1
|
Zheng LQ, Grewal A, Anggara K, Costa FJR, Leon CC, Kuhnke K, Kern K. Charge Transfer of Metal Porphyrins on a NaCl Thin Film Observed by Scanning Tunneling Microscopy in the Transport Gap. ACS NANO 2025; 19:18357-18363. [PMID: 40329856 PMCID: PMC12096429 DOI: 10.1021/acsnano.5c01235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Elucidating the electronic structure of organic molecules in contact with a dielectric layer is essential to understanding and controlling many important processes, such as catalysis, photochemistry, and electroluminescence. However, this challenge calls for a detailed characterization of molecule-dielectric contacts on the atomic scale. Here, we employ scanning tunneling microscopy (STM) at low temperature (4 K) in combination with ab initio calculations to investigate the subnanometer-scale electronic states of photoactive molecules on a dielectric surface. For platinum and palladium octaethylporphyrin (PtOEP and PdOEP) adsorbed on few layers of NaCl on a metal substrate, our STM imaging of them in the energy gap between the frontier orbitals demonstrates their high sensitivity to the local environment, namely, adsorption site and applied voltage. Our calculations reveal that the states in this energy gap originate from combinations of molecular orbitals far from the Fermi level and that they are affected by the extent of molecule-surface partial charge transfer, which is tuned by adsorption site and voltage in the tunnel junction.
Collapse
Affiliation(s)
- Li-Qing Zheng
- Max-Planck-Institut
für Festkörperforschung, 70569Stuttgart, Germany
| | - Abhishek Grewal
- Max-Planck-Institut
für Festkörperforschung, 70569Stuttgart, Germany
| | - Kelvin Anggara
- Max-Planck-Institut
für Festkörperforschung, 70569Stuttgart, Germany
| | - Fábio J. R. Costa
- Max-Planck-Institut
für Festkörperforschung, 70569Stuttgart, Germany
- Gleb
Wataghin Institute of Physics − University of Campinas−UNICAMP, Campinas13083-859, Brazil
| | | | - Klaus Kuhnke
- Max-Planck-Institut
für Festkörperforschung, 70569Stuttgart, Germany
| | - Klaus Kern
- Max-Planck-Institut
für Festkörperforschung, 70569Stuttgart, Germany
- Institut
de Physique, École Polytechnique Fédéral Lausanne, 1015Lausanne, Switzerland
| |
Collapse
|
2
|
Frezza F, Sánchez‐Grande A, Canola S, Nacci C, Klívar J, Mutombo P, Chen Q, Gómez‐Fernandez JM, Sánchez‐Sánchez C, Berger J, Ernst K, Stará IG, Martín‐Gago JÁ, Starý I, Grill L, Jelínek P. Photogeneration and Visualization of a Surface-Stabilized Dinitrene. Angew Chem Int Ed Engl 2025; 64:e202502640. [PMID: 39989376 PMCID: PMC12070354 DOI: 10.1002/anie.202502640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 02/25/2025]
Abstract
Nitrenes are known as key intermediates in various chemical reactions. Nitrene transfer reactions are particularly effective for synthesizing nitrogen-containing compounds, where metal catalysts play a crucial role in controlling nitrene reactivity and selectivity. In this study, we demonstrate the formation of a stable surface-supported dinitrene on Au(111) through UV irradiation of its diazide precursor, characterized by scanning probe techniques. The photoreaction mechanism is elucidated with wavelength-dependent experiments and time-dependent density functional theory calculations. Our findings present the first real-space visualization of a metal nitrene adsorbed on a surface, highlighting its potential in catalysis and surface functionalization.
Collapse
Affiliation(s)
- Federico Frezza
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
- Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PragueBřehová 78/711519Prague 1Czech Republic
| | - Ana Sánchez‐Grande
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
| | - Sofia Canola
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
| | - Christophe Nacci
- Department of Physical ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | - Jiří Klívar
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 216610Prague 6Czech Republic
| | - Pingo Mutombo
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
| | - Qifan Chen
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
| | | | | | - Jan Berger
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN)Palacký University78371OlomoucCzech Republic.
| | - Karl‐Heinz Ernst
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
- EmpaSwiss Federal Laboratories for Materials Science and TechnologyÜberlandstrasse 1298600DübendorfSwitzerland
| | - Irena G. Stará
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 216610Prague 6Czech Republic
| | | | - Ivo Starý
- Institute of Organic Chemistry and BiochemistryCzech Academy of SciencesFlemingovo nám. 216610Prague 6Czech Republic
| | - Leonhard Grill
- Department of Physical ChemistryUniversity of GrazHeinrichstraße 288010GrazAustria
| | - Pavel Jelínek
- Institute of PhysicsCzech Academy of SciencesCukrovarnická 1016200Prague 6Czech Republic
- Regional Centre of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute (CATRIN)Palacký University78371OlomoucCzech Republic.
| |
Collapse
|
3
|
Cho CT, Yeh YJ, Veeramuthu L, Kuo CC, Tung KL, Chiang WH. Improving Redox Activity of Colloidal Plasmonic-Magnetic Nanocrystals by Chemical State Modulation. CHEMSUSCHEM 2025; 18:e202402327. [PMID: 39682058 DOI: 10.1002/cssc.202402327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
Controlling the redox ability is crucial for optimizing catalytic processes in clean energy, environmental protection, and CO2 reduction, as it directly influences the reaction efficiency and electron transfer rates, driving sustainable and effective outcomes. Here, we report the plasma-electrified synthesis of composition-controlled FeAu bimetallic nanoparticles, specifically engineered to enhance the redox catalytic performance through precise tuning of their chemical states. Utilizing atmospheric-pressure microplasmas, FeAu nanoparticles were synthesized under ambient conditions without the need for reducing agents or organic solvents, thereby providing a green and sustainable approach. The catalytic activity of the FeAu nanoparticles was significantly influenced by the oxidation states of Au (Au0, Au+, and Au3+), which were carefully modulated by adjusting the precursor concentration. This precise tuning directly affects the oxidation-reduction potential (ORP) of the nanoparticles, driving their superior degradation performance. The FeAu-1.52 sample exhibited the highest normalized rate constant (k=46.3 s-1 g-1), attributed to an optimal Au+/Au0 ratio that facilitates efficient electron transfer and redox cycling during the catalytic reduction of 4-NP to 4-aminophenol (4-AP). Beyond 4-NP, the FeAu nanoparticles demonstrated robust catalytic degradation of multiple dye pollutants, including Congo Red, Rhodamine B, Methyl Blue, and Methylene Blue, showing their versatility and potential for industrial wastewater treatment. This study elucidates the critical role of chemical state tuning in determining redox performance and presents a promising nanotechnology platform for sustainable environmental remediation.
Collapse
Affiliation(s)
- Chiao-Ting Cho
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
| | - Yi-Jui Yeh
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei, 10607, Taiwan
| | - Loganathan Veeramuthu
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 10608, Taiwan
| | - Chi-Ching Kuo
- Institute of Organic and Polymeric Materials, Research and Development Center of Smart Textile Technology, National Taipei University of Technology, Taipei, 10608, Taiwan
- Advanced Research Center for Green Materials Science and Technology, National Taiwan University, Taipei 10607, Taiwan
| | - Kuo-Lun Tung
- Department of Chemical Engineering, National Taiwan University, Taipei, 10607, Taiwan
| | - Wei-Hung Chiang
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei, 10607, Taiwan
- Sustainable Electrochemical Energy Development (SEED) Center, National Taiwan University of Science and Technology, Taipei City, 10607, Taiwan
| |
Collapse
|
4
|
Cai W, Xie X, Yang Z, Guo X. Stereochemistry at the Single-Molecule Level: From Monitoring to Regulation. Angew Chem Int Ed Engl 2025; 64:e202504558. [PMID: 40128120 DOI: 10.1002/anie.202504558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/24/2025] [Accepted: 03/24/2025] [Indexed: 03/26/2025]
Abstract
Traditional stereochemistry analysis is crucial for understanding the molecular behavior, but relies on measurements that encompass multiple molecules and obscure individual molecular dynamics. Single-molecule techniques enable real-time tracking of stereochemical transformations. These techniques include electrical methods (such as scanning probe microscopy, single-molecule junction techniques, and nanopore technology) and non-electrical approaches (such as circular dichroism spectroscopy and surface-enhanced Raman spectroscopy). This review highlights recent advances in monitoring and regulation of stereochemical properties at the single-molecule level. Techniques that bridge macroscopic observations with molecular-scale dynamics are emphasized. Key isomerization phenomena (constitutional, configurational, and conformational isomerizations) are explored to demonstrate how light, electric field, and mechanical force regulate molecular states. The use of chiral molecules in optical tweezers, chiral-modified scanning tunneling microscopies, and graphene-based single-molecule junctions to leverage the chirality-induced spin selectivity effect for enantiomer discrimination and manipulation is highlighted. Despite progress in this field, challenges persist in resolving ultrafast isomerization pathways, understanding chiral origin mechanisms, and integrating single-molecule devices. Emerging strategies combining multimodal stimuli, machine learning, and nanofabrication are promising for advancing stereochemical research and applications in molecular electronics and nanotechnology. This work underscores the transformative potential of single-molecule techniques in unveiling fundamental chemical dynamics and designing functional molecular systems.
Collapse
Affiliation(s)
- Wenlong Cai
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Xinmiao Xie
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Zezhou Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, P.R. China
- Center of Single-Molecule Sciences, Frontiers Science Center for New Organic Matter, College of Electronic Information and Optical Engineering, Nankai University, Tianjin, 300350, P.R. China
| |
Collapse
|
5
|
Liu Q, Begley A, Abbott DF, Yang JL, Mougel V, Zenobi R, Cai ZF. Radical-Induced Selective C─C Bond Activation at the Air-Solid Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500706. [PMID: 40256785 DOI: 10.1002/smll.202500706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Indexed: 04/22/2025]
Abstract
Radicals are of great interest to trigger reactions in synthetic chemistry due to their high efficiency and unique reactivity, but their uncontrollable nature poses challenges in achieving selectivity. This study explores the influence of a surface/interface on radical reactions, leveraging a low-temperature plasma ionization source for radical generation. Combining insights from tip-enhanced Raman spectroscopy, mass spectrometry, and X-ray photoelectron spectroscopy, the selectivity of radical reactions of a model organic compound, biphenylthiol is investigated, under both homogeneous and heterogeneous conditions. The metal surface, acting as a template with interfacial water, is found to significantly modify the radical reaction pathway. The surface-immobilized BPT exhibited selective radical reaction products, forming 4-mercaptophenol molecules on Au(111) via the cleavage of C─C bonds. Such a high selectivity of radical reactions is unique and only achieved at the air/solid interface as compared to reactions in the gas, liquid, and solid phases. The present work highlights the potential of surfaces and interfaces in tailoring radical reaction pathways with high selectivity.
Collapse
Affiliation(s)
- Qinlei Liu
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, CH-8093, Switzerland
| | - Alina Begley
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, CH-8093, Switzerland
| | - Daniel F Abbott
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, CH-8093, Switzerland
| | - Jun-Lei Yang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, CH-8093, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, CH-8093, Switzerland
| | - Zhen-Feng Cai
- Key Laboratory of Green Chemistry and Technology of Ministry of Education, College of Chemistry, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
- Department of Chemistry and Applied Biosciences, ETH Zurich, Vladimir-Prelog-Weg 3, Zurich, CH-8093, Switzerland
| |
Collapse
|
6
|
Lombana A, Chaunchaiyakul S, Chuzel O, Hagebaum-Reignier D, Parrain JL, Bocquet F, Nony L, Loppacher C, Bondino F, Magnano E, Imada H, Kazuma E, Kim Y, Giovanelli L, Clair S. Competing pathways to aromaticity governed by amine dehydrogenation and metal-organic complexation in on-surface synthesis. Chem Sci 2025; 16:3198-3210. [PMID: 39840291 PMCID: PMC11744327 DOI: 10.1039/d4sc07550a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 01/10/2025] [Indexed: 01/23/2025] Open
Abstract
We investigated the reactivity of a gem-dichlorovinyl-carbazole precursor in the on-surface synthesis approach. Our findings reveal that, on the Au(111) surface, the thermally-induced dehalogenation reaction led to the formation of cumulene dimers. Contrastingly, the more reactive Cu(111) surface promoted the formation of a polyheterocyclic compound exhibiting extended aromaticity. The latter was found to be related to the dehydrogenation of the amine groups, which did not occur on Au(111), thus promoting the different reactivity observed. At higher annealing temperature, selective C-H activation led to the formation of well-defined organometallic chains. In addition, we found that the amine complexation with metal adatom on Cu(111) was an inhibiting factor for the dimerization reaction, a challenge that could be overcome through proper control of the deposition conditions.
Collapse
Affiliation(s)
- Andrés Lombana
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Songpol Chaunchaiyakul
- Surface and Interface Science Laboratory, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Olivier Chuzel
- Aix Marseille Univ., CNRS, Centrale Med., ISM2 Marseille France
| | | | | | - Franck Bocquet
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Laurent Nony
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Christian Loppacher
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Federica Bondino
- CNR - Istituto Officina dei Materiali (IOM) AREA Science Park, Basovizza 34149 Trieste Italy
| | - Elena Magnano
- CNR - Istituto Officina dei Materiali (IOM) AREA Science Park, Basovizza 34149 Trieste Italy
- Nanotechnology Research Laboratory, Faculty of Engineering, University of Sydney Camperdown 2006 Australia
| | - Hiroshi Imada
- Surface and Interface Science Laboratory, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Emiko Kazuma
- Surface and Interface Science Laboratory, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Luca Giovanelli
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| | - Sylvain Clair
- Aix Marseille University, Université de Toulon, CNRS, IM2NP 13013 Marseille France
| |
Collapse
|
7
|
Paschke F, Lieske LA, Albrecht F, Chen CJ, Repp J, Gross L. Distance and Voltage Dependence of Orbital Density Imaging Using a CO-Functionalized Tip in Scanning Tunneling Microscopy. ACS NANO 2025; 19:2641-2650. [PMID: 39772482 PMCID: PMC11760183 DOI: 10.1021/acsnano.4c14476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/10/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025]
Abstract
The appearance of frontier molecular ion resonances measured with scanning tunneling microscopy (STM)─often referred to as orbital density images─of single molecules was investigated using a CO-functionalized tip in dependence on bias voltage and tip-sample distance. As model systems, we studied pentacene and naphthalocyanine on bilayer NaCl on Cu(111). Absolute tip-sample distances were determined by means of atomic force microscopy (AFM). STM imaging revealed a transition from predominant p- to s-wave tip contrast upon increasing the tip-sample distance, but the contrast showed only small changes as a function of voltage. The distance-dependent contrast change is explained with the steeper decay of the tunneling matrix element for tunneling between two p-wave centers, compared to tunneling between two s-wave centers. In simulations with a fixed ratio of s- to p-wave tip states, we can reproduce the experimental data including the distance-dependent transition from predominant p- to s-wave tunneling contribution.
Collapse
Affiliation(s)
- Fabian Paschke
- IBM Research
Europe − Zurich, 8803 Rüschlikon, Switzerland
| | | | | | - C. Julian Chen
- Department
of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| | - Jascha Repp
- Institute
of Experimental and Applied Physics, University
of Regensburg, Regensburg 93053, Germany
| | - Leo Gross
- IBM Research
Europe − Zurich, 8803 Rüschlikon, Switzerland
| |
Collapse
|
8
|
Pérez‐Elvira E, Barragán A, Gallardo A, Santos J, Martín‐Fuentes C, Lauwaet K, Gallego JM, Miranda R, Sakurai H, Urgel JI, Björk J, Martín N, Écija D. Coronene-Based 2D Networks by On-Surface Skeletal Rearrangement of Sumanene Precursors. Angew Chem Int Ed Engl 2025; 64:e202414583. [PMID: 39193816 PMCID: PMC11720390 DOI: 10.1002/anie.202414583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 08/29/2024]
Abstract
The design of novel low-dimensional carbon materials is at the forefront of modern chemistry. Recently, on-surface covalent synthesis has emerged as a powerful strategy to synthesize previously precluded compounds and polymers. Here, we report a scanning probe microscopy study, complemented by theoretical calculations, on the sequential skeletal rearrangement of sumanene-based precursors into a coronene-based organometallic network by stepwise intra- and inter-molecular reactions on Au(111). Interestingly, upon higher annealing, the formed organometallic networks evolve into two-dimensional coronene-based covalently linked patches through intermolecular homocoupling reactions. A new reaction mechanism is proposed based on the role of C-Au-C motifs to promote two stepwise carbon-carbon couplings to form cyclobutadiene bridges. Our results pave avenues for the conversion of molecular precursors on surfaces, affording the design of unexplored two-dimensional organometallic and covalent materials.
Collapse
Affiliation(s)
| | - Ana Barragán
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - Aurelio Gallardo
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - José Santos
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense
| | | | - Koen Lauwaet
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - José M. Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM)CSIC, Cantoblanco28049MadridSpain
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco28049MadridSpain
| | - Hidehiro Sakurai
- Division of Applied ChemistryGraduate School of EngineeringOsaka University2-1 YamadaokaSuitaOsaka565-0871Japan
| | - José I. Urgel
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco28049MadridSpain
- Unidad de Nanomateriales AvanzadosIMDEA Nanoscience, Unidad asociada al CSIC por el ICMM28049MadridSpain
| | - Jonas Björk
- Materials Design DivisionDepartment of Physics, Chemistry, and Biology (IFM)Linköping UniversitySE-581 83LinköpingSweden
| | - Nazario Martín
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco28049MadridSpain
- Departamento de Química OrgánicaFacultad de Ciencias QuímicasUniversidad Complutense
| | - David Écija
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco28049MadridSpain
- Unidad de Nanomateriales AvanzadosIMDEA Nanoscience, Unidad asociada al CSIC por el ICMM28049MadridSpain
| |
Collapse
|
9
|
Wu N, Aapro M, Jestilä JS, Drost R, García MM, Torres T, Xiang F, Cao N, He Z, Bottari G, Liljeroth P, Foster AS. Precise Large-Scale Chemical Transformations on Surfaces: Deep Learning Meets Scanning Probe Microscopy with Interpretability. J Am Chem Soc 2025; 147:1240-1250. [PMID: 39680589 PMCID: PMC11726549 DOI: 10.1021/jacs.4c14757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/18/2024]
Abstract
Scanning probe microscopy (SPM) techniques have shown great potential in fabricating nanoscale structures endowed with exotic quantum properties achieved through various manipulations of atoms and molecules. However, precise control requires extensive domain knowledge, which is not necessarily transferable to new systems and cannot be readily extended to large-scale operations. Therefore, efficient and autonomous SPM techniques are needed to learn optimal strategies for new systems, in particular for the challenge of controlling chemical reactions and hence offering a route to precise atomic and molecular construction. In this paper, we developed a software infrastructure named AutoOSS (Autonomous On-Surface Synthesis) to automate bromine removal from hundreds of Zn(II)-5,15-bis(4-bromo-2,6-dimethylphenyl)porphyrin (ZnBr2Me4DPP) on Au(111), using neural network models to interpret STM outputs and deep reinforcement learning models to optimize manipulation parameters. This is further supported by Bayesian optimization structure search (BOSS) and density functional theory (DFT) computations to explore 3D structures and reaction mechanisms based on STM images.
Collapse
Affiliation(s)
- Nian Wu
- Department
of Applied Physics, Aalto University, Helsinki 02150, Finland
| | - Markus Aapro
- Department
of Applied Physics, Aalto University, Helsinki 02150, Finland
| | - Joakim S. Jestilä
- Department
of Applied Physics, Aalto University, Helsinki 02150, Finland
| | - Robert Drost
- Department
of Applied Physics, Aalto University, Helsinki 02150, Finland
| | - Miguel Martínez García
- Departamento
de Química Orgánica, Universidad
Autónoma de Madrid, Madrid 28049, Spain
- IMDEA-Nanociencia,
Campus de Cantoblanco, Madrid 28049, Spain
| | - Tomás Torres
- Departamento
de Química Orgánica, Universidad
Autónoma de Madrid, Madrid 28049, Spain
- IMDEA-Nanociencia,
Campus de Cantoblanco, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Feifei Xiang
- nanotech@surfaces
Laboratory, Empa-Swiss Federal Laboratories
for Materials Science and Technology, Dübendorf 8600, Switzerland
| | - Nan Cao
- Department
of Applied Physics, Aalto University, Helsinki 02150, Finland
| | - Zhijie He
- Department
of Computer Science, Aalto University, Helsinki 02150, Finland
| | - Giovanni Bottari
- Departamento
de Química Orgánica, Universidad
Autónoma de Madrid, Madrid 28049, Spain
- IMDEA-Nanociencia,
Campus de Cantoblanco, Madrid 28049, Spain
- Institute
for Advanced Research in Chemical Sciences, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Peter Liljeroth
- Department
of Applied Physics, Aalto University, Helsinki 02150, Finland
| | - Adam S. Foster
- Department
of Applied Physics, Aalto University, Helsinki 02150, Finland
- WPI
Nano Life Science Institute, Kanazawa University, Kanazawa 610101, Japan
| |
Collapse
|
10
|
Yang C, Guo Y, Zhang H, Guo X. Utilization of Electric Fields to Modulate Molecular Activities on the Nanoscale: From Physical Properties to Chemical Reactions. Chem Rev 2025; 125:223-293. [PMID: 39621876 DOI: 10.1021/acs.chemrev.4c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
As a primary energy source, electricity drives broad fields from everyday electronic circuits to industrial chemical catalysis. From a chemistry viewpoint, studying electric field effects on chemical reactivity is highly important for revealing the intrinsic mechanisms of molecular behaviors and mastering chemical reactions. Recently, manipulating the molecular activity using electric fields has emerged as a new research field. In addition, because integration of molecules into electronic devices has the natural complementary metal-oxide-semiconductor compatibility, electric field-driven molecular devices meet the requirements for both electronic device miniaturization and precise regulation of chemical reactions. This Review provides a timely and comprehensive overview of recent state-of-the-art advances, including theoretical models and prototype devices for electric field-based manipulation of molecular activities. First, we summarize the main approaches to providing electric fields for molecules. Then, we introduce several methods to measure their strengths in different systems quantitatively. Subsequently, we provide detailed discussions of electric field-regulated photophysics, electron transport, molecular movements, and chemical reactions. This review intends to provide a technical manual for precise molecular control in devices via electric fields. This could lead to development of new optoelectronic functions, more efficient logic processing units, more precise bond-selective control, new catalytic paradigms, and new chemical reactions.
Collapse
Affiliation(s)
- Chen Yang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Yilin Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Heng Zhang
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
| | - Xuefeng Guo
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, 292 Chengfu Road, Haidian District, Beijing 100871, P. R. China
- Center of Single-Molecule Sciences, College of Electronic Information and Optical Engineering, Nankai University, 38 Tongyan Road, Jinnan District, Tianjin 300350, P. R. China
| |
Collapse
|
11
|
Besteiro-Sáez J, Mateo LM, Salaverría S, Wang T, Angulo-Portugal P, Calupitan JP, Rodríguez-Fernández J, García-Fuente A, Ferrer J, Pérez D, Corso M, de Oteyza DG, Peña D. [19]Starphene: Combined In-Solution and On-Surface Synthesis Towards the Largest Starphene. Angew Chem Int Ed Engl 2024; 63:e202411861. [PMID: 39110601 DOI: 10.1002/anie.202411861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Indexed: 11/10/2024]
Abstract
Starphenes are structurally appealing three-fold symmetric polycyclic aromatic compounds with potential interesting applications in molecular electronics and nanotechnology. This family of star-shaped polyarenes can be regarded as three acenes that are connected through a single benzene ring. In fact, just like acenes, unsubstituted large starphenes are poorly soluble and highly reactive molecules under ambient conditions making their synthesis difficult to achieve. Herein, we report two different synthetic strategies to obtain a starphene formed by 19 cata-fused benzene rings distributed within three hexacene branches. This molecule, which is the largest starphene that has been obtained to date, was prepared by combining solution-phase and on-surface synthesis. [19]Starphene was characterized by high-resolution scanning tunneling microscopy (STM) and spectroscopy (STS) showing a remarkable small HOMO-LUMO transport gap (0.9 eV).
Collapse
Affiliation(s)
- Javier Besteiro-Sáez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Luis M Mateo
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Sergio Salaverría
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940, El Entrego, Spain
| | - Tao Wang
- Donostia International Physics Center, 20018, San Sebastián, Spain
| | - Paula Angulo-Portugal
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Donostia, 20018 San Sebastián, Spain
| | - Jan Patrick Calupitan
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Donostia, 20018 San Sebastián, Spain
- Institut Parisien de Chimie Moléculaire (IPCM), Sorbonne Université, CNRS, F-75005, Paris, France
| | | | | | - Jaime Ferrer
- Physics Department, University of Oviedo, 33007, Oviedo, Spain
| | - Dolores Pérez
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
| | - Martina Corso
- Donostia International Physics Center, 20018, San Sebastián, Spain
- Centro de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, Donostia, 20018 San Sebastián, Spain
| | - Dimas G de Oteyza
- Nanomaterials and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940, El Entrego, Spain
- Donostia International Physics Center, 20018, San Sebastián, Spain
| | - Diego Peña
- Centro de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS) and Departamento de Química Orgánica, Universidade de Santiago de Compostela, 15782, Santiago de Compostela, Spain
- Oportunius, Galician Innovation Agency (GAIN), 15702, Santiago de Compostela, Spain
| |
Collapse
|
12
|
Aziz M, Prindle CR, Lee W, Zhang B, Schaack C, Steigerwald ML, Zandkarimi F, Nuckolls C, Venkataraman L. Evaluating the Ability of External Electric Fields to Accelerate Reactions in Solution. J Phys Chem B 2024; 128:9553-9560. [PMID: 39317430 DOI: 10.1021/acs.jpcb.4c04864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
This study investigates the catalytic effects of external electric fields (EEFs) on two reactions in solution: the Menshutkin reaction and the Chapman rearrangement. Utilizing a scanning tunneling microscope-based break-junction (STM-BJ) setup and monitoring reaction rates through high-performance liquid chromatography connected to a UV detector (HPLC-UV) and ultraperformance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry (UPLC-q-ToF-MS), we observed no rate enhancement for either reaction under ambient conditions. Density functional theory (DFT) calculations indicate that electric field-induced changes in reactant orientation and the minimization of activation energy are crucial factors in determining the efficacy of EEF-driven catalysis. Our findings suggest that the current experimental setups and field strengths are insufficient to catalyze these reactions, underscoring the importance of these criteria in assessing the reaction candidates.
Collapse
Affiliation(s)
- Miriam Aziz
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Claudia R Prindle
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Woojung Lee
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Boyuan Zhang
- Department of Chemistry, Fairfield University, Fairfield, Connecticut 06824, United States
| | - Cedric Schaack
- Department of Chemistry, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Michael L Steigerwald
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Fereshteh Zandkarimi
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Mass Spectrometry Core Facility, Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Colin Nuckolls
- Department of Chemistry, Columbia University, New York, New York 10027, United States
| | - Latha Venkataraman
- Department of Chemistry, Columbia University, New York, New York 10027, United States
- Department of Applied Physics and Applied Mathematics, Columbia University, New York, New York 10027, United States
| |
Collapse
|
13
|
Custance O, Ventura-Macias E, Stetsovych O, Romero-Muñiz C, Shimizu TK, Pou P, Abe M, Hayashi H, Ohkubo T, Kawai S, Perez R. Structure and Defect Identification at Self-Assembled Islands of CO 2 Using Scanning Probe Microscopy. ACS NANO 2024; 18:26759-26769. [PMID: 39285838 DOI: 10.1021/acsnano.4c07034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
Understanding how carbon dioxide (CO2) behaves and interacts with surfaces is paramount for the development of sensors and materials to attempt CO2 mitigation and catalysis. Here, we combine simultaneous atomic force microscopy (AFM) and scanning tunneling microscopy (STM) using CO-functionalized probes with density functional theory (DFT)-based simulations to gain fundamental insight into the behavior of physisorbed CO2 molecules on a gold(111) surface that also contains one-dimensional metal-organic chains formed by 1,4-phenylene diisocyanide (PDI) bridged by gold (Au) adatoms. We resolve the structure of self-assembled CO2 islands, both confined between the PDI-Au chains as well as free-standing on the surface and reveal a chiral arrangement of CO2 molecules in a windmill-like structure that encloses a standing-up CO2 molecule and other foreign species existing at the surface. We identify these species by the comparison of height-dependent AFM and STM imaging with DFT-calculated images and clarify the origin of the kagome tiling exhibited by this surface system. Our results show the complementarity of AFM and STM using functionalized probes and their potential, when combined with DFT, to explore greenhouse gas molecules at surface-supported model systems.
Collapse
Affiliation(s)
- Oscar Custance
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Emiliano Ventura-Macias
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Oleksandr Stetsovych
- Institute of Physics, Czech Academy of Sciences, Cukrovarnická 10, Prague 6, Prague 16200, Czech Republic
| | - Carlos Romero-Muñiz
- Departamento de Física de la Materia Condensada, Universidad de Sevilla, P.O. Box 1065, Seville 41080, Spain
| | - Tomoko K Shimizu
- Department of Applied Physics and Physico-Informatics, Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Pablo Pou
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed Matter Physics Center(IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Masayuki Abe
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Hironobu Hayashi
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Tadakatsu Ohkubo
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Shigeki Kawai
- National Institute for Materials Science (NIMS), 1-2-1 Sengen, Tsukuba, Ibaraki 305-0047, Japan
| | - Ruben Perez
- Departamento de Física Teórica de la Materia Condensada, Universidad Autónoma de Madrid, Madrid 28049, Spain
- Condensed Matter Physics Center(IFIMAC), Universidad Autónoma de Madrid, Madrid 28049, Spain
| |
Collapse
|
14
|
Dettmann D, Panighel M, Preetha Genesh N, Galeotti G, MacLean O, Farnesi Camellone M, Johal TK, Fabris S, Africh C, Perepichka DF, Rosei F, Contini G. Real-Time Imaging of On-Surface Ullmann Polymerization Reveals an Inhibiting Effect of Adatoms. J Am Chem Soc 2024; 146:24493-24502. [PMID: 39166403 DOI: 10.1021/jacs.4c06994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Ullmann coupling is a widely used reaction for the on-surface growth of low-dimensional carbon nanomaterials. The irreversible nature of this reaction prevents the "self-healing" of defects, and a detailed knowledge of its mechanism is therefore essential to enable the growth of extended ordered structures. However, the dynamics of the Ullmann polymerization remain largely unexplored, as coupling events occur on a timescale faster than conventional scanning probe microscopy imaging frequencies. Here, we reveal the dynamics of these surface events using high-speed variable-temperature scanning tunneling microscopy (STM) (10 frames per second). Performing the measurements at the onset reaction temperatures provides an unprecedented description of the evolution of organometallic (OM) and covalent surface species during the Ullmann polymerization of para-dibromobenzene on Cu(110). Our results demonstrate the existence of an intermediate OM phase with Cu adatoms that inhibits the polymerization. These observations now complete the picture of the pathways of on-surface Ullmann polymerization, which includes the complex interplay of the phenylene moieties and metal atoms. Our work demonstrates the unique capability of high-speed STM to capture the dynamics of molecular self-assembly and coupling.
Collapse
Affiliation(s)
- Dominik Dettmann
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, Varennes, J3X 1P7 Québec, Canada
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Mirco Panighel
- CNR-IOM, Laboratorio, TASC, S.S. 14 Km 163.5, Basovizza, 34149 Trieste, Italy
| | - Navathej Preetha Genesh
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, Varennes, J3X 1P7 Québec, Canada
| | - Gianluca Galeotti
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, Varennes, J3X 1P7 Québec, Canada
| | - Oliver MacLean
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, Varennes, J3X 1P7 Québec, Canada
- Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Normal University, 130103 Changchun, P. R. China
| | - Matteo Farnesi Camellone
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), C/o SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Tarnjit Kaur Johal
- Centre Énergie, Matériaux et Télécommunications, Institut National de la Recherche Scientifique Department, 1650 Boulevard Lionel-Boulet, Varennes, J3X 1P7 Québec, Canada
| | - Stefano Fabris
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), C/o SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Cristina Africh
- Consiglio Nazionale delle Ricerche-Istituto Officina dei Materiali (CNR-IOM), C/o SISSA, Via Bonomea 265, 34136 Trieste, Italy
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, H3A 0B8 Québec, Canada
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, 34127 Trieste, Italy
| | - Giorgio Contini
- Istituto di Struttura della Materia-CNR (ISM-CNR), Via Fosso del Cavaliere 100, 00133 Roma, Italy
- Department of Physics, University Tor Vergata, Via della Ricerca Scientifica 1, 00133 Roma, Italy
| |
Collapse
|
15
|
Sun L, Zheng W, Kang F, Gao W, Wang T, Gao G, Xu W. On-surface synthesis and characterization of anti-aromatic cyclo[12]carbon and cyclo[20]carbon. Nat Commun 2024; 15:7649. [PMID: 39223168 PMCID: PMC11369269 DOI: 10.1038/s41467-024-52115-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024] Open
Abstract
Cyclo[n]carbons have recently attracted significant attention owing to their geometric and electronic structures remaining largely unexplored in the condensed phase. In this work, we focus on two anti-aromatic cyclocarbons, namely C12 and C20. By designing two fully halogenated molecular precursors both including 4-numbered rings, we further extend the on-surface retro-Bergman ring-opening reaction, and successfully produce C12 and C20. The polyynic structures of C12 and C20 are unambiguously revealed by bond-resolved atomic force microscopy. More importantly, subtly positioning the C20 molecule into an atomic fence formed by Cl clusters allows us to experimentally probe its frontier molecular orbitals, yielding a transport gap of 3.8 eV measured from scanning tunneling spectroscopy. Our work may advance the field by easier synthesis of a series of cyclocarbons via on-surface retro-Bergman ring-opening strategy.
Collapse
Affiliation(s)
- Luye Sun
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Wei Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Faming Kang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Wenze Gao
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Tongde Wang
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Guohua Gao
- Shanghai Key Laboratory of Special Artificial Microstructure Materials and Technology, School of Physics Science and Engineering, Tongji University, Shanghai, 200092, People's Republic of China
| | - Wei Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| |
Collapse
|
16
|
Bauer A, Birk T, Paschke F, Fuhrberg A, Diegel J, Becherer AK, Vogelsang L, Maier M, Schosser WM, Pauly F, Zilberberg O, Winter RF, Fonin M. Fully Reprogrammable 2D Array of Multistate Molecular Switching Units. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401662. [PMID: 38749066 DOI: 10.1002/adma.202401662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/23/2024] [Indexed: 07/21/2024]
Abstract
Integration of molecular switching units into complex electronic circuits is considered to be the next step toward the realization of novel logic and memory devices. This paper reports on an ordered 2D network of neighboring ternary switching units represented by triazatruxene (TAT) molecules organized in a honeycomb lattice on a Ag(111) surface. Using low-temperature scanning tunneling microscopy, the bonding configurations of individual TAT molecules can be controlled, realizing up to 12 distinct states per molecule. The switching between those states shows a strong bias dependence ranging from tens of millivolts to volts. The low-bias switching behavior is explored in active units consisting of two and more interacting TAT molecules that are purposefully defined (programmed) by high-bias switching within the honeycomb lattice. Within such a unit the low-bias switching can be triggered and accessed by single-point measurements on a single TAT molecule, demonstrating up to 9 and 19 distinguishable states in a dyad and a tetrad of coupled molecules, respectively. High experimental control over the desired state, owing to bias-dependent hierarchical switching and pronounced switching directionality, as well as full reversibility, make this system particularly appealing, paving the way to design complex molecule-based memory systems.
Collapse
Affiliation(s)
- Anja Bauer
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
| | - Tobias Birk
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
| | - Fabian Paschke
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
| | - Andreas Fuhrberg
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
| | - Josefine Diegel
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
| | | | - Lars Vogelsang
- Fachbereich Chemie, Universität Konstanz, 78457, Konstanz, Germany
| | - Markus Maier
- Fachbereich Chemie, Universität Konstanz, 78457, Konstanz, Germany
| | - Werner M Schosser
- Institute of Physics and Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, 86159, Augsburg, Germany
| | - Fabian Pauly
- Institute of Physics and Centre for Advanced Analytics and Predictive Sciences, University of Augsburg, 86159, Augsburg, Germany
| | - Oded Zilberberg
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
| | - Rainer F Winter
- Fachbereich Chemie, Universität Konstanz, 78457, Konstanz, Germany
| | - Mikhail Fonin
- Fachbereich Physik, Universität Konstanz, 78457, Konstanz, Germany
| |
Collapse
|
17
|
Gao C, Gao Q, Zhao C, Huo Y, Zhang Z, Yang J, Jia C, Guo X. Technologies for investigating single-molecule chemical reactions. Natl Sci Rev 2024; 11:nwae236. [PMID: 39224448 PMCID: PMC11367963 DOI: 10.1093/nsr/nwae236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 06/15/2024] [Accepted: 06/17/2024] [Indexed: 09/04/2024] Open
Abstract
Single molecules, the smallest independently stable units in the material world, serve as the fundamental building blocks of matter. Among different branches of single-molecule sciences, single-molecule chemical reactions, by revealing the behavior and properties of individual molecules at the molecular scale, are particularly attractive because they can advance the understanding of chemical reaction mechanisms and help to address key scientific problems in broad fields such as physics, chemistry, biology and materials science. This review provides a timely, comprehensive overview of single-molecule chemical reactions based on various technical platforms such as scanning probe microscopy, single-molecule junction, single-molecule nanostructure, single-molecule fluorescence detection and crossed molecular beam. We present multidimensional analyses of single-molecule chemical reactions, offering new perspectives for research in different areas, such as photocatalysis/electrocatalysis, organic reactions, surface reactions and biological reactions. Finally, we discuss the opportunities and challenges in this thriving field of single-molecule chemical reactions.
Collapse
Affiliation(s)
- Chunyan Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Qinghua Gao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Cong Zhao
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Yani Huo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Zhizhuo Zhang
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Jinlong Yang
- Hefei National Research Center for Physical Sciences at Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Chuancheng Jia
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
| | - Xuefeng Guo
- Center of Single-Molecule Sciences, Institute of Modern Optics, Frontiers Science Center for New Organic Matter, Tianjin Key Laboratory of Micro-Scale Optical Information Science and Technology, College of Electronic Information and Optical Engineering, Nankai University, Tianjin 300350, China
- Beijing National Laboratory for Molecular Sciences, National Biomedical Imaging Center, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
18
|
Urgel JI, Sánchez-Grande A, Vicent DJ, Jelínek P, Martín N, Écija D. On-Surface Covalent Synthesis of Carbon Nanomaterials by Harnessing Carbon gem-Polyhalides. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402467. [PMID: 38864470 DOI: 10.1002/adma.202402467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 05/19/2024] [Indexed: 06/13/2024]
Abstract
The design of innovative carbon-based nanostructures stands at the forefront of both chemistry and materials science. In this context, π-conjugated compounds are of great interest due to their impact in a variety of fields, including optoelectronics, spintronics, energy storage, sensing and catalysis. Despite extensive research efforts, substantial knowledge gaps persist in the synthesis and characterization of new π-conjugated compounds with potential implications for science and technology. On-surface synthesis has emerged as a powerful discipline to overcome limitations associated with conventional solution chemistry methods, offering advanced tools to characterize the resulting nanomaterials. This review specifically highlights recent achievements in the utilization of molecular precursors incorporating carbon geminal (gem)-polyhalides as functional groups to guide the formation of π-conjugated 0D species, as well as 1D, quasi-1D π-conjugated polymers, and 2D nanoarchitectures. By delving into reaction pathways, novel structural designs, and the electronic, magnetic, and topological features of the resulting products, the review provides fundamental insights for a new generation of π-conjugated materials.
Collapse
Affiliation(s)
- José I Urgel
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain
| | - Ana Sánchez-Grande
- Institute of Physics of the Czech Academy of Science, Praha, 16200, Czech Republic
| | - Diego J Vicent
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, Praha, 16200, Czech Republic
| | - Nazario Martín
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain
- Departamento de Química Orgánica, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, 28040, Spain
| | - David Écija
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, 28049, Spain
| |
Collapse
|
19
|
Mishra S, Vilas-Varela M, Fatayer S, Albrecht F, Peña D, Gross L. Observation of SOMO-HOMO Inversion in a Neutral Polycyclic Conjugated Hydrocarbon. ACS NANO 2024; 18:15898-15904. [PMID: 38833667 PMCID: PMC11191738 DOI: 10.1021/acsnano.4c03257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/17/2024] [Accepted: 05/24/2024] [Indexed: 06/06/2024]
Abstract
We report the generation of a nonbenzenoid polycyclic conjugated hydrocarbon, which consists of a biphenyl moiety substituted by indenyl units at the 4,4' positions, on ultrathin sodium chloride films by tip-induced chemistry. Single-molecule characterization by scanning tunneling and atomic force microscopy reveals an open-shell biradical ground state with a peculiar electronic configuration wherein the singly occupied molecular orbitals (SOMOs) are lower in energy than the highest occupied molecular orbital (HOMO).
Collapse
Affiliation(s)
| | - Manuel Vilas-Varela
- Center
for Research in Biological Chemistry and Molecular Materials (CiQUS)
and Department of Organic Chemistry, University
of Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Shadi Fatayer
- Applied
Physics Program, Physical Science and Engineering Division, King Abdullah University of Science and Technology
(KAUST), Thuwal 23955-6900, Kingdom
of Saudi Arabia
| | | | - Diego Peña
- Center
for Research in Biological Chemistry and Molecular Materials (CiQUS)
and Department of Organic Chemistry, University
of Santiago de Compostela, Santiago de Compostela 15782, Spain
- Oportunius, Galician
Innovation Agency (GAIN), Santiago
de Compostela 15702, Spain
| | - Leo Gross
- IBM
Research Europe − Zurich, Rüschlikon 8803, Switzerland
| |
Collapse
|
20
|
Nony L, Clair S, Uehli D, Herrero A, Themlin JM, Campos A, Para F, Pioda A, Loppacher C. Stiffness calibration of qPlus sensors at low temperature through thermal noise measurements. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:580-602. [PMID: 38887532 PMCID: PMC11181211 DOI: 10.3762/bjnano.15.50] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 04/25/2024] [Indexed: 06/20/2024]
Abstract
Non-contact atomic force microscopy (nc-AFM) offers a unique experimental framework for topographical imaging of surfaces with atomic and/or sub-molecular resolution. The technique also permits to perform frequency shift spectroscopy to quantitatively evaluate the tip-sample interaction forces and potentials above individual atoms or molecules. The stiffness of the probe, k, is then required to perform the frequency shift-to-force conversion. However, this quantity is generally known with little precision. An accurate stiffness calibration is therefore mandatory if accurate force measurements are targeted. In nc-AFM, the probe may either be a silicon cantilever, a quartz tuning fork (QTF), or a length extensional resonator (LER). When used in ultrahigh vacuum (UHV) and at low temperature, the technique mostly employs QTFs, based on the so-called qPlus design, which actually covers different types of sensors in terms of size and design of the electrodes. They all have in common a QTF featuring a metallic tip glued at the free end of one of its prongs. In this study, we report the stiffness calibration of a particular type of qPlus sensor in UHV and at 9.8 K by means of thermal noise measurements. The stiffness calibration of such high-k sensors, featuring high quality factors (Q) as well, requires to master both the acquisition parameters and the data post-processing. Our approach relies both on numerical simulations and experimental results. A thorough analysis of the thermal noise power spectral density of the qPlus fluctuations leads to an estimated stiffness of the first flexural eigenmode of ≃2000 N/m, with a maximum uncertainty of 10%, whereas the static stiffness of the sensor without tip is expected to be ≃3300 N/m. The former value must not be considered as being representative of a generic value for any qPlus, as our study stresses the influence of the tip on the estimated stiffness and points towards the need for the individual calibration of these probes. Although the framework focuses on a particular kind of sensor, it may be adapted to any high-k, high-Q nc-AFM probe used under similar conditions, such as silicon cantilevers and LERs.
Collapse
Affiliation(s)
- Laurent Nony
- Aix Marseille University, CNRS, IM2NP, UMR 7334, 13397 Marseille, France
| | - Sylvain Clair
- Aix Marseille University, CNRS, IM2NP, UMR 7334, 13397 Marseille, France
| | - Daniel Uehli
- SPECS Zürich GmbH, Technoparkstrasse 1, 8005 Zürich, Switzerland
| | - Aitziber Herrero
- SPECS Zürich GmbH, Technoparkstrasse 1, 8005 Zürich, Switzerland
| | - Jean-Marc Themlin
- Aix Marseille University, CNRS, IM2NP, UMR 7334, 13397 Marseille, France
| | - Andrea Campos
- Aix Marseille University, CNRS, Centrale Marseille, FSCM (FR1739), CP2M, 13397 Marseille, France
| | - Franck Para
- Aix Marseille University, CNRS, IM2NP, UMR 7334, 13397 Marseille, France
| | - Alessandro Pioda
- SPECS Zürich GmbH, Technoparkstrasse 1, 8005 Zürich, Switzerland
| | | |
Collapse
|
21
|
Lin Y, Li J, Liang X, Hu T, Huang Z, Zhu Z, Diao M, Zhao X, Peng Z, Wang Y, Chen Q, Liu J, Wu K. Steering Electron-Induced Surface Reaction via a Molecular Assembly Approach. J Am Chem Soc 2024; 146:10150-10158. [PMID: 38557061 DOI: 10.1021/jacs.4c01623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Electrons not only serve as a "reactant" in redox reactions but also play a role in "catalyzing" some chemical processes. Despite the significance and ubiquitousness of electron-induced chemistry, many related scientific issues still await further exploration, among which is the impact of molecular assembly. In this work, microscopic insights into the vital role of molecular assembly in tweaking the electron-induced surface chemistry are unfolded by combined scanning tunneling microscopy and density functional theory studies. It is shown that the selective dissociation of a C-Cl bond in 4,4″-dichloro-1,1':3',1''-terphenyl (DCTP) on Cu(111) can be efficiently triggered by an electron injection via the STM tip into the unoccupied molecular orbital. The DCTP molecules are embedded in different assembly structures, including its self-assembly and coassemblies with Br adatoms. The energy threshold for the C-Cl bond cleavage increases as more Br adatoms stay close to the molecule, indicative of the sensitive response of the electron-induced surface reactivity of the C-Cl bond to the subtle change in the molecular assembly. Such a phenomenon is rationalized by the energy shift of the involved unoccupied molecular orbital of DCTP that is embedded in different assemblies. These findings shed new light on the tuning effect of molecular assembly on electron-induced reactions and introduce an efficient approach to precisely steer surface chemistry.
Collapse
Affiliation(s)
- Yuxuan Lin
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jie Li
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Xiaoyang Liang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Ting Hu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhichao Huang
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhen Zhu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Mengxiao Diao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Xinwei Zhao
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Zhantao Peng
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Yongfeng Wang
- Center for Carbon-based Electronics and Key Laboratory for the Physics and Chemistry of Nanodevices, School of Electronics, Peking University, Beijing 100871, China
| | - Qiwei Chen
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Jing Liu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Kai Wu
- BNLMS, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
Biswas K, Chen Q, Obermann S, Ma J, Soler-Polo D, Melidonie J, Barragán A, Sánchez-Grande A, Lauwaet K, Gallego JM, Miranda R, Écija D, Jelínek P, Feng X, Urgel JI. On-Surface Synthesis of Non-Benzenoid Nanographenes Embedding Azulene and Stone-Wales Topologies. Angew Chem Int Ed Engl 2024; 63:e202318185. [PMID: 38299925 DOI: 10.1002/anie.202318185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/26/2024] [Accepted: 01/30/2024] [Indexed: 02/02/2024]
Abstract
The incorporation of non-benzenoid motifs in graphene nanostructures significantly impacts their properties, making them attractive for applications in carbon-based electronics. However, understanding how specific non-benzenoid structures influence their properties remains limited, and further investigations are needed to fully comprehend their implications. Here, we report an on-surface synthetic strategy toward fabricating non-benzenoid nanographenes containing different combinations of pentagonal and heptagonal rings. Their structure and electronic properties were investigated via scanning tunneling microscopy and spectroscopy, complemented by computational investigations. After thermal activation of the precursor P on the Au(111) surface, we detected two major nanographene products. Nanographene Aa-a embeds two azulene units formed through oxidative ring-closure of methyl substituents, while Aa-s contains one azulene unit and one Stone-Wales defect, formed by the combination of oxidative ring-closure and skeletal ring-rearrangement reactions. Aa-a exhibits an antiferromagnetic ground state with the highest magnetic exchange coupling reported up to date for a non-benzenoid containing nanographene, coexisting with side-products with closed shell configurations resulted from the combination of ring-closure and ring-rearragement reactions (Ba-a , Ba-s , Bs-a and Bs-s ). Our results provide insights into the single gold atom assisted synthesis of novel NGs containing non-benzenoid motifs and their tailored electronic/magnetic properties.
Collapse
Affiliation(s)
- Kalyan Biswas
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Qifan Chen
- Institute of Physics of the Czech Academy of Science, CZ-16253, Praha, Czech Republic
- Faculty of Mathematics and Physics, Charles University, V Holešovičkách 2, 180 00, Praha, Czech Republic
| | - Sebastian Obermann
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
| | - Ji Ma
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Diego Soler-Polo
- Institute of Physics of the Czech Academy of Science, CZ-16253, Praha, Czech Republic
| | - Jason Melidonie
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
| | - Ana Barragán
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Ana Sánchez-Grande
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - Koen Lauwaet
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
| | - José M Gallego
- Instituto de Ciencia de Materiales de Madrid (ICMM), CSIC, Cantoblanco, 28049, Madrid, Spain
| | - Rodolfo Miranda
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Departamento de Física de la Materia Condensada, Universidad Autónoma de Madrid, 28049, Madrid, Spain
| | - David Écija
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Unidad de Nanomateriales avanzados, IMDEA Nanoscience, Unidad asociada al CSIC por el ICMM, 28049, Madrid, Spain
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, CZ-16253, Praha, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University Olomouc, 771 46, Olomouc, Czech Republic
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, D-01069, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - José I Urgel
- IMDEA Nanoscience, C/Faraday 9, Campus de Cantoblanco, 28049, Madrid, Spain
- Unidad de Nanomateriales avanzados, IMDEA Nanoscience, Unidad asociada al CSIC por el ICMM, 28049, Madrid, Spain
| |
Collapse
|
23
|
Pastor E, Lian Z, Xia L, Ecija D, Galán-Mascarós JR, Barja S, Giménez S, Arbiol J, López N, García de Arquer FP. Complementary probes for the electrochemical interface. Nat Rev Chem 2024; 8:159-178. [PMID: 38388837 DOI: 10.1038/s41570-024-00575-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2024] [Indexed: 02/24/2024]
Abstract
The functions of electrochemical energy conversion and storage devices rely on the dynamic junction between a solid and a fluid: the electrochemical interface (EI). Many experimental techniques have been developed to probe the EI, but they provide only a partial picture. Building a full mechanistic understanding requires combining multiple probes, either successively or simultaneously. However, such combinations lead to important technical and theoretical challenges. In this Review, we focus on complementary optoelectronic probes and modelling to address the EI across different timescales and spatial scales - including mapping surface reconstruction, reactants and reaction modulators during operation. We discuss how combining these probes can facilitate a predictive design of the EI when closely integrated with theory.
Collapse
Affiliation(s)
- Ernest Pastor
- CNRS, IPR (Institut de Physique de Rennes), University of Rennes, Rennes, France.
- CNRS, Univ Rennes, DYNACOM (Dynamical Control of Materials Laboratory) - IRL2015, The University of Tokyo, Tokyo, Japan.
| | - Zan Lian
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - Lu Xia
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - David Ecija
- IMDEA Nanoscience, Campus Universitario de Cantoblanco, Madrid, Spain
| | - José Ramón Galán-Mascarós
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
- ICREA, Barcelona, Spain
| | - Sara Barja
- Department of Polymers and Advanced Materials, Centro de Física de Materiales (CFM), University of the Basque Country UPV/EHU, San Sebastián, Spain
- Donostia International Physics Center (DIPC), San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| | - Sixto Giménez
- Institute of Advanced Materials (INAM) Universitat Jaume I, Castelló, Spain
| | - Jordi Arbiol
- ICREA, Barcelona, Spain
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, Barcelona, Catalonia, Spain
| | - Núria López
- ICIQ-Institute of Chemical Research of Catalonia, The Barcelona Institute of Science and Technology, Tarragona, Spain
| | - F Pelayo García de Arquer
- ICFO-Institut de Ciències Fotòniques, The Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|
24
|
Zhong Q, Jung J, Kohrs D, Kaczmarek LA, Ebeling D, Mollenhauer D, Wegner HA, Schirmeisen A. Deciphering the Mechanism of On-Surface Dehydrogenative C-C Coupling Reactions. J Am Chem Soc 2024; 146:1849-1859. [PMID: 38226612 DOI: 10.1021/jacs.3c05233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
On-surface synthesis has proven to be a powerful approach for fabricating various low-dimensional covalent nanostructures with atomic precision that could be challenging for conventional solution chemistry. Dehydrogenative Caryl-Caryl coupling is one of the most popular on-surface reactions, of which the mechanisms, however, have not been well understood due to the lack of microscopic insights into the intermediates that are fleetingly existing under harsh reaction conditions. Here, we bypass the most energy-demanding initiation step to generate and capture some of the intermediates at room temperature (RT) via the cyclodehydrobromination of 1-bromo-8-phenylnaphthalene on a Cu(111) surface. Bond-level scanning probe imaging and manipulation in combination with DFT calculations allow for the identification of chemisorbed radicals, cyclized intermediates, and dehydrogenated products. These intermediates correspond to three main reaction steps, namely, debromination, cyclization (radical addition), and H elimination. H elimination is the rate-determining step as evidenced by the predominant cyclized intermediates. Furthermore, we reveal a long-overlooked pathway of dehydrogenation, namely, atomic hydrogen-catalyzed H shift and elimination, based on the observation of intermediates for H shift and superhydrogenation and the proof of a self-amplifying effect of the reaction. This pathway is further corroborated by comprehensive theoretical analysis on the reaction thermodynamics and kinetics.
Collapse
Affiliation(s)
- Qigang Zhong
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen 35392, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Functional Nano & Soft Materials, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China
| | - Jannis Jung
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Physical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Daniel Kohrs
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - L Alix Kaczmarek
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Physical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Daniel Ebeling
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen 35392, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
| | - Doreen Mollenhauer
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Physical Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - Hermann A Wegner
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
- Institute of Organic Chemistry, Justus Liebig University Giessen, Giessen 35392, Germany
| | - André Schirmeisen
- Institute of Applied Physics, Justus Liebig University Giessen, Giessen 35392, Germany
- Center for Materials Research (LaMa), Justus Liebig University Giessen, Giessen 35392, Germany
| |
Collapse
|
25
|
Wang L, Peng X, Su J, Wang J, Gallardo A, Yang H, Chen Q, Lyu P, Jelínek P, Liu J, Wong MW, Lu J. Highly Selective On-Surface Ring-Opening of Aromatic Azulene Moiety. J Am Chem Soc 2024; 146:1563-1571. [PMID: 38141030 DOI: 10.1021/jacs.3c11652] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
Controllable ring-opening of polycyclic aromatic hydrocarbons plays a crucial role in various chemical and biological processes. However, breaking down aromatic covalent C-C bonds is exceptionally challenging due to their high stability and strong aromaticity. This study presents a seminal report on the precise and highly selective on-surface ring-opening of the seven-membered ring within the aromatic azulene moieties under mild conditions. The chemical structures of the resulting products were identified using bond-resolved scanning probe microscopy. Furthermore, through density functional theory calculations, we uncovered the mechanism behind the ring-opening process and elucidated its chemical driving force. The key to achieving this ring-opening process lies in manipulating the local aromaticity of the aromatic azulene moiety through strain-induced internal ring rearrangement and cyclodehydrogenation. By precisely controlling these factors, we successfully triggered the desired ring-opening reaction. Our findings not only provide valuable insights into the ring-opening process of polycyclic aromatic hydrocarbons but also open up new possibilities for the manipulation and reconstruction of these important chemical structures.
Collapse
Affiliation(s)
- Lulu Wang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Xinnan Peng
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jie Su
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Junting Wang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, People's Republic of China
| | - Aurelio Gallardo
- Institute of Physics of the Czech Academy of Science, 16200 Praha, Czech Republic
| | - Hui Yang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Qifan Chen
- Institute of Physics of the Czech Academy of Science, 16200 Praha, Czech Republic
| | - Pin Lyu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Pavel Jelínek
- Institute of Physics of the Czech Academy of Science, 16200 Praha, Czech Republic
- Regional Centre of Advanced Technologies and Materials, Palacký University, 78371 Olomouc, Czech Republic
| | - Junzhi Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, 999077 Hong Kong, People's Republic of China
| | - Ming Wah Wong
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
| | - Jiong Lu
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore
- Institute for Functional Intelligent Materials, National University of Singapore, 4 Science Drive 2, 117544, Singapore
| |
Collapse
|
26
|
Riemann A, Rankin L, Henry D. Atomic Charge Dependency of Spiropyran/Merocyanine Adsorption as a Precursor to Surface Isomerization Reactions. ACS OMEGA 2024; 9:798-810. [PMID: 38222550 PMCID: PMC10785610 DOI: 10.1021/acsomega.3c06712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
This computational study investigates the adsorption of various spiropyran and merocyanine isomers on a NaCl substrate using a combination of density functional theory (DFT) and molecular mechanics (MM) calculations. Four different charge methods were used to determine the partial atomic charges for the adsorbate molecules, including Mulliken population analysis and three electrostatic potential (ESP) methods (Merz-Kollman, ChelpG, and Hu-Lu-Yang), while three different force fields (AMBER 3, CHARMM 27, and MM+) were employed for the MM calculations. The results show that the various DFT charge methods produced similar outcomes for the molecules' partial atomic charges, with some exceptions for individual atoms and methods. Additionally, it was found that the ESP charge methods were more sensitive to the conformer orientation than the Mulliken approach. The adsorption behavior of merocyanine conformers with the central bond in trans orientation (T-conformers) was similar for various configurations, with the molecule adsorbing mostly flat with its aromatic rings almost parallel to the substrate. However, C-conformers (with their central bond in cis orientation) and spiropyran isomers exhibited inconsistent adsorption behavior, mostly because only some of the aromatic rings contributed to the adsorption behavior. Due to additional van der Waals interactions of more aromatic rings, the adsorption energies for T-conformers are consistently 0.2-0.3 eV higher than for C-conformers and for spiropyran. The study found that the adsorption geometries and energies of stable T-conformers were independent of the partial atomic charge scheme and force field used, and C-conformers show parameter-dependent behavior upon adsorption, leading to metastable configurations. These findings indicate viable pathways during the spiropyran-merocyanine isomerization reactions. Therefore, the results provide initial insights into the possibility of switching spiropyran isomers into merocyanine isomers and vice versa after adsorption onto substrates.
Collapse
Affiliation(s)
- Andreas Riemann
- Department of Physics & Astronomy, Western Washington University, 516 High Street, Bellingham, Washington 98225, United States
| | - Lauren Rankin
- Department of Physics & Astronomy, Western Washington University, 516 High Street, Bellingham, Washington 98225, United States
| | - Dylan Henry
- Department of Physics & Astronomy, Western Washington University, 516 High Street, Bellingham, Washington 98225, United States
| |
Collapse
|
27
|
Liu Y, Li X, Zhang Y, Ge L, Guan Y, Zhang Z. Ultra-Large Scale Stitchless AFM: Advancing Nanoscale Characterization and Manipulation with Zero Stitching Error and High Throughput. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2303838. [PMID: 37612824 DOI: 10.1002/smll.202303838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/08/2023] [Indexed: 08/25/2023]
Abstract
The atomic force microscopy (AFM) is an important tool capable of characterization, measurement, and manipulation at the nanoscale with a vertical resolution of less than 0.1 nm. However, the conventional AFMs' scanning range is around 100 µm, which limits their capability for processing cross-scale samples. In this study, it proposes a novel approach to overcome this limitation with an ultra-large scale stitchless AFM (ULSS-AFM) that allows for the high-throughput characterization of an area of up to 1 × 1 mm2 through a synergistic integration with a compliant nano-manipulator (CNM). Specifically, the compact CNM provides planar motion with nanoscale precision and millimeter range for the sample, while the probe of the ULSS-AFM interacts with the sample. Experimental results show that the proposed ULSS-AFM performs effectively in different scanning ranges under various scanning modes, resolutions, and frequencies. Compared with the conventional AFMs, the approach enables high-throughput characterization of ultra-large scale samples without stitching or bow errors, expanding the scanning area of conventional AFMs by two orders of magnitude. This advancement opens up important avenues for cross-scale scientific research and industrial applications in nano- and microscale.
Collapse
Affiliation(s)
- Yijie Liu
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| | - Xuexuan Li
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| | - Yuliang Zhang
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Lin Ge
- NT-MDT Spectrum Instruments China office, Beijing, 100053, China
| | - Yingchun Guan
- School of Mechanical Engineering and Automation, Beihang University, 37 Xueyuan Road, Beijing, 100191, China
| | - Zhen Zhang
- State Key Laboratory of Tribology in Advanced Equipment, Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
- Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipments and Control, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
28
|
Kawai S, Silveira OJ, Kurki L, Yuan Z, Nishiuchi T, Kodama T, Sun K, Custance O, Lado JL, Kubo T, Foster AS. Local probe-induced structural isomerization in a one-dimensional molecular array. Nat Commun 2023; 14:7741. [PMID: 38007486 PMCID: PMC10676401 DOI: 10.1038/s41467-023-43659-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/15/2023] [Indexed: 11/27/2023] Open
Abstract
Synthesis of one-dimensional molecular arrays with tailored stereoisomers is challenging yet has great potential for application in molecular opto-, electronic- and magnetic-devices, where the local array structure plays a decisive role in the functional properties. Here, we demonstrate the construction and characterization of dehydroazulene isomer and diradical units in three-dimensional organometallic compounds on Ag(111) with a combination of low-temperature scanning tunneling microscopy and density functional theory calculations. Tip-induced voltage pulses firstly result in the formation of a diradical species via successive homolytic fission of two C-Br bonds in the naphthyl groups, which are subsequently transformed into chiral dehydroazulene moieties. The delicate balance of the reaction rates among the diradical and two stereoisomers, arising from an in-line configuration of tip and molecular unit, allows directional azulene-to-azulene and azulene-to-diradical local probe structural isomerization in a controlled manner. Furthermore, our theoretical calculations suggest that the diradical moiety hosts an open-shell singlet with antiferromagnetic coupling between the unpaired electrons, which can undergo an inelastic spin transition of 91 meV to the ferromagnetically coupled triplet state.
Collapse
Affiliation(s)
- Shigeki Kawai
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan.
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan.
| | | | - Lauri Kurki
- Department of Applied Physics, Aalto University, Helsinki, Finland
| | - Zhangyu Yuan
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
- Graduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Japan
| | - Tomohiko Nishiuchi
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
- Innovative Catalysis Science Division (ICS), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Takuya Kodama
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan
- Innovative Catalysis Science Division (ICS), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan
| | - Kewei Sun
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Oscar Custance
- Center for Basic Research on Materials, National Institute for Materials Science, Tsukuba, Ibaraki, Japan
| | - Jose L Lado
- Department of Applied Physics, Aalto University, Helsinki, Finland
| | - Takashi Kubo
- Department of Chemistry, Graduate School of Science, Osaka University, Toyonaka, Japan.
- Innovative Catalysis Science Division (ICS), Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, Suita, Osaka, Japan.
| | - Adam S Foster
- Department of Applied Physics, Aalto University, Helsinki, Finland.
- WPI Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma- machi, Kanazawa, Japan.
| |
Collapse
|
29
|
Sun L, Zheng W, Gao W, Kang F, Zhao M, Xu W. On-surface synthesis of aromatic cyclo[10]carbon and cyclo[14]carbon. Nature 2023; 623:972-976. [PMID: 38030782 DOI: 10.1038/s41586-023-06741-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 10/11/2023] [Indexed: 12/01/2023]
Abstract
All-carbon materials based on sp2-hybridized atoms, such as fullerenes1, carbon nanotubes2 and graphene3, have been much explored due to their remarkable physicochemical properties and potential for applications. Another unusual all-carbon allotrope family are the cyclo[n]carbons (Cn) consisting of two-coordinated sp-hybridized atoms. They have been studied in the gas phase since the twentieth century4-6, but their high reactivity has meant that condensed-phase synthesis and real-space characterization have been challenging, leaving their exact molecular structure open to debate7-11. Only in 2019 was an isolated C18 generated on a surface and its polyynic structure revealed by bond-resolved atomic force microscopy12,13, followed by a recent report14 on C16. The C18 work trigged theoretical studies clarifying the structure of cyclo[n]carbons up to C100 (refs. 15-20), although the synthesis and characterization of smaller Cn allotropes remains difficult. Here we modify the earlier on-surface synthesis approach to produce cyclo[10]carbon (C10) and cyclo[14]carbon (C14) via tip-induced dehalogenation and retro-Bergman ring opening of fully chlorinated naphthalene (C10Cl8) and anthracene (C14Cl10) molecules, respectively. We use atomic force microscopy imaging and theoretical calculations to show that, in contrast to C18 and C16, C10 and C14 have a cumulenic and cumulene-like structure, respectively. Our results demonstrate an alternative strategy to generate cyclocarbons on the surface, providing an avenue for characterizing annular carbon allotropes for structure and stability.
Collapse
Affiliation(s)
- Luye Sun
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Wei Zheng
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Wenze Gao
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Faming Kang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Mali Zhao
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, People's Republic of China
| | - Wei Xu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai, People's Republic of China.
| |
Collapse
|
30
|
Vogelsang L, Birk T, Paschke F, Bauer A, Enenkel V, Holz LM, Fonin M, Winter RF. Ferrocenyl-Substituted Triazatruxenes: Synthesis, Electronic Properties, and the Impact of Ferrocenyl Residues on Directional On-Surface Switching on Ag(111). Inorg Chem 2023; 62:16236-16249. [PMID: 37733818 PMCID: PMC10548419 DOI: 10.1021/acs.inorgchem.3c03009] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Indexed: 09/23/2023]
Abstract
We report on seven new ferrocenyl-(1, 3)- and ferrocenylethynyl-modified N,N',N″-triethyltriazatruxenes (EtTATs) 4-7 as well as the dodecyl counterpart 2 of compound 1 and their use as molecular switching units when deposited on a Ag(111) surface. Such functional units may constitute a new approach to molecule-based high-density information storage and processing. Besides the five compounds 1-3, 6, and 7, where the 3-fold rotational symmetry of the triazatruxene (TAT) template is preserved, we also included 2-ethynylferrocenyl-TAT 4 and 2,2'-di(ethynylferrocenyl)-TAT 5, whose mono- and disubstitution patterns break the 3-fold symmetry of the TAT core. Voltammetric studies indicate that the ferrocenyl residues of compounds 1-7 oxidize prior to the oxidation of the TAT core. We have noted strong electrostatic effects on TAT oxidation in the 2,2',2″-triferrocenyl-TAT derivatives 1 and 2 and the 3,3',3″-isomer 3. The oxidized complexes feature multiple electronic excitations in the near-infrared and the visible spectra, which are assigned to dδ/δ* transitions of the ferrocenium (Fc+) moieties, as well as TAT → Fc+ charge-transfer transitions. The latter are augmented by intervalence charge-transfer contributions Fc → Fc+ in mixed-valent states, where only a part of the available ferrocenyl residues is oxidized. EtTAT was previously identified as a directional three-level switching unit when deposited on Ag(111) and constitutes a trinary-digit unit for on-surface information storage. The symmetrically trisubstituted compound 6 retains this property, albeit at somewhat reduced switching rates due to the additional interaction between the ferrocenyl residues and the Ag surface. In particular, the high directionality at low bias and the inversion of the preferred sense of the on-surface rocking motion with either a clockwise or counterclockwise switching sense, depending on the identity of the surface enantiomer, are preserved. Unsymmetrical substitution in mono- and diferrocenylated 4 and 5 alters the underlying ratchet potential in a manner such that a two-state switching between the two degenerate surface conformations of 4 or a pronounced suppression of switching (5) is observed.
Collapse
Affiliation(s)
- Lars Vogelsang
- Fachbereich
Chemie, Universität Konstanz, 78467 Konstanz, Germany
| | - Tobias Birk
- Fachbereich
Physik, Universität Konstanz, 78467 Konstanz, Germany
| | - Fabian Paschke
- Fachbereich
Physik, Universität Konstanz, 78467 Konstanz, Germany
| | - Anja Bauer
- Fachbereich
Physik, Universität Konstanz, 78467 Konstanz, Germany
| | - Vivien Enenkel
- Fachbereich
Physik, Universität Konstanz, 78467 Konstanz, Germany
| | - Lukas M. Holz
- Fachbereich
Chemie, Universität Konstanz, 78467 Konstanz, Germany
| | - Mikhail Fonin
- Fachbereich
Physik, Universität Konstanz, 78467 Konstanz, Germany
| | - Rainer F. Winter
- Fachbereich
Chemie, Universität Konstanz, 78467 Konstanz, Germany
| |
Collapse
|
31
|
Li R, Zhang L, Chen T, Wang D. On-Surface Two-Dimensional Polymerization: Advances, Challenges, and Prospects. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:12521-12532. [PMID: 37651313 DOI: 10.1021/acs.langmuir.3c00880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Two-dimensional polymers (2DPs) are molecularly thin networks consisting of monomers covalently linked in at least two directions in the molecular plane. Because of the unique structural features and emergent physicochemical properties, 2DPs promise application potentials in catalysis, chemical sensing, and organic electronic devices. On-surface synthesis is of great interest to fabricate 2DPs with atomic precision, and the properties of the 2DPs can be characterized in situ through scanning probe techniques. In this Perspective, we first introduce the recent developments of on-surface 2D polymerization, including the design principle, the synthetic reactions, and the factors affecting the synthesis of 2DPs on surface. Then, we summarize some major challenges in this field, including the fabrication of high-quality 2DPs and the study of the intrinsic electronic properties of 2DPs, and we discuss some of the available solutions to address these issues.
Collapse
Affiliation(s)
- Ruoning Li
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Longzhu Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ting Chen
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Dong Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
32
|
Gross L, Repp J. Surface interaction propels molecule forwards. Nature 2023; 621:49-50. [PMID: 37673987 DOI: 10.1038/d41586-023-02565-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
|
33
|
Duan S, Xu X. Accurate Simulations of Scanning Tunneling Microscope: Both Tip and Substrate States Matter. J Phys Chem Lett 2023:6726-6735. [PMID: 37470339 DOI: 10.1021/acs.jpclett.3c01603] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/21/2023]
Abstract
Scanning tunneling microscope (STM) provides an atomic-scale characterization tool. To this end, high-resolution measurements and accurate simulations must closely cooperate. Emerging experimental techniques, e.g., substrate spacers and tip modifications, suppress metallic couplings and improve the resolution. On the other hand, development of STM simulation methods was inactive in the past decade. Conventional simulations focus on the electronic structure of the substrate, often overlooking detailed descriptions of the tip states. Meanwhile, the overwhelming usage of periodic boundary conditions ensures effective simulations of only neutral systems. In this Perspective, we highlight the recent progress that takes the effects of both tip and substrate into account under either Tersoff-Hamann or Bardeen's approximation, which provides an accurate analysis of measured high-resolution STM results, uncovers underlying concepts, and rationally designs experimental protocols for important chemical systems. We hope this Perspective will stimulate broad interest in advanced STM simulations, highlighting the way forward for STM investigations that involve complex geometrical and electronic structures.
Collapse
Affiliation(s)
- Sai Duan
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People's Republic of China
- Hefei National Laboratory, Hefei 230088, P. R. China
| |
Collapse
|
34
|
Abstract
Chemical reactions can be accelerated by directional local pressure applied to molecules.
Collapse
Affiliation(s)
- Paul S Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles (UCLA), Los Angeles, CA, USA
- Department of Bioengineering, UCLA, Los Angeles, CA, USA
- Department of Materials Science and Engineering, UCLA, Los Angeles, CA, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA, USA
| |
Collapse
|
35
|
Wang T, Angulo-Portugal P, Berdonces-Layunta A, Jancarik A, Gourdon A, Holec J, Kumar M, Soler D, Jelinek P, Casanova D, Corso M, de Oteyza DG, Calupitan JP. Tuning the Diradical Character of Pentacene Derivatives via Non-Benzenoid Coupling Motifs. J Am Chem Soc 2023; 145:10333-10341. [PMID: 37099608 PMCID: PMC10176464 DOI: 10.1021/jacs.3c02027] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Indexed: 04/27/2023]
Abstract
The development of functional organic molecules requires structures of increasing size and complexity, which are typically obtained by the covalent coupling of smaller building blocks. Herein, with the aid of high-resolution scanning tunneling microscopy/spectroscopy and density functional theory, the coupling of a sterically demanded pentacene derivative on Au(111) into fused dimers connected by non-benzenoid rings was studied. The diradical character of the products was tuned according to the coupling section. In particular, the antiaromaticity of cyclobutadiene as the coupling motif and its position within the structure play a decisive role in shifting the natural orbital occupancies toward a stronger diradical electronic character. Understanding these structure-property relations is desirable not only for fundamental reasons but also for designing new complex and functional molecular structures.
Collapse
Affiliation(s)
- Tao Wang
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | | | - Alejandro Berdonces-Layunta
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Andrej Jancarik
- Univ.
Bordeaux, CNRS, Centre de Recherche Paul Pascal, CRPP, UMR 5031, 33600 Pessac, France
| | - André Gourdon
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | - Jan Holec
- CEMES-CNRS, 29 Rue J. Marvig, 31055 Toulouse, France
| | - Manish Kumar
- Institute
of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Praha, Czech
Republic
| | - Diego Soler
- Institute
of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Praha, Czech
Republic
| | - Pavel Jelinek
- Institute
of Physics of the Czech Academy of Sciences, Cukrovarnicka 10, 162 00 Praha, Czech
Republic
| | - David Casanova
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Ikerbasque,
Basque Foundation for Science, 48009 Bilbao, Spain
| | - Martina Corso
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| | - Dimas G. de Oteyza
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Nanomaterials
and Nanotechnology Research Center (CINN), CSIC-UNIOVI-PA, 33940 El Entrego, Spain
| | - Jan Patrick Calupitan
- Donostia
International Physics Center, 20018 San Sebastián, Spain
- Centro
de Física de Materiales (CFM-MPC), CSIC-UPV/EHU, 20018 San Sebastián, Spain
| |
Collapse
|
36
|
Pérez Paz A. Cold Oxidative Demetalation of Aryl Organometallics: A Novel Route to Demetalate Ullmann Intermediates without Heating. ChemistrySelect 2023. [DOI: 10.1002/slct.202203973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Affiliation(s)
- Alejandro Pérez Paz
- Department of Chemistry and Biochemistry College of Science (COS) United Arab Emirates University (UAEU) P.O. Box 15551 Al Ain, Abu Dhabi United Arab Emirates
| |
Collapse
|
37
|
Duan S, Tian G, Xu X. A General Framework of Scanning Tunneling Microscopy Based on Bardeen's Approximation for Isolated Molecules. JACS AU 2023; 3:86-92. [PMID: 36711086 PMCID: PMC9875243 DOI: 10.1021/jacsau.2c00627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 06/18/2023]
Abstract
Scanning tunneling microscopy (STM) is one of the most popular techniques for precise characterization. Yet, its current theoretical implementation is often based on the periodic boundary condition with the Tersoff-Hamann approximation, which is inefficient to explore the tip states other than the s-wave and to treat properly the charged molecules that are ubiquitous in chemistry. In this work, we establish a general theoretical framework for STM image simulations, which is based on the Bardeen's approximation and utilizes the boundary condition of the cluster model. We develop an analytic algorithm for the precise evaluation of the transfer Hamiltonian matrix, addressing correctly the asymptotic behaviors of the tip states. Numerical results demonstrate that the molecular images under different STM tip states and mapping modes can be quantitatively simulated in the present framework, which paves the avenue for the conclusive investigation of the ground state electronic structures for either neutral or charged molecules.
Collapse
Affiliation(s)
- Sai Duan
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai200433, P. R. China
| | - Guangjun Tian
- Key
Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, P. R. China
| | - Xin Xu
- Collaborative
Innovation Center of Chemistry for Energy Materials, Shanghai Key
Laboratory of Molecular Catalysis and Innovative Materials, MOE Key
Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai200433, P. R. China
- Hefei
National Laboratory, Hefei230088, P. R. China
| |
Collapse
|
38
|
Potential Controlled Redox Cycling of 4-aminothiophenol by Coupling Plasmon Mediated Chemical Reaction with Electrochemical Reaction. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
39
|
Li J, Pan J, Yin W, Cai Y, Huang H, He Y, Gong G, Yuan Y, Fan C, Zhang Q, Wang L. Recent status and advanced progress of tip effect induced by micro-nanostructure. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
40
|
Sloan PA, Rusimova KR. A self-consistent model to link surface electronic band structure to the voltage dependence of hot electron induced molecular nanoprobe experiments. NANOSCALE ADVANCES 2022; 4:4880-4885. [PMID: 36381505 PMCID: PMC9642357 DOI: 10.1039/d2na00644h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Understanding the ultra-fast transport properties of hot charge carriers is of significant importance both fundamentally and technically in applications like solar cells and transistors. However, direct measurement of charge transport at the relevant nanometre length scales is challenging with only a few experimental methods demonstrated to date. Here we report on molecular nanoprobe experiments on the Si(111)-7 × 7 at room temperature where charge injected from the tip of a scanning tunnelling microscope (STM) travels laterally across a surface and induces single adsorbate toluene molecules to react over length scales of tens of nanometres. A simple model is developed for the fraction of the tunnelling current captured into each of the surface electronic bands with input from only high-resolution scanning tunnelling spectroscopy (STS) of the clean Si(111)-7 × 7 surface. This model is quantitatively linked to the voltage dependence of the molecular nanoprobe experiments through a single manipulation probability (i.e. fitting parameter) per state. This model fits the measured data and gives explanation to the measured voltage onsets, exponential increase in the measured manipulation probabilities and plateau at higher voltages. It also confirms an ultrafast relaxation to the bottom of a surface band for the injected charge after injection, but before the nonlocal spread across the surface.
Collapse
Affiliation(s)
- Peter A Sloan
- Department of Physics, University of Bath Bath BA2 7AY UK
- Centre for Nanoscience and Nanotechnology, University of Bath Bath BA2 7AY UK
| | - Kristina R Rusimova
- Department of Physics, University of Bath Bath BA2 7AY UK
- Centre for Nanoscience and Nanotechnology, University of Bath Bath BA2 7AY UK
- Centre for Photonics and Photonic Materials, University of Bath Bath BA2 7AY UK
| |
Collapse
|
41
|
Au-Yeung KH, Kühne T, Aiboudi O, Sarkar S, Guskova O, Ryndyk DA, Heine T, Lissel F, Moresco F. STM-induced ring closure of vinylheptafulvene molecular dipole switches on Au(111). NANOSCALE ADVANCES 2022; 4:4351-4357. [PMID: 36321147 PMCID: PMC9552919 DOI: 10.1039/d2na00038e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
Dihydroazulene/vinylheptafulvene pairs are known as molecular dipole switches that undergo a ring-opening/-closure reaction by UV irradiation or thermal excitation. Herein, we show that the ring-closure reaction of a single vinylheptafulvene adsorbed on the Au(111) surface can be induced by voltage pulses from the tip of a scanning tunneling microscope. This cyclization is accompanied by the elimination of HCN, as confirmed by simulations. When inducing lateral movements by applying voltage pulses with the STM tip, we observe that the response of the single molecules changes with the ring closing reaction. This behaviour is discussed by comparing the dipole moment and the charge distribution of the open and closed forms on the surface.
Collapse
Affiliation(s)
- Kwan Ho Au-Yeung
- Center for Advancing Electronics Dresden, TU Dresden 01062 Dresden Germany
| | - Tim Kühne
- Center for Advancing Electronics Dresden, TU Dresden 01062 Dresden Germany
| | - Oumaima Aiboudi
- Leibniz Institute of Polymer Research 01069 Dresden Germany
- Faculty of Chemistry and Food Chemistry, TU Dresden 01062 Dresden Germany
| | - Suchetana Sarkar
- Center for Advancing Electronics Dresden, TU Dresden 01062 Dresden Germany
| | - Olga Guskova
- Leibniz Institute of Polymer Research 01069 Dresden Germany
- Faculty of Chemistry and Food Chemistry, TU Dresden 01062 Dresden Germany
| | - Dmitry A Ryndyk
- Institute for Materials Science, TU Dresden 01062 Dresden Germany
- Theoretical Chemistry, TU Dresden 01062 Dresden Germany
| | - Thomas Heine
- Theoretical Chemistry, TU Dresden 01062 Dresden Germany
| | | | - Francesca Moresco
- Center for Advancing Electronics Dresden, TU Dresden 01062 Dresden Germany
| |
Collapse
|
42
|
Alabugin I, Hu C. A Swiss Army knife for surface chemistry. Science 2022; 377:261-262. [DOI: 10.1126/science.abq2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Voltage pulses offer a way to control single-molecule reactions on a surface
Collapse
Affiliation(s)
- Igor Alabugin
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| | - Chaowei Hu
- Department of Chemistry and Biochemistry, Florida State University, Tallahassee, FL 32306, USA
| |
Collapse
|