway
| | - C D K Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - K Hickman-Lewis
- Department of Earth Sciences, The Natural History Museum, London SW7 5BD, UK.,Dipartimento di Scienze Biologiche, Geologiche e Ambientali, Università di Bologna, 40126 Bologna, Italy
| | - J R Johnson
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - L C Kah
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - P B Kelemen
- Department of Earth and Environmental Sciences, Lamont Doherty Earth Observatory of Columbia University, Palisades, NY 10964, USA
| | - K B Kinch
- Niels Bohr Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - L Mandon
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, 92195 Meudon, France
| | - N Mangold
- Laboratoire de Planétologie et Géosciences, Centre National de la Recherche Scientifique, Nantes Université, Université Angers, 44000 Nantes, France
| | - C Quantin-Nataf
- Laboratoire de Géologie de Lyon: Terre, Université de Lyon, Université Claude Bernard Lyon1, Ecole Normale Supérieure de Lyon, Université Jean Monnet Saint Etienne, Centre National de la Recherche Scientifique, 69622 Villeurbanne, France
| | - M S Rice
- Department of Geology, Western Washington University, Bellingham, WA 98225 USA
| | - P S Russell
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - S Sharma
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - S Siljeström
- Department of Methodology, Textiles and Medical Technology, Research Institutes of Sweden, 11486 Stockholm, Sweden
| | - A Steele
- Earth and Planetary Laboratory, Carnegie Science, Washington, DC 20015, USA
| | - R Sullivan
- Cornell Center for Astrophysics and Planetary Science, Cornell University, Ithaca, NY 14853, USA
| | - M Wadhwa
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - B P Weiss
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA.,Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - A J Williams
- Department of Geological Sciences, University of Florida, Gainesville, FL 32611, USA
| | - B V Wogsland
- Department of Earth and Planetary Sciences, University of Tennessee, Knoxville, TN 37996, USA
| | - P A Willis
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - T A Acosta-Maeda
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - P Beck
- Institut de Planétologie et Astrophysique de Grenoble, Centre National de la Recherche Scientifique, Université Grenoble Alpes, 38000 Grenoble, France
| | - K Benzerara
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - S Bernard
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - A S Burton
- NASA Johnson Space Center, Houston, TX 77058, USA
| | - E L Cardarelli
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - B Chide
- Planetary Exploration Team, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - E Clavé
- Centre Lasers Intenses et Applications, Centre National de la Recherche Scientifique, Commissariat à l'Energie Atomique, Université de Bordeaux, 33400 Bordeaux, France
| | - E A Cloutis
- Centre for Terrestrial and Planetary Exploration, University of Winnipeg, Winnipeg, MB R3B 2E9, Canada
| | - B A Cohen
- NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
| | - A D Czaja
- Department of Geology, University of Cincinnati, Cincinnati, OH 45221, USA
| | - V Debaille
- Laboratoire G-Time, Université Libre de Bruxelles, 1050 Brussels, Belgium
| | - E Dehouck
- Laboratoire de Géologie de Lyon: Terre, Université de Lyon, Université Claude Bernard Lyon1, Ecole Normale Supérieure de Lyon, Université Jean Monnet Saint Etienne, Centre National de la Recherche Scientifique, 69622 Villeurbanne, France
| | - A G Fairén
- Centro de Astrobiología, Consejo Superior de Investigaciones Científicas-Instituto Nacional de Técnica Aeroespacial, 28850 Madrid, Spain.,Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
| | - D T Flannery
- School of Earth and Atmospheric Sciences, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - S Z Fleron
- Department of Geosciences and Natural Resource Management, University of Copenhagen, 1350 Copenhagen, Denmark
| | - T Fouchet
- Laboratoire d'Etudes Spatiales et d'Instrumentation en Astrophysique, Observatoire de Paris, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, 92195 Meudon, France
| | - J Frydenvang
- Globe Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - B J Garczynski
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
| | - E F Gibbons
- Department of Earth and Planetary Sciences, McGill University, Montreal, QC H3A 0E8, Canada
| | - E M Hausrath
- Department of Geoscience, University of Nevada, Las Vegas, Las Vegas, NV 89154, USA
| | - A G Hayes
- Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
| | - J Henneke
- National Space Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - J L Jørgensen
- National Space Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - E M Kelly
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - J Lasue
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - S Le Mouélic
- Laboratoire de Planétologie et Géosciences, Centre National de la Recherche Scientifique, Nantes Université, Université Angers, 44000 Nantes, France
| | - J M Madariaga
- Department of Analytical Chemistry, University of the Basque Country, 48940 Leioa, Spain
| | - S Maurice
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - M Merusi
- Niels Bohr Institute, University of Copenhagen, 1350 Copenhagen, Denmark
| | - P-Y Meslin
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - S M Milkovich
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | | | - R C Moeller
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - J I Núñez
- Johns Hopkins University Applied Physics Laboratory, Laurel, MD 20723, USA
| | - A M Ollila
- Los Alamos National Laboratory, Los Alamos, NM 87545 USA
| | - G Paar
- Institute for Information and Communication Technologies, Joanneum Research, 8010 Graz, Austria
| | - D A Paige
- Department of Earth, Planetary, and Space Sciences, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - D A K Pedersen
- National Space Institute, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | - P Pilleri
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - C Pilorget
- Institut d'Astrophysique Spatiale, Université Paris-Saclay, 91405 Orsay, France.,Institut Universitaire de France, Paris, France
| | - P C Pinet
- Institut de Recherche en Astrophysique et Planétologie, Université de Toulouse 3 Paul Sabatier, Centre National de la Recherche Scientifique, Centre National d'Etude Spatiale, 31400 Toulouse, France
| | - J W Rice
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287, USA
| | - C Royer
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - V Sautter
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Centre National de la Recherche Scientifique, Sorbonne Université, Muséum National d'Histoire Naturelle, 75005 Paris, France
| | - M Schulte
- Mars Exploration Program, Planetary Science Division, NASA Headquarters, Washington, DC 20546, USA
| | - M A Sephton
- Department of Earth Sciences and Engineering, Imperial College London, London SW7 2AZ, UK
| | - S K Sharma
- Hawai'i Institute of Geophysics and Planetology, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - S F Sholes
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - N Spanovich
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - M St Clair
- Million Concepts, Louisville, KY 40204, USA
| | - C D Tate
- Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
| | - K Uckert
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - S J VanBommel
- McDonnell Center for the Space Sciences and Department of Earth and Planetary Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | | | - M-P Zorzano
- Department of Astronomy, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Abstract
Data analysis methods have scarcely kept pace with the rapid increase in Earth observations, spurring the development of novel algorithms, storage methods, and computational techniques. For scientists interested in Mars, the problem is always the same: there is simultaneously never enough of the right data and an overwhelming amount of data in total. Finding sufficient data needles in a haystack to test a hypothesis requires hours of manual data screening, and more needles and hay are added constantly. To date, the vast majority of Martian research has been focused on either one-off local/regional studies or on hugely time-consuming manual global studies. Machine learning in its numerous forms can be helpful for future such work. Machine learning has the potential to help map and classify a large variety of both features and properties on the surface of Mars and to aid in the planning and execution of future missions. Here, we outline the current extent of machine learning as applied to Mars, summarize why machine learning should be an important tool for planetary geomorphology in particular, and suggest numerous research avenues and funding priorities for future efforts. We conclude that: (1) moving toward methods that require less human input (i.e., self- or semi-supervised) is an important paradigm shift for Martian applications, (2) new robust methods using generative adversarial networks to generate synthetic high-resolution digital terrain models represent an exciting new avenue for Martian geomorphologists, (3) more effort and money must be directed toward developing standardized datasets and benchmark tests, and (4) the community needs a large-scale, generalized, and programmatically accessible geographic information system (GIS).
Collapse
|
25
|
Zaki AS, Davis JM, Edgett KS, Giegengack R, Roige M, Conway S, Schuster M, Gupta S, Salese F, Sangwan KS, Fairén AG, Hughes CM, Pain CF, Castelltort S. Fluvial Depositional Systems of the African Humid Period: An Analog for an Early, Wet Mars in the Eastern Sahara. JOURNAL OF GEOPHYSICAL RESEARCH. PLANETS 2022; 127:e2021JE007087. [PMID: 35860764 PMCID: PMC9285406 DOI: 10.1029/2021je007087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 04/20/2022] [Accepted: 04/27/2022] [Indexed: 06/15/2023]
Abstract
A widely hypothesized but complex transition from widespread fluvial activity to predominantly aeolian processes is inferred on Mars based on remote sensing data observations of ancient landforms. However, the lack of analysis of in situ martian fluvial deposits hinders our understanding of the flow regime nature and sustainability of the martian fluvial activity and the hunt for ancient life. Studying analogs from arid zones on Earth is fundamental to quantitatively understanding geomorphic processes and climate drivers that might have dominated during early Mars. Here we investigate the formation and preservation of fluvial depositional systems in the eastern Sahara, where the largest arid region on Earth hosts important repositories of past climatic changes. The fluvial systems are composed of well-preserved single-thread sinuous to branching ridges and fan-shaped deposits interpreted as deltas. The systems' configuration and sedimentary content suggest that ephemeral rivers carved these landforms by sequential intermittent episodes of erosion and deposition active for 10-100s years over ∼10,000 years during the late Quaternary. Subsequently, these landforms were sculpted by a marginal role of rainfall and aeolian processes with minimum erosion rates of 1.1 ± 0.2 mm/yr, supplying ∼96 ± 24 × 1010 m3 of disaggregated sediment to adjacent aeolian dunes. Our results imply that similar martian fluvial systems preserving single-thread, short distance source-to-sink courses may have formed due to transient drainage networks active over short durations. Altogether, this study adds to the growing recognition of the complexity of interpreting climate history from orbital images of landforms.
Collapse
Affiliation(s)
- A. S. Zaki
- Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
| | - J. M. Davis
- Department of Earth SciencesNatural History MuseumLondonUK
| | | | - R. Giegengack
- Department of Earth & Environmental ScienceUniversity of PennsylvaniaPhiladelphiaPAUSA
| | - M. Roige
- Department de GeologiaUniversitat Autònoma de BarcelonaBarcelonaSpain
| | - S. Conway
- CNRS UMR 6112 Laboratoire de Planétologie et Géodynamique, Université de NantesNantesFrance
| | - M. Schuster
- Université de StrasbourgCNRSInstitut Terre et Environnement de StrasbourgStrasbourgFrance
| | - S. Gupta
- Department of Earth Sciences and EngineeringImperial College LondonLondonUK
| | - F. Salese
- Centro de Astrobiología (CSIC‐INTA), Torrejón de ArdozMadridSpain
- International Research School of Planetary Sciences (IRSPS)Università d’AnnunzioPescaraItaly
| | - K. S. Sangwan
- Department of Earth Sciences and EngineeringImperial College LondonLondonUK
| | - A. G. Fairén
- Centro de Astrobiología (CSIC‐INTA), Torrejón de ArdozMadridSpain
- Department of AstronomyCornell UniversityIthacaNYUSA
| | - C. M. Hughes
- Department of GeosciencesUniversity of ArkansasFayettevilleARUSA
| | - C. F. Pain
- MED_Soil, Departamento de Cristlografía, Mineralogía y Quimica AgrícolaUniversidad de SevillaSevillaSpain
| | - S. Castelltort
- Department of Earth SciencesUniversity of GenevaGenevaSwitzerland
| |
Collapse
|
26
|
Floods once lashed the Martian lake where NASA’s rover roams. Nature 2021. [DOI: 10.1038/d41586-021-02745-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|