1
|
Zhao C, Peng Y, Raza MF, Wang W, Zhang Y, Chen Y, Han R, Guo J, Huang S, Li W. A gut bacterial supplement for Asian honey bee (Apis cerana) enhances host tolerance to nitenpyram: Insight from microbiota-gut-brain axis. ENVIRONMENTAL RESEARCH 2025; 274:121306. [PMID: 40054557 DOI: 10.1016/j.envres.2025.121306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 02/10/2025] [Accepted: 03/04/2025] [Indexed: 05/04/2025]
Abstract
The widespread use of neonicotinoid pesticides has severely impacted honey bees, driving population declines. Gut microbiota are increasingly recognized for their role in mitigating pesticide toxicity. This study evaluated the ability of Gilliamella sp. G0441, a core microbiome member of the Asian honey bee (Apis cerana), to confer resistance to the toxicity of a neonicotinoid nitenpyram. Newly emerged Asian honey bees were first colonized with gut microbiota in the source colony, then divided into four treatments: SS (fed sucrose solution throughout), SN (fed sucrose solution, then exposed to nitenpyram), GS (fed Gilliamella, then sucrose solution), and GN (fed Gilliamella, then exposed to nitenpyram), and their responses-mortality, food consumption, body weight, and sucrose sensitivity-were assessed. The protective effects of Gilliamella administration on the host were further validated using a microbiota-free bee model. Gilliamella supplementation significantly mitigated nitenpyram-induced appetite suppression, weight loss, impaired learning, and gut microbiota disruption. Mechanistic analyses revealed that nitenpyram disrupted brain metabolism via the intestinal MAPK pathway, reducing ascorbate and aldarate metabolism. Prophylactic Gilliamella treatment reversed these effects, restored metabolic balance, and modulated esterase E4 expression, enhancing pesticide resistance. This study underscores Gilliamella's vital role in honey bee resilience to neonicotinoids, offering insights into the microbiota-gut-brain axis (MGBA) as a pathway for enhancing pesticide tolerance and ecological health.
Collapse
Affiliation(s)
- Chonghui Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China; Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | - Yehua Peng
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China; College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Muhammad Fahad Raza
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Wenbo Wang
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China; College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yi Zhang
- School of Chinese Medicinal Resource, Guangdong Pharmaceutical University, Yunfu, 527527, China
| | - Yanping Chen
- USDA-ARS Bee Research Laboratory, Beltsville, MD, 20705, USA
| | - Richou Han
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China
| | - Jun Guo
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China.
| | - Shaokang Huang
- College of Bee Science and Biomedicine, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Wenfeng Li
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou, 510260, China.
| |
Collapse
|
2
|
Adelfio M, Callen GE, He X, Paster BJ, Hasturk H, Ghezzi CE. Engineered Tissue Models to Decode Host-Microbiota Interactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417687. [PMID: 40364768 DOI: 10.1002/advs.202417687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 04/13/2025] [Indexed: 05/15/2025]
Abstract
A mutualistic co-evolution exists between the host and its associated microbiota in the human body. Bacteria establish ecological niches in various tissues of the body, locally influencing their physiology and functions, but also contributing to the well-being of the whole organism through systemic communication with other distant niches (axis). Emerging evidence indicates that when the composition of the microbiota inhabiting the niche changes toward a pathogenic state (dysbiosis) and interactions with the host become unbalanced, diseases may present. In addition, imbalances within a single niche can cause dysbiosis in distant organs. Current research efforts are focused on elucidating the mechanisms leading to dysbiosis, with the goal of restoring tissue homeostasis. In vitro models can provide critical experimental platforms to address this need, by reproducing the niche cyto-architecture and physiology with high fidelity. This review surveys current in in vitro host-microbiota research strategies and provides a roadmap that can guide the field in further developing physiologically relevant in vitro models of ecological niches, thus enabling investigation of the role of the microbiota in human health and diseases. Lastly, given the Food and Drug Administration Modernization Act 2.0, this review highlights emerging in vitro strategies to support the development and validation of new therapies on the market.
Collapse
Affiliation(s)
- Miryam Adelfio
- Department of Biomedical Engineering, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Grace E Callen
- Department of Biomedical Engineering, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| | - Xuesong He
- ADA Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
| | - Bruce J Paster
- ADA Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
| | - Hatice Hasturk
- ADA Forsyth Institute, 245 First St, Cambridge, MA, 02142, USA
| | - Chiara E Ghezzi
- Department of Biomedical Engineering, University of Massachusetts-Lowell, Lowell, MA, 01854, USA
| |
Collapse
|
3
|
Fang X, Liu H, Liu J, Du Y, Chi Z, Bian Y, Zhao X, Teng T, Shi B. Isobutyrate Confers Resistance to Inflammatory Bowel Disease through Host-Microbiota Interactions in Pigs. RESEARCH (WASHINGTON, D.C.) 2025; 8:0673. [PMID: 40342298 PMCID: PMC12059313 DOI: 10.34133/research.0673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Revised: 03/20/2025] [Accepted: 03/23/2025] [Indexed: 05/11/2025]
Abstract
Supplementation with short-chain fatty acids (SCFAs) is a potential therapeutic approach for inflammatory bowel disease (IBD). However, the therapeutic effects and mechanisms of action of isobutyrate in IBD remain unclear. Clinical data indicate that the fecal levels of isobutyrate are markedly lower in patients with Crohn's disease than in healthy controls. Compared with healthy mice and healthy pigs, mice and pigs with colitis presented significantly lower isobutyrate levels. Furthermore, the level of isobutyrate in pigs was significantly negatively correlated with the disease activity index. We speculate that isobutyrate may play a crucial role in regulating host gut homeostasis. We established a model of dextran sulfate sodium-induced colitis in pigs, which have gastrointestinal structure and function similar to those of humans; we performed multiomic analysis to investigate the therapeutic effects and potential mechanisms of isobutyrate on IBD at both the animal and cellular levels and validated the results. Phenotypically, isobutyrate can significantly alleviate diarrhea, bloody stools, weight loss, and colon shortening caused by colitis in pigs. Mechanistically, isobutyrate can increase the relative abundance of Lactobacillus reuteri, thereby increasing the production of indole-3-lactic acid, regulating aryl hydrocarbon receptor expression and downstream signaling pathways, and regulating Foxp3+ CD4+ T cell recruitment to alleviate colitis. Isobutyrate can directly activate G protein-coupled receptor 109A, promote the expression of Claudin-1, and improve intestinal barrier function. In addition, isobutyrate can increase the production of intestinal SCFAs and 3-hydroxybutyric acid and inhibit the TLR4/MyD88/NF-κB signaling pathway to suppress intestinal inflammation. In conclusion, our findings demonstrate that isobutyrate confers resistance to IBD through host-microbiota interactions, providing a theoretical basis for the use of isobutyrate in alleviating colitis.
Collapse
Affiliation(s)
| | | | - Junling Liu
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Yongqing Du
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Zihan Chi
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Yiqi Bian
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Xuan Zhao
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Teng Teng
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| | - Baoming Shi
- College of Animal Science and Technology,
Northeast Agricultural University, Harbin 150030, People’s Republic of China
| |
Collapse
|
4
|
Song N, Xu X, Liu P, Jiang Y, Tang X, Zuo D, Lai Z, Cheng J. Integrative analysis of microbiota and metabolomics in individuals exhibiting different TCM constitutions utilizing 16S rDNA sequencing and LC/MS metabolomics. Microb Pathog 2025; 205:107621. [PMID: 40258500 DOI: 10.1016/j.micpath.2025.107621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/27/2024] [Accepted: 04/18/2025] [Indexed: 04/23/2025]
Abstract
BACKGROUND Traditional Chinese Medicine (TCM) theory posits a close relationship between an individual's constitutional types and the overall health. Variations in metabolic processes and microbial composition have been observed across different constitution types. This study aims to explore the relationship between TCM constitutions, intestinal flora, and metabolites to devise personalized TCM treatment strategies, enhancing evidence-based guidance for clinical practice. METHODS The research investigated differences in microbial diversity and composition among three TCM constitution types: yin-deficiency constitution (PA), balanced constitution (PH), and yang-deficiency constitution (PI). A significant elevation of the Chao1 metric was noted in the PH group compared to the PI group. RESULTS PCoA and CPCoA analyses demonstrated distinct group separation based on floral samples. Dominant phyla included Firmicutes, Bacteroidetes, Proteobacteria, Actinobacteria, and Fusobacteria, with varying abundance at the genus level. Metabolic pathway analysis unveiled disparities in metabolites associated with different pathways among constitution groups. KEGG pathway enrichment analysis emphasized pathways such as steroid hormone biosynthesis, ovarian steroidogenesis, and tryptophan metabolism. Furthermore, correlation analysis revealed associations between specific bacterial taxa and metabolites. CONCLUSION This study delineated the variations in intestinal flora and metabolic profiles among individuals with PA, PH, and PI constitution types, providing valuable insights for the development of personalized TCM treatment approaches.
Collapse
Affiliation(s)
- Na Song
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China
| | - Xinyi Xu
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China; Hunan University of Chinese Medicine, 410208, Hunan, China
| | - Pingyu Liu
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China; Hunan University of Chinese Medicine, 410208, Hunan, China
| | - Yutong Jiang
- Physical Examination Center, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China
| | - Xiaohui Tang
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China
| | - Deyu Zuo
- Department of Rehabilitation Medicine, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China; Chongqing Precision Medical Industry Technology Research Institute, Chongqing, 400000, China.
| | - Zonglang Lai
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China.
| | - Jun Cheng
- Department of Oncology, Chongqing Traditional Chinese Medicine Hospital, 400021, Chongqing, China; Shapingba District Hospital of TCM, Chongqing, 400030, China.
| |
Collapse
|
5
|
Wu S, Bu X, Chen D, Wu X, Wu H, Caiyin Q, Qiao J. Molecules-mediated bidirectional interactions between microbes and human cells. NPJ Biofilms Microbiomes 2025; 11:38. [PMID: 40038292 PMCID: PMC11880406 DOI: 10.1038/s41522-025-00657-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 01/22/2025] [Indexed: 03/06/2025] Open
Abstract
Complex molecules-mediated interactions, which are based on the bidirectional information exchange between microbes and human cells, enable the defense against diseases and health maintenance. Recently, diverse single-direction interactions based on active metabolites, immunity factors, and quorum sensing signals have largely been summarized separately. In this review, according to a simplified timeline, we proposed the framework of Molecules-mediated Bidirectional Interactions (MBI) between microbe and humans to decipher and understand their intricate interactions systematically. About the microbe-derived interactions, we summarized various molecules, such as short-chain fatty acids, bile acids, tryptophan catabolites, and quorum sensing molecules, and their corresponding human receptors. Concerning the human-derived interactions, we reviewed the effect of human molecules, including hormones, cytokines, and other circulatory metabolites on microbial characteristics and phenotypes. Finally, we discussed the challenges and trends for developing and deciphering molecule-mediated bidirectional interactions and their potential applications in the guard of human health.
Collapse
Affiliation(s)
- Shengbo Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueying Bu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Danlei Chen
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China
| | - Xueyan Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Hao Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
| | - Qinggele Caiyin
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
| | - Jianjun Qiao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China.
- Zhejiang Institute of Tianjin University, Shaoxing, Shaoxing, 312300, Zhejiang, China.
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin, 300072, China.
- Frontiers Science Center for Synthetic Biology (Ministry of Education), Tianjin University, Tianjin, 300072, China.
- State Key Laboratory of Synthetic Biology, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
6
|
Zhang S, Zhou R, Xie X, Xiong S, Li L, Li Y. Polysaccharides from Lycium barbarum, yam, and sunflower ameliorate colitis in a structure and intrinsic flora-dependent manner. Carbohydr Polym 2025; 349:122905. [PMID: 39643421 DOI: 10.1016/j.carbpol.2024.122905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 10/19/2024] [Accepted: 10/22/2024] [Indexed: 12/09/2024]
Abstract
Polysaccharides have been suggested to ameliorate metabolic diseases. However, their differential colitis-mitigating effects in mouse models with different colony structures remain poorly understood. Therefore, this study investigated the effects of polysaccharides from Lycium barbarum (LBP), sunflower (SP), and yam (YP) on colitis in C57BL/6 J (B6) mice born via vaginal delivery (VD) and in both caesarean section (CS)- and VD-born Institute of Cancer Research (ICR) mice. LBP was mainly composed of glucose (30.2 %), galactose (27.5 %), and arabinose (26.9 %). The main components of SP and YP were galacturonic acid (75.8 %) and glucose (98.1 %), respectively. Interestingly, LBP effectively alleviated body weight loss, reduced inflammatory cytokine levels, and restored intestinal barrier function in all three mouse models. Moreover, LBP decreased the abundance of norank_f__norank_o__Clostridia_UCG-014, Coriobacteriaceae_UCG-002, and norank_f_Eubacterium_coprostanoligenes_group in B6 mice, and the abundance of these genera positively correlated with pro-inflammatory cytokine levels. LBP increased the abundance of Lactobacillus, which was positively correlated with the levels of the protective factor, IL-10, in CS-born ICR mice. Collectively, our study suggests the potential application of LBP in the treatment of ulcerative colitis. We also provide an alternative method for restoring intestinal homeostasis in CS-born offspring.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Ruchen Zhou
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xiaoran Xie
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Shanshan Xiong
- Department of Gastroenterology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Lixiang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| | - Yanqing Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Laboratory of Translational Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Shandong Provincial Clinical Research Center for Digestive Disease, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
7
|
Ma J, Wang J, Wan Y, Wang S, Jiang C. Probiotic-fermented traditional Chinese herbal medicine, a promising approach to maintaining the intestinal microecology. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118815. [PMID: 39270882 DOI: 10.1016/j.jep.2024.118815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 08/08/2024] [Accepted: 09/09/2024] [Indexed: 09/15/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Traditional Chinese herbal medicines (TCHM) have been extensively used in China and other East and Southeast Asian countries. Due to the low content of bioactive components in most TCHM and the potential toxicity of some herbal ingredients to humans, researchers have turned to probiotic fermentation to enhance the efficacy, mitigate the toxic or side effects and improve the taste of TCHM. Both probiotics and certain TCHM benefit the intestinal microbiota and intestinal barrier of human body, demonstrating synergistic effects on in intestinal microecology. AIM OF THE STUDY This review aims to provide an overview of the development of fermentation technology, commonly used probiotic strains for TCHM fermentation, the advantages of probiotic fermentation and the challenges and limitations of probiotic-fermented TCHM. Additionally, it summarises and discusses the impact of probiotic-fermented TCHM on the intestinal barrier and microbiota, as well as the possible mechanisms involved. MATERIALS AND METHODS An extensive search of primary literature was conducted using various databases including PubMed, Google Scholar, Web of Science, Elsevier, SpringerLink, ScienceDirect, CNKI, and others. All the plant names have been checked with World Flora Online (http://www.worldfloraonline.org) on August 7, 2024. RESULTS The literature mentioned above was analyzed and summarized comprehensively. Probiotic-fermented TCHM can improve the intestinal barrier, modulate gut microbiota, and maintain homeostasis of the intestinal microecology. Modulating intestinal microecology by probiotic-fermented TCHM may be a crucial mechanism for its beneficial effects. CONCLUSIONS This article establishes a theoretical basis for further research on the relationship between probiotic-fermented TCHM and the intestinal microecology, with the hope of inspiring innovative concepts for the development of TCHM and exploring the potential of probiotic-fermented TCHM as a promising strategy for maintaining intestinal microecological balance.
Collapse
Affiliation(s)
- Jie Ma
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China.
| | - Junrui Wang
- Department of Orthopaedics, Chengdu Second People's Hospital, Chengdu, Sichuan, 610017, PR China
| | - Yujun Wan
- Sichuan Food Fermentation Industry Research and Design Institute Co., Ltd, Chengdu, Sichuan, 611130, PR China
| | - Shihua Wang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| | - Changqing Jiang
- Department of Pharmacy, General Hospital of Western Theater Command, Chengdu, Sichuan, 610083, PR China
| |
Collapse
|
8
|
Huang Q, Xiao Y, Sun P. Rumen-mammary gland axis and bacterial extracellular vesicles: Exploring a new perspective on heat stress in dairy cows. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2024; 19:70-75. [PMID: 39628643 PMCID: PMC11612815 DOI: 10.1016/j.aninu.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/08/2024] [Accepted: 08/30/2024] [Indexed: 12/06/2024]
Abstract
Heat stress poses a significant threat to the global livestock industry, particularly impacting dairy cows due to their higher metabolic heat production and increased susceptibility. The rumen microbiota plays a crucial role in regulating heat stress in dairy cows. Moreover, the rumen-mammary gland axis has been recently unveiled, indicating that rumen bacteria and their metabolites can influence mammary gland health and function. Extracellular vesicles, cell-derived vesicles, are known to carry various biomolecules and mediate intercellular communication and immune modulation. This review proposes the hypothesis that heat stress poses a threat to dairy cows via the rumen-mammary gland axis by regulating rumen microbiota and their secreted extracellular vesicles. It summarizes existing knowledge on bacterial extracellular vesicles and the rumen-mammary gland axis, suggesting that targeting the rumen microbiota and their extracellular vesicles, while enhancing mammary gland health through this axis, could be a promising strategy for preventing and alleviating heat stress in dairy cows. The aim of this review is to offer new insights and guide future research and development efforts concerning heat stress in dairy cows, thereby contributing to a deeper understanding of its pathogenesis and potential interventions.
Collapse
Affiliation(s)
- Qi Huang
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yang Xiao
- Hebei Yancheng Food Co., Ltd., Baoding 072650, China
| | - Peng Sun
- State Key Laboratory of Animal Nutrition and Feeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
9
|
Yu J, Duan Y, Zhang M, Li Q, Cao M, Song W, Zhao F, Kwok LY, Zhang H, Li R, Sun Z. Effect of combined probiotics and doxycycline therapy on the gut-skin axis in rosacea. mSystems 2024; 9:e0120124. [PMID: 39475254 PMCID: PMC11575305 DOI: 10.1128/msystems.01201-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 09/29/2024] [Indexed: 11/05/2024] Open
Abstract
Rosacea is a chronic inflammatory skin condition marked by facial erythema, telangiectasia, and acne-like eruptions, affecting millions worldwide. While antibiotics remain a common treatment, prolonged use has significant adverse effects and can lead to antibiotic resistance. This study evaluated the impact of combined probiotics and doxycycline treatment on rosacea, emphasizing the gut-skin axis. Sixty rosacea patients were randomly assigned to the probiotic, placebo, or control groups. After a 2-week doxycycline treatment, participants underwent a 3-month intervention with either a placebo, probiotic, or no further treatment. Clinical outcomes were assessed at baseline and after the 14-week intervention. Our results showed that probiotic administration improved facial skin conditions, alleviated inflammation, and reduced facial skin microbiota diversity while enhancing gut microbiota heterogeneity. Multivariate analysis identified microbial markers distinguishing the probiotic group from the control and placebo groups, and some markers were associated with skin health parameters. After the probiotic intervention, some facial skin-associated taxa, such as Aquabacterium sp., UBA4096 sp. 1, UBA4096 sp. 2, and Yimella indica, decreased in abundance. Additionally, the fecal microbiota of the probiotic group was enriched in specific gut microbes, including Streptococcus parasanguinis, Erysipelatoclostridium ramosum, and Coprobacillus cateniformis, while showing a reduced abundance of Bacteroides vulgatus. These changes were associated with reduced facial sebum levels and a lower physician's global assessment score. Finally, fewer antibiotic resistance genes, particularly tetracycline resistance genes, were detected in the probiotic group compared with the control and placebo groups. Our study supports the existence of a gut-skin axis and the application of probiotics in managing rosacea. IMPORTANCE This research elucidates rosacea management with novel insights into probiotic use alongside doxycycline, showing dual benefits in symptom relief and inflammation reduction in patients. The study maps probiotic-induced shifts in gut and skin microbiota, underscoring microbial shifts correlating with skin health improvements. Crucially, it deciphers the gut-skin axis modulation by probiotics, proposing a method to curb antibiotic resistance in rosacea therapies. This study furnishes robust evidence for probiotics in rosacea, advancing our grasp of the gut-skin relationship.
Collapse
Affiliation(s)
- Jie Yu
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Yan Duan
- Department of Dermatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Meng Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Qi Li
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Miao Cao
- Department of Dermatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Weixin Song
- Department of Dermatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Feiyan Zhao
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Lai-Yu Kwok
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Heping Zhang
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| | - Ruiya Li
- Department of Dermatology, Inner Mongolia People’s Hospital, Hohhot, China
| | - Zhihong Sun
- Key Laboratory of Dairy Biotechnology and Engineering, Ministry of Education, Inner Mongolia Agricultural University, Hohhot, China
- Key Laboratory of Dairy Products Processing, Ministry of Agriculture and Rural Affairs, Inner Mongolia Agricultural University, Hohhot, China
- Inner Mongolia Key Laboratory of Dairy Biotechnology and Engineering, Inner Mongolia Agricultural University, Hohhot, China
| |
Collapse
|
10
|
Centanni L, Bencardino S, D'Amico F, Zilli A, Parigi TL, Allocca M, Danese S, Furfaro F. Targeting mucosal healing in Crohn's disease: efficacy of novel pathways and therapeutic targets. Expert Opin Ther Targets 2024; 28:963-978. [PMID: 39611536 DOI: 10.1080/14728222.2024.2433124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 11/19/2024] [Indexed: 11/30/2024]
Abstract
INTRODUCTION Crohn's disease (CD) is a chronic inflammatory bowel disease affecting the entire gastrointestinal tract with a progressive and relapsing course. Achieving mucosal healing has emerged as a critical therapeutic goal, as it is associated with sustained clinical remission, reduced hospitalizations, and fewer surgery rates. Therefore, targeting mucosal healing is essential for long-term control in CD. AREAS COVERED This review evaluates the efficacy of novel biologic therapies and small molecules in inducing mucosal healing, specifically targeting pathways like IL-12/23, IL-23, α4β7 integrins, Janus kinase 1 (JAK1), and sphingosine-1-phosphate receptor (S1PR) in adults (≥18 years) with moderate-to-severe CD. The rationale for selecting these specific pathways is their central role in modulating key inflammatory processes implicated in CD pathogenesis. We compare these therapies with placebo for both induction and maintenance of remission, based on a PubMed literature review for published articles and ClinicalTrials.gov for ongoing trials. EXPERT OPINION Upadacitinib and anti-IL23p19 agents (risankizumab, guselkumab and mirikizumab) are promising advanced non-TNF-targeting therapies for inducing endoscopic remission and mucosal healing but further studies are needed to integrate mucosal healing into a broader definition of endoscopic response, with a unified and precise definition.
Collapse
Affiliation(s)
- Lucia Centanni
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Sarah Bencardino
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Ferdinando D'Amico
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Alessandra Zilli
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | | | - Mariangela Allocca
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| | - Silvio Danese
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
- Gastroenterology and Endoscopy, Vita-Salute San Raffaele University, Milan, Italy
| | - Federica Furfaro
- Gastroenterology and Endoscopy, IRCCS San Raffaele Hospital, Milan, Italy
| |
Collapse
|
11
|
Lu Q, Hitch TCA, Zhou JY, Dwidar M, Sangwan N, Lawrence D, Nolan LS, Espenschied ST, Newhall KP, Han Y, Karell PE, Salazar V, Baldridge MT, Clavel T, Stappenbeck TS. A host-adapted auxotrophic gut symbiont induces mucosal immunodeficiency. Science 2024; 385:eadk2536. [PMID: 39325906 DOI: 10.1126/science.adk2536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 05/12/2024] [Accepted: 07/26/2024] [Indexed: 09/28/2024]
Abstract
Harnessing the microbiome to benefit human health requires an initial step in determining the identity and function of causative microorganisms that affect specific host physiological functions. We show a functional screen of the bacterial microbiota from mice with low intestinal immunoglobulin A (IgA) levels; we identified a Gram-negative bacterium, proposed as Tomasiella immunophila, that induces and degrades IgA in the mouse intestine. Mice harboring T. immunophila are susceptible to infections and show poor mucosal repair. T. immunophila is auxotrophic for the bacterial cell wall amino sugar N-acetylmuramic acid. It delivers immunoglobulin-degrading proteases into outer membrane vesicles that preferentially degrade rodent antibodies with kappa but not lambda light chains. This work indicates a role for symbionts in immunodeficiency, which might be applicable to human disease.
Collapse
Affiliation(s)
- Qiuhe Lu
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Thomas C A Hitch
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Julie Y Zhou
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mohammed Dwidar
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
- Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Dylan Lawrence
- Department of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Lila S Nolan
- Department of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Scott T Espenschied
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kevin P Newhall
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Yi Han
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul E Karell
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Vanessa Salazar
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Megan T Baldridge
- Department of Medicine, Washington University, Saint Louis, MO 63110, USA
| | - Thomas Clavel
- Functional Microbiome Research Group, Institute of Medical Microbiology, RWTH University Hospital, Aachen, Germany
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
12
|
Ma Z, Zuo T, Frey N, Rangrez AY. A systematic framework for understanding the microbiome in human health and disease: from basic principles to clinical translation. Signal Transduct Target Ther 2024; 9:237. [PMID: 39307902 PMCID: PMC11418828 DOI: 10.1038/s41392-024-01946-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 07/03/2024] [Accepted: 08/01/2024] [Indexed: 09/26/2024] Open
Abstract
The human microbiome is a complex and dynamic system that plays important roles in human health and disease. However, there remain limitations and theoretical gaps in our current understanding of the intricate relationship between microbes and humans. In this narrative review, we integrate the knowledge and insights from various fields, including anatomy, physiology, immunology, histology, genetics, and evolution, to propose a systematic framework. It introduces key concepts such as the 'innate and adaptive genomes', which enhance genetic and evolutionary comprehension of the human genome. The 'germ-free syndrome' challenges the traditional 'microbes as pathogens' view, advocating for the necessity of microbes for health. The 'slave tissue' concept underscores the symbiotic intricacies between human tissues and their microbial counterparts, highlighting the dynamic health implications of microbial interactions. 'Acquired microbial immunity' positions the microbiome as an adjunct to human immune systems, providing a rationale for probiotic therapies and prudent antibiotic use. The 'homeostatic reprogramming hypothesis' integrates the microbiome into the internal environment theory, potentially explaining the change in homeostatic indicators post-industrialization. The 'cell-microbe co-ecology model' elucidates the symbiotic regulation affecting cellular balance, while the 'meta-host model' broadens the host definition to include symbiotic microbes. The 'health-illness conversion model' encapsulates the innate and adaptive genomes' interplay and dysbiosis patterns. The aim here is to provide a more focused and coherent understanding of microbiome and highlight future research avenues that could lead to a more effective and efficient healthcare system.
Collapse
Affiliation(s)
- Ziqi Ma
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Tao Zuo
- Key Laboratory of Human Microbiome and Chronic Diseases (Sun Yat-sen University), Ministry of Education, Guangzhou, China
- Guangdong Institute of Gastroenterology, The Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Norbert Frey
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| | - Ashraf Yusuf Rangrez
- Department of Cardiology, Angiology and Pneumology, University Hospital Heidelberg, Heidelberg, Germany.
- DZHK (German Centre for Cardiovascular Research), partner site Heidelberg/Mannheim, Heidelberg, Germany.
| |
Collapse
|
13
|
Singh A, Luallen RJ. Understanding the factors regulating host-microbiome interactions using Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230059. [PMID: 38497260 PMCID: PMC10945399 DOI: 10.1098/rstb.2023.0059] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 01/01/2024] [Indexed: 03/19/2024] Open
Abstract
The Human Microbiome Project was a research programme that successfully identified associations between microbial species and healthy or diseased individuals. However, a major challenge identified was the absence of model systems for studying host-microbiome interactions, which would increase our capacity to uncover molecular interactions, understand organ-specificity and discover new microbiome-altering health interventions. Caenorhabditis elegans has been a pioneering model organism for over 70 years but was largely studied in the absence of a microbiome. Recently, ecological sampling of wild nematodes has uncovered a large amount of natural genetic diversity as well as a slew of associated microbiota. The field has now explored the interactions of C. elegans with its associated gut microbiome, a defined and non-random microbial community, highlighting its suitability for dissecting host-microbiome interactions. This core microbiome is being used to study the impact of host genetics, age and stressors on microbiome composition. Furthermore, single microbiome species are being used to dissect molecular interactions between microbes and the animal gut. Being amenable to health altering genetic and non-genetic interventions, C. elegans has emerged as a promising system to generate and test new hypotheses regarding host-microbiome interactions, with the potential to uncover novel paradigms relevant to other systems. This article is part of the theme issue 'Sculpting the microbiome: how host factors determine and respond to microbial colonization'.
Collapse
Affiliation(s)
- Anupama Singh
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| | - Robert J. Luallen
- Department of Biology, San Diego State University, San Diego, CA 92182, USA
| |
Collapse
|
14
|
Ambrogi M, Vezina CM. Roles of airway and intestinal epithelia in responding to pathogens and maintaining tissue homeostasis. Front Cell Infect Microbiol 2024; 14:1346087. [PMID: 38736751 PMCID: PMC11082347 DOI: 10.3389/fcimb.2024.1346087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 04/10/2024] [Indexed: 05/14/2024] Open
Abstract
Epithelial cells form a resilient barrier and orchestrate defensive and reparative mechanisms to maintain tissue stability. This review focuses on gut and airway epithelia, which are positioned where the body interfaces with the outside world. We review the many signaling pathways and mechanisms by which epithelial cells at the interface respond to invading pathogens to mount an innate immune response and initiate adaptive immunity and communicate with other cells, including resident microbiota, to heal damaged tissue and maintain homeostasis. We compare and contrast how airway and gut epithelial cells detect pathogens, release antimicrobial effectors, collaborate with macrophages, Tregs and epithelial stem cells to mount an immune response and orchestrate tissue repair. We also describe advanced research models for studying epithelial communication and behaviors during inflammation, tissue injury and disease.
Collapse
Affiliation(s)
| | - Chad M. Vezina
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
15
|
Guo H, Cui J, Li Q, Liang X, Li J, Yang B, Kalds P, Chen Y, Yang Y. A multi-omic assessment of the mechanisms of intestinal microbes used to treat diarrhea in early-weaned lambs. mSystems 2024; 9:e0095323. [PMID: 38193712 PMCID: PMC10878098 DOI: 10.1128/msystems.00953-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 10/07/2023] [Indexed: 01/10/2024] Open
Abstract
Transplant of donor microbiota can significantly alter the structure of the host's intestinal microbiota and alleviate early weaning stress. Screening for alternative-resistant products by transplanting fecal bacteria from healthy lambs is a current research trend in the livestock industry. In the present study, fecal microbiota transplantation was performed in lambs with diarrhea during early weaning. The transplanted fecal microbiota greatly reduced the diarrhea and serum inflammatory factor levels caused by early weaning. Transcriptome sequencing revealed that fecal microbiota transplantation alleviated colonic inflammation and increased the expression of colonic ion transport proteins. In addition, the levels of Streptococcus, Enterococcus, and Escherichia Shigella decreased in the jejunum, cecum, and colon of the lambs; meanwhile, the levels of Bifidobacterium and multiple secondary bile acids, such as ursodeoxycholic acid, increased in the colon. Furthermore, the abundance of Bifidobacterium was significantly negatively correlated with the diarrhea index. The fecal microbiota transplantation reshaped the intestinal microbiota of early-weaned lambs, protected the intestinal physiology and immune barrier, and reduced weaning stress. In addition to making available bacteriological products for controlling intestinal inflammation in young lambs, this study offers a theoretical framework and technical system for the mechanisms by which microbiota transplantation regulates intestinal health in young lambs.IMPORTANCEBefore weaning, the digestive system of lambs is not well developed; hence, its resistance to infectious diseases is weak. Under intensive feeding systems, lambs can easily be stressed and the risk of bacterial infection is high, which causes diarrhea, which in turn may cause mortality and significant economic losses to the livestock industry. With the elimination of antibiotics in animal feed, the incidence of mortality due to intestinal illnesses in lambs has gradually increased. There are several types of probiotics routinely used in young animals, but the effects and processes of their usage have only been assessed in monogastric animals. The lack of data on ruminants, particularly sheep, has severely hampered the process of efficient and healthy sheep breeding. Therefore, there is an urgent need to identify effective and safe functional supplements for lambs.
Collapse
Affiliation(s)
- Hongran Guo
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Jiuzeng Cui
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Qian Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Xuhui Liang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Junda Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Bohua Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Peter Kalds
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yulin Chen
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, China
| | - Yuxin Yang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi Province, China
| |
Collapse
|
16
|
Yang J, Qin K, Sun Y, Yang X. Microbiota-accessible fiber activates short-chain fatty acid and bile acid metabolism to improve intestinal mucus barrier in broiler chickens. Microbiol Spectr 2024; 12:e0206523. [PMID: 38095466 PMCID: PMC10782983 DOI: 10.1128/spectrum.02065-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/21/2023] [Indexed: 01/13/2024] Open
Abstract
IMPORTANCE The intestinal mucus barrier, located at the interface of the intestinal epithelium and the microbiota, is the first line of defense against pathogenic microorganisms and environmental antigens. Dietary polysaccharides, which act as microbiota-accessible fiber, play a key role in the regulation of intestinal microbial communities. However, the mechanism via which dietary fiber affects the intestinal mucus barrier through targeted regulation of the gut microbiota is not clear. This study provides fundamental evidence for the benefits of dietary fiber supplementation in broiler chickens through improvement in the intestinal mucus barrier by targeted regulation of the gut ecosystem. Our findings suggest that the microbiota-accessible fiber-gut microbiota-short-chain fatty acid/bile acid axis plays a key role in regulating intestinal function.
Collapse
Affiliation(s)
- Jiantao Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Kailong Qin
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanpeng Sun
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| | - Xiaojun Yang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
17
|
Perlman M, Senger S, Verma S, Carey J, Faherty CS. A foundational approach to culture and analyze malnourished organoids. Gut Microbes 2023; 15:2248713. [PMID: 37724815 PMCID: PMC10512930 DOI: 10.1080/19490976.2023.2248713] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 08/07/2023] [Indexed: 09/21/2023] Open
Abstract
The gastrointestinal (GI) epithelium plays a major role in nutrient absorption, barrier formation, and innate immunity. The development of organoid-based methodology has significantly impacted the study of the GI epithelium, particularly in the fields of mucosal biology, immunity, and host-microbe interactions. Various effects on the GI epithelium, such as genetics and nutrition, impact patients and alter disease states. Thus, incorporating these effects into organoid-based models will facilitate a better understanding of disease progression and offer opportunities to evaluate therapeutic candidates. One condition that has a significant effect on the GI epithelium is malnutrition, and studying the mechanistic impacts of malnutrition would enhance our understanding of several pathologies. Therefore, the goal of this study was to begin to develop methodology to generate viable malnourished organoids with accessible techniques and resources that can be used for a wide array of mechanistic studies. By selectively limiting distinct macronutrient components of organoid media, we were able to successfully culture and evaluate malnourished organoids. Genetic and protein-based analyses were used to validate the approach and confirm the presence of known biomarkers of malnutrition. Additionally, as proof-of-concept, we utilized malnourished organoid-derived monolayers to evaluate the effect of malnourishment on barrier formation and the ability of the bacterial pathogen Shigella flexneri to infect the GI epithelium. This work serves as the basis for new and exciting techniques to alter the nutritional state of organoids and investigate the related impacts on the GI epithelium.
Collapse
Affiliation(s)
- Meryl Perlman
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| | - Stefania Senger
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
| | - Smriti Verma
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA, USA
| | - James Carey
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
| | - Christina S. Faherty
- Mucosal Immunology and Biology Research Center, Division of Pediatric Gastroenterology and Nutrition, Massachusetts General Hospital, Boston, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Neurath MF, Vieth M. Different levels of healing in inflammatory bowel diseases: mucosal, histological, transmural, barrier and complete healing. Gut 2023; 72:2164-2183. [PMID: 37640443 DOI: 10.1136/gutjnl-2023-329964] [Citation(s) in RCA: 48] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Mucosal healing on endoscopy has emerged as a key prognostic parameter in the management of patients with IBD (Crohn's disease, ulcerative colitis/UC) and can predict sustained clinical remission and resection-free survival. The structural basis for this type of mucosal healing is a progressive resolution of intestinal inflammation with associated healing of ulcers and improved epithelial barrier function. However, in some cases with mucosal healing on endoscopy, evidence of histological activity in mucosal biopsies has been observed. Subsequently, in UC, a second, deeper type of mucosal healing, denoted histological healing, was defined which requires the absence of active inflammation in mucosal biopsies. Both levels of mucosal healing should be considered as initial events in the resolution of gut inflammation in IBD rather than as indicators of complete transmural healing. In this review, the effects of anti-inflammatory, biological or immunosuppressive agents as well as small molecules on mucosal healing in clinical studies are highlighted. In addition, we focus on the implications of mucosal healing for clinical management of patients with IBD. Moreover, emerging techniques for the analysis of mucosal healing as well as potentially deeper levels of mucosal healing such as transmural healing and functional barrier healing of the mucosa are discussed. Although none of these new levels of healing indicate a definitive cure of the diseases, they make an important contribution to the assessment of patients' prognosis. The ultimate level of healing in IBD would be a resolution of all aspects of intestinal and extraintestinal inflammation (complete healing).
Collapse
Affiliation(s)
- Markus F Neurath
- Medical Clinic 1 & Deutsches Zentrum Immuntherapie DZI, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Michael Vieth
- Pathology Clinic, Klinikum Bayreuth GmbH, Friedrich-Alexander-Universität Erlangen-Nürnberg, Bayreuth, Germany
| |
Collapse
|
19
|
Chen Z, Jin W, Hoover A, Chao Y, Ma Y. Decoding the microbiome: advances in genetic manipulation for gut bacteria. Trends Microbiol 2023; 31:1143-1161. [PMID: 37394299 DOI: 10.1016/j.tim.2023.05.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 05/15/2023] [Accepted: 05/16/2023] [Indexed: 07/04/2023]
Abstract
Studies of the gut microbiota have revealed associations between specific bacterial species or community compositions with health and disease, yet the causal mechanisms underlying microbiota gene-host interactions remain poorly understood. This is partly due to limited genetic manipulation (GM) tools for gut bacteria. Here, we review current advances and challenges in the development of GM approaches, including clustered regularly interspaced short palindromic repeats (CRISPR)-Cas and transposase-based systems in either model or non-model gut bacteria. By overcoming barriers to 'taming' the gut microbiome, GM tools allow molecular understanding of host-microbiome associations and accelerate microbiome engineering for clinical treatment of cancer and metabolic disorders. Finally, we provide perspectives on the future development of GM for gut microbiome species, where more effort should be placed on assembling a generalized GM pipeline to accelerate the application of groundbreaking GM tools in non-model gut bacteria towards both basic understanding and clinical translation.
Collapse
Affiliation(s)
- Ziying Chen
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China; The Center for Microbes, Development and Health (CMDH), CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wenbing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Alex Hoover
- Ben May Department for Cancer Research, the University of Chicago, Chicago, IL, USA
| | - Yanjie Chao
- The Center for Microbes, Development and Health (CMDH), CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China.
| | - Yanlei Ma
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, Shanghai 200031, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200031, China.
| |
Collapse
|
20
|
Zhang S, Han Y, Schofield W, Nicosia M, Karell PE, Newhall KP, Zhou JY, Musich RJ, Pan S, Valujskikh A, Sangwan N, Dwidar M, Lu Q, Stappenbeck TS. Select symbionts drive high IgA levels in the mouse intestine. Cell Host Microbe 2023; 31:1620-1638.e7. [PMID: 37776865 DOI: 10.1016/j.chom.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 07/14/2023] [Accepted: 09/01/2023] [Indexed: 10/02/2023]
Abstract
Immunoglobulin A (IgA) is an important factor in maintaining homeostasis at mucosal surfaces, yet luminal IgA levels vary widely. Total IgA levels are thought to be driven by individual immune responses to specific microbes. Here, we found that the prebiotic, pectin oligosaccharide (pec-oligo), induced high IgA levels in the small intestine in a T cell-dependent manner. Surprisingly, this IgA-high phenotype was retained after cessation of pec-oligo treatment, and microbiome transmission either horizontally or vertically was sufficient to retain high IgA levels in the absence of pec-oligo. Interestingly, the bacterial taxa enriched in the overall pec-oligo bacterial community differed from IgA-coated microbes in this same community. Rather, a group of ethanol-resistant microbes, highly enriched for Lachnospiraceae bacterium A2, drove the IgA-high phenotype. These findings support a model of intestinal adaptive immunity in which a limited number of microbes can promote durable changes in IgA directed to many symbionts.
Collapse
Affiliation(s)
- Shanshan Zhang
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Department of Gastroenterology, Qilu Hospital, Shandong University, Jinan 250000, P.R. China; College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yi Han
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | | | - Michael Nicosia
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Paul E Karell
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Kevin P Newhall
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Julie Y Zhou
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Ryan J Musich
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Siyi Pan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Anna Valujskikh
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Naseer Sangwan
- Department of Cardiovascular and Metabolic Sciences, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Mohammed Dwidar
- Department of Cardiovascular and Metabolic Sciences, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA; Center for Microbiome & Human Health, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Qiuhe Lu
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| | - Thaddeus S Stappenbeck
- Department of Inflammation and Immunity, Learner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
21
|
Schnedl WJ, Michaelis S, Mangge H, Enko D. A personalized management approach in disorders of the irritable bowel syndrome spectrum. Clin Nutr ESPEN 2023; 57:96-105. [PMID: 37739739 DOI: 10.1016/j.clnesp.2023.06.028] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 06/14/2023] [Accepted: 06/23/2023] [Indexed: 09/24/2023]
Abstract
Symptoms of the disorders across the irritable bowel syndrome (IBS) spectrum include several different, usually postprandial, abdominal complaints. Up to date, dietary treatments of the IBS have neither been personalized nor diagnosed with sufficient scientific evidence. They have mostly been treated using 'one-size-fits-all' approaches. Such include exclusion diets, a low fermentable oligosaccharides, disaccharides, monosaccharides and polyols diet, and gluten-free diets, lactose-free diets, a diet recommended by the UK National Institute for Health and Care Excellence, and a wheat-free diet. The exact pathophysiology of IBS disorders across the spectrum is still unclear. However, the symptom profile of IBS spectrum disorders seems similar to that of food intolerance/malabsorption syndromes. Celiac disease, fructose malabsorption, histamine intolerance and lactose intolerance represent food intolerance/malabsorption disorders based on the indigestion of sugars and/or proteins. Helicobacter pylori infection may potentially promote the development of IBS and, when facing a case of IBS-like symptoms, a search for intolerance/malabsorption and H. pylori should be added to find the correct treatment for the respective patient. This review will discuss why the 'one-size-fits-all' dietary approach in the treatment of complaints across the IBS spectrum cannot be successful. Hence, it will provide an overview of the most common overall dietary approaches currently used, and why those should be discouraged. Alternatively, a noninvasive diagnostic workup of the pathophysiologic factors of food intolerance/malabsorption in each patient with symptoms of the IBS spectrum is suggested. Additionally, if H. pylori is found, eradication therapy is mandatory, and if food intolerance/malabsorption is detected, an individual and personalized dietary intervention by a registered dietician is recommended.
Collapse
Affiliation(s)
- Wolfgang J Schnedl
- Department of Internal Medicine, Medical University of Graz, Auenbruggerplatz 15, A-8036, Graz, Austria; General Internal Medicine Practice, Dr. Theodor Körnerstrasse 19b, A-8600, Bruck, Austria.
| | - Simon Michaelis
- Institute of Clinical Chemistry and Laboratory Medicine, Hospital Hochsteiermark, Vordernberger Straße 42, 8700, Leoben, Austria
| | - Harald Mangge
- Institute of Clinical Chemistry and Laboratory Medicine, Hospital Hochsteiermark, Vordernberger Straße 42, 8700, Leoben, Austria; Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Auenbruggerplatz 30, A-8036, Graz, Austria
| | - Dietmar Enko
- Clinical Institute of Medical and Chemical Laboratory Diagnosis, Medical University of Graz, Auenbruggerplatz 30, A-8036, Graz, Austria
| |
Collapse
|
22
|
Zhao C, Li Y, Tang J, Zhou Q, Lin X, Wen Z. Metaphocytes are IL-22BP-producing cells regulated by ETS transcription factor Spic and essential for zebrafish barrier immunity. Cell Rep 2023; 42:112483. [PMID: 37148242 DOI: 10.1016/j.celrep.2023.112483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 03/03/2023] [Accepted: 04/20/2023] [Indexed: 05/08/2023] Open
Abstract
Metaphocytes are tissue-resident macrophage (TRM)/dendritic cell (DC)-like cells of non-hematopoietic origin in zebrafish barrier tissues. One remarkable property of metaphocytes is their ability to capture soluble antigens from the external environment via transepithelial protrusions, a unique function manifested by specialized subpopulations of the TRMs/DCs in mammal barrier tissues. Yet, how metaphocytes acquire myeloid-like cell properties from non-hematopoietic precursors and how they regulate barrier immunity remains unknown. Here, we show that metaphocytes are in situ generated from local progenitors guided by the ETS transcription factor Spic, the deficiency of which results in the absence of metaphocytes. We further document that metaphocytes are the major IL-22BP-producing cells, and the depletion of metaphocytes causes dysregulated barrier immunity that resembles the phenotype of IL-22BP-deficient mice. These findings reveal the ontogeny, development, and function of metaphocytes in zebrafish, which facilitates our understanding of the nature and function of the mammalian TRM/DC counterparts.
Collapse
Affiliation(s)
- Changlong Zhao
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yunbo Li
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Jinlin Tang
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Qiuxia Zhou
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Xi Lin
- Brigham and Women's Hospital, Harvard Medical School, Boston, MS 02115, USA
| | - Zilong Wen
- Division of Life Science, State Key Laboratory of Molecular Neuroscience, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China; Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518055, China; Shenzhen Key Laboratory for Neuronal Structural Biology, Biomedical Research Institute, Shenzhen Peking University-Hong Kong University of Science and Technology Medical Center, Shenzhen, Guangdong 518036, China; Department of Immunology and Microbiology, School of Life Science, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
23
|
Yang P, Xu R, Chen F, Chen S, Khan A, Li L, Zhang X, Wang Y, Xu Z, Shen H. Fungal gut microbiota dysbiosis in systemic lupus erythematosus. Front Microbiol 2023; 14:1149311. [PMID: 37089568 PMCID: PMC10115219 DOI: 10.3389/fmicb.2023.1149311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023] Open
Abstract
IntroductionDespite recent developments in our comprehension of how the gut microbiota and systemic lupus erythematosus (SLE) are related. The mycobiome: which is a small but crucial part of the gut microbiota and is involved in hosts’ homeostasis and physiological processes, remained unexplored in SLE.MethodsWe profiled the gut fungal mycobiota based on internal transcribed spacer region 1 (ITS1) sequencing for the gut microbial DNA from the SLE individuals with lupus nephritis (LN) (n = 23), SLE without LN (n = 26) and healthy controls (n = 14) enrolled in Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School.ResultsThe ITS sequencing generated a total of 4.63 million valid tags which were stratified into 4,488 operational taxonomic units (OTUs) and identified about 13 phyla and 262 genera. Patients with SLE were characterized with unique fungal flora feature. The fungal microbiomes of the three groups displayed distinct beta diversity from each other. Compared with HC group, the abundance of fungal dysbiosis was reflected in a higher ratio of opportunistic fungi in SLE or LN group, as well as the loss of Rhizopus and Malassezia. The main principal components of the flora between the SLE and LN group were generally consistent. The relative abundance of Vanrija in the fecal fungal community was higher in LN group, while the relative abundance of Fusarium was higher in SLE group. Moreover, our data revealed superior diagnostic accuracy for SLE with the fungal species (e.g. Candida, Meyerozyma). Correlations between gut fungi and clinical parameters were identified by Spearman’s correlation analysis. Interestingly, Aspergillus in SLE patients was positively correlated with ACR, 24 h proteinuria, proteinuria, anti-dsDNA, ANA, and SLEDAI, while Rhizopus was negatively correlated with lymphocytes and Hb. Finally, we successfully cultured the fungi and identified it as Candida glabrata by microscopic observation and mass spectrometry.DiscussionWe first explored the highly significant gut fungal dysbiosis and ecology in patients with SLE, and demonstrated the applicability of fungal species as SLE diagnostic tools, signifying that the gut fungal mycobiome-host interplay can potentially contribute in disease pathogenesis.
Collapse
Affiliation(s)
- Ping Yang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Rui Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, China
| | - Fei Chen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Shanshan Chen
- Department of Rheumatology and Immunology, Affiliated Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Adeel Khan
- Department of Biotechnology, University of Science and Technology, Bannu, Pakistan
| | - Liang Li
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, China
| | - Xiaoshan Zhang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
| | - Yanbo Wang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Physiology, Jiangsu Engineering Research Center for MicroRNA Biology and Biotechnology, School of Life Sciences, NJU Advanced Institute of Life Sciences (NAILS), Nanjing University, Nanjing, China
- Yanbo Wang,
| | - Zhipeng Xu
- Department of Pathogen Biology, Jiangsu Province Key Laboratory of Modern Pathogen Biology, Nanjing Medical University, Nanjing, Jiangsu, China
- *Correspondence: Zhipeng Xu,
| | - Han Shen
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China
- Han Shen,
| |
Collapse
|
24
|
Del Barrio M, Lavín L, Santos-Laso Á, Arias-Loste MT, Odriozola A, Rodriguez-Duque JC, Rivas C, Iruzubieta P, Crespo J. Faecal Microbiota Transplantation, Paving the Way to Treat Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2023; 24:ijms24076123. [PMID: 37047094 PMCID: PMC10094628 DOI: 10.3390/ijms24076123] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/14/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is currently the most prevalent cause of chronic liver disease (CLD). Currently, the only therapeutic recommendation available is a lifestyle change. However, adherence to this approach is often difficult to guarantee. Alteration of the microbiota and an increase in intestinal permeability seem to be key in the development and progression of NAFLD. Therefore, the manipulation of microbiota seems to provide a promising therapeutic strategy. One way to do so is through faecal microbiota transplantation (FMT). Here, we summarize the key aspects of FMT, detail its current indications and highlight the most recent advances in NAFLD.
Collapse
Affiliation(s)
- María Del Barrio
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Lucía Lavín
- Clinical Trial Agency Valdecilla-IDIVAL, Marqués de Valdecilla University Hospital, Av. Valdecilla, 25, 39008 Santander, Cantabria, Spain
| | - Álvaro Santos-Laso
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Maria Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Aitor Odriozola
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Juan Carlos Rodriguez-Duque
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Coral Rivas
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, Av. Valdecilla 25, 39008 Santander, Cantabria, Spain
| |
Collapse
|
25
|
Wang G, Lin Z, Li Y, Chen L, Reddy SK, Hu Z, Garza LA. Colonizing microbiota is associated with clinical outcomes in diabetic wound healing. Adv Drug Deliv Rev 2023; 194:114727. [PMID: 36758858 PMCID: PMC10163681 DOI: 10.1016/j.addr.2023.114727] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 02/02/2023] [Accepted: 02/02/2023] [Indexed: 02/11/2023]
Abstract
With the development of society and the improvement of life quality, more than 500 million people are affected by diabetes. More than 10 % of people with diabetes will suffer from diabetic wounds, and 80 % of diabetic wounds will reoccur, so the development of new diabetic wound treatments is of great importance. The development of skin microbe research technology has gradually drawn people's attention to the complex relationship between microbes and diabetic wounds. Many studies have shown that skin microbes are associated with the outcome of diabetic wounds and can even be used as one of the indicators of wound prognosis. Skin microbes have also been found to have the potential to treat diabetic wounds. The wound colonization of different bacteria can exert opposing therapeutic effects. It is necessary to fully understand the skin microbes in diabetic wounds, which can provide valuable guidance for clinical diabetic wound treatment.
Collapse
Affiliation(s)
- Gaofeng Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China; Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| | - Zhen Lin
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Yue Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Lu Chen
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - Sashank K Reddy
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Plastic and Reconstructive Surgery, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, Guangdong Province 510515, China
| | - L A Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21210, USA.
| |
Collapse
|
26
|
Pan J, Chui L, Liu T, Zheng Q, Liu X, Liu L, Zhao Y, Zhang L, Song M, Han J, Huang J, Tang C, Tao C, Zhao J, Wang Y. Fecal Microbiota Was Reshaped in UCP1 Knock-In Pigs via the Adipose-Liver-Gut Axis and Contributed to Less Fat Deposition. Microbiol Spectr 2023; 11:e0354022. [PMID: 36688695 PMCID: PMC9927592 DOI: 10.1128/spectrum.03540-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 12/21/2022] [Indexed: 01/24/2023] Open
Abstract
The relationship between the host gut microbiota and obesity has been well documented in humans and mice; however, few studies reported the association between the gut microbiota and fat deposition in pigs. In a previous study, we generated uncoupling protein 1 (UCP1) knock-in pigs (UCP1 pigs), which exhibited a lower fat deposition phenotype. Whether the gut microbiota was reshaped in these pigs and whether the reshaped gut microbiota contributes to the lower fat content remain unknown. Here, we revealed that the fecal microbiota composition and metabolites were significantly altered under both chow diet (CD) and high-fat/high-cholesterol (HFHC) diet conditions in UCP1 pigs compared to those in wild-type (WT) pigs. The abundance of Oscillospira and Coprococcus and the level of metabolite hyodeoxycholic acid (HDCA) from feces were observed to be significantly increased in UCP1 pigs. An association analysis revealed that Oscillospira and Coprococcus were significantly negatively related to backfat thickness. In addition, after fecal microbiota transplantation (FMT), the mice that were orally gavaged with feces from UCP1 pigs exhibited less fat deposition under both CD and high-fat diet (HFD) conditions, suggesting that the fecal microbes of UCP1 pigs participate in regulating host lipid metabolism. Consistently, HDCA-treated mice also exhibited reduced fat content. Mechanistically, we found that UCP1 expression in white adipose tissue alters the gut microbiota via the adipose-liver-gut axis in pigs. Our study provides new data concerning the cross talk between host genetic variations and the gut microbiota and paves the way for the potential application of microbes or their metabolites in the regulation of fat deposition in pigs. IMPORTANCE This article investigated the effect of the ectopic expression of UCP1 on the regulation of fecal microbiota composition and metabolites and which alters the fat deposition phenotype. Bacteria, including Oscillospira and Coprococcus, and the metabolite HDCA were found to be significantly increased in feces of UCP1 pigs and had a negative relationship with backfat thickness. Mice with fecal microbiota transplantation phenocopied the UCP1 pigs under both CD and HFD conditions, suggesting that the fecal microbes of UCP1 pigs participate in regulating host lipid metabolism. Our study provides new data regarding the cross talk between host genetic variations and the gut microbiota and paves the way for the potential application of microbes or their metabolic production in the regulation of fat deposition in pigs.
Collapse
Affiliation(s)
- Jianfei Pan
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Linya Chui
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Tianxia Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Qiantao Zheng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Xuexue Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lulu Liu
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Ying Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Lilan Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Min Song
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
| | - Jianlin Han
- CAAS-ILRI Joint Laboratory on Livestock and Forage Genetic Resources, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Livestock Genetics Program, International Livestock Research Institute (ILRI), Nairobi, Kenya
| | - Jiaojiao Huang
- College of Animal Science and Technology, Qingdao Agricultural University, Qingdao, People’s Republic of China
| | - Chaohua Tang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Cong Tao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Jianguo Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Yanfang Wang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
27
|
Xu H, Wang S, Jiang Y, Wu J, Chen L, Ding Y, Zhou Y, Deng L, Chen X. Poria cocos Polysaccharide Ameliorated Antibiotic-Associated Diarrhea in Mice via Regulating the Homeostasis of the Gut Microbiota and Intestinal Mucosal Barrier. Int J Mol Sci 2023; 24:1423. [PMID: 36674937 PMCID: PMC9862632 DOI: 10.3390/ijms24021423] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/12/2023] Open
Abstract
Poria cocos polysaccharides (PCP) have been validated for several biological activities, including antitumor, anti-inflammatory, antioxidant, immunomodulatory, hepatoprotective and modulation on gut microbiota. In this research, we aim to demonstrate the potential prebiotic effects and the therapeutic efficacies of PCP in the treatment of antibiotic-associated diarrhea (AAD), and confirm the beneficial effects of PCP on gut dysbiosis. Antibiotic-associated diarrhea mice models were established by treating them with broad-spectrum antibiotics in drinking water for seven days. Mice in two groups treated with probiotics and polysaccharide were given Bifico capsules (4.2 g/kg/d) and PCP (250 mg/kg/d) for seven days using intragastric gavage, respectively. To observe the regulatory effects of PCP on gut microbiota and intestinal mucosal barrier, we conducted the following experiments: intestinal flora analysis (16S rDNA sequencing), histology (H&E staining) and tight junction proteins (immunofluorescence staining). The levels of mRNA expression of receptors associated with inflammation and gut metabolism were assessed by real-time reverse transcription-polymerase chain reaction (RT-PCR). The study revealed that PCP can comprehensively improve the clinical symptoms of AAD mice, including fecal traits, mental state, hair quality, etc., similar to the effect of probiotics. Based on histology observation, PCP significantly improved the substantial structure of the intestine of AAD mice by increasing the expression levels of colonic tight junction protein zonula-occludens 1 (ZO-1) and its mRNA. Moreover, PCP not only increased the abundance of gut microbiota, but also increased the diversity of gut microbiota in AAD mice, including alpha diversity and beta diversity. Further analysis found that PCP can modulate seven characteristic species of intestinal flora in AAD mice, including Parabacteroides_distasonis, Akkermansia_muciniphila, Clostridium_saccharolyticum, Ruminoc-occus_gnavus, Lactobacillus_salivarius, Salmonella_enterica and Mucispirillum_schaedleri. Finally, enrichment analysis predicted that PCP may affect intestinal mucosal barrier function, host immune response and metabolic function by regulating the microbiota. RT-PCR experiments showed that PCP can participate in immunomodulatory and modulation on metabolic by regulating the mRNA expression of forkhead-box protein 3 (FOXP3) and G protein-coupled receptor 41 (GPR41). These results indicated that Poria cocos polysaccharide may ameliorate antibiotic-associated diarrhea in mice by regulating the homeostasis of the gut microbiota and intestinal mucosal barrier. In addition, polysaccharide-derived changes in intestinal microbiota were involved in the immunomodulatory activities and modulation of the metabolism.
Collapse
Affiliation(s)
- Huachong Xu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Guangzhou 510632, China
| | - Shiqi Wang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yawen Jiang
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Jialin Wu
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Lili Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yujia Ding
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Yingtong Zhou
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Li Deng
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Guangzhou 510632, China
| | - Xiaoyin Chen
- College of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
- Guangzhou Key Laboratory of Formula-Pattern of Traditional Chinese Medicine, Guangzhou 510632, China
| |
Collapse
|
28
|
Hu F, Wang Y, Hu J, Bao Z, Wang M. Comparative study of the impact of dietary supplementation with different types of CpG oligodeoxynucleotides (CpG ODNs) on enhancing intestinal microbiota diversity, antioxidant capacity, and immune-related gene expression profiles in Pacific white shrimp ( Litopenaeus vannamei). Front Immunol 2023; 14:1190590. [PMID: 37180130 PMCID: PMC10174297 DOI: 10.3389/fimmu.2023.1190590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 04/13/2023] [Indexed: 05/15/2023] Open
Abstract
The CpG oligodeoxynucleotides (CpG ODNs) reportedly possess the capacity to strengthen immunity in mammals. This experiment was conducted to evaluate the impact of dietary supplementation with 17 types of CpG ODNs on intestinal microbiota diversity, antioxidant capacity, and immune-related gene expression profiles of the shrimp Litopenaeus vannamei. Diets including 50 mg kg-1 CpG ODNs wrapped in egg whites were prepared and divided into 17 different groups, with 2 control groups (normal feed and feed with egg whites). These CpG ODNs supplemented diets and the control diets were fed to L. vannamei (5.15 ± 0.54 g) three times daily at 5%-8% shrimp body weight for three weeks. The results of consecutive detection of intestinal microbiota by 16S rDNA sequencing indicated that 11 of the 17 types of CpG ODNs significantly enhanced intestinal microbiota diversity, increased the populations of several probiotic bacteria, and activated possible mechanisms relevant to diseases. The immune-related genes expression and antioxidant capacity in hepatopancreas further demonstrated that the 11 types of CpG ODNs effectively improved the innate immunity of shrimp. Additionally, histology results showed that the CpG ODNs in the experiment did not damage the tissue structure of hepatopancreas. The results suggest that CpG ODNs could be used as a trace supplement to improve the intestinal health and immunity of shrimp.
Collapse
Affiliation(s)
- Feng Hu
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute, Ocean University of China, Qingdao, China
| | - Yan Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute, Ocean University of China, Qingdao, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
| | - Jingjie Hu
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute, Ocean University of China, Qingdao, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Zhenmin Bao
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute, Ocean University of China, Qingdao, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Laoshan Laboratory, Qingdao, China
| | - Mengqiang Wang
- MOE Key Laboratory of Marine Genetics and Breeding, and Key Laboratory of Tropical Aquatic Germplasm of Hainan Province of Sanya Oceanographic Institute, Ocean University of China, Qingdao, China
- Hainan Yazhou Bay Seed Laboratory, Sanya, China
- Laboratory for Marine Fisheries Science and Food Production Processes, and Center for Marine Molecular Biotechnology, Laoshan Laboratory, Qingdao, China
- *Correspondence: Mengqiang Wang,
| |
Collapse
|
29
|
Zhang W, Lyu M, Bessman NJ, Xie Z, Arifuzzaman M, Yano H, Parkhurst CN, Chu C, Zhou L, Putzel GG, Li TT, Jin WB, Zhou J, Hu H, Tsou AM, Guo CJ, Artis D. Gut-innervating nociceptors regulate the intestinal microbiota to promote tissue protection. Cell 2022; 185:4170-4189.e20. [PMID: 36240781 PMCID: PMC9617796 DOI: 10.1016/j.cell.2022.09.008] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/14/2022] [Accepted: 08/29/2022] [Indexed: 11/06/2022]
Abstract
Nociceptive pain is a hallmark of many chronic inflammatory conditions including inflammatory bowel diseases (IBDs); however, whether pain-sensing neurons influence intestinal inflammation remains poorly defined. Employing chemogenetic silencing, adenoviral-mediated colon-specific silencing, and pharmacological ablation of TRPV1+ nociceptors, we observed more severe inflammation and defective tissue-protective reparative processes in a murine model of intestinal damage and inflammation. Disrupted nociception led to significant alterations in the intestinal microbiota and a transmissible dysbiosis, while mono-colonization of germ-free mice with Gram+Clostridium spp. promoted intestinal tissue protection through a nociceptor-dependent pathway. Mechanistically, disruption of nociception resulted in decreased levels of substance P, and therapeutic delivery of substance P promoted tissue-protective effects exerted by TRPV1+ nociceptors in a microbiota-dependent manner. Finally, dysregulated nociceptor gene expression was observed in intestinal biopsies from IBD patients. Collectively, these findings indicate an evolutionarily conserved functional link between nociception, the intestinal microbiota, and the restoration of intestinal homeostasis.
Collapse
Affiliation(s)
- Wen Zhang
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Mengze Lyu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Nicholas J Bessman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Zili Xie
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Mohammad Arifuzzaman
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hiroshi Yano
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Christopher N Parkhurst
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Coco Chu
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Lei Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Gregory G Putzel
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Ting-Ting Li
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Wen-Bing Jin
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Jordan Zhou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - Hongzhen Hu
- Department of Anesthesiology, The Center for the Study of Itch, Washington University School of Medicine, St. Louis, MO, USA
| | - Amy M Tsou
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Division of Pediatric Gastroenterology, Hepatology and Nutrition, Weill Cornell Medical College, New York, NY, USA
| | - Chun-Jun Guo
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA
| | - David Artis
- Jill Roberts Institute for Research in Inflammatory Bowel Disease, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Friedman Center for Nutrition and Inflammation, Joan and Sanford I. Weill Department of Medicine, Department of Microbiology and Immunology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| |
Collapse
|
30
|
Lin Y, Yu C, Ma Z, Che L, Feng B, Fang Z, Xu S, Zhuo Y, Li J, Zhang J, Yang M, Chen P, Wu D. Effects of Yeast Culture Supplementation in Wheat-Rice-Based Diet on Growth Performance, Meat Quality, and Gut Microbiota of Growing-Finishing Pigs. Animals (Basel) 2022; 12:ani12172177. [PMID: 36077898 PMCID: PMC9454582 DOI: 10.3390/ani12172177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 08/19/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the effects of yeast culture (Saccharomyces cerevisiae) supplementation on the growth performance, meat quality, gut health, and microbiota community of growing−finishing pigs. A total of 45 growing−finishing pigs were randomly allocated to three treatments: a corn−soybean-based diet (CON, n = 15), a wheat−rice-based diet (GRA, n = 15), and GRA supplemented with 500 mg/kg yeast culture (YC, n = 15). The results show that compared to the CON group, the GRA group exhibited no significant differences in feed intake, daily gain, or feed conversion ratio, but had significantly reduced feed cost per kilogram BW gain of the finishing pigs (p < 0.05). Compared to that of the CON group, the GRA and YC groups showed an increase in the dressing percentage (p < 0.1). The meat color redness of the YC group increased (p < 0.1), whereas the b* value at 24 h decreased (p < 0.1). Meanwhile, the addition of YC significantly increased total superoxide dismutase activity on day 30 and catalase activity on day 60 (p < 0.05), and decreased serum urea nitrogen content on day 60 (p < 0.05). Furthermore, YC supplementation increased the gene expression of the duodenal anti-inflammatory factor IL-10 (p < 0.05), while it significantly decreased the gene expression of the ileal pro-inflammatory factor IL-8 (p < 0.05). The intestinal microbial identification results show that compared to the CON group, the YC group showed an increase in the relative abundances of Lactobacillus, Streptococcus, and Clostridium in the colon, and a decrease in the relative abundances of Bacteroidea, Clostridae, and Prevotella in the cecum. In conclusion, the growth performance of pigs on a wheat−rice-based diet was similar to that of pigs on a corn−soybean-based diet. Supplementation of 0.5% YC in the wheat−rice-based diet could improve the dressing percentage and meat color of growing−finishing pigs, which might be due to the increase in nitrogen utility and antioxidant capacity, and the improvement of the immune system and changes in microbiota communities.
Collapse
Affiliation(s)
- Yan Lin
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
- Correspondence: author: (Y.L.); (D.W.)
| | - Chenglong Yu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Zhao Ma
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Lianqiang Che
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Bin Feng
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Zhengfeng Fang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Shengyu Xu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Yong Zhuo
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Jian Li
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
| | - Junjie Zhang
- College of Life Science, Sichuan Agricultural University, Ya’an 625014, China
| | - Min Yang
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Pet Nutrition and Health Research Center, Chengdu Agricultural College, Chengdu 611130, China
| | - Peng Chen
- Beijing Enhalor International Tech Co., Ltd., Beijing 100081, China
| | - De Wu
- Key Laboratory of Animal Disease-Resistance Nutrition and Feed Science, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu 611130, China
- Key Laboratory of Animal Disease-Resistance Nutrition, Ministry of Education, Chengdu 611130, China
- Correspondence: author: (Y.L.); (D.W.)
| |
Collapse
|
31
|
Johnstone KF, Herzberg MC. Antimicrobial peptides: Defending the mucosal epithelial barrier. FRONTIERS IN ORAL HEALTH 2022; 3:958480. [PMID: 35979535 PMCID: PMC9376388 DOI: 10.3389/froh.2022.958480] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
The recent epidemic caused by aerosolized SARS-CoV-2 virus illustrates the importance and vulnerability of the mucosal epithelial barrier against infection. Antimicrobial proteins and peptides (AMPs) are key to the epithelial barrier, providing immunity against microbes. In primitive life forms, AMPs protect the integument and the gut against pathogenic microbes. AMPs have also evolved in humans and other mammals to enhance newer, complex innate and adaptive immunity to favor the persistence of commensals over pathogenic microbes. The canonical AMPs are helictical peptides that form lethal pores in microbial membranes. In higher life forms, this type of AMP is exemplified by the defensin family of AMPs. In epithelial tissues, defensins, and calprotectin (complex of S100A8 and S100A9) have evolved to work cooperatively. The mechanisms of action differ. Unlike defensins, calprotectin sequesters essential trace metals from microbes, which inhibits growth. This review focuses on defensins and calprotectin as AMPs that appear to work cooperatively to fortify the epithelial barrier against infection. The antimicrobial spectrum is broad with overlap between the two AMPs. In mice, experimental models highlight the contribution of both AMPs to candidiasis as a fungal infection and periodontitis resulting from bacterial dysbiosis. These AMPs appear to contribute to innate immunity in humans, protecting the commensal microflora and restricting the emergence of pathobionts and pathogens. A striking example in human innate immunity is that elevated serum calprotectin protects against neonatal sepsis. Calprotectin is also remarkable because of functional differences when localized in epithelial and neutrophil cytoplasm or released into the extracellular environment. In the cytoplasm, calprotectin appears to protect against invasive pathogens. Extracellularly, calprotectin can engage pathogen-recognition receptors to activate innate immune and proinflammatory mechanisms. In inflamed epithelial and other tissue spaces, calprotectin, DNA, and histones are released from degranulated neutrophils to form insoluble antimicrobial barriers termed neutrophil extracellular traps. Hence, calprotectin and other AMPs use several strategies to provide microbial control and stimulate innate immunity.
Collapse
Affiliation(s)
| | - Mark C. Herzberg
- Department of Diagnostic and Biological Sciences, School of Dentistry, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|