1
|
Barley AJ, Cole CJ. Speciation by hybridization: the mind-boggling nature, educational, and research value of the largest group of unisexual vertebrates. Bioscience 2025; 75:331-341. [PMID: 40276476 PMCID: PMC12016801 DOI: 10.1093/biosci/biaf010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 01/12/2025] [Accepted: 01/17/2025] [Indexed: 04/26/2025] Open
Abstract
Thirteen species of North American lizards are remarkable because only females exist, which reproduce by cloning unfertilized eggs. Their closest relatives reproduce sexually, with eggs fertilized by sperm from males, as in most vertebrates. The unisexual species originated through hybridization, dispensing with sex and males in a single generation. These lizards hold tremendous potential in science education as a fascinating model for learning about fundamental biological concepts, and in research for developing knowledge with medical applications for reproductive biology, embryonic development, and genetic interactions. These lizards maintain genome integrity in a hybrid state in which recombination is absent, but do not suffer from conditions or disorders such as Down's Syndrome or cancer that are caused by aneuploidy in humans. The multifarious impacts of hybridization on the diversity of species in this group present an exceptional opportunity to deepen understanding of the complicated process of evolutionary diversification.
Collapse
Affiliation(s)
- Anthony J Barley
- School of Mathematical and Natural Sciences, Arizona State University–West Valley, Glendale, Arizona 85306, United States
| | - Charles J Cole
- Department of Herpetology, American Museum of Natural History, New York, New York 10024, United States
| |
Collapse
|
2
|
Lin TH, Shen ZY, Chou MH, Sun PW, Shen CC, Huang JP, Lin SM. Allopatric Speciation and Interspecific Gene Flow Driven by Niche Conservatism of Diploderma Tree Lizards in Taiwan. Mol Ecol 2025; 34:e17718. [PMID: 40052357 DOI: 10.1111/mec.17718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 02/09/2025] [Accepted: 02/20/2025] [Indexed: 04/08/2025]
Abstract
Allopatric speciation is a widely accepted hypothesis for species distributed across geographic barriers. Meanwhile, niche conservatism, the tendency of species to retain their ancestral ecological traits, helps reinforce genetic differentiation by stabilising species distributions over time and reducing the role of competition in shaping range boundaries. In contrast, hybridisation can occur at the edges of distribution after secondary contact following climatic or geological events, leading to a reduction in genetic divergence between divergent lineages. In this study, we investigated the role of geographic barriers, niche conservatism and gene flow in the speciation history of Diploderma species in Taiwan, where geographically distinct taxa share similar environmental preferences. By using ddRAD-seq data, seven distinct genetic clusters were identified with two putatively new cryptic species in D. brevipes and D. polygonatum. Most sister species pairs share similar climatic niches based on niche equivalency and similarity tests. We further detected significant historical gene flow between lineages of D. brevipes and D. polygonatum, where secondary contact might have occurred because of palaeoclimate changes and historical demographic expansion. Our results demonstrate that niche conservatism does not always act in concert to strengthen the result of allopatric speciation; instead, it may also lead to gene flow between divergent lineages following secondary contact. On the other hand, postdivergence gene flow may be a creating force generating phenotypic diversity in sexually selected traits in our study system. The underestimated species diversity of Diploderma in Taiwan requires further taxonomic work in the future.
Collapse
Affiliation(s)
- Tzong-Han Lin
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Department of Entomology, National Taiwan University, Taipei, Taiwan
| | - Zong-Yu Shen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Ming-Hsun Chou
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
- Department of Biological Sciences, Northern Arizona University, Flagstaff, Arizona, USA
| | - Pei-Wei Sun
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, Connecticut, USA
| | - Chin-Chia Shen
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| | - Jen-Pan Huang
- Biodiversity Research Center, Academia Sinica, Taipei, Taiwan
| | - Si-Min Lin
- School of Life Science, National Taiwan Normal University, Taipei, Taiwan
| |
Collapse
|
3
|
Magalhães FDM, Oliveira EF, Garda AA, Burbrink FT, Gehara M. Genomic data support reticulate evolution in whiptail lizards from the Brazilian Caatinga. Mol Phylogenet Evol 2025; 204:108280. [PMID: 39725181 DOI: 10.1016/j.ympev.2024.108280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 12/16/2024] [Accepted: 12/21/2024] [Indexed: 12/28/2024]
Abstract
Species relationships have traditionally been represented by phylogenetic trees, but not all evolutionary histories fit into bifurcating divergence models. Introgressive hybridization challenges this assumption by sometimes [or maybe often] leading to mitochondrial introgression, wherein one species' mitochondrial genome is entirely replaced by another's (mitochondrial capture). Such processes result in mitonuclear discrepancies, complicating species delimitation and phylogenetic inference. In our study, we used ultraconserved elements (UCE) and mitogenomic data to investigate the evolutionary history of the Ameivula ocellifera complex, a group of South American whiptail lizards widely distributed in semiarid environments of the Caatinga Domain in Brazil. We examine mitonuclear discordances, assessing reticulate evolution, evaluating species limits, and testing for adaptive mitochondrial capture that could explain higher introgression in the mitochondrial genome compared to nuclear DNA. Our findings support the occurrence of an ancient reticulation event during the diversification of these lizards, driven by introgressive hybridization, leading to mitochondrial capture, and explaining mitonuclear discrepancies. Overall, we did not find clear evidence of positive selection across mitochondrial protein-coding genes suggesting adaptive mitochondrial capture of individuals with introgressed mtDNA. Thus, the genetic diversification and mitogenome evolution could be neutral, with selection against hybridization in the autosomal loci only, or even mediated by mitonuclear incompatibilities. Analyses of mtDNA genomes alongside network and species delimitation methods were crucial for identifying and validating individuals with introgressed mtDNA as a distinct species, demonstrating the potential of genome sampling, and using innovative analytical techniques for elucidating speciation processes in the presence of introgressive hybridization.
Collapse
Affiliation(s)
- Felipe de M Magalhães
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA; Programa de Pós-Graduação em Ciências Biológicas, Centro de Ciências Exatas e da Natureza, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil.
| | - Eliana F Oliveira
- Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, Mato Grosso do Sul, Brazil
| | - Adrian A Garda
- Laboratório de Anfíbios e Répteis (LAR), Departamento de Botânica e Zoologia da Universidade Federal do Rio Grande do Norte, Natal, Rio Grande do Norte, Brazil
| | - Frank T Burbrink
- Department of Herpetology, The American Museum of Natural History, New York, NY, USA
| | - Marcelo Gehara
- Department of Earth and Environmental Sciences, Rutgers University, Newark, NJ, USA
| |
Collapse
|
4
|
Galoyan E, Nazarov R, Altmanová M, Matveevsky S, Kropachev I, Dedukh D, Iryshkov E, Pankin M, Sopilko N, Nikolaev O, Orlov N, Arakelyan M, Klíma J, Solovyeva E, Nguyen T, Kratochvíl L. Natural repeated backcrosses lead to triploidy and tetraploidy in parthenogenetic butterfly lizards (Leiolepis: Agamidae). Sci Rep 2025; 15:3094. [PMID: 39856096 PMCID: PMC11760361 DOI: 10.1038/s41598-024-83300-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/13/2024] [Indexed: 01/27/2025] Open
Abstract
Obligatory parthenogenesis in vertebrates is restricted to squamate reptiles and evolved through hybridisation. Parthenogens can hybridise with sexual species, resulting in individuals with increased ploidy levels. We describe two successive hybridisations of the parthenogenetic butterfly lizards (genus Leiolepis) in Vietnam with a parental sexual species. Contrary to previous proposals, we document that parthenogenetic L. guentherpetersi has mitochondrial DNA and two haploid sets from L. guttata and one from L. reevesii, suggesting that it is the result of a backcross of a parthenogenetic L. guttata × L. reevesii hybrid with a L. guttata male increasing ploidy from 2n to 3n. Within the range of L. guentherpetersi, we found an adult tetraploid male with three L. guttata and one L. reevesii haploid genomes. It probably originated from fertilisation of an unreduced triploid L. guentherpetersi egg by a L. guttata sperm. Although its external morphology resembles that of the maternal species, it possessed exceptionally large erythrocytes and was likely sterile. As increased ploidy level above triploidy or tetraploidy appears to be harmful for amniotes, all-female asexual lineages should evolve a strategy to prevent incorporation of other haploid genomes from a sexual species by avoiding fertilisation by sexual males.
Collapse
Affiliation(s)
- Eduard Galoyan
- Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, Russia.
| | - Roman Nazarov
- Zoological Museum of Moscow State University, B. Nikitskaya ul. 2, Moscow, 125009, Russia
| | - Marie Altmanová
- Laboratory of Fish Genetics, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, 128 44, Czech Republic
| | - Sergey Matveevsky
- Vavilov Institute of General Genetics of the Russian Academy of Sciences, Gubkin St. 3, Moscow, Russia
| | - Ivan Kropachev
- Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, Russia
| | - Dmitrij Dedukh
- Laboratory of Non-Mendelian Evolution, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Eugene Iryshkov
- Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, Russia
- Lomonosov Moscow State University, Kolmogorova st. 1, Moscow, Russia
| | - Mark Pankin
- Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, Russia
| | - Natalia Sopilko
- Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, Russia
| | - Oleg Nikolaev
- Severtsov Institute of Ecology and Evolution of the Russian Academy of Sciences, Leninsky Prospect 33, Moscow, Russia
- Lomonosov Moscow State University, Kolmogorova st. 1, Moscow, Russia
| | - Nikolai Orlov
- Zoological Institute, Russian Academy of Sciences, Universitetskaya nab. 1, St, Petersburg, 199034, Russia
| | - Marine Arakelyan
- Department of Zoology, Biological Faculty of Yerevan State University, Charents st. 8, Yerevan, Armenia
| | - Jiří Klíma
- Laboratory of Cell Regeneration and Plasticity, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Rumburská 89, 277 21, Liběchov, Czech Republic
| | - Evgeniya Solovyeva
- Zoological Museum of Moscow State University, B. Nikitskaya ul. 2, Moscow, 125009, Russia
| | - Tao Nguyen
- Vietnam Academy of Science and Technology, Hanoi, Vietnam
| | - Lukáš Kratochvíl
- Department of Ecology, Faculty of Science, Charles University, Viničná 7, Prague, 128 44, Czech Republic
| |
Collapse
|
5
|
Barley AJ, Nieto-Montes de Oca A, Manríquez-Morán NL, Thomson RC. Understanding Species Boundaries that Arise from Complex Histories: Gene Flow Across the Speciation Continuum in the Spotted Whiptail Lizards. Syst Biol 2024; 73:901-919. [PMID: 39022995 DOI: 10.1093/sysbio/syae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 07/17/2024] [Indexed: 07/20/2024] Open
Abstract
-Gene flow between diverging lineages challenges the resolution of species boundaries and the understanding of evolutionary history in recent radiations. Here, we integrate phylogenetic and coalescent tools to resolve reticulate patterns of diversification and use a perspective focused on evolutionary mechanisms to distinguish interspecific and intraspecific taxonomic variation. We use this approach to resolve the systematics for one of the most intensively studied but difficult to understand groups of reptiles: the spotted whiptail lizards of the genus Aspidoscelis (A. gularis complex). Whiptails contain the largest number of unisexual species known within any vertebrate group and the spotted whiptail complex has played a key role in the generation of this diversity through hybrid speciation. Understanding lineage boundaries and the evolutionary history of divergence and reticulation within this group is therefore key to understanding the generation of unisexual diversity in whiptails. Despite this importance, long-standing confusion about their systematics has impeded understanding of which gonochoristic species have contributed to the formation of unisexual lineages. Using reduced representation genomic data, we resolve patterns of divergence and gene flow within the spotted whiptails and clarify patterns of hybrid speciation. We find evidence that biogeographically structured ecological and environmental variation has been important in morphological and genetic diversification, as well as the maintenance of species boundaries in this system. Our study elucidates how gene flow among lineages and the continuous nature of speciation can bias the practice of species delimitation and lead taxonomists operating under different frameworks to different conclusions (here we propose that a 2 species arrangement best reflects our current understanding). In doing so, this study provides conceptual and methodological insights into approaches to resolving diversification patterns and species boundaries in rapid radiations with complex histories, as well as long-standing taxonomic challenges in the field of systematic biology.
Collapse
Affiliation(s)
- Anthony J Barley
- School of Mathematical and Natural Sciences, Arizona State University, West Valley Campus, 4701 W Thunderbird Road, Glendale, AZ 85306, USA
| | - Adrián Nieto-Montes de Oca
- Laboratorio de Herpetología and Museo de Zoología Alfonso L. Herrera, Departamento de Biología Evolutiva, Facultad de Ciencias, Universidad Nacional Autónoma de México, Cd. Universitaria, Del. Coyoacán, Ciudad de México, C.P. 04510, México
| | - Norma L Manríquez-Morán
- Laboratorio de Sistemática Molecular, Centro de Investigaciones Biológicas, Universidad Autónoma del Estado de Hidalgo, Km. 4.5 Carr. Pachuca-Tulancingo, Col. Carboneras, Mineral de la Reforma, Hidalgo, C.P. 42184, México
| | - Robert C Thomson
- School of Life Sciences, University of Hawai'i, 3190 Maile Way, Honolulu, HI 96822, USA
| |
Collapse
|
6
|
Prates I, Hutchinson MN, Singhal S, Moritz C, Rabosky DL. Notes from the taxonomic disaster zone: Evolutionary drivers of intractable species boundaries in an Australian lizard clade (Scincidae: Ctenotus). Mol Ecol 2024; 33:e17074. [PMID: 37461158 DOI: 10.1111/mec.17074] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 06/06/2023] [Accepted: 07/04/2023] [Indexed: 10/18/2024]
Abstract
Genomic-scale datasets, sophisticated analytical techniques, and conceptual advances have disproportionately failed to resolve species boundaries in some groups relative to others. To understand the processes that underlie taxonomic intractability, we dissect the speciation history of an Australian lizard clade that arguably represents a "worst-case" scenario for species delimitation within vertebrates: the Ctenotus inornatus species group, a clade beset with decoupled genetic and phenotypic breaks, uncertain geographic ranges, and parallelism in purportedly diagnostic morphological characters. We sampled hundreds of localities to generate a genomic perspective on population divergence, structure, and admixture. Our results revealed rampant paraphyly of nominate taxa in the group, with lineages that are either morphologically cryptic or polytypic. Isolation-by-distance patterns reflect spatially continuous differentiation among certain pairs of putative species, yet genetic and geographic distances are decoupled in other pairs. Comparisons of mitochondrial and nuclear gene trees, tests of nuclear introgression, and historical demographic modelling identified gene flow between divergent candidate species. Levels of admixture are decoupled from phylogenetic relatedness; gene flow is often higher between sympatric species than between parapatric populations of the same species. Such idiosyncratic patterns of introgression contribute to species boundaries that are fuzzy while also varying in fuzziness. Our results suggest that "taxonomic disaster zones" like the C. inornatus species group result from spatial variation in the porosity of species boundaries and the resulting patterns of genetic and phenotypic variation. This study raises questions about the origin and persistence of hybridizing species and highlights the unique insights provided by taxa that have long eluded straightforward taxonomic categorization.
Collapse
Affiliation(s)
- Ivan Prates
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Sonal Singhal
- Department of Biology, California State University - Dominguez Hills, Carson, California, USA
| | - Craig Moritz
- Division of Ecology and Evolution and Centre for Biodiversity Analysis, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel L Rabosky
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
7
|
Nappo HC, Colli G. Colonization of North America Boosted the Diversification of Whiptail Lizards. Ecol Evol 2024; 14:e70418. [PMID: 39445179 PMCID: PMC11496772 DOI: 10.1002/ece3.70418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/10/2024] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Diversification is frequently associated with change-anything from colonizing a new area to evolving a new trait. Once a lineage changes, the organisms may be able to exploit previously unavailable ecological opportunities and release pressures from predators, parasites, and competitors, which may increase the speciation rate. Modern teiid lizards originated in South America but managed to colonize and diversify in North America. We assessed whether geographic distribution, body size, and body temperatures are associated with teiid diversification using GeoHiSSE and inverse equal-splits statistics with simulation tests. We also estimated speciation rates with MiSSE to account for the effect of unmeasured variables. Moreover, we assessed the ecological niche overlap between North American (including Caribbean) teiids and their sister clade in South America. Our results indicate that only distribution range affected diversification, but we discuss that the available data might not have been enough to assess the effect of body temperatures. We also show that North American teiids have a broader ecological niche encompassing almost all environmental conditions used by their sister clade in South America but expanding mainly toward arid areas. Our results suggest that this expansion significantly impacted teiid diversification due to the seizing of ecological opportunities or ecological release, but we do not discard possible effects of phenotypic evolution.
Collapse
Affiliation(s)
- Humberto Coelho Nappo
- Programa de Pós‐Graduação em Ecologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| | - Guarino Rinaldi Colli
- Departamento de Zoologia, Instituto de Ciências BiológicasUniversidade de BrasíliaBrasíliaDFBrazil
| |
Collapse
|
8
|
Ho DV, Tormey D, Odell A, Newton AA, Schnittker RR, Baumann DP, Neaves WB, Schroeder MR, Sigauke RF, Barley AJ, Baumann P. Post-meiotic mechanism of facultative parthenogenesis in gonochoristic whiptail lizard species. eLife 2024; 13:e97035. [PMID: 38847388 PMCID: PMC11161175 DOI: 10.7554/elife.97035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/17/2024] [Indexed: 06/09/2024] Open
Abstract
Facultative parthenogenesis (FP) has historically been regarded as rare in vertebrates, but in recent years incidences have been reported in a growing list of fish, reptile, and bird species. Despite the increasing interest in the phenomenon, the underlying mechanism and evolutionary implications have remained unclear. A common finding across many incidences of FP is either a high degree of homozygosity at microsatellite loci or low levels of heterozygosity detected in next-generation sequencing data. This has led to the proposal that second polar body fusion following the meiotic divisions restores diploidy and thereby mimics fertilization. Here, we show that FP occurring in the gonochoristic Aspidoscelis species A. marmoratus and A. arizonae results in genome-wide homozygosity, an observation inconsistent with polar body fusion as the underlying mechanism of restoration. Instead, a high-quality reference genome for A. marmoratus and analysis of whole-genome sequencing from multiple FP and control animals reveals that a post-meiotic mechanism gives rise to homozygous animals from haploid, unfertilized oocytes. Contrary to the widely held belief that females need to be isolated from males to undergo FP, females housed with conspecific and heterospecific males produced unfertilized eggs that underwent spontaneous development. In addition, offspring arising from both fertilized eggs and parthenogenetic development were observed to arise from a single clutch. Strikingly, our data support a mechanism for facultative parthenogenesis that removes all heterozygosity in a single generation. Complete homozygosity exposes the genetic load and explains the high rate of congenital malformations and embryonic mortality associated with FP in many species. Conversely, for animals that develop normally, FP could potentially exert strong purifying selection as all lethal recessive alleles are purged in a single generation.
Collapse
Affiliation(s)
- David V Ho
- Department of Biology, Johannes Gutenberg UniversityMainzGermany
- Institute of Quantitative and Computational Biosciences, Johannes Gutenberg UniversityMainzGermany
| | - Duncan Tormey
- Stowers Institute for Medical ResearchKansas CityUnited States
| | - Aaron Odell
- Department of Biology, Johannes Gutenberg UniversityMainzGermany
| | | | | | - Diana P Baumann
- Stowers Institute for Medical ResearchKansas CityUnited States
| | | | | | | | - Anthony J Barley
- School of Mathematical and Natural Sciences, Arizona State University–West Valley CampusGlendaleUnited States
| | - Peter Baumann
- Department of Biology, Johannes Gutenberg UniversityMainzGermany
- Institute of Quantitative and Computational Biosciences, Johannes Gutenberg UniversityMainzGermany
- Institute of Molecular BiologyMainzGermany
| |
Collapse
|
9
|
Das S, Greenbaum E, Brecko J, Pauwels OSG, Ruane S, Pirro S, Merilä J. Phylogenomics of Psammodynastes and Buhoma (Elapoidea: Serpentes), with the description of a new Asian snake family. Sci Rep 2024; 14:9489. [PMID: 38664489 PMCID: PMC11045840 DOI: 10.1038/s41598-024-60215-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 04/19/2024] [Indexed: 04/28/2024] Open
Abstract
Asian mock vipers of the genus Psammodynastes and African forest snakes of the genus Buhoma are two genera belonging to the snake superfamily Elapoidea. The phylogenetic placements of Psammodynastes and Buhoma within Elapoidea has been extremely unstable which has resulted in their uncertain and debated taxonomy. We used ultraconserved elements and traditional nuclear and mitochondrial markers to infer the phylogenetic relationships of these two genera with other elapoids. Psammodynastes, for which a reference genome has been sequenced, were found, with strong branch support, to be a relatively early diverging split within Elapoidea that is sister to a clade consisting of Elapidae, Micrelapidae and Lamprophiidae. Hence, we allocate Psammodynastes to its own family, Psammodynastidae new family. However, the phylogenetic position of Buhoma could not be resolved with a high degree of confidence. Attempts to identify the possible sources of conflict in the rapid radiation of elapoid snakes suggest that both hybridisation/introgression during the rapid diversification, including possible ghost introgression, as well as incomplete lineage sorting likely have had a confounding role. The usual practice of combining mitochondrial loci with nuclear genomic data appears to mislead phylogeny reconstructions in rapid radiation scenarios, especially in the absence of genome scale data.
Collapse
Affiliation(s)
- Sunandan Das
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland.
| | - Eli Greenbaum
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX, 79968, USA
| | - Jonathan Brecko
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000, Brussels, Belgium
- Royal Museum for Central Africa, Tervuren, Belgium
| | - Olivier S G Pauwels
- Royal Belgian Institute of Natural Sciences, Rue Vautier 29, 1000, Brussels, Belgium
| | - Sara Ruane
- Life Sciences Section, Negaunee Integrative Research Center, Field Museum, Chicago, IL, USA
| | - Stacy Pirro
- Iridian Genomes Inc., Bethesda, MD, 20817, USA
| | - Juha Merilä
- Ecological Genetics Research Unit, Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
- Area of Ecology and Biodiversity, School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pokfulam Road, Hong Kong, SAR, China
| |
Collapse
|
10
|
Patterson CW, Drury JP. Interspecific behavioural interference and range dynamics: current insights and future directions. Biol Rev Camb Philos Soc 2023; 98:2012-2027. [PMID: 37364865 DOI: 10.1111/brv.12993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 06/08/2023] [Accepted: 06/12/2023] [Indexed: 06/28/2023]
Abstract
Novel biotic interactions in shifting communities play a key role in determining the ability of species' ranges to track suitable habitat. To date, the impact of biotic interactions on range dynamics have predominantly been studied in the context of interactions between different trophic levels or, to a lesser extent, exploitative competition between species of the same trophic level. Yet, both theory and a growing number of empirical studies show that interspecific behavioural interference, such as interspecific territorial and mating interactions, can slow down range expansions, preclude coexistence, or drive local extinction, even in the absence of resource competition. We conducted a systematic review of the current empirical research into the consequences of interspecific behavioural interference on range dynamics. Our findings demonstrate there is abundant evidence that behavioural interference by one species can impact the spatial distribution of another. Furthermore, we identify several gaps where more empirical work is needed to test predictions from theory robustly. Finally, we outline several avenues for future research, providing suggestions for how interspecific behavioural interference could be incorporated into existing scientific frameworks for understanding how biotic interactions influence range expansions, such as species distribution models, to build a stronger understanding of the potential consequences of behavioural interference on the outcome of future range dynamics.
Collapse
Affiliation(s)
| | - Jonathan P Drury
- Department of Biosciences, Durham University, Stockton Road, Durham, DH1 3LE, UK
| |
Collapse
|
11
|
San Jose M, Doorenweerd C, Geib S, Barr N, Dupuis JR, Leblanc L, Kauwe A, Morris KY, Rubinoff D. Interspecific gene flow obscures phylogenetic relationships in an important insect pest species complex. Mol Phylogenet Evol 2023; 188:107892. [PMID: 37524217 DOI: 10.1016/j.ympev.2023.107892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/07/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
As genomic data proliferates, the prevalence of post-speciation gene flow is making species boundaries and relationships increasingly ambiguous. Although current approaches inferring fully bifurcating phylogenies based on concatenated datasets provide simple and robust answers to many species relationships, they may be inaccurate because the models ignore inter-specific gene flow and incomplete lineage sorting. To examine the potential error resulting from ignoring gene flow, we generated both a RAD-seq and a 500 protein-coding loci highly multiplexed amplicon (HiMAP) dataset for a monophyletic group of 12 species defined as the Bactrocera dorsalis sensu lato clade. With some of the world's worst agricultural pests, the taxonomy of the B. dorsalis s.l. clade is important for trade and quarantines. However, taxonomic confusion confounds resolution due to intra- and interspecific phenotypic variation and convergence, mitochondrial introgression across half of the species, and viable hybrids. We compared the topological convergence of our datasets using concatenated phylogenetic and various multispecies coalescent approaches, some of which account for gene flow. All analyses agreed on species delimitation, but there was incongruence between species relationships. Under concatenation, both datasets suggest identical species relationships with mostly high statistical support. However, multispecies coalescent and multispecies network approaches suggest markedly different hypotheses and detected significant gene flow. We suggest that the network approaches are likely more accurate because gene flow violates the assumptions of the concatenated phylogenetic analyses, but the data-reductive requirements of network approaches resulted in reduced statistical support and could not unambiguously resolve gene flow directions. Our study highlights the importance of testing for gene flow, particularly with phylogenomic datasets, even when concatenated approaches receive high statistical support.
Collapse
Affiliation(s)
- Michael San Jose
- University of Hawaii, College of Tropical Agriculture and Human Resources, Department of Plant and Environmental Protection Sciences, Entomology Section, 3050 Maile Way, Honolulu, HI, 96822-2231, USA.
| | - Camiel Doorenweerd
- University of Hawaii, College of Tropical Agriculture and Human Resources, Department of Plant and Environmental Protection Sciences, Entomology Section, 3050 Maile Way, Honolulu, HI, 96822-2231, USA
| | - Scott Geib
- Tropical Crop and Commodity Protection Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Center, USDA Agricultural Research Services, Hilo, HI, USA
| | - Norman Barr
- United States Department of Agriculture, Animal and Plant Health Inspection Service, Plant Protection and Quarantine, Science & Technology, Insect Management and Molecular Diagnostics Laboratory, 22675 N. Moorefield Road, Edinburg, TX 78541, USA
| | - Julian R Dupuis
- University of Kentucky, Department of Entomology, S225 Ag Science Center North, 1100 South Limestone, Lexington, KY, 40546-0091, USA
| | - Luc Leblanc
- University of Idaho, Department of Entomology, Plant Pathology and Nematology, 875 Perimeter Drive, MS2329, Moscow, ID, 83844-2329, USA
| | - Angela Kauwe
- Tropical Crop and Commodity Protection Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Center, USDA Agricultural Research Services, Hilo, HI, USA
| | - Kimberley Y Morris
- University of Hawaii, College of Tropical Agriculture and Human Resources, Department of Plant and Environmental Protection Sciences, Entomology Section, 3050 Maile Way, Honolulu, HI, 96822-2231, USA; Tropical Crop and Commodity Protection Research Unit, Daniel K Inouye U.S. Pacific Basin Agricultural Center, USDA Agricultural Research Services, Hilo, HI, USA
| | - Daniel Rubinoff
- University of Hawaii, College of Tropical Agriculture and Human Resources, Department of Plant and Environmental Protection Sciences, Entomology Section, 3050 Maile Way, Honolulu, HI, 96822-2231, USA
| |
Collapse
|
12
|
Reifová R, Ament-Velásquez SL, Bourgeois Y, Coughlan J, Kulmuni J, Lipinska AP, Okude G, Stevison L, Yoshida K, Kitano J. Mechanisms of Intrinsic Postzygotic Isolation: From Traditional Genic and Chromosomal Views to Genomic and Epigenetic Perspectives. Cold Spring Harb Perspect Biol 2023; 15:a041607. [PMID: 37696577 PMCID: PMC10547394 DOI: 10.1101/cshperspect.a041607] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Intrinsic postzygotic isolation typically appears as reduced viability or fertility of interspecific hybrids caused by genetic incompatibilities between diverged parental genomes. Dobzhansky-Muller interactions among individual genes, and chromosomal rearrangements causing problems with chromosome synapsis and recombination in meiosis, have both long been considered as major mechanisms behind intrinsic postzygotic isolation. Recent research has, however, suggested that the genetic basis of intrinsic postzygotic isolation can be more complex and involves, for example, overall divergence of the DNA sequence or epigenetic changes. Here, we review the mechanisms of intrinsic postzygotic isolation from genic, chromosomal, genomic, and epigenetic perspectives across diverse taxa. We provide empirical evidence for these mechanisms, discuss their importance in the speciation process, and highlight questions that remain unanswered.
Collapse
Affiliation(s)
- Radka Reifová
- Department of Zoology, Faculty of Science, Charles University, 128 00 Prague, Czech Republic
| | | | - Yann Bourgeois
- DIADE, University of Montpellier, CIRAD, IRD, 34090 Montpellier, France
| | - Jenn Coughlan
- Department of Ecology & Evolutionary Biology, Yale University, New Haven, Connecticut 06520, USA
| | - Jonna Kulmuni
- Institute for Biodiversity and Ecosystem Dynamics, Department of Evolutionary and Population Biology, University of Amsterdam, 1012 Amsterdam, The Netherlands
- Organismal & Evolutionary Biology Research Programme, University of Helsinki, 00100 Helsinki, Finland
| | - Agnieszka P Lipinska
- Department of Algal Development and Evolution, Max Planck Institute for Biology, 72076 Tuebingen, Germany
- CNRS, UMR 8227, Integrative Biology of Marine Models, Sorbonne Université, Station Biologique de Roscoff, 29680 Roscoff, France
| | - Genta Okude
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Laurie Stevison
- Department of Biological Sciences, Auburn University, Auburn, Alabama 36849, USA
| | - Kohta Yoshida
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Jun Kitano
- Department of Genomics and Evolutionary Biology, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| |
Collapse
|
13
|
Arce-Valdés LR, Sánchez-Guillén RA. The evolutionary outcomes of climate-change-induced hybridization in insect populations. CURRENT OPINION IN INSECT SCIENCE 2022; 54:100966. [PMID: 36089267 DOI: 10.1016/j.cois.2022.100966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 08/29/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Rapid range shifts are one of the most frequent responses to climate change in insect populations. Climate-induced range shifts can lead to the breakdown of isolation barriers, and thus, to an increase in hybridization and introgression. Long-term evolutionary consequences such as the formation of hybrid zones, introgression, speciation, and extinction have been predicted as a result of climate-induced hybridization. Our review shows that there has been an increase in the number of published cases of climate-induced hybridization in insects, and that the formation of hybrid zones and introgression seems to be, at the moment, the most frequent outcomes. Although introgression is considered positive, since it increases species' genetic diversity, in the long term, it could lead to negative outcomes such as species fusion or genetic swamping.
Collapse
Affiliation(s)
- Luis R Arce-Valdés
- Red de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz C. P. 91073, Mexico
| | - Rosa A Sánchez-Guillén
- Red de Biología Evolutiva, Instituto de Ecología, A.C. (INECOL), Carretera antigua a Coatepec 351, Col. El Haya, Xalapa, Veracruz C. P. 91073, Mexico.
| |
Collapse
|