1
|
Bhattacharya I, Nalinan LK, Anusree KV, Saleel A, Khamamkar A, Dey S. Evolving Lessons on Metazoan Primordial Germ Cells in Diversity and Development. Mol Reprod Dev 2025; 92:e70027. [PMID: 40349219 PMCID: PMC12066098 DOI: 10.1002/mrd.70027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Accepted: 04/15/2025] [Indexed: 05/14/2025]
Abstract
Germ cells are pivotal for the continuation of biological species. The metazoan germline develops from primordial germ cells (PGCs) that undergo multiple rounds of mitotic divisions. The PGCs are specified by either maternal inheritance of asymmetrically polarized cytoplasmic mRNAs/proteins (found in roundworms, flies, fishes, frogs, and fowl) or via direct induction of epiblast cells from adjacent extraembryonic ectoderm in mammals. In all vertebrates, PGCs remain uncommitted to meiosis and migrate to colonize the developing gonadal ridge before sex determination. Multiple RNA-binding proteins (e.g., Vasa, Dnd, Dazl, etc.) play crucial roles in PGC identity, expansion, survival, and migration. Postsex determination in mouse embryos, Gata4, expressing nascent gonads, induces Dazl expression in newly arriving germ cells that supports retinoic acid-mediated induction of meiotic onset. This article briefly discusses the developmental events regulating the PGC specification and commitment in metazoans. We also highlight the recent progress towards the in vitro generation of functional PGC-like cells in rodents and humans.
Collapse
Affiliation(s)
- Indrashis Bhattacharya
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - Lakshmi K. Nalinan
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - K. V. Anusree
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - Ahmed Saleel
- Department of ZoologyThe Central University of KeralaTejaswini Hills, Periye (PO)Kasaragod (DT)KeralaIndia
| | - Aditi Khamamkar
- Manipal Centre for Biotherapeutics ResearchManipal Academy of Higher EducationManipalKarnatakaIndia
| | - Souvik Dey
- Manipal Centre for Biotherapeutics ResearchManipal Academy of Higher EducationManipalKarnatakaIndia
| |
Collapse
|
2
|
Wu B, Neupane J, Zhou Y, Zhang J, Chen Y, Surani MA, Zhang Y, Bao S, Li X. Stem cell-based embryo models: a tool to study early human development. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2741-1. [PMID: 39969747 DOI: 10.1007/s11427-024-2741-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/23/2024] [Indexed: 02/20/2025]
Abstract
How a mammalian fertilized egg acquires totipotency and develops into a full-term offspring is a fundamental scientific question. Human embryonic development is difficult to study due to limited resources, technical challenges and ethics. Moreover, the precise regulatory mechanism underlying early human embryonic development remains unknown. In recent years, the emergence of stem cell-based embryo models (SCBEM) provides the opportunity to reconstitute pre- to post-implantation development in vitro. These models to some extent mimic the embryo morphologically and transcriptionally, and thus may be used to study key events in mammalian pre- and post-implantation development. Many groups have successfully generated SCBEM of the mouse and human. Here, we provide a comparative review of the mouse and human SCBEM, discuss the capability of these models to mimic natural embryos and give a perspective on their potential future applications.
Collapse
Affiliation(s)
- Baojiang Wu
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jitesh Neupane
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yang Zhou
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - Jingcheng Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China
| | - Yanglin Chen
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China
| | - M Azim Surani
- The Gurdon Institute, University of Cambridge, Cambridge, CB2 1QN, UK
| | - Yong Zhang
- Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, College of Veterinary Medicine, Northwest A&F University, Yangling, 712100, China.
| | - Siqin Bao
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
| | - Xihe Li
- The State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Research Center for Animal Genetic Resources of Mongolia Plateau, College of Life Sciences, Inner Mongolia University, Hohhot, 010020, China.
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, 011517, China.
| |
Collapse
|
3
|
Korody ML, Hildebrandt TB. Progress Toward Genetic Rescue of the Northern White Rhinoceros ( Ceratotherium simum cottoni). Annu Rev Anim Biosci 2025; 13:483-505. [PMID: 39531386 DOI: 10.1146/annurev-animal-111523-102158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The northern white rhinoceros (NWR) is functionally extinct, with only two nonreproductive females remaining. However, because of the foresight of scientists, cryopreserved cells and reproductive tissues may aid in the recovery of this species. An ambitious program of natural and artificial gametes and in vitro embryo generation was first outlined in 2015, and many of the proposed steps have been achieved. Multiple induced pluripotent stem cell lines have been established, primordial germ cell-like cells have been generated, oocytes have been collected from the remaining females, blastocysts have been cryopreserved, and the closely related southern white rhinoceros (SWR) is being established as a surrogate. Recently, the first successful embryo transfer in SWR demonstrated that embryos can be generated by in vitro fertilization and cryopreserved. We explore progress to date in using advanced cellular technologies to save the NWR and highlight the necessary next steps to ensure a viable population for reintroduction. We roll out a holistic rescue approach for a charismatic megavertebrate that includes the most advanced cellular technologies, which can provide a blueprint for other critically endangered mammals. We also provide a detailed discussion of the remaining questions in such an upgraded conservation program.
Collapse
Affiliation(s)
- Marisa L Korody
- San Diego Zoo Wildlife Alliance, Escondido, California, USA;
| | - Thomas B Hildebrandt
- Faculty of Veterinary Medicine, Freie Universität Berlin, Berlin, Germany
- Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany;
| |
Collapse
|
4
|
Zhi M, Gao D, Yao Y, Zhao Z, Wang Y, He P, Feng Z, Zhang J, Huang Z, Gu W, Zhao J, Zhang H, Wang S, Li X, Zhang Q, Zhao Z, Chen X, Zhang X, Qin L, Liu J, Liu C, Cao S, Gao S, Yu W, Ma Z, Han J. Elucidation of the pluripotent potential of bovine embryonic lineages facilitates the establishment of formative stem cell lines. Cell Mol Life Sci 2024; 81:427. [PMID: 39377807 PMCID: PMC11461730 DOI: 10.1007/s00018-024-05457-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 06/27/2024] [Accepted: 09/19/2024] [Indexed: 10/09/2024]
Abstract
The establishment of epiblast-derived pluripotent stem cells (PSCs) from cattle, which are important domestic animals that provide humans with milk and meat while also serving as bioreactors for producing valuable proteins, poses a challenge due to the unclear molecular signaling required for embryonic epiblast development and maintenance of PSC self-renewal. Here, we selected six key stages of bovine embryo development (E5, E6, E7, E10, E12, and E14) to track changes in pluripotency and the dependence on signaling pathways via modified single-cell transcription sequencing technology. The remarkable similarity of the gene expression patterns between cattle and pigs during embryonic lineage development contributed to the successful establishment of bovine epiblast stem cells (bEpiSCs) using 3i/LAF (WNTi, GSK3βi, SRCi, LIF, Activin A, and FGF2) culture system. The generated bEpiSCs exhibited consistent expression patterns of formative epiblast pluripotency genes and maintained clonal morphology, normal karyotypes, and proliferative capacity for more than 112 passages. Moreover, these cells exhibited high-efficiency teratoma formation as well as the ability to differentiate into various cell lineages. The potential of bEpiSCs for myogenic differentiation, primordial germ cell like cells (PGCLCs) induction, and as donor cells for cell nuclear transfer was also assessed, indicating their promise in advancing cell-cultured meat production, gene editing, and animal breeding.
Collapse
Affiliation(s)
- Minglei Zhi
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Dengfeng Gao
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, 611130, People's Republic of China
| | - Yixuan Yao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zimo Zhao
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yingjie Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Pengcheng He
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zhiqiang Feng
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Jinying Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ziqi Huang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, People's Republic of China
| | - Wenyuan Gu
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Jianglin Zhao
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - He Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Shunxin Wang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xin Li
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Qiang Zhang
- Key Laboratory of Animal Genetics, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Zengyuan Zhao
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China
| | - Xinze Chen
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Xiaowei Zhang
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Lun Qin
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Jun Liu
- College of Veterinary Medicine, Northwest A&F University, Key Laboratory of Animal Biotechnology of the Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - Chengjun Liu
- Beijing Dairy Cattle Center, Beijing, 100192, People's Republic of China
| | - Suying Cao
- Animal Science and Technology College, Beijing University of Agriculture, Beijing, 102206, People's Republic of China
| | - Shuai Gao
- Key Laboratory of Animal Genetics, College of Animal Science and Technology, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Wenli Yu
- Shijiazhuang Tianquan Elite Dairy Co., Ltd. Shijiazhuang, Hebei, 050200, People's Republic of China.
| | - Zhu Ma
- Beijing Dairy Cattle Center, Beijing, 100192, People's Republic of China.
| | - Jianyong Han
- State Key Laboratory of Animal Biotech Breeding, China Agricultural University, Beijing, 100193, People's Republic of China.
| |
Collapse
|
5
|
Qiao ZZ, Zang MX, Zhang Y, Wang P, Li XY, Song X, Zhang CJ, Klinger FG, Ge W, Shen W, Cheng SF. LH promotes the proliferation of porcine primordial germ cell-like cells (pPGCLCs) by regulating the ceRNA network related to the TGF-β signaling pathway. Int J Biol Macromol 2024; 280:135984. [PMID: 39326611 DOI: 10.1016/j.ijbiomac.2024.135984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 08/23/2024] [Accepted: 09/22/2024] [Indexed: 09/28/2024]
Abstract
Primordial germ cells (PGCs), as the precursors of gametes found in early embryos, provide a new direction for solving the problem of reproductive disorders. In vitro, conversion of adult stem cells (ASCs) into primordial germ cell-like cells (PGCLCs) is feasible. The means of increasing PGCLCs number in vitro has been a focus of recent stem cell research. In this study, we found that luteinizing hormone (LH) could promote porcine PGCLCs (pPGCLCs) proliferation. To investigate the proliferation regulatory network, whole transcriptome sequencing technology was employed. Results showed that the TGF-β signaling pathway played a key role. In addition, we found that TGFβR1 and SMAD4, TGF-β signaling pathway-related genes, were significantly upregulated after LH treatment. Subsequently, we predicted their target microRNAs (miRNAs) and long non-coding RNAs (lncRNAs): ssc-miR-128, ssc-miR-146b, ssc-miR-361-3p, MSTRG.11473, MSTRG.11475, MSTRG.11553, and MSTRG.11554, and constructed the competitive endogenous RNAs (ceRNA) network. Finally, to further verify the ceRNA network, the miRNA-inhibitors were transfected into cells. RT-qPCR results indicated a significant increase in the expression of MSTRG.11473, MSTRG.11475, MSTRG.11553, MSTRG.11554, TGFβR1, and SMAD4 compared to the negative control (NC) group. In conclusion, these results highlight that LH could regulate the pPGCLCs proliferation by modulating the expression of TGF-β signaling pathway-related ncRNAs.
Collapse
Affiliation(s)
- Zhan-Zhong Qiao
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ming-Xin Zang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ying Zhang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Ping Wang
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiao-Ya Li
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xin Song
- Jinxiang County Agriculture and Rural Bureau, Jining 272200, China
| | - Chun-Jie Zhang
- Wudi Animal Husbandry and Veterinary Service Management Center of Binzhou City, Binzhou 256600, China
| | | | - Wei Ge
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Wei Shen
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| | - Shun-Feng Cheng
- College of Life Sciences, Institute of Reproductive Sciences, Qingdao Agricultural University, Qingdao 266109, China.
| |
Collapse
|
6
|
Mollard R, Mahony M, West M. Karyotypic description and comparison of Litoria (L.) paraewingi (Watson et al., 1971), L.ewingii (Duméril et Bibron, 1841) and L.jervisiensis (Duméril et Bibron, 1841) (Amphibia, Anura). COMPARATIVE CYTOGENETICS 2024; 18:161-174. [PMID: 39206049 PMCID: PMC11350279 DOI: 10.3897/compcytogen.18.129133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/22/2024] [Indexed: 09/04/2024]
Abstract
The karyotype of Litoria (L.) paraewingi (Watson et al., 1971) (Big River State Forest, Victoria) is described here for the first time. It is prepared following tissue culture of toe clipping macerates, cryopreservation, reculture and conventional 4',6-diamidino-2-phenylindole (DAPI) staining. The L.paraewingi karyotype is then compared to similarly processed IUCN (International Union for the Conservation of Nature) least concern members L.ewingii (Duméril et Bibron, 1841) (southern Victoria) and L.jervisiensis (Duméril et Bibron, 1841) (Myall Lakes National Park, New South Wales), all members of the same L.ewingii complex/group. The L.paraewingi diploid number is 2n = 26, the same as for the other two species. Litoriaparaewingi chromosomes 1, 2, 6 and 7 are submetacentric, chromosomes 3 and 5 are subtelocentric and the remainder are metacentric. No secondary constriction or putative nucleolus organiser region (NOR) was readily identifiable following conventional DAPI staining in any scored L.paraewingi metaphase spread. Conversely, a putative NOR was readily identifiable on the long arm of chromosome 1 in all examined metaphase spreads for the other two species. The karyotypes of L.ewingii and L.jervisiensis here further differ from L.paraewingi with chromosome 1 being metacentric and chromosomes 8 and 10 being submetacentric for both former species. The L.jervisiensis karyotype differs from those of L.ewingii and L.paraewingi by DAPI staining with: (i) apparent relative length inversion of subtelocentric chromosome 3 and metacentric chromosome 4 and (ii) chromosome 6 being metacentric rather than submetacentric. All three species have a highly conserved chromosome morphology with respect to chromosomes 2, 5, 7, 9, 11, 12 and 13. The greatest gross morphological difference karyotypically is observed between L.paraewingi and L.jervisiensis. These karyotype data support the previous phylogenetic separation of these three species based upon genetic compatibility and behavioural, biochemical and molecular genetic analyses.
Collapse
Affiliation(s)
- Richard Mollard
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, 3052, Australia
| | - Michael Mahony
- School of Environmental and Life Sciences, University of Newcastle, Callaghan, New South Wales, 2308, Australia
| | - Matt West
- Melbourne Veterinary School, Faculty of Science, The University of Melbourne, Parkville, 3052, Australia
| |
Collapse
|
7
|
Jang SW, Kim YR, Han JH, Jang H, Choi HW. Generation of mouse and rat xenogeneic ovaries in vitro for production of mouse oocyte. Anim Cells Syst (Seoul) 2024; 28:303-314. [PMID: 38868077 PMCID: PMC11168328 DOI: 10.1080/19768354.2024.2363601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/30/2024] [Indexed: 06/14/2024] Open
Abstract
The system forming ovarian follicles is developed to investigate in vitro folliculogenesis in a confined environment to obtain functional oocytes. Several studies have reported the successful generation of fully functional oocytes using mouse-induced pluripotent stem cells (iPSCs) and mouse female germline stem cells (fGSCs) as sources of stem cells for in vitro gametogenesis models. In addition, human oogonia have been generated through heterologous co-culture of differentiated human primordial germ cell-like cells (hPGCLCs) with mouse germline somatic cells, although oocyte formation remains challenging. Thus, studies on in vitro ovarian formation in other species are utilized as an introductory approach for in vitro mammalian gametogenesis by understanding the differences in culture systems between species and underlying mechanisms. In this study, we optimized the method of the entire oogenesis process from rat embryonic gonads. We identified well-maturated MII oocytes from rat gonads using our constructed method. Moreover, we generated the first successful in vitro reconstitution of xenogeneic follicles from mouse primordial germ cells (PGCs) and rat somatic cells. We also established an appropriate culture medium and incubation period for xenogeneic follicles. This method will be helpful in studies of xenogeneic follicular development and oocyte generation.
Collapse
Affiliation(s)
- Si Won Jang
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Ye Rim Kim
- Department of Animal Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jae Ho Han
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hoon Jang
- Department of Life Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Hyun Woo Choi
- Department of Agricultural Convergence Technology, Jeonbuk National University, Jeonju, Republic of Korea
- Department of Animal Science, Jeonbuk National University, Jeonju, Republic of Korea
| |
Collapse
|
8
|
de Castro RCF, Buranello TW, Recchia K, de Souza AF, Pieri NCG, Bressan FF. Emerging Contributions of Pluripotent Stem Cells to Reproductive Technologies in Veterinary Medicine. J Dev Biol 2024; 12:14. [PMID: 38804434 PMCID: PMC11130827 DOI: 10.3390/jdb12020014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 04/10/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
The generation of mature gametes and competent embryos in vitro from pluripotent stem cells has been successfully achieved in a few species, mainly in mice, with recent advances in humans and scarce preliminary reports in other domestic species. These biotechnologies are very attractive as they facilitate the understanding of developmental mechanisms and stages that are generally inaccessible during early embryogenesis, thus enabling advanced reproductive technologies and contributing to the generation of animals of high genetic merit in a short period. Studies on the production of in vitro embryos in pigs and cattle are currently used as study models for humans since they present more similar characteristics when compared to rodents in both the initial embryo development and adult life. This review discusses the most relevant biotechnologies used in veterinary medicine, focusing on the generation of germ-cell-like cells in vitro through the acquisition of totipotent status and the production of embryos in vitro from pluripotent stem cells, thus highlighting the main uses of pluripotent stem cells in livestock species and reproductive medicine.
Collapse
Affiliation(s)
- Raiane Cristina Fratini de Castro
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Tiago William Buranello
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Kaiana Recchia
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
| | - Aline Fernanda de Souza
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Naira Caroline Godoy Pieri
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| | - Fabiana Fernandes Bressan
- Department of Surgery, Faculty of Veterinary Medicine and Animal Sciences, University of Sao Paulo, São Paulo 01001-010, SP, Brazil; (R.C.F.d.C.); (T.W.B.); (K.R.)
- Department of Veterinary Medicine, School of Animal Sciences and Food Engineering, University of Sao Paulo, Pirassununga 13635-900, SP, Brazil;
| |
Collapse
|
9
|
Muhsin SM, Yahya F, Parachottil R, Shaikh S, Chin AHB. Sex Reassignment Surgery, Marriage, and Reproductive Rights of Intersex and Transgender People in Sunni Islam. ARCHIVES OF SEXUAL BEHAVIOR 2024; 53:1681-1694. [PMID: 38383942 DOI: 10.1007/s10508-024-02813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
The traditional gender binary constitutes an integral aspect of Islamic social ethics, which has a pivotal role in shaping religious obligations, legal proceedings, and interpersonal judgments within Muslim communities. Within the familial sphere, this gender binary underscores fundamental responsibilities encompassing parenthood, filial duties, and inheritance rights. Recent years have witnessed a growing challenge to the traditional concept of the gender binary within Islamic societies. This shift is driven by increasing social libertarianism that emphasizes gender fluidity and individual choice. Hence, this article aims to critically scrutinize evolving discussions and controversies about the rights of intersex and transgender individuals, particularly issues relating to sex reassignment or gender-affirming surgery, marriage, and reproduction, from the perspective of the Sunni tradition of Islam. To support the various interpretations and insights presented here, a comprehensive and rigorous analysis is carried out on various religious texts and scholarly sources to elucidate the theological and jurisprudential positions on gender issues. It is thus concluded that Shariah offers greater flexibility in the treatment of intersex individuals compared to those with gender dysphoria because the intersex condition is viewed as a physical impairment that is not the choice of the afflicted individual. By contrast, in the case of individuals with gender dysphoria, they are willfully attempting to change their recognized biological sex, that God had naturally given to them at birth. Therefore, it is recommended that such transgender individuals deserve respectful psychological and social rehabilitation with help and guidance from religious authorities, their families, and communities.
Collapse
Affiliation(s)
- Sayyed Mohamed Muhsin
- Department of Fiqh and Usul Al-Fiqh, AHAS KIRKHS, International Islamic University Malaysia, Gombak, Malaysia
| | - Firdaus Yahya
- Syariah Consultancy Education & Training, Singapore Post Centre, Singapore, Singapore
| | - Rasheed Parachottil
- Department of Study of Religion, Darul Huda Islamic University, Chemmad, Kerala, India
| | - Sirajuddin Shaikh
- Department of Study of Religion, Darul Huda Islamic University, Chemmad, Kerala, India
| | - Alexis Heng Boon Chin
- Singapore Fertility and IVF Consultancy Pvt Ltd., 531A Upper Cross Street, #04-95, Hong Lim Complex, Singapore, 051531, Singapore.
| |
Collapse
|
10
|
Shirasawa A, Hayashi M, Shono M, Ideta A, Yoshino T, Hayashi K. Efficient derivation of embryonic stem cells and primordial germ cell-like cells in cattle. J Reprod Dev 2024; 70:82-95. [PMID: 38355134 PMCID: PMC11017101 DOI: 10.1262/jrd.2023-087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/06/2024] [Indexed: 02/16/2024] Open
Abstract
The induction of the germ cell lineage from pluripotent stem cells (in vitro gametogenesis) will help understand the mechanisms underlying germ cell differentiation and provide an alternative source of gametes for reproduction. This technology is especially important for cattle, which are among the most important livestock species for milk and meat production. Here, we developed a new method for robust induction of primordial germ cell-like cells (PGCLCs) from newly established bovine embryonic stem (bES) cells. First, we refined the pluripotent culture conditions for pre-implantation embryos and ES cells. Inhibition of RHO increased the number of epiblast cells in the pre-implantation embryos and dramatically improved the efficiency of ES cell establishment. We then determined suitable culture conditions for PGCLC differentiation using bES cells harboring BLIMP1-tdTomato and TFAP2C-mNeonGreen (BTTN) reporter constructs. After a 24-h culture with bone morphogenetic protein 4 (BMP4), followed by three-dimensional culture with BMP4 and a chemical agonist and WNT signaling chemical antagonist, bES cells became positive for the reporters. A set of primordial germ cells (PGC) marker genes, including PRDM1/BLIMP1, TFAP2C, SOX17, and NANOS3, were expressed in BTTN-positive cells. These bovine PGCLCs (bPGCLCs) were isolated as KIT/CD117-positive and CD44-negative cell populations. We anticipate that this method for the efficient establishment of bES cells and induction of PGCLCs will be useful for stem cell-based reproductive technologies in cattle.
Collapse
Affiliation(s)
- Atsushi Shirasawa
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Zen-noh Embryo Transfer Center, Fukuoka 810-0001, Japan
| | - Masafumi Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
| | - Mayumi Shono
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Atsushi Ideta
- Zen-noh Embryo Transfer Center, Fukuoka 810-0001, Japan
| | - Takashi Yoshino
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan
- Department of Genome Biology, Graduate School of Medicine, Osaka University, Osaka 565-0871, Japan
- Graduate School of Frontier Biosciences, Osaka University, Osaka 565-0871, Japan
- Premium Research Institute for Human Metaverse Medicine (WPI-PRIMe), Osaka University, Osaka 565-0871, Japan
| |
Collapse
|
11
|
Wu Y, Wang C, Fan X, Ma Y, Liu Z, Ye X, Shen C, Wu C. The impact of induced pluripotent stem cells in animal conservation. Vet Res Commun 2024; 48:649-663. [PMID: 38228922 DOI: 10.1007/s11259-024-10294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
It is widely acknowledged that we are currently facing a critical tipping point with regards to global extinction, with human activities driving us perilously close to the brink of a devastating sixth mass extinction. As a promising option for safeguarding endangered species, induced pluripotent stem cells (iPSCs) hold great potential to aid in the preservation of threatened animal populations. For endangered species, such as the northern white rhinoceros (Ceratotherium simum cottoni), supply of embryos is often limited. After the death of the last male in 2019, only two females remained in the world. IPSC technology offers novel approaches and techniques for obtaining pluripotent stem cells (PSCs) from rare and endangered animal species. Successful generation of iPSCs circumvents several bottlenecks that impede the development of PSCs, including the challenges associated with establishing embryonic stem cells, limited embryo sources and immune rejection following embryo transfer. To provide more opportunities and room for growth in our work on animal welfare, in this paper we will focus on the progress made with iPSC lines derived from endangered and extinct species, exploring their potential applications and limitations in animal welfare research.
Collapse
Affiliation(s)
- Yurou Wu
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chengwei Wang
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Xinyun Fan
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Yuxiao Ma
- Department of Biology, New York University, New York, NY, USA
| | - Zibo Liu
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Xun Ye
- School of Pharmacy/School of Modem Chinese Medicine Industry, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People's Republic of China
| | - Chongyang Shen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Chunjie Wu
- Innovative Institute of Chinese Medicine and Pharmacy/Academy for Interdiscipline, Chengdu Univesity of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
- Sichuan Engineering Research Center for Endangered Medicinal Animals, Chengdu, China.
| |
Collapse
|
12
|
Barton LJ, Roa-de la Cruz L, Lehmann R, Lin B. The journey of a generation: advances and promises in the study of primordial germ cell migration. Development 2024; 151:dev201102. [PMID: 38607588 PMCID: PMC11165723 DOI: 10.1242/dev.201102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
The germline provides the genetic and non-genetic information that passes from one generation to the next. Given this important role in species propagation, egg and sperm precursors, called primordial germ cells (PGCs), are one of the first cell types specified during embryogenesis. In fact, PGCs form well before the bipotential somatic gonad is specified. This common feature of germline development necessitates that PGCs migrate through many tissues to reach the somatic gonad. During their journey, PGCs must respond to select environmental cues while ignoring others in a dynamically developing embryo. The complex multi-tissue, combinatorial nature of PGC migration is an excellent model for understanding how cells navigate complex environments in vivo. Here, we discuss recent findings on the migratory path, the somatic cells that shepherd PGCs, the guidance cues somatic cells provide, and the PGC response to these cues to reach the gonad and establish the germline pool for future generations. We end by discussing the fate of wayward PGCs that fail to reach the gonad in diverse species. Collectively, this field is poised to yield important insights into emerging reproductive technologies.
Collapse
Affiliation(s)
- Lacy J. Barton
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Lorena Roa-de la Cruz
- Department of Neuroscience, Developmental and Regenerative Biology, The University of Texas at San Antonio, One UTSA Circle, San Antonio, TX 78249, USA
| | - Ruth Lehmann
- Whitehead Institute and Department of Biology, MIT, 455 Main Street, Cambridge, MA 02142, USA
| | - Benjamin Lin
- Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, NY, 11794, USA
| |
Collapse
|
13
|
Rodriguez-Polo I, Moris N. Using Embryo Models to Understand the Development and Progression of Embryonic Lineages: A Focus on Primordial Germ Cell Development. Cells Tissues Organs 2024; 213:503-522. [PMID: 38479364 PMCID: PMC7616515 DOI: 10.1159/000538275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 03/05/2024] [Indexed: 05/03/2024] Open
Abstract
BACKGROUND Recapitulating mammalian cell type differentiation in vitro promises to improve our understanding of how these processes happen in vivo, while bringing additional prospects for biomedical applications. The establishment of stem cell-derived embryo models and embryonic organoids, which have experienced explosive growth over the last few years, opens new avenues for research due to their scale, reproducibility, and accessibility. Embryo models mimic various developmental stages, exhibit different degrees of complexity, and can be established across species. Since embryo models exhibit multiple lineages organized spatially and temporally, they are likely to provide cellular niches that, to some degree, recapitulate the embryonic setting and enable "co-development" between cell types and neighbouring populations. One example where this is already apparent is in the case of primordial germ cell-like cells (PGCLCs). SUMMARY While directed differentiation protocols enable the efficient generation of high PGCLC numbers, embryo models provide an attractive alternative as they enable the study of interactions of PGCLCs with neighbouring cells, alongside the regulatory molecular and biophysical mechanisms of PGC competency. Additionally, some embryo models can recapitulate post-specification stages of PGC development (including migration or gametogenesis), mimicking the inductive signals pushing PGCLCs to mature and differentiate and enabling the study of PGCLC development across stages. Therefore, in vitro models may allow us to address questions of cell type differentiation, and PGC development specifically, that have hitherto been out of reach with existing systems. KEY MESSAGE This review evaluates the current advances in stem cell-based embryo models, with a focus on their potential to model cell type-specific differentiation in general and in particular to address open questions in PGC development and gametogenesis.
Collapse
Affiliation(s)
| | - Naomi Moris
- The Francis Crick Institute, 1 Midland Road, Somers Town, London, NW1 1AT, UK
| |
Collapse
|
14
|
Du P, Wu J. Hallmarks of totipotent and pluripotent stem cell states. Cell Stem Cell 2024; 31:312-333. [PMID: 38382531 PMCID: PMC10939785 DOI: 10.1016/j.stem.2024.01.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Though totipotency and pluripotency are transient during early embryogenesis, they establish the foundation for the development of all mammals. Studying these in vivo has been challenging due to limited access and ethical constraints, particularly in humans. Recent progress has led to diverse culture adaptations of epiblast cells in vitro in the form of totipotent and pluripotent stem cells, which not only deepen our understanding of embryonic development but also serve as invaluable resources for animal reproduction and regenerative medicine. This review delves into the hallmarks of totipotent and pluripotent stem cells, shedding light on their key molecular and functional features.
Collapse
Affiliation(s)
- Peng Du
- MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China.
| | - Jun Wu
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
15
|
Luo YG, Zhang XW, Zhao H, Li JG, Tsauo JW, Gong T, Ou AX, Cong TH, Kang WD, Li X. A Novel Rat Model to Simulate the Benign Esophageal Stricture Induced by Endoscopic Submucosal Dissection. Clin Exp Gastroenterol 2024; 17:41-50. [PMID: 38404929 PMCID: PMC10891275 DOI: 10.2147/ceg.s435690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 01/29/2024] [Indexed: 02/27/2024] Open
Abstract
OBJECTIVE This study aimed to establish a rat model that simulates benign esophageal strictures induced by endoscopic submucosal dissection (ESD). MATERIALS AND METHODS Sixteen male Sprague-Dawley rats were randomly divided into mucosal resection (n = 8) and sham-operated groups (n = 8). The rats in the mucosal resection group underwent a 5-mm three-fourths mucosal resection by way of a 3-mm incision in the distal esophagus under direct visualization via laparotomy. Rats in the sham-operated group underwent a 3-mm incision of the muscularis propria layer in the distal esophagus via laparotomy without mucosal resection. Dysphagia score, weight gain, mucosal constriction rate, and histology were evaluated 2 weeks after surgery. RESULTS Technical success was achieved in all the animals. One rat in the mucosal resection group died of infection, and no other complications were observed. Weight gain (P < 0.001) and luminal diameter derived from the esophagograms (P < 0.001) were significantly lower in the mucosal resection group than those in the sham-operated group. Dysphagia score (P < 0.001) and mucosal constriction rate (P < 0.001) were significantly higher in the mucosal resection group than those in the sham-operated group. The inflammation grade (P = 0.002), damage to the muscularis propria (P < 0.001), number of nascent microvessels (P = 0.006), and degree of α-SMA positive deposition (P = 0.006) were significantly higher in the mucosal resection group. CONCLUSION A rat model of benign esophageal stricture induced by ESD was successfully and safely established by mucosal resection.
Collapse
Affiliation(s)
- Yin-Gen Luo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiao-Wu Zhang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - He Zhao
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jin-Gui Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Jiay-Wei Tsauo
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tao Gong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ai-Xin Ou
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Tian-Hao Cong
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wen-Di Kang
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiao Li
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
16
|
Bao Q, Tay NL, Lim CY, Chua DHH, Kee SK, Choolani M, Loh YH, Ng SC, Chai C. Integration-free induced pluripotent stem cells from three endangered Southeast Asian non-human primate species. Sci Rep 2024; 14:2391. [PMID: 38287040 PMCID: PMC10825216 DOI: 10.1038/s41598-023-50510-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/20/2023] [Indexed: 01/31/2024] Open
Abstract
Advanced molecular and cellular technologies provide promising tools for wildlife and biodiversity conservation. Induced pluripotent stem cell (iPSC) technology offers an easily accessible and infinite source of pluripotent stem cells, and have been derived from many threatened wildlife species. This paper describes the first successful integration-free reprogramming of adult somatic cells to iPSCs, and their differentiation, from three endangered Southeast Asian primates: the Celebes Crested Macaque (Macaca nigra), the Lar Gibbon (Hylobates lar), and the Siamang (Symphalangus syndactylus). iPSCs were also generated from the Proboscis Monkey (Nasalis larvatus). Differences in mechanisms could elicit new discoveries regarding primate evolution and development. iPSCs from endangered species provides a safety net in conservation efforts and allows for sustainable sampling for research and conservation, all while providing a platform for the development of further in vitro models of disease.
Collapse
Affiliation(s)
- Qiuye Bao
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Nicole Liling Tay
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Christina Yingyan Lim
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
| | | | - Su Keyau Kee
- Cytogenetics Laboratory, Department of Pathology, Singapore General Hospital, 20 College Road, Singapore, 169856, Singapore
| | - Mahesh Choolani
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore
| | - Yuin-Han Loh
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Biological Sciences, National University of Singapore, Singapore, 117543, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117593, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, 28 Medical Drive, Singapore, 117456, Singapore
| | - Soon Chye Ng
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore.
- Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 119074, Singapore.
- Sincere Healthcare Group, 8 Sinaran Drive, Singapore, 307470, Singapore.
| | - Chou Chai
- Institute of Molecular and Cell Biology-Endangered Species Conservation By Assisted Reproduction (IMCB-ESCAR) Joint Laboratory, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive, Singapore, 138673, Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University, 11 Mandalay Road, Singapore, 308232, Singapore
| |
Collapse
|
17
|
Oikawa M, Hirabayashi M, Kobayashi T. Induction of Primordial Germ Cell-Like Cells from Rat Pluripotent Stem Cells. Methods Mol Biol 2024; 2770:99-111. [PMID: 38351449 DOI: 10.1007/978-1-0716-3698-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
In vitro induction of primordial germ cell like-cells (PGCLCs) from pluripotent stem cells (PSCs) is a robust method that will contribute to understanding the fundamentals of cell fate decisions, animal breeding, and future reproductive medicine. Here, we introduce this system established in the rat model. We describe a stepwise protocol to induce epiblast-like cells and subsequent PGCLCs by forming spherical aggregates from rat PSCs. We also describe a protocol to mature these PGCLCs from specified/migratory to the gonadal stage by aggregation with female gonadal somatic cells.
Collapse
Affiliation(s)
- Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
- The Graduate University of Advanced Studies, Aichi, Japan
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan.
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan.
| |
Collapse
|
18
|
Irie N, Kobayashi T, Azim Surani M. Human Primordial Germ Cell-Like Cell Induction from Pluripotent Stem Cells by SOX17 and PRDM1 Expression. Methods Mol Biol 2024; 2770:87-97. [PMID: 38351448 DOI: 10.1007/978-1-0716-3698-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Human primordial germ cell (PGC) development initiates about 2 weeks after fertilization during embryogenesis. Unique molecular events follow, including epigenetic resetting, to establish functional gametes (egg and sperm). Due to the inaccessibility of human embryos, it is essential to have an amenable experimental platform to investigate the mechanisms and potential dysfunctions of the events. We previously established a PGC-like cell (PGCLC) differentiation method using human pluripotent stem cells (PSCs) via induction of precursor cells followed by stimulation with a cytokine cocktail including BMP. We also revealed that the expression of PGC specifiers, SOX17 and PRDM1, can robustly induce PGCLCs from PSCs without the cytokines. The balance of SOX17 and PRDM1 is critical for germ cell fate since the two factors also regulate endoderm differentiation. Here we describe a detailed procedure for PGCLC differentiation with the balanced induction of SOX17 and PRDM1. The protocol can be used for PGC induction in other mammalian species exhibiting PGCs with SOX17 expression. Together, these studies will advance the understanding of germ cell biology and its applications in reproductive technology and medicine.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research U.K. Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Metabolic Systems Laboratory, Live Imaging Center, Central Institute for Experimental Animals, Kawasaki-ku, Kanagawa, Japan.
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, Japan
| | - M Azim Surani
- Wellcome Trust/Cancer Research U.K. Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
19
|
Aponte PM, Gutierrez-Reinoso MA, Garcia-Herreros M. Bridging the Gap: Animal Models in Next-Generation Reproductive Technologies for Male Fertility Preservation. Life (Basel) 2023; 14:17. [PMID: 38276265 PMCID: PMC10820126 DOI: 10.3390/life14010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 12/12/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
This review aims to explore advanced reproductive technologies for male fertility preservation, underscoring the essential role that animal models have played in shaping these techniques through historical contexts and into modern applications. Rising infertility concerns have become more prevalent in human populations recently. The surge in male fertility issues has prompted advanced reproductive technologies, with animal models playing a pivotal role in their evolution. Historically, animal models have aided our understanding in the field, from early reproductive basic research to developing techniques like artificial insemination, multiple ovulation, and in vitro fertilization. The contemporary landscape of male fertility preservation encompasses techniques such as sperm cryopreservation, testicular sperm extraction, and intracytoplasmic sperm injection, among others. The relevance of animal models will undoubtedly bridge the gap between traditional methods and revolutionary next-generation reproductive techniques, fortifying our collective efforts in enhancing male fertility preservation strategies. While we possess extensive knowledge about spermatogenesis and its regulation, largely thanks to insights from animal models that paved the way for human infertility treatments, a pressing need remains to further understand specific infertility issues unique to humans. The primary aim of this review is to provide a comprehensive analysis of how animal models have influenced the development and refinement of advanced reproductive technologies for male fertility preservation, and to assess their future potential in bridging the gap between current practices and cutting-edge fertility techniques, particularly in addressing unique human male factor infertility.
Collapse
Affiliation(s)
- Pedro M. Aponte
- Colegio de Ciencias Biológicas y Ambientales (COCIBA), Universidad San Francisco de Quito (USFQ), Quito 170901, Ecuador
- Instituto de Investigaciones en Biomedicina “One-Health”, Universidad San Francisco de Quito (USFQ), Campus Cumbayá, Quito 170901, Ecuador
| | - Miguel A. Gutierrez-Reinoso
- Facultad de Ciencias Agropecuarias y Recursos Naturales, Carrera de Medicina Veterinaria, Universidad Técnica de Cotopaxi (UTC), Latacunga 050150, Ecuador;
- Laboratorio de Biotecnología Animal, Departamento de Ciencia Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción (UdeC), Chillán 3780000, Chile
| | - Manuel Garcia-Herreros
- Instituto Nacional de Investigação Agrária e Veterinária (INIAV), 2005-048 Santarém, Portugal
| |
Collapse
|
20
|
Wang X, Zhu J, Wang H, Deng W, Jiao S, Wang Y, He M, Zhang F, Liu T, Hao Y, Ye D, Sun Y. Induced formation of primordial germ cells from zebrafish blastomeres by germplasm factors. Nat Commun 2023; 14:7918. [PMID: 38097571 PMCID: PMC10721796 DOI: 10.1038/s41467-023-43587-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
The combination of genome editing and primordial germ cell (PGC) transplantation has enormous significance in the study of developmental biology and genetic breeding, despite its low efficiency due to limited number of donor PGCs. Here, we employ a combination of germplasm factors to convert blastoderm cells into induced PGCs (iPGCs) in zebrafish and obtain functional gametes either through iPGC transplantation or via the single blastomere overexpression of germplasm factors. Zebrafish-derived germplasm factors convert blastula cells of Gobiocypris rarus into iPGCs, and Gobiocypris rarus spermatozoa can be produced by iPGC-transplanted zebrafish. Moreover, the combination of genome knock-in and iPGC transplantation perfectly resolves the contradiction between high knock-in efficiency and early lethality during embryonic stages and greatly improves the efficiency of genome knock-in. Together, we present an efficient method for generating PGCs in a teleost, a technique that will have a strong impact in basic research and aquaculture.
Collapse
Affiliation(s)
- Xiaosi Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Junwen Zhu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Houpeng Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Wenqi Deng
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shengbo Jiao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaqing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Mudan He
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Fenghua Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tao Liu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongkang Hao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ding Ye
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Yonghua Sun
- State Key Laboratory of Freshwater Ecology and Biotechnology, Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Wuhan, 430072, China.
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hubei Hongshan Laboratory, Wuhan, 430070, China.
| |
Collapse
|
21
|
Irie N, Lee SM, Lorenzi V, Xu H, Chen J, Inoue M, Kobayashi T, Sancho-Serra C, Drousioti E, Dietmann S, Vento-Tormo R, Song CX, Surani MA. DMRT1 regulates human germline commitment. Nat Cell Biol 2023; 25:1439-1452. [PMID: 37709822 PMCID: PMC10567552 DOI: 10.1038/s41556-023-01224-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/07/2023] [Indexed: 09/16/2023]
Abstract
Germline commitment following primordial germ cell (PGC) specification during early human development establishes an epigenetic programme and competence for gametogenesis. Here we follow the progression of nascent PGC-like cells derived from human embryonic stem cells in vitro. We show that switching from BMP signalling for PGC specification to Activin A and retinoic acid resulted in DMRT1 and CDH5 expression, the indicators of migratory PGCs in vivo. Moreover, the induction of DMRT1 and SOX17 in PGC-like cells promoted epigenetic resetting with striking global enrichment of 5-hydroxymethylcytosine and locus-specific loss of 5-methylcytosine at DMRT1 binding sites and the expression of DAZL representing DNA methylation-sensitive genes, a hallmark of the germline commitment programme. We provide insight into the unique role of DMRT1 in germline development for advances in human germ cell biology and in vitro gametogenesis.
Collapse
Affiliation(s)
- Naoko Irie
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Metabolic Systems Laboratory, Live Imaging Center, Central Institute for Experimental Animals, Kanagawa, Japan.
| | - Sun-Min Lee
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
- Department of Physics, Konkuk University, Seoul, Republic of Korea
| | - Valentina Lorenzi
- Wellcome Sanger Institute, Cambridge, UK
- European Molecular Biology Laboratory, European Bioinformatics Institute, Cambridge, UK
| | - Haiqi Xu
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Jinfeng Chen
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Masato Inoue
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi, Japan
| | | | - Elena Drousioti
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK
| | - Sabine Dietmann
- Department of Developmental Biology and Institute for Informatics, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Chun-Xiao Song
- Ludwig Institute for Cancer Research and Target Discovery Institute, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - M Azim Surani
- Wellcome Trust/Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, Cambridge, UK.
- Physiology, Development and Neuroscience Department, University of Cambridge, Cambridge, UK.
| |
Collapse
|
22
|
Mizuta K, Saitou M. Key mechanisms and in vitro reconstitution of fetal oocyte development in mammals. Curr Opin Genet Dev 2023; 82:102091. [PMID: 37556984 DOI: 10.1016/j.gde.2023.102091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/23/2023] [Accepted: 07/01/2023] [Indexed: 08/11/2023]
Abstract
During fetal oocyte development in mammals, germ cells progress through meiotic prophase I to form primordial follicles with pregranulosa cells. The primordial follicles remain dormant until oogenesis resumes during puberty. Studies in mice have elucidated mechanisms governing oogenesis, leading to the successful induction of functional oocytes from mouse pluripotent stem cells in vitro. Based on the in vivo/in vitro knowledge in mice and the histological and transcriptomic evidence for fetal oocyte development in humans and primates, human/primate oocyte-like cells corresponding to the early stage of oocytes in vivo have been successfully induced in vitro. Here, we discuss recent advances in our understanding of the mechanisms of fetal oocyte development in mammals, as well as in in vitro oogenesis.
Collapse
Affiliation(s)
- Ken Mizuta
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan.
| | - Mitinori Saitou
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Department of Anatomy and Cell Biology, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan; Center for iPS Cell Research and Application (CiRA), Kyoto University, 53 Kawahara-cho, Shogoin, Sakyo-ku, Kyoto 606-8507, Japan.
| |
Collapse
|
23
|
Horer S, Feichtinger M, Rosner M, Hengstschläger M. Pluripotent Stem Cell-Derived In Vitro Gametogenesis and Synthetic Embryos-It Is Never Too Early for an Ethical Debate. Stem Cells Transl Med 2023; 12:569-575. [PMID: 37471266 PMCID: PMC10502567 DOI: 10.1093/stcltm/szad042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Accepted: 06/23/2023] [Indexed: 07/22/2023] Open
Abstract
Recently, 2 branches of the wide area of synthetic biology-in vitro gametogenesis and synthetic embryo development-have gained considerable attention. Rodent induced pluripotent stem cells derived via reprogramming of somatic cells can in vitro be differentiated into gametes to produce fertile offspring. And even synthetic embryos with organ progenitors were generated ex utero entirely from murine pluripotent stem cells. The use of these approaches in basic research, which is rightfully accompanied by an ethical discussion, will allow hitherto unattainable insights into the processes of the beginning of life. There is a broad international consensus that currently the application of these technologies in human-assisted reproduction must be considered to be unsafe and unethical. However, newspaper headlines also addressed the putatively resulting paradigm shift in human reproduction and thereby raised expectations in patients. Due to unsolved biological and technological obstacles, most scientists do not anticipate translation of any of these approaches into human reproductive medicine, if ever, for the next 10 years. Still, whereas the usage of synthetic embryos for reproductive purposes should be banned, in the context of in vitro-derived human gametes it is not too early to initiate the evaluation of the ethical implications, which could still remain assuming all technological hurdles can ever be cleared.
Collapse
Affiliation(s)
- Stefanie Horer
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | | | - Margit Rosner
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| | - Markus Hengstschläger
- Institute of Medical Genetics, Center of Pathobiochemistry and Genetics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Masamsetti VP, Tam PP. Rat epiblast-derived stem cells recapitulate the attributes of pre-gastrulation epiblast. CELL REPORTS METHODS 2023; 3:100575. [PMID: 37671029 PMCID: PMC10475837 DOI: 10.1016/j.crmeth.2023.100575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
Iwatsuki and colleagues have generated self-renewing pluripotent stem cells from the pre-gastrulation epiblast of the rat embryo and from other cellular sources: rat embryonic stem cells (rESCs) and epiblast-like cells derived from the rESCs. These rat epiblast-derived stem cells (rEpiSCs) display germ-line competence that is characteristic of mouse formative stem cells and early signature of specification of germ layer lineages typical of primed state mouse epiblast stem cells.
Collapse
Affiliation(s)
- V. Pragathi Masamsetti
- Embryology Research Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
- The University of Sydney, Faculty of Medicine and Health, School of Medical Sciences, NSW 2006, Australia
| | - Patrick P.L. Tam
- Embryology Research Unit, Children’s Medical Research Institute, The University of Sydney, Westmead, NSW 2145, Australia
- The University of Sydney, Faculty of Medicine and Health, School of Medical Sciences, NSW 2006, Australia
| |
Collapse
|
25
|
Iwatsuki K, Oikawa M, Kobayashi H, Penfold CA, Sanbo M, Yamamoto T, Hochi S, Kurimoto K, Hirabayashi M, Kobayashi T. Rat post-implantation epiblast-derived pluripotent stem cells produce functional germ cells. CELL REPORTS METHODS 2023; 3:100542. [PMID: 37671016 PMCID: PMC10475792 DOI: 10.1016/j.crmeth.2023.100542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/10/2023] [Accepted: 07/03/2023] [Indexed: 09/07/2023]
Abstract
In mammals, pluripotent cells transit through a continuum of distinct molecular and functional states en route to initiating lineage specification. Capturing pluripotent stem cells (PSCs) mirroring in vivo pluripotent states provides accessible in vitro models to study the pluripotency program and mechanisms underlying lineage restriction. Here, we develop optimal culture conditions to derive and propagate post-implantation epiblast-derived PSCs (EpiSCs) in rats, a valuable model for biomedical research. We show that rat EpiSCs (rEpiSCs) can be reset toward the naive pluripotent state with exogenous Klf4, albeit not with the other five candidate genes (Nanog, Klf2, Esrrb, Tfcp2l1, and Tbx3) effective in mice. Finally, we demonstrate that rat EpiSCs retain competency to produce authentic primordial germ cell-like cells that undergo functional gametogenesis leading to the birth of viable offspring. Our findings in the rat model uncover principles underpinning pluripotency and germline competency across species.
Collapse
Affiliation(s)
- Kenyu Iwatsuki
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Mami Oikawa
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Laboratory of Regenerative Medicine, Tokyo University of Pharmacy and Life Sciences, Tokyo 192-0392, Japan
| | - Hisato Kobayashi
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Christopher A. Penfold
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Centre for Trophoblast Research, University of Cambridge, Downing Site, Cambridge CB2 3EG, UK
- Wellcome Trust – Cancer Research UK Gurdon Institute, Henry Wellcome Building of Cancer and Developmental Biology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| | - Takuya Yamamoto
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
- Institute for the Advanced Study of Human Biology (ASHBi), Kyoto University, Kyoto 606-8501, Japan
- Medical-risk Avoidance Based on iPS Cells Team, RIKEN Center for Advanced Intelligence Project, Kyoto 606-8501, Japan
| | - Shinichi Hochi
- Graduate School of Medicine, Science and Technology, Shinshu University, Nagano 386-8567, Japan
- Faculty of Textile Science and Technology, Shinshu University, Nagano 386-8567, Japan
| | - Kazuki Kurimoto
- Department of Embryology, Nara Medical University, Nara 634-0813, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
- The Graduate University of Advanced Studies, Aichi 444-8787, Japan
| | - Toshihiro Kobayashi
- Division of Mammalian Embryology, Center for Stem Cell Biology and Regenerative Medicine, The Institute of Medical Science, The University of Tokyo, Tokyo 108-8639, Japan
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Aichi 444-8787, Japan
| |
Collapse
|
26
|
Matsumura T, Katagiri K, Yao T, Ishikawa-Yamauchi Y, Nagata S, Hashimoto K, Sato T, Kimura H, Shinohara T, Sanbo M, Hirabayashi M, Ogawa T. Generation of rat offspring using spermatids produced through in vitro spermatogenesis. Sci Rep 2023; 13:12105. [PMID: 37495678 PMCID: PMC10372019 DOI: 10.1038/s41598-023-39304-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/23/2023] [Indexed: 07/28/2023] Open
Abstract
An in vitro spermatogenesis method using mouse testicular tissue to produce fertile sperm was established more than a decade ago. Although this culture method has generally not been effective in other animal species, we recently succeeded in improving the culture condition to induce spermatogenesis of rats up to the round spermatid stage. In the present study, we introduced acrosin-EGFP transgenic rats in order to clearly monitor the production of haploid cells during spermatogenesis in vitro. In addition, a metabolomic analysis of the culture media during cultivation revealed the metabolic dynamics of the testis tissue. By modifying the culture media based on these results, we were able to induce rat spermatogenesis repeatedly up to haploid cell production, including the formation of elongating spermatids, which was confirmed histologically and immunohistochemically. Finally, we performed a microinsemination experiment with in vitro produced spermatids, which resulted in the production of healthy and fertile offspring. This is the first demonstration of the in vitro production of functional haploid cells that yielded offspring in animals other than mice. These results are expected to provide a basis for the development of an in vitro spermatogenesis system applicable to many other mammals.
Collapse
Affiliation(s)
- Takafumi Matsumura
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Kumiko Katagiri
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Tatsuma Yao
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
- Research and Development Center, Fuso Pharmaceutical Industries, Ltd., 2-3-30 Morinomiya, Joto-ku, Osaka, 536-8523, Japan
| | - Yu Ishikawa-Yamauchi
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Shino Nagata
- Laboratory of Biopharmaceutical and Regenerative Sciences, Institute of Molecular Medicine and Life Science, Yokohama City University Association of Medical Science, Yokohama, Kanagawa, 230-0045, Japan
| | - Kiyoshi Hashimoto
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
- Department of Urology, Yokohama City University School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Takuya Sato
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan
| | - Hiroshi Kimura
- Micro/Nano Technology Center, Tokai University, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Takashi Shinohara
- Department of Molecular Genetics, Graduate School of Medicine, Kyoto University, Kyoto, 606-8501, Japan
| | - Makoto Sanbo
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan
| | - Masumi Hirabayashi
- Center for Genetic Analysis of Behavior, National Institute for Physiological Sciences, Okazaki, Aichi, 444-8787, Japan.
| | - Takehiko Ogawa
- Department of Regenerative Medicine, Yokohama City University Graduate School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.
- Department of Urology, Yokohama City University School of Medicine, Yokohama, Kanagawa, 236-0004, Japan.
| |
Collapse
|
27
|
Serour G, Ghaly M, Saifuddeen SM, Anwar A, Isa NM, Chin AHB. Sunni Islamic perspectives on lab-grown sperm and eggs derived from stem cells - in vitro gametogenesis (IVG). New Bioeth 2023; 29:108-120. [PMID: 36427532 DOI: 10.1080/20502877.2022.2142094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
An exciting development in the field of assisted reproductive technologies is In Vitro Gametogenesis (IVG) that enables production of functional gametes from stem cells in the laboratory. Currently, development of this technology is still at an early stage and has demonstrated to work only in rodents. Upon critically examining the ethical dimensions of various possible IVG applications in human fertility treatment from a Sunni Islamic perspective, together with benefit-harm (maslahah-mafsadah) assessment; it is concluded that utilization of IVG, once its efficacy and safety are guaranteed, could be permissible by strictly adhering to Islamic ethical principles related to marriage, biological/genetic relatedness, sexual intercourse, and moral status of the embryo/fetus versus that of the gamete. As a result, IVG will be acceptable for treating primary infertility, age-related infertility, and preventing genetic diseases. However, it will be unacceptable for application in posthumous reproduction, donor gametes, genetic enhancement, and procreation in same-sex couples.
Collapse
Affiliation(s)
- Gamal Serour
- International Islamic Center for Population Studies and Research, Al Azhar University, Cairo, Egypt
| | - Mohammed Ghaly
- Research Center for Islamic Legislation and Ethics (CILE), College of Islamic Studies, Hamad Bin Khalifa University, Education City, Qatar
| | | | - Ayaz Anwar
- School of Medical & Life Sciences, Sunway University, Bandar Sunway, Malaysia
| | - Noor Munirah Isa
- Department of Science and Technology Studies, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia
| | | |
Collapse
|
28
|
Strange A, Alberio R. Review: A barnyard in the lab: prospect of generating animal germ cells for breeding and conservation. Animal 2023; 17 Suppl 1:100753. [PMID: 37567650 DOI: 10.1016/j.animal.2023.100753] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 02/14/2023] [Accepted: 02/20/2023] [Indexed: 08/13/2023] Open
Abstract
In vitro gametogenesis (IVG) offers broad opportunities for gaining detailed new mechanistic knowledge of germ cell biology that will enable progress in the understanding of human infertility, as well as for applications in the conservation of endangered species and for accelerating genetic selection of livestock. The realisation of this potential depends on overcoming key technical challenges and of gaining more detailed knowledge of the ontogeny and developmental programme in different species. Important differences in the molecular mechanisms of germ cell determination and epigenetic reprogramming between mice and other animals have been elucidated in recent years. These must be carefully considered when developing IVG protocols, as cellular kinetics in mice may not accurately reflect mechanisms in other mammals. Similarly, diverse stem cell models with potential for germ cell differentiation may reflect alternative routes to successful IVG. In conclusion, the fidelity of the developmental programme recapitulated during IVG must be assessed against reference information from each species to ensure the production of healthy animals using these methods, as well as for developing genuine models of gametogenesis.
Collapse
Affiliation(s)
- A Strange
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK
| | - R Alberio
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, LE12 5RD, UK.
| |
Collapse
|
29
|
Shono M, Kishimoto K, Hikabe O, Hayashi M, Semi K, Takashima Y, Sasaki E, Kato K, Hayashi K. Induction of primordial germ cell-like cells from common marmoset embryonic stem cells by inhibition of WNT and retinoic acid signaling. Sci Rep 2023; 13:3186. [PMID: 36823310 PMCID: PMC9950483 DOI: 10.1038/s41598-023-29850-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 02/11/2023] [Indexed: 02/25/2023] Open
Abstract
Reconstitution of the germ cell lineage using pluripotent stem cells provides a unique platform to deepen our understanding of the mechanisms underlying germ cell development and to produce functional gametes for reproduction. This study aimed to establish a culture system that induces a robust number of primordial germ cell-like cells (PGCLCs) from common marmoset (Callithrix jacchus) embryonic stem cells. The robust induction was achieved by not only activation of the conserved PGC-inducing signals, WNT and BMP4, but also temporal inhibitions of WNT and retinoic acid signals, which prevent mesodermal and neural differentiation, respectively, during PGCLC differentiation. Many of the gene expression and differentiation properties of common marmoset PGCLCs were similar to those of human PGCLCs, making this culture system a reliable and useful primate model. Finally, we identified PDPN and KIT as surface marker proteins by which PGCLCs can be isolated from embryonic stem cells without genetic manipulation. This study will expand the opportunities for research on germ cell development and production of functional gametes to the common marmoset.
Collapse
Affiliation(s)
- Mayumi Shono
- grid.177174.30000 0001 2242 4849Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan ,grid.177174.30000 0001 2242 4849Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Keiko Kishimoto
- grid.452212.20000 0004 0376 978XDepartment of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, 210-0821 Japan
| | - Orie Hikabe
- grid.177174.30000 0001 2242 4849Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Masafumi Hayashi
- grid.136593.b0000 0004 0373 3971Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka 565-0871 Japan
| | - Katsunori Semi
- grid.258799.80000 0004 0372 2033Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, 606-8507 Japan
| | - Yasuhiro Takashima
- grid.258799.80000 0004 0372 2033Department of Life Science Frontiers, CiRA, Kyoto University, Kyoto, 606-8507 Japan
| | - Erika Sasaki
- grid.452212.20000 0004 0376 978XDepartment of Marmoset Biology and Medicine, Central Institute for Experimental Animals, Kawasaki, 210-0821 Japan
| | - Kiyoko Kato
- grid.177174.30000 0001 2242 4849Department of Obstetrics and Gynecology, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582 Japan
| | - Katsuhiko Hayashi
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka, 812-8582, Japan. .,Department of Genome Biology, Graduate School of Medicine, Osaka University, Suita, Osaka, 565-0871, Japan.
| |
Collapse
|
30
|
Alves-Lopes JP, Wong FCK, Tang WWC, Gruhn WH, Ramakrishna NB, Jowett GM, Jahnukainen K, Surani MA. Specification of human germ cell fate with enhanced progression capability supported by hindgut organoids. Cell Rep 2023; 42:111907. [PMID: 36640324 DOI: 10.1016/j.celrep.2022.111907] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/04/2022] [Accepted: 12/09/2022] [Indexed: 01/07/2023] Open
Abstract
Human primordial germ cells (hPGCs), the precursors of sperm and eggs, are specified during weeks 2-3 after fertilization. Few studies on ex vivo and in vitro cultured human embryos reported plausible hPGCs on embryonic day (E) 12-13 and in an E16-17 gastrulating embryo. In vitro, hPGC-like cells (hPGCLCs) can be specified from the intermediary pluripotent stage or peri-gastrulation precursors. Here, we explore the broad spectrum of hPGCLC precursors and how different precursors impact hPGCLC development. We show that resetting precursors can give rise to hPGCLCs (rhPGCLCs) in response to BMP. Strikingly, rhPGCLCs co-cultured with human hindgut organoids progress at a pace reminiscent of in vivo hPGC development, unlike those derived from peri-gastrulation precursors. Moreover, rhPGCLC specification depends on both EOMES and TBXT, not just on EOMES as for peri-gastrulation hPGCLCs. Importantly, our study provides the foundation for developing efficient in vitro models of human gametogenesis.
Collapse
Affiliation(s)
- João Pedro Alves-Lopes
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, Solna, 17164 Stockholm, Sweden.
| | - Frederick C K Wong
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Walfred W C Tang
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Wolfram H Gruhn
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Navin B Ramakrishna
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK; Genome Institute of Singapore, A(∗)STAR, Biopolis, Singapore 138672, Singapore
| | - Geraldine M Jowett
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
| | - Kirsi Jahnukainen
- NORDFERTIL Research Lab Stockholm, Childhood Cancer Research Unit, J9:30, Department of Women's and Children's Health, Karolinska Institutet and Karolinska University Hospital, Visionsgatan 4, Solna, 17164 Stockholm, Sweden; New Children's Hospital, Paediatric Research Centre, University of Helsinki and Helsinki University Hospital, Pl 281, 00029 Helsinki, Finland
| | - M Azim Surani
- Wellcome/Cancer Research UK Gurdon Institute, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK.
| |
Collapse
|
31
|
Reconstitution of reproductive organ system that produces functional oocytes. Curr Opin Genet Dev 2022; 77:101982. [PMID: 36179583 DOI: 10.1016/j.gde.2022.101982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/03/2022] [Accepted: 08/07/2022] [Indexed: 01/27/2023]
Abstract
Reproductive organs have unique developmental and functional properties that enable them to manage both germ cell development and the endocrine system in a sex-dependent manner. Proper reconstitution of the reproductive organs, therefore, will contribute to a deeper understanding of the mechanisms underlying germ cell development and sex-determination. However, reproductive organs have not yet been systematically reconstituted from pluripotent stem cells. This is largely due to technical problems in the reconstitution of the germ cell and somatic cell lineages, which have very different developmental trajectories. Accordingly, faithful construction of reproductive organoids requires that the reconstitution and evaluation of these two different cell lineages be performed separately. Here, we update the state-of-the-art in the reconstitution of reproductive organoids that produce functional oocytes.
Collapse
|
32
|
Xue Y, Shang L. Are we ready for the revision of the 14-day rule? Implications from Chinese legislations guiding human embryo and embryoid research. Front Cell Dev Biol 2022; 10:1016988. [PMID: 36353513 PMCID: PMC9637635 DOI: 10.3389/fcell.2022.1016988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 10/07/2022] [Indexed: 01/06/2024] Open
Abstract
The ISSCR recently released new guidelines that relaxed the 14-day rule taking away the tough barrier, and this has rekindled relevant ethical controversies and posed a fresh set of challenges to each nation's legislations and policies directly or indirectly. To understand its broad implications and the variation and impact of China's relevant national policies, we reviewed and evaluated Chinese laws, administrative regulations, departmental rules, and normative documents on fundamental and preclinical research involving human embryos from 1985 to 2022 in this paper. We have historically examined whether these regulations, including a 14-day rule, had restrictions on human embryo research, and whether and how these policies affected human embryo and embryoid research in China. We also discussed and assessed the backdrop in which China has endeavored to handle such as the need for expanding debates among justice practice, academia, and the public, and the shifting external environment influenced by fast-developing science and technology and people's culture and religions. In general, Chinese society commonly opposes giving embryos or fetuses the legal status of humans, presumably due to the Chinese public not seeming to have any strong religious beliefs regarding the embryo. On this basis, they do not strongly oppose the potential expansion of the 14-day rule. After the guidelines to strengthen governance over ethics in science, and technology were released by the Chinese government in 2022, Chinese policymakers have incorporated bioethics into the national strategic goals using a "People-Centered" approach to develop and promote an ecological civilization. Specifically, China follows the "precautionary principle" based on ethical priority as it believes that if scientific research carries any potential technological and moral risks on which no social ethical consensus has been attained, there would be a need to impose oversight for prevention and precaution. At the same time, China has adopted a hybrid legislative model of legislation and ethical regulations with criminal, civil and administrative sanctions and a 14-day limit specified within its national hESCs guidelines. This would certainly be a useful example for other countries to use when considering the possibility of developing a comprehensive, credible and sustainable regulatory framework.
Collapse
Affiliation(s)
- Yang Xue
- Law School, Tianjin University, Tianjin, China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin, China
| | - Lijun Shang
- School of Human Sciences, London Metropolitan University, London, United Kingdom
- Biological Security Center, London Metropolitan University, London, United Kingdom
| |
Collapse
|
33
|
Farini D, De Felici M. The Beginning of Meiosis in Mammalian Female Germ Cells: A Never-Ending Story of Intrinsic and Extrinsic Factors. Int J Mol Sci 2022; 23:ijms232012571. [PMID: 36293427 PMCID: PMC9604137 DOI: 10.3390/ijms232012571] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022] Open
Abstract
Meiosis is the unique division of germ cells resulting in the recombination of the maternal and paternal genomes and the production of haploid gametes. In mammals, it begins during the fetal life in females and during puberty in males. In both cases, entering meiosis requires a timely switch from the mitotic to the meiotic cell cycle and the transition from a potential pluripotent status to meiotic differentiation. Revealing the molecular mechanisms underlying these interrelated processes represents the essence in understanding the beginning of meiosis. Meiosis facilitates diversity across individuals and acts as a fundamental driver of evolution. Major differences between sexes and among species complicate the understanding of how meiosis begins. Basic meiotic research is further hindered by a current lack of meiotic cell lines. This has been recently partly overcome with the use of primordial-germ-cell-like cells (PGCLCs) generated from pluripotent stem cells. Much of what we know about this process depends on data from model organisms, namely, the mouse; in mice, the process, however, appears to differ in many aspects from that in humans. Identifying the mechanisms and molecules controlling germ cells to enter meiosis has represented and still represents a major challenge for reproductive medicine. In fact, the proper execution of meiosis is essential for fertility, for maintaining the integrity of the genome, and for ensuring the normal development of the offspring. The main clinical consequences of meiotic defects are infertility and, probably, increased susceptibility to some types of germ-cell tumors. In the present work, we report and discuss data mainly concerning the beginning of meiosis in mammalian female germ cells, referring to such process in males only when pertinent. After a brief account of this process in mice and humans and an historical chronicle of the major hypotheses and progress in this topic, the most recent results are reviewed and discussed.
Collapse
|
34
|
Sun Y, Li Y, Zong Y, Mehaisen GMK, Chen J. Poultry genetic heritage cryopreservation and reconstruction: advancement and future challenges. J Anim Sci Biotechnol 2022; 13:115. [PMID: 36210477 PMCID: PMC9549680 DOI: 10.1186/s40104-022-00768-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 08/10/2022] [Indexed: 11/10/2022] Open
Abstract
Poultry genetics resources, including commercial selected lines, indigenous breeds, and experimental lines, are now being irreversibly lost at an alarming rate due to multiple reasons, which further threats the future livelihood and academic purpose. Collections of germplasm may reduce the risk of catastrophic loss of genetic diversity by guaranteeing that a pool of genetic variability is available to ensure the reintroduction and replenishment of the genetic stocks. The setting up of biobanks for poultry is challenging because the high sensitiveness of spermatozoa to freezing–thawing process, inability to cryopreserve the egg or embryo, coupled with the females being heterogametic sex. The progress in cryobiology and biotechnologies have made possible the extension of the range of germplasm for poultry species available in cryobanks, including semen, primordial germ cells, somatic cells and gonads. In this review, we introduce the state-of-the-art technologies for avian genetic resource conservation and breed reconstruction, and discuss the potential challenges for future study and further extending of these technologies to ongoing and future conservation efforts.
Collapse
|
35
|
Yoshimatsu S, Kisu I, Qian E, Noce T. A New Horizon in Reproductive Research with Pluripotent Stem Cells: Successful In Vitro Gametogenesis in Rodents, Its Application to Large Animals, and Future In Vitro Reconstitution of Reproductive Organs Such as “Uteroid” and “Oviductoid”. BIOLOGY 2022; 11:biology11070987. [PMID: 36101367 PMCID: PMC9312112 DOI: 10.3390/biology11070987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/24/2022] [Accepted: 06/28/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary Functional gametes, such as oocytes and spermatozoa, have been derived from rodent pluripotent stem cells, which can be applied to large animals and ultimately, to humans. In addition to summarizing these topics, we also review additional approaches for in vitro reconstitution of reproductive organs. This review illustrates intensive past efforts and future challenges on stem cell research for in vitro biogenesis in various mammalian models. Abstract Recent success in derivation of functional gametes (oocytes and spermatozoa) from pluripotent stem cells (PSCs) of rodents has made it feasible for future application to large animals including endangered species and to ultimately humans. Here, we summarize backgrounds and recent studies on in vitro gametogenesis from rodent PSCs, and similar approaches using PSCs from large animals, including livestock, nonhuman primates (NHPs), and humans. We also describe additional developing approaches for in vitro reconstitution of reproductive organs, such as the ovary (ovarioid), testis (testisoid), and future challenges in the uterus (uteroid) and oviduct (oviductoid), all of which may be derived from PSCs. Once established, these in vitro systems may serve as a robust platform for elucidating the pathology of infertility-related disorders and ectopic pregnancy, principle of reproduction, and artificial biogenesis. Therefore, these possibilities, especially when using human cells, require consideration of ethical issues, and international agreements and guidelines need to be raised before opening “Pandora’s Box”.
Collapse
Affiliation(s)
- Sho Yoshimatsu
- Department of Stem Cell Biology and Medicine, Graduate School of Medical Sciences, Kyushu University, Higashi-ku, Fukuoka 812-8582, Japan
- Research Fellow of Japan Society for the Promotion of Science (JSPS), Chiyoda-ku, Tokyo 102-0083, Japan
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-City 351-0198, Japan;
- Correspondence:
| | - Iori Kisu
- Department of Obstetrics and Gynecology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Emi Qian
- Department of Physiology, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan;
| | - Toshiaki Noce
- Laboratory for Marmoset Neural Architecture, RIKEN Center for Brain Science, Wako-City 351-0198, Japan;
| |
Collapse
|