1
|
Stocksdale JT, Leventhal MJ, Lam S, Xu YX, Wang YO, Wang KQ, Thomas R, Faghihmonzavi Z, Raghav Y, Smith C, Wu J, Miramontes R, Sarda K, Johnston H, Shin MG, Huang T, Foster M, Barch M, Amirani N, Paiz C, Easter L, Duderstadt E, Vaibhav V, Sundararaman N, Felsenfeld DP, Vogt TF, Van Eyk J, Finkbeiner S, Kaye JA, Fraenkel E, Thompson LM. Intersecting impact of CAG repeat and huntingtin knockout in stem cell-derived cortical neurons. Neurobiol Dis 2025; 210:106914. [PMID: 40258535 DOI: 10.1016/j.nbd.2025.106914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/13/2025] [Accepted: 04/14/2025] [Indexed: 04/23/2025] Open
Abstract
Huntington's Disease (HD) is caused by a CAG repeat expansion in the gene encoding huntingtin (HTT). While normal HTT function appears impacted by the mutation, the specific pathways unique to CAG repeat expansion versus loss of normal function are unclear. To understand the impact of the CAG repeat expansion, we evaluated biological signatures of HTT knockout (HTT KO) versus those that occur from the CAG repeat expansion by applying multi-omics, live cell imaging, survival analysis and a novel feature-based pipeline to study cortical neurons (eCNs) derived from an isogenic human embryonic stem cell series (RUES2). HTT KO and the CAG repeat expansion influence developmental trajectories of eCNs, with opposing effects on growth. Network analyses of differentially expressed genes and proteins associated with enriched epigenetic motifs identified subnetworks common to CAG repeat expansion and HTT KO that include neuronal differentiation, cell cycle regulation, and mechanisms related to transcriptional repression, and may represent gain-of-function mechanisms that cannot be explained by HTT loss of function alone. A combination of dominant and loss-of-function mechanisms are likely involved in the aberrant neurodevelopmental and neurodegenerative features of HD that can help inform therapeutic strategies.
Collapse
Affiliation(s)
| | - Matthew J Leventhal
- MIT PhD Program in Computational and Systems Biology, Cambridge, MA 02139, USA; MIT Department of Biological Engineering, Cambridge, MA 02139, USA; Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Stephanie Lam
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yu-Xin Xu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Yang Oliver Wang
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Keona Q Wang
- Department of Neurobiology and Behavior, UC Irvine, Irvine, CA 92677, USA
| | - Reuben Thomas
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zohreh Faghihmonzavi
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Yogindra Raghav
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Charlene Smith
- Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA 92697, USA
| | - Jie Wu
- Department of Biological Chemistry, UC Irvine, Irvine, CA 92697, USA
| | - Ricardo Miramontes
- Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA
| | - Kanchan Sarda
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Heather Johnston
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Min-Gyoung Shin
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Terry Huang
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mikelle Foster
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Mariya Barch
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Naufa Amirani
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Chris Paiz
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Lindsay Easter
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Erse Duderstadt
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Vineet Vaibhav
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Niveda Sundararaman
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | | | | | - Jennifer Van Eyk
- Advanced Clinical Biosystems Research Institute, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Steve Finkbeiner
- Institute of Data Science and Biotechnology, Gladstone Institutes, San Francisco, CA 94158, USA; Department of Physiology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Neurology, University of California San Francisco, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Julia A Kaye
- Center for Systems and Therapeutics, Gladstone Institutes, San Francisco, CA 94158, USA; Taube/Koret Center for Neurodegenerative Disease Research, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Ernest Fraenkel
- MIT PhD Program in Computational and Systems Biology, Cambridge, MA 02139, USA; MIT Department of Biological Engineering, Cambridge, MA 02139, USA
| | - Leslie M Thompson
- Department of Neurobiology and Behavior, UC Irvine, Irvine, CA 92677, USA; Department of Psychiatry and Human Behavior, UC Irvine, Irvine, CA 92697, USA; Department of Biological Chemistry, UC Irvine, Irvine, CA 92697, USA; Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA 92697, USA.
| |
Collapse
|
2
|
Stephens MC, Li J, Mair M, Moore J, Zhu K, Tarkunde A, Amoh B, Perez AM, Bhakare A, Guo F, Shulman JM, Al-Ramahi I, Botas J. Computational and functional prioritization identifies genes that rescue behavior and reduce tau protein in fly and human cell models of Alzheimer disease. Am J Hum Genet 2025; 112:1081-1096. [PMID: 40215969 DOI: 10.1016/j.ajhg.2025.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 03/11/2025] [Accepted: 03/14/2025] [Indexed: 05/04/2025] Open
Abstract
Genome-wide association studies (GWASs) in Alzheimer disease (AD) have uncovered over 70 loci significantly associated with AD risk, but identifying the true causal gene(s) at these loci requires systematic functional validation that is rarely performed due to limitations of time and cost. Here, we integrate transcriptome-wide association study (TWAS) with colocalization analysis, fine-mapping, and additional annotation of AD GWAS variants to identify 123 genes at known and suggestive AD risk loci. A comparison with human AD brain transcriptome data confirmed that many of these candidate genes are dysregulated in human AD and correlate with neuropathology. We then tested all available orthologs in two well-established Drosophila AD models that express either wild-type tau or secreted β-amyloid (β42). Experimental perturbation of the 60 available candidates pinpointed 46 that modulated neuronal dysfunction in one or both fly models. The effects of 18 of these genes were concordant with the TWAS prediction, such that the direction of misexpression predicted to increase AD risk in humans exacerbated behavioral impairments in the AD fly models. Reversing the aberrant down- or upregulation of 11 of these genes (MTCH2, ELL, TAP2, HDC, DMWD, MYCL, SLC4A9, ABCA7, CSTF1, PTK2B, and CD2AP) proved neuroprotective in vivo. We further studied MTCH2 and found that it regulates steady-state tau protein levels in the Drosophila brain and reduces tau accumulation in human neural progenitor cells. This systematic, integrative approach effectively prioritizes genes at GWAS loci and reveals promising AD-relevant candidates for further investigation as risk factors or targets for therapeutic intervention.
Collapse
Affiliation(s)
- Morgan C Stephens
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Jiayang Li
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Megan Mair
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Justin Moore
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Katy Zhu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Akash Tarkunde
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Bismark Amoh
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Alma M Perez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Arya Bhakare
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Fangfei Guo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA
| | - Joshua M Shulman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neurology, Baylor College of Medicine, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Disease, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ismael Al-Ramahi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Disease, Baylor College of Medicine, Houston, TX 77030, USA
| | - Juan Botas
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Jan and Dan Duncan Neurological Research Institute, Houston, TX 77030, USA; Center for Alzheimer's and Neurodegenerative Disease, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
3
|
Lebouc M, Bonamy L, Dhellemmes T, Scharnholz J, Richard Q, Courtand G, Brochard A, Martins F, Landry M, Baufreton J, Garret M. Developmental alterations of indirect-pathway medium spiny neurons in mouse models of Huntington's disease. Neurobiol Dis 2025; 208:106874. [PMID: 40090469 DOI: 10.1016/j.nbd.2025.106874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/11/2025] [Accepted: 03/12/2025] [Indexed: 03/18/2025] Open
Abstract
Huntington's disease (HD) is a complex neurodegenerative disorder with cognitive and motor symptoms that typically manifest in adulthood. However, embryonic brain development impairments leading to cortical defects in HD mutation carriers has been shown recently supporting a neurodevelopmental component in HD. Despite HD is primarily recognized as a striatal pathology, developmental alterations in this structure, particularly during the early postnatal period, remain poorly understood. To fill this gap, we examined striatal development in newborn R6/1 mice. We found that D2 receptor-expressing indirect-pathway medium spiny neurons (D2-MSNs) present in the matrix striatal compartment undergo early morphological and electrophysiological maturation. Altered electrophysiological properties were also observed in newborn CAG140 mice. Additionally, we also observed a D2-MSN-selective reduction in glutamatergic cortico-striatal transmission at the beginning of the second postnatal week as well as a reduced projection of D2-MSNs onto the GPe at birth in R6/1 mice. All these alterations were transient with the circuit normalizing after the second postnatal week. These results identify a compartment- and cell-type specific defect in D2-MSNs maturation, which can contribute in their latter vulnerability, as this cell-type is the first to degenerate in HD during adulthood.
Collapse
Affiliation(s)
- Margaux Lebouc
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Léa Bonamy
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | | | - Quentin Richard
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | - Gilles Courtand
- Univ. Bordeaux, CNRS, INCIA, UMR 5297, F-33000 Bordeaux, France
| | - Alexandre Brochard
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Frédéric Martins
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000 Bordeaux, France
| | - Marc Landry
- Univ. Bordeaux, CNRS, IMN, UMR 5293, F-33000 Bordeaux, France
| | | | - Maurice Garret
- Univ. Bordeaux, CNRS, INCIA, UMR 5297, F-33000 Bordeaux, France
| |
Collapse
|
4
|
Olson L, Dickens S, Schultz JL, Neema M, Nopoulos PC. No Evidence of Early Developmental Delay in Juvenile-Onset Huntington's Disease Patients. Mov Disord Clin Pract 2025; 12:346-352. [PMID: 39644245 PMCID: PMC11952948 DOI: 10.1002/mdc3.14287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/09/2024] Open
Abstract
BACKGROUND Previous studies suggest that early developmental delay is a common feature of Juvenile-Onset Huntington's disease (JOHD), with highest incidence in those with very high CAG repeats (> 80). However, all reports of developmental delay in JOHD are exclusively based on retrospective review of medical charts. Comprehensive assessment of birth history metrics may provide better insight into the question of early life development in JOHD. OBJECTIVE To explore the prevalence of prematurity, birth complications, low birth weight and developmental delay in patients with JOHD in comparison to control participants. METHODS Parents of patients with JOHD and gene-non-expanded (GNE) control participants from Kids-HD (n = 104) and Kids-JOHD (n = 34, 24% with CAG > 80) studies completed a comprehensive birth history questionnaire. Answers focused on prematurity, birth complications, and birth weight, and along with reports of early developmental milestones, were compared between groups. RESULTS There were no statistically significant differences in prematurity, birth weights, birth complications, or motor and verbal developmental milestones between JOHD patients and GNE controls (all P values > 0.1). Furthermore, stratifying JOHD patients by CAG expansion (low vs. high) also showed no significant differences (GNE vs. low or GNE vs. high). CONCLUSIONS These findings support the notion that JOHD does not manifest as developmental delay before motor symptom onset and highlight a new framework to understand the course and nature of the disease.
Collapse
Affiliation(s)
- Lucy Olson
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
| | - Sarah Dickens
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
| | - Jordan L. Schultz
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
| | - Mohit Neema
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
| | - Peggy C. Nopoulos
- Department of PsychiatryCarver College of Medicine at the University of IowaIowa CityIowaUSA
- Stead Family Children's Hospital at the University of IowaIowa CityIowaUSA
- Department of NeurologyCarver College of Medicine at the University of IowaIowa CityIowaUSA
| |
Collapse
|
5
|
Badreddine N, Appaix F, Becq G, Achard S, Saudou F, Fino E. Early Alterations of Motor Learning and Corticostriatal Network Activity in a Huntington's Disease Mouse Model. Eur J Neurosci 2025; 61:e70056. [PMID: 40074924 DOI: 10.1111/ejn.70056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 02/03/2025] [Accepted: 02/22/2025] [Indexed: 03/14/2025]
Abstract
Huntington's disease (HD) is a neurodegenerative disorder that presents motor, cognitive, and psychiatric symptoms as it progresses. Prior to motor symptoms onset, alterations, and dysfunctions in the corticostriatal projections have been described along with cognitive deficits, but the sequence of early alterations of brain circuits is largely unknown. There is thus a crucial need to identify early alterations that precede symptoms and that could be used as potential early disease markers. Using an HD knock-in mouse model (HdhCAG140/+) that recapitulates the human genetic alterations and that shows a late and progressive appearance of anatomical and behavioral deficits, we identified early alterations in the motor learning abilities of young mice, long before any motor coordination dysfunctions. In parallel, ex vivo two-photon calcium recordings revealed that young HD mice have altered basal activity patterns in both the dorsomedial and dorsolateral parts of the striatum. In addition, although wild-type mice display specific reorganization of the activity upon motor training, network alterations present in the basal state of non-trained mice are not affected by motor training of HD mice. Our results thus identify early behavioral deficits and network alterations that could serve as early markers of the disease.
Collapse
Affiliation(s)
- N Badreddine
- INMED, Aix-Marseille University, INSERM U1249, Marseille, France
- University Grenoble Alpes, INSERM U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, Grenoble, France
| | - F Appaix
- University Grenoble Alpes, INSERM U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, Grenoble, France
- University Grenoble Alpes, INSERM U1209, CNRS UMR 5309, Institute for Advanced Biosciences, Grenoble, France
| | - G Becq
- Laboratoire Gipsa-Lab, University Grenoble Alpes, UMR 5216 CNRS, Grenoble-INP, Grenoble, France
| | - S Achard
- University Grenoble Alpes, UMR 5224 CNRS, Laboratoire Jean Kuntzmann, Grenoble, France
| | - F Saudou
- University Grenoble Alpes, INSERM U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, Grenoble, France
| | - E Fino
- INMED, Aix-Marseille University, INSERM U1249, Marseille, France
- University Grenoble Alpes, INSERM U1216, CHU Grenoble Alpes, CNRS, Grenoble Institut Neurosciences, Grenoble, France
| |
Collapse
|
6
|
Handsaker RE, Kashin S, Reed NM, Tan S, Lee WS, McDonald TM, Morris K, Kamitaki N, Mullally CD, Morakabati NR, Goldman M, Lind G, Kohli R, Lawton E, Hogan M, Ichihara K, Berretta S, McCarroll SA. Long somatic DNA-repeat expansion drives neurodegeneration in Huntington's disease. Cell 2025; 188:623-639.e19. [PMID: 39824182 PMCID: PMC11822645 DOI: 10.1016/j.cell.2024.11.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 09/15/2024] [Accepted: 11/29/2024] [Indexed: 01/20/2025]
Abstract
In Huntington's disease (HD), striatal projection neurons (SPNs) degenerate during midlife; the core biological question involves how the disease-causing DNA repeat (CAG)n in the huntingtin (HTT) gene leads to neurodegeneration after decades of biological latency. We developed a single-cell method for measuring this repeat's length alongside genome-wide RNA expression. We found that the HTT CAG repeat expands somatically from 40-45 to 100-500+ CAGs in SPNs. Somatic expansion from 40 to 150 CAGs had no apparent cell-autonomous effect, but SPNs with 150-500+ CAGs lost positive and then negative features of neuronal identity, de-repressed senescence/apoptosis genes, and were lost. Our results suggest that somatic repeat expansion beyond 150 CAGs causes SPNs to degenerate quickly and asynchronously. We conclude that in HD, at any one time, most neurons have an innocuous but unstable HTT gene and that HD pathogenesis is a DNA process for almost all of a neuron's life.
Collapse
Affiliation(s)
- Robert E Handsaker
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Seva Kashin
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA.
| | - Nora M Reed
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Steven Tan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Won-Seok Lee
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tara M McDonald
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Nolan Kamitaki
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Christopher D Mullally
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Melissa Goldman
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Gabriel Lind
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Rhea Kohli
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | | | - Marina Hogan
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Kiku Ichihara
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Sabina Berretta
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; McLean Hospital, Belmont, MA 02478, USA; Department of Psychiatry, Harvard Medical School, Boston, MA 02215, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA.
| | - Steven A McCarroll
- Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA; Program in Neuroscience, Harvard Medical School, Boston, MA 02215, USA; Howard Hughes Medical Institute, Boston, MA 02215, USA.
| |
Collapse
|
7
|
Qin Y, Zhao H, Chang Q, Liu Y, Jing Z, Yu D, Mugo SM, Wang H, Zhang Q. Amylopectin-based Hydrogel Probes for Brain-machine Interfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2416926. [PMID: 39663729 DOI: 10.1002/adma.202416926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Indexed: 12/13/2024]
Abstract
Implantable neural probes hold promise for acquiring brain data, modulating neural circuits, and treating various brain disorders. However, traditional implantable probes face significant challenges in practical applications, such as balancing sensitivity with biocompatibility and the difficulties of in situ neural information monitoring and neuromodulation. To address these challenges, this study developed an implantable hydrogel probe capable of recording neural signals, modulating neural circuits, and treating stroke. Amylopectin is integrated into the hydrogels, which can induce reorientation of the poly(3,4-ethylenedioxythiophene) (PEDOT) chain and create compliant interfaces with brain tissues, enhancing both sensitivity and biocompatibility. The hydrogel probe shows the capability of continuously recording deep brain signals for 8 weeks. The hydrogel probe is effectively utilized to study deep brain signals associated with various physiological activities. Neuromodulation and neural signal monitoring are performed directly in the primary motor cortex of rats, enabling control over their limb behaviors through evoked signals. When applied to the primary motor cortex of stroke-affected rats, neuromodulation significantly reduced the brain infarct area, promoted synaptic reorganization, and restored motor functions and balance. This research represents a significant scientific breakthrough in the design of neural probes for brain monitoring, neural circuit modulation, and the development of brain disease therapies.
Collapse
Affiliation(s)
- Yanxia Qin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Hao Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qi Chang
- Department of Orthopaedics, The 989 Hospital of the People's Liberation Army Joint Service Support Force, Luoyang, 471031, P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education), Jilin University, Changchun, 130025, P. R. China
| | - Zhen Jing
- Jilin Provincial Science and Technology Innovation Platform Management Center, Changchun, 130012, P. R. China
| | - Dehai Yu
- Core Facility, The First Hospital of Jilin University, No. 1, Xinmin Street, Changchun, 130021, P. R. China
| | - Samuel M Mugo
- Department of Physical Sciences, MacEwan University, Edmonton, ABT5J4S2, Canada
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Qiang Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| |
Collapse
|
8
|
Zhi Y, Shi Y, Lu D, Xu D. Neurodevelopmental Implications Underpinning Hereditary Spastic Paraplegia. CNS Neurosci Ther 2025; 31:e70260. [PMID: 39932116 PMCID: PMC11811889 DOI: 10.1111/cns.70260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 12/25/2024] [Accepted: 01/28/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Hereditary spastic paraplegia (HSP) is a group of rare genetic neurodegenerative disorders characterized by corticospinal tract abnormalities. But frequently, abnormalities of proteins implicated in HSP have been identified in brain disorders of childhood, raising the possibility that early brain developmental mechanism underlying HSP. RESULTS AND CONCLUSIONS Here we summarized the clinical features of 89 HSP subtypes and found most have onset of symptoms earliest reported in infancy or early childhood. Importantly, HSP patients showed early brain developmental related phenotypes such as microcephaly, ventricular enlargement, and corpus callosum dysplasia. In addition, the expression trajectories analysis showed HSP genes were diffusely expressed across all human prenatal cortical regions and most genes enriched from post-conception weeks 8-24, periods characterized by neuro progenitor proliferation and neurogenesis. Furthermore, studies utilizing patient derived induced pluripotent stem cells (iPSCs)/organoids and mouse models have suggested that most HSP proteins play either direct or indirect roles in the development of the central nervous system. Therefore, HSP possesses a neurodevelopmental aspect and is not merely a degenerative disease, which may aid in better understanding the pathogenesis of this disease.
Collapse
Affiliation(s)
- Yiqiang Zhi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, School of Basic Medical SciencesFujian Medical UniversityFuzhouChina
| | - Yan Shi
- Fujian Key Laboratory of Molecular Neurology, Institute of NeuroscienceFujian Medical UniversityFuzhouChina
| | - Danping Lu
- College of Life SciencesFujian Agriculture and Forestry UniversityFuzhouChina
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of NeuroscienceFujian Medical UniversityFuzhouChina
| |
Collapse
|
9
|
Cepeda C, Holley SM, Barry J, Oikonomou KD, Yazon VW, Peng A, Argueta D, Levine MS. Corticostriatal maldevelopment in the R6/2 mouse model of juvenile Huntington's disease. Neurobiol Dis 2025; 204:106752. [PMID: 39644979 DOI: 10.1016/j.nbd.2024.106752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/22/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024] Open
Abstract
There is a growing consensus that brain development in Huntington's disease (HD) is abnormal, leading to the idea that HD is not only a neurodegenerative but also a neurodevelopmental disorder. Indeed, structural and functional abnormalities have been observed during brain development in both humans and animal models of HD. However, a concurrent study of cortical and striatal development in a genetic model of HD is still lacking. Here we report significant alterations of corticostriatal development in the R6/2 mouse model of juvenile HD. We examined wildtype (WT) and R6/2 mice at postnatal (P) days 7, 14, and 21. Morphological examination demonstrated early structural and cellular alterations reminiscent of malformations of cortical development, and ex vivo electrophysiological recordings of cortical pyramidal neurons (CPNs) demonstrated significant age- and genotype-dependent changes of intrinsic membrane and synaptic properties. In general, R6/2 CPNs had reduced cell membrane capacitance and increased input resistance (P7 and P14), along with reduced frequency of spontaneous excitatory and inhibitory synaptic events during early development (P7), suggesting delayed cortical maturation. This was confirmed by increased occurrence of GABAA receptor-mediated giant depolarizing potentials at P7. At P14, the rheobase of CPNs was significantly reduced, along with increased excitability. Altered membrane and synaptic properties of R6/2 CPNs recovered progressively, and by P21 they were similar to WT CPNs. In striatal medium-sized spiny neurons (MSNs), a different picture emerged. Intrinsic membrane properties were relatively normal throughout development, except for a transient increase in membrane capacitance at P14. The first alterations in MSNs synaptic activity were observed at P14 and consisted of significant deficits in GABAergic inputs, however, these also were normalized by P21. In contrast, excitatory inputs began to decrease at this age. We conclude that the developing HD brain is capable of compensating for early developmental abnormalities and that cortical alterations precede and are a main contributor of striatal changes. Addressing cortical maldevelopment could help prevent or delay disease manifestations.
Collapse
Affiliation(s)
- Carlos Cepeda
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA.
| | - Sandra M Holley
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Joshua Barry
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Katerina D Oikonomou
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Vannah-Wila Yazon
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Allison Peng
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Deneen Argueta
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| | - Michael S Levine
- IDDRC, Jane and Terry Semel Institute for Neuroscience & Human Behavior, David Geffen School of Medicine at University of California Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
10
|
Bayam E, Tilly P, Collins SC, Rivera Alvarez J, Kannan M, Tonneau L, Brivio E, Rinaldi B, Lecat R, Schwaller N, Cotellessa L, Maddirevula S, Monteiro F, Guardia CM, Kitajima JP, Kok F, Kato M, Hamed AAA, Salih MA, Al Tala S, Hashem MO, Tada H, Saitsu H, Stabile M, Giacobini P, Friant S, Yüksel Z, Nakashima M, Alkuraya FS, Yalcin B, Godin JD. Bi-allelic variants in WDR47 cause a complex neurodevelopmental syndrome. EMBO Mol Med 2025; 17:129-168. [PMID: 39609633 PMCID: PMC11730659 DOI: 10.1038/s44321-024-00178-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 11/13/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Brain development requires the coordinated growth of structures and cues that are essential for forming neural circuits and cognitive functions. The corpus callosum, the largest interhemispheric connection, is formed by the axons of callosal projection neurons through a series of tightly regulated cellular events, including neuronal specification, migration, axon extension and branching. Defects in any of those steps can lead to a range of disorders known as syndromic corpus callosum dysgenesis (CCD). We report five unrelated families carrying bi-allelic variants in WDR47 presenting with CCD together with other neuroanatomical phenotypes such as microcephaly and enlarged ventricles. Using in vitro and in vivo mouse models and complementation assays, we show that WDR47 is required for survival of callosal neurons by contributing to the maintenance of mitochondrial and microtubule homeostasis. We further propose that severity of the CCD phenotype is determined by the degree of the loss of function caused by the human variants. Taken together, we identify WDR47 as a causative gene of a new neurodevelopmental syndrome characterized by corpus callosum abnormalities and other neuroanatomical malformations.
Collapse
Affiliation(s)
- Efil Bayam
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France.
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France.
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France.
- Université de Strasbourg, Strasbourg, F-67000, France.
| | - Peggy Tilly
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Stephan C Collins
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
- Université de Bourgogne, INSERM UMR1231, 21000, Dijon, France
| | - José Rivera Alvarez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Meghna Kannan
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Lucile Tonneau
- Université de Bourgogne, INSERM UMR1231, 21000, Dijon, France
| | - Elena Brivio
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Bruno Rinaldi
- Université de Strasbourg, CNRS, GMGM UMR7156, F-67000, Strasbourg, France
- INSERM, U1112, CRBS (Centre de recherche en biomédecine de Strasbourg), Université de Strasbourg, Strasbourg, F-67000, France
| | - Romain Lecat
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Noémie Schwaller
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France
- Université de Strasbourg, Strasbourg, F-67000, France
| | - Ludovica Cotellessa
- Université de Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, Lille, France
| | - Sateesh Maddirevula
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | | | - Carlos M Guardia
- Placental Cell Biology Group, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | | | - Fernando Kok
- Mendelics Análise Genomica SA, CEP 02511-000, Sao Paulo, Brazil
- Department of Neurology, University of Sao Paulo School of Medicine, 01246-903, Sao Paulo, Brazil
| | - Mitsuhiro Kato
- Department of Pediatrics, Showa University School of Medicine, Tokyo, 142-8555, Japan
| | - Ahlam A A Hamed
- Department of Pediatric and Child Health, Faculty of Medicine University of Khartoum, Khartoum, Sudan
| | - Mustafa A Salih
- Health Sector, King Abdulaziz City for Science and Technology, Riyadh, 11442, Saudi Arabia
| | - Saeed Al Tala
- Department of Pediatrics, Genetic Unit, Armed Forces Hospital, Khamis Mushayt, Saudi Arabia
| | - Mais O Hashem
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
| | - Hiroko Tada
- Department of Brain and Neurosciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, 156-0057, Japan
- Division of Pediatrics, Chibaken Saiseikai Narashino Hospital, Chiba, 275-8580, Japan
| | - Hirotomo Saitsu
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuuo-ku, Hamamatsu, 431-3192, Japan
| | - Mariano Stabile
- Center of Genetics and Prenatal Diagnosis "Zygote", 84131, Salerno, Italy
| | - Paolo Giacobini
- Université de Lille, INSERM, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition UMR-S 1172, Lille, France
| | - Sylvie Friant
- Université de Strasbourg, CNRS, GMGM UMR7156, F-67000, Strasbourg, France
- PCBIS-IMPReSs, Plateforme de Chimie Biologique Intégrative de Strasbourg, UAR 3286 CNRS/Université de Strasbourg, 67400, Illkirch, France
| | - Zafer Yüksel
- Human Genetics, Bioscientia GmbH, Ingelheim, Germany
| | - Mitsuko Nakashima
- Department of Biochemistry, Hamamatsu University School of Medicine, 1-20-1 Handayama, Chuuo-ku, Hamamatsu, 431-3192, Japan
| | - Fowzan S Alkuraya
- Department of Translational Genomics, Center for Genomic Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia
- Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Binnaz Yalcin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France.
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France.
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France.
- Université de Strasbourg, Strasbourg, F-67000, France.
- INSERM UMR1231, Université de Bourgogne, 21000, Dijon, France.
| | - Juliette D Godin
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, IGBMC, Illkirch, F-67404, France.
- Centre National de la Recherche Scientifique, CNRS, UMR7104, Illkirch, F-67404, France.
- Institut National de la Santé et de la Recherche Médicale, INSERM, U1258, Illkirch, F-67404, France.
- Université de Strasbourg, Strasbourg, F-67000, France.
| |
Collapse
|
11
|
Le Grand Q, Tsuchida A, Koch A, Imtiaz MA, Aziz NA, Vigneron C, Zago L, Lathrop M, Dubrac A, Couffinhal T, Crivello F, Matthews PM, Mishra A, Breteler MMB, Tzourio C, Debette S. Diffusion imaging genomics provides novel insight into early mechanisms of cerebral small vessel disease. Mol Psychiatry 2024; 29:3567-3579. [PMID: 38811690 PMCID: PMC11541005 DOI: 10.1038/s41380-024-02604-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 05/06/2024] [Accepted: 05/09/2024] [Indexed: 05/31/2024]
Abstract
Cerebral small vessel disease (cSVD) is a leading cause of stroke and dementia. Genetic risk loci for white matter hyperintensities (WMH), the most common MRI-marker of cSVD in older age, were recently shown to be significantly associated with white matter (WM) microstructure on diffusion tensor imaging (signal-based) in young adults. To provide new insights into these early changes in WM microstructure and their relation with cSVD, we sought to explore the genetic underpinnings of cutting-edge tissue-based diffusion imaging markers across the adult lifespan. We conducted a genome-wide association study of neurite orientation dispersion and density imaging (NODDI) markers in young adults (i-Share study: N = 1 758, (mean[range]) 22.1[18-35] years), with follow-up in young middle-aged (Rhineland Study: N = 714, 35.2[30-40] years) and late middle-aged to older individuals (UK Biobank: N = 33 224, 64.3[45-82] years). We identified 21 loci associated with NODDI markers across brain regions in young adults. The most robust association, replicated in both follow-up cohorts, was with Neurite Density Index (NDI) at chr5q14.3, a known WMH locus in VCAN. Two additional loci were replicated in UK Biobank, at chr17q21.2 with NDI, and chr19q13.12 with Orientation Dispersion Index (ODI). Transcriptome-wide association studies showed associations of STAT3 expression in arterial and adipose tissue (chr17q21.2) with NDI, and of several genes at chr19q13.12 with ODI. Genetic susceptibility to larger WMH volume, but not to vascular risk factors, was significantly associated with decreased NDI in young adults, especially in regions known to harbor WMH in older age. Individually, seven of 25 known WMH risk loci were associated with NDI in young adults. In conclusion, we identified multiple novel genetic risk loci associated with NODDI markers, particularly NDI, in early adulthood. These point to possible early-life mechanisms underlying cSVD and to processes involving remyelination, neurodevelopment and neurodegeneration, with a potential for novel approaches to prevention.
Collapse
Affiliation(s)
- Quentin Le Grand
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Ami Tsuchida
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Alexandra Koch
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mohammed-Aslam Imtiaz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Neurology, Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Chloé Vigneron
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
| | - Laure Zago
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Mark Lathrop
- Department of Human Genetics, McGill University, Montreal, Quebec, Canada; Victor Phillip Dahdaleh Institute of Genomic Medicine at McGill University, Montreal, QC, H3A 0G1, Canada
| | - Alexandre Dubrac
- Centre de Recherche, CHU Sainte-Justine, Montréal, QC, Canada
- Département de Pathologie et Biologie Cellulaire, Université de Montréal, Montréal, QC, Canada
- Département d'Ophtalmologie, Université de Montréal, Montréal, QC, Canada
| | - Thierry Couffinhal
- University of Bordeaux, INSERM, Biologie des maladies cardiovasculaires, U1034, F-33600, Pessac, France
| | - Fabrice Crivello
- University of Bordeaux, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CNRS, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
- CEA, Institute of Neurodegenerative Diseases, UMR5293, Neurofunctional Imaging Group, F-33000, Bordeaux, France
| | - Paul M Matthews
- UK Dementia Research Institute and Department of Brain Sciences, Imperial College, London, UK
| | - Aniket Mishra
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Bonn, Germany
| | - Christophe Tzourio
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France
- Bordeaux University Hospital, Department of Medical Informatics, F-33000, Bordeaux, France
| | - Stéphanie Debette
- University of Bordeaux, INSERM, Bordeaux Population Health research center, UMR1219, F-33000, Bordeaux, France.
- Bordeaux University Hospital, Department of Neurology, Institute for Neurodegenerative Diseases, F-33000, Bordeaux, France.
| |
Collapse
|
12
|
Yao JY, Liu T, Hu XR, Sheng H, Chen ZH, Zhao HY, Li XJ, Wang Y, Hao L. An insight into allele-selective approaches to lowering mutant huntingtin protein for Huntington's disease treatment. Biomed Pharmacother 2024; 180:117557. [PMID: 39405896 DOI: 10.1016/j.biopha.2024.117557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Accepted: 10/08/2024] [Indexed: 11/14/2024] Open
Abstract
Huntington's disease (HD), a monogenic neurodegenerative disorder, stems from a CAG repeat expansion within the mutant huntingtin gene (HTT). This leads to a detrimental gain-of-function of the mutated huntingtin protein (mHTT). As of now, there exist no efficacious therapies to alter the disease progression. In view of the monogenetic mutation nature and an indispensable role of wild-type HTT in healthy neurodevelopment and cellular functions, the developing strategy of allele-selectively deleting/silencing mutant HTT as well as only inactivating mHTT without altering wild-type HTT or wild-type huntingtin protein (wtHTT) comes highly recommended, and may offer a promising treatment option for HD. Here, we reviewed the therapeutic approaches that allele-selective lowering mHTT expression by targeting only mutant HTT DNA, RNA and mHTT along with recent preclinical and clinical outcomes and challenges, in anticipation of some novel ideas to be introduced into HD therapeutic research.
Collapse
Affiliation(s)
- Jia-Yuan Yao
- The First Clinical College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Ting Liu
- The Queen's University of Belfast Joint College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xin-Ru Hu
- The First Clinical College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hui Sheng
- Institute of Metal Research, Chinese Academy of Sciences, No. 72 Wenhua Road, Shenhe Area, Shenyang 110016, PR China
| | - Zi-Hao Chen
- The Queen's University of Belfast Joint College, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Hai-Yang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China
| | - Xiao-Jia Li
- Teaching Center for Basic Medical Experiment, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Yang Wang
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; Liaoning Province Key Laboratory of Forensic Bio-evidence Sciences, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China; China Medical University Center of Forensic Investigation, No.77 Puhe Road, Shenyang North New Area, Shenyang, Liaoning Province 110122, PR China.
| |
Collapse
|
13
|
Cepeda C, Holley SM, Barry J, Oikonomou KD, Yazon VW, Peng A, Argueta D, Levine MS. Corticostriatal Maldevelopment in the R6/2 Mouse Model of Juvenile Huntington's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.15.618500. [PMID: 39464124 PMCID: PMC11507867 DOI: 10.1101/2024.10.15.618500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
There is a growing consensus that brain development in Huntington's disease (HD) is abnormal, leading to the idea that HD is not only a neurodegenerative but also a neurodevelopmental disorder. Indeed, structural and functional abnormalities have been observed during brain development in both humans and animal models of HD. However, a concurrent study of cortical and striatal development in a genetic model of HD is still lacking. Here we report significant alterations of corticostriatal development in the R6/2 mouse model of juvenile HD. We examined wildtype (WT) and R6/2 mice at postnatal (P) days 7, 14, and 21. Morphological examination demonstrated early structural and cellular alterations reminiscent of malformations of cortical development, and ex vivo electrophysiological recordings of cortical pyramidal neurons (CPNs) demonstrated significant age- and genotype-dependent changes of intrinsic membrane and synaptic properties. In general, R6/2 CPNs had reduced cell membrane capacitance and increased input resistance (P7 and P14), along with reduced frequency of spontaneous excitatory and inhibitory synaptic events during early development (P7), suggesting delayed cortical maturation. This was confirmed by increased occurrence of GABA A receptor-mediated giant depolarizing potentials at P7. At P14, the rheobase of CPNs was significantly reduced, along with increased excitability. Altered membrane and synaptic properties of R6/2 CPNs recovered progressively, and by P21 they were similar to WT CPNs. In striatal medium-sized spiny neurons (MSNs), a different picture emerged. Intrinsic membrane properties were relatively normal throughout development, except for a transient increase in membrane capacitance at P14. The first alterations in MSNs synaptic activity were observed at P14 and consisted of significant deficits in GABAergic inputs, however, these also were normalized by P21. In contrast, excitatory inputs began to decrease at this age. We conclude that the developing HD brain is capable of compensating for early developmental abnormalities and that cortical alterations precede and are a main contributor of striatal changes. Addressing cortical maldevelopment could help prevent or delay disease manifestations.
Collapse
|
14
|
Gojanovich AD, Le NTT, Mercer RCC, Park S, Wu B, Anane A, Vultaggio JS, Mostoslavsky G, Harris DA. Abnormal synaptic architecture in iPSC-derived neurons from a multi-generational family with genetic Creutzfeldt-Jakob disease. Stem Cell Reports 2024; 19:1474-1488. [PMID: 39332406 PMCID: PMC11561462 DOI: 10.1016/j.stemcr.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/29/2024] Open
Abstract
Genetic prion diseases are caused by mutations in PRNP, which encodes the prion protein (PrPC). Why these mutations are pathogenic, and how they alter the properties of PrPC are poorly understood. We have consented and accessed 22 individuals of a multi-generational Israeli family harboring the highly penetrant E200K PRNP mutation and generated a library of induced pluripotent stem cells (iPSCs) representing nine carriers and four non-carriers. iPSC-derived neurons from E200K carriers display abnormal synaptic architecture characterized by misalignment of postsynaptic NMDA receptors with the cytoplasmic scaffolding protein PSD95. Differentiated neurons from mutation carriers do not produce PrPSc, the aggregated and infectious conformer of PrP, suggesting that loss of a physiological function of PrPC may contribute to the disease phenotype. Our study shows that iPSC-derived neurons can provide important mechanistic insights into the pathogenesis of genetic prion diseases and can offer a powerful platform for testing candidate therapeutics.
Collapse
Affiliation(s)
- Aldana D Gojanovich
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Nhat T T Le
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Robert C C Mercer
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Seonmi Park
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA
| | - Bei Wu
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Alice Anane
- Creutzfeldt-Jakob Disease Foundation, Pardes Hanna-Karkur, Israel
| | - Janelle S Vultaggio
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Gustavo Mostoslavsky
- Center for Regenerative Medicine of Boston University and Boston Medical Center, Boston, MA, USA; Department of Microbiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA; Department of Medicine, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| | - David A Harris
- Department of Biochemistry & Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA.
| |
Collapse
|
15
|
Vasilkovska T, Verschuuren M, Pustina D, van den Berg M, Van Audekerke J, Pintelon I, Cachope R, De Vos WH, Van der Linden A, Adhikari MH, Verhoye M. Evolution of aberrant brain-wide spatiotemporal dynamics of resting-state networks in a Huntington's disease mouse model. Clin Transl Med 2024; 14:e70055. [PMID: 39422700 PMCID: PMC11488302 DOI: 10.1002/ctm2.70055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/15/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Huntington's disease (HD) is marked by irreversible loss of neuronal function for which currently no availability for disease-modifying treatment exists. Advances in the understanding of disease progression can aid biomarker development, which in turn can accelerate therapeutic discovery. METHODS We characterised the progression of altered dynamics of whole-brain network states in the zQ175DN mouse model of HD using a dynamic functional connectivity (FC) approach to resting-state fMRI and identified quasi-periodic patterns (QPPs) of brain activity constituting the most prominent resting-state networks. RESULTS The occurrence of the normative QPPs, as observed in healthy controls, was reduced in the HD model as the phenotype progressed. This uncovered progressive cessation of synchronous brain activity with phenotypic progression, which is not observed with the conventional static FC approaches. To better understand the potential underlying cause of the observed changes in these brain states, we further assessed how mutant huntingtin (mHTT) protein deposition affects astrocytes and pericytes - one of the most important effectors of neurovascular coupling, along phenotypic progression. Increased cell-type dependent mHTT deposition was observed at the age of onset of motor anomalies, in the caudate putamen, somatosensory and motor cortex, regions that are prominently involved in HD pathology as seen in humans. CONCLUSION Our findings provide meaningful insights into the development and progression of altered functional brain dynamics in this HD model and open new avenues in assessing the dynamics of whole brain states, through QPPs, in clinical HD research. HIGHLIGHTS Hyperactivity in the LCN-linked regions within short QPPs observed before motor impairment onset. DMLN QPP presents a progressive decrease in DMLN activity and occurrence along HD-like phenotype development. Breakdown of the LCN DMLN state flux at motor onset leads to a subsequent absence of the LCN DMLN QPP at an advanced HD-like stage.
Collapse
Affiliation(s)
- Tamara Vasilkovska
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Marlies Verschuuren
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
- Laboratory of Cell Biology and HistologyUniversity of AntwerpWilrijkAntwerpBelgium
- Antwerp Centre for Advanced MicroscopyUniversity of AntwerpWilrijkAntwerpBelgium
| | - Dorian Pustina
- CHDI Management, Inc. for CHDI Foundation, Inc.PrincetonNew JerseyUSA
| | - Monica van den Berg
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Johan Van Audekerke
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Isabel Pintelon
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
- Laboratory of Cell Biology and HistologyUniversity of AntwerpWilrijkAntwerpBelgium
- Antwerp Centre for Advanced MicroscopyUniversity of AntwerpWilrijkAntwerpBelgium
| | - Roger Cachope
- CHDI Management, Inc. for CHDI Foundation, Inc.PrincetonNew JerseyUSA
| | - Winnok H. De Vos
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
- Laboratory of Cell Biology and HistologyUniversity of AntwerpWilrijkAntwerpBelgium
- Antwerp Centre for Advanced MicroscopyUniversity of AntwerpWilrijkAntwerpBelgium
| | - Annemie Van der Linden
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Mohit H. Adhikari
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| | - Marleen Verhoye
- Bio‐Imaging LabUniversity of AntwerpWilrijkAntwerpBelgium
- µNEURO Research Centre of ExcellenceUniversity of AntwerpAntwerpBelgium
| |
Collapse
|
16
|
Godavarthi SK, Li HQ, Pratelli M, Spitzer NC. Embryonic exposure to environmental factors drives transmitter switching in the neonatal mouse cortex causing autistic-like adult behavior. Proc Natl Acad Sci U S A 2024; 121:e2406928121. [PMID: 39178233 PMCID: PMC11363343 DOI: 10.1073/pnas.2406928121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/23/2024] [Indexed: 08/25/2024] Open
Abstract
Autism spectrum disorders (ASD) can be caused by environmental factors. These factors act early in the development of the nervous system and induce stereotyped repetitive behaviors and diminished social interactions, among other outcomes. Little is known about how these behaviors are produced. In pregnant women, delivery of valproic acid (VPA) (to control seizure activity or stabilize mood) or immune activation by a virus increases the incidence of ASD in offspring. We found that either VPA or Poly Inosine:Cytosine (which mimics a viral infection), administered at mouse embryonic day 12.5, induced a neurotransmitter switch from GABA to glutamate in PV- and CCK-expressing interneurons in the medial prefrontal cortex by postnatal day 10. The switch was present for only a brief period during early postnatal development, observed in male and female mice at postnatal day 21 and reversed in both males and females by postnatal day 30. At postnatal day 90, male mice exhibited stereotyped repetitive behaviors and diminished social interaction while female mice exhibited only stereotyped repetitive behavior. Transfecting GAD1 in PV- and CCK-expressing interneurons at postnatal day 10, to reintroduce GABA expression, overrode the switch and prevented expression of autistic-like behavior. These findings point to an important role of neurotransmitter switching in mediating the environmental causes of autism.
Collapse
Affiliation(s)
- Swetha K. Godavarthi
- Neurobiology Department, University of California San Diego, La Jolla, CA92093
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA92093
| | - Hui-quan Li
- Neurobiology Department, University of California San Diego, La Jolla, CA92093
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA92093
| | - Marta Pratelli
- Neurobiology Department, University of California San Diego, La Jolla, CA92093
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA92093
| | - Nicholas C. Spitzer
- Neurobiology Department, University of California San Diego, La Jolla, CA92093
- Kavli Institute for Brain & Mind, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
17
|
Lowe SA, Wilson AD, Aughey GN, Banerjee A, Goble T, Simon-Batsford N, Sanderson A, Kratschmer P, Balogun M, Gao H, Aw SS, Jepson JEC. Modulation of a critical period for motor development in Drosophila by BK potassium channels. Curr Biol 2024; 34:3488-3505.e3. [PMID: 39053467 DOI: 10.1016/j.cub.2024.06.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/16/2024] [Accepted: 06/26/2024] [Indexed: 07/27/2024]
Abstract
Critical periods are windows of heightened plasticity occurring during neurodevelopment. Alterations in neural activity during these periods can cause long-lasting changes in the structure, connectivity, and intrinsic excitability of neurons, which may contribute to the pathology of neurodevelopmental disorders. However, endogenous regulators of critical periods remain poorly defined. Here, we study this issue using a fruit fly (Drosophila) model of an early-onset movement disorder caused by BK potassium channel gain of function (BK GOF). Deploying a genetic method to place robust expression of GOF BK channels under spatiotemporal control, we show that adult-stage neuronal expression of GOF BK channels minimally disrupts fly movement. In contrast, limiting neuronal expression of GOF BK channels to a short window during late neurodevelopment profoundly impairs locomotion and limb kinematics in resulting adult flies. During this critical period, BK GOF perturbs synaptic localization of the active zone protein Bruchpilot and reduces excitatory neurotransmission. Conversely, enhancing neural activity specifically during development rescues motor defects in BK GOF flies. Collectively, our results reveal a critical developmental period for limb control in Drosophila that is influenced by BK channels and suggest that BK GOF causes movement disorders by disrupting activity-dependent aspects of synaptic development.
Collapse
Affiliation(s)
- Simon A Lowe
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| | - Abigail D Wilson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Gabriel N Aughey
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Animesh Banerjee
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Talya Goble
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Department of Cell and Developmental Biology, University College London, London, UK
| | - Nell Simon-Batsford
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Angelina Sanderson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK; Champalimaud Research, Champalimaud Centre for the Unknown, Lisboa, Portugal
| | - Patrick Kratschmer
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Maryam Balogun
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Hao Gao
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK
| | - Sherry S Aw
- Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A(∗)STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - James E C Jepson
- Department of Clinical and Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, UK.
| |
Collapse
|
18
|
Outeiro TF, Kalia LV, Bezard E, Ferrario J, Lin CH, Salama M, Standaert DG, Taiwo L, Takahashi R, Vila M, Mollenhauer B, Svenningsson P. Basic Science in Movement Disorders: Fueling the Engine of Translation into Clinical Practice. Mov Disord 2024; 39:929-933. [PMID: 38576081 DOI: 10.1002/mds.29802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/11/2024] [Accepted: 03/15/2024] [Indexed: 04/06/2024] Open
Abstract
Basic Science is crucial for the advancement of clinical care for Movement Disorders. Here, we provide brief updates on how basic science is important for understanding disease mechanisms, disease prevention, disease diagnosis, development of novel therapies and to establish the basis for personalized medicine. We conclude the viewpoint by a call to action to further improve interactions between clinician and basic scientists. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
| | - Lorraine V Kalia
- Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Canada
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Canada
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Erwan Bezard
- Université de Bordeaux, Institut des Maladies Neurodégénératives, Bordeaux, France
- Centre National de la Recherche Scientifique Unité Mixte de Recherche 5293, Institut des Maladies Neurodégénératives, Bordeaux, France
| | - Juan Ferrario
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Instituto de Biociencias, Biotecnología y Biología traslacional (iB3) and CONICET, Buenos Aires, Argentina
| | - Chin-Hsien Lin
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
- Institute of Molecular Medicine, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Mohamed Salama
- Institute of Global Health and Human Ecology, The American University in Cairo, Cairo, Egypt
- Faculty of Medicine, Mansoura University, Dakahleya, Egypt
| | - David G Standaert
- Department of Neurology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Lolade Taiwo
- Department of Neurology, University College Hospital, Ibadan, Nigeria
| | - Ryosuke Takahashi
- Department of Neurology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Miquel Vila
- Neurodegenerative Diseases Research Group, Vall d'Hebron Research Institute (VHIR), Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED), Autonomous University of Barcelona (UAB), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
| | - Brit Mollenhauer
- Scientific employee with an honorary contract at Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Göttingen, Germany
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Paracelsus-Elena-Klinik, Kassel, Germany; University Medical Center Goettingen, Institute of Neurology, Goettingen, Germany
| | - Per Svenningsson
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, Maryland, USA
- Department of Clinical Neuroscience and Neurology, Karolinska Institutet and Karolinska University Hospital, Stockholm, Sweden
- Department of Basic and Clinical Neuroscience, King's College London, London, UK
| |
Collapse
|
19
|
Ratié L, Humbert S. A developmental component to Huntington's disease. Rev Neurol (Paris) 2024; 180:357-362. [PMID: 38614929 DOI: 10.1016/j.neurol.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Huntington's disease is a dominantly inherited disorder characterized by the dysfunction and death of cortical and striatal neurons. Striatal degeneration in Huntington's disease is due, at least in part, to defective cortical signalling to the striatum. Although Huntington's disease generally manifests at the adult stage, mouse and neuroimaging studies of presymptomatic mutation carriers suggest that it may affect neurodevelopment. In support of this notion, the development of the cortex is altered in mice with Huntington's disease and the foetuses of human Huntington's disease gene carriers. We will discuss these studies and the contribution of abnormal brain development to the later appearance of the disease.
Collapse
Affiliation(s)
- L Ratié
- U1216, CEA, Grenoble Institute Neurosciences, Inserm, université Grenoble Alpes, 38000 Grenoble, France
| | - S Humbert
- Institut du Cerveau-Paris Brain Institute, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Sorbonne Université, Paris, France.
| |
Collapse
|
20
|
Cheng Y, Zhang S, Shang H. Latest advances on new promising molecular-based therapeutic approaches for Huntington's disease. J Transl Int Med 2024; 12:134-147. [PMID: 38779119 PMCID: PMC11107186 DOI: 10.2478/jtim-2023-0142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024] Open
Abstract
Huntington's disease (HD) is a devastating, autosomal-dominant inherited, neurodegenerative disorder characterized by progressive motor deficits, cognitive impairments, and neuropsychiatric symptoms. It is caused by excessive cytosine-adenine-guanine (CAG) trinucleotide repeats within the huntingtin gene (HTT). Presently, therapeutic interventions capable of altering the trajectory of HD are lacking, while medications for abnormal movement and psychiatric symptoms are limited. Numerous pre-clinical and clinical studies have been conducted and are currently underway to test the efficacy of therapeutic approaches targeting some of these mechanisms with varying degrees of success. In this review, we update the latest advances on new promising molecular-based therapeutic strategies for this disorder, including DNA-targeting techniques such as zinc-finger proteins, transcription activator-like effector nucleases, and CRISPR/Cas9; post-transcriptional huntingtin-lowering approaches such as RNAi, antisense oligonucleotides, and small-molecule splicing modulators; and novel methods to clear the mHTT protein, such as proteolysis-targeting chimeras. We mainly focus on the ongoing clinical trials and the latest pre-clinical studies to explore the progress of emerging potential HD therapeutics.
Collapse
Affiliation(s)
- Yangfan Cheng
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| | - Sirui Zhang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| | - Huifang Shang
- Department of Neurology, Laboratory of Neurodegenerative Disorders, Rare disease center, West China Hospital, Sichuan University, Chengdu610041, Sichuan Province, China
| |
Collapse
|
21
|
Lu D, Zhi Y, Su H, Lin X, Lin J, Shi Y, Yi W, Hong C, Zhang T, Fu Z, Chen LY, Zhao Z, Li R, Xu Z, Chen W, Wang N, Xu D. ESCRT-I protein UBAP1 controls ventricular expansion and cortical neurogenesis via modulating adherens junctions of radial glial cells. Cell Rep 2024; 43:113818. [PMID: 38402586 DOI: 10.1016/j.celrep.2024.113818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/26/2023] [Accepted: 02/01/2024] [Indexed: 02/27/2024] Open
Abstract
Intricate cerebral cortex formation is orchestrated by the precise behavior and division dynamics of radial glial cells (RGCs). Endocytosis functions in the recycling and remodeling of adherens junctions (AJs) in response to changes in RGC activity and function. Here, we show that conditional disruption of ubiquitin-associated protein 1 (UBAP1), a component of endosomal sorting complex required for transport (ESCRT), causes severe brain dysplasia and prenatal ventriculomegaly. UBAP1 depletion disrupts the AJs and polarity of RGCs, leading to failure of apically directed interkinetic nuclear migration. Accordingly, UBAP1 knockout or knockdown results in reduced proliferation and precocious differentiation of neural progenitor cells. Mechanistically, UBAP1 regulates the expression and surface localization of cell adhesion molecules, and β-catenin over-expression significantly rescues the phenotypes of Ubap1 knockdown in vivo. Our study reveals a critical physiological role of the ESCRT machinery in cortical neurogenesis by regulating AJs of RGCs.
Collapse
Affiliation(s)
- Danping Lu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yiqiang Zhi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China; School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Huizhen Su
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Xiang Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Jingjing Lin
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Yan Shi
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China
| | - Wenxiang Yi
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Chaoyin Hong
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China
| | - Tongtong Zhang
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Zhifei Fu
- Public Technology Service Center, Fujian Medical University, Fuzhou 350122, China
| | - Li-Yu Chen
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zhiqi Zhao
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Rong Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing 100191, China
| | - Zhiheng Xu
- State Key Laboratory of Molecular Developmental Biology, CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wanjin Chen
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
| | - Ning Wang
- Department of Neurology and Institute of Neurology of First Affiliated Hospital, Institute of Neuroscience, and Fujian Key Laboratory of Molecular Neurology, Fujian Medical University, Fuzhou 350005, China.
| | - Dan Xu
- Fujian Key Laboratory of Molecular Neurology, Institute of Neuroscience, Fujian Medical University, Fuzhou 350004, China.
| |
Collapse
|
22
|
Douthwaite C, Tietje C, Ye X, Liebscher S. Probing cerebellar circuit dysfunction in rodent models of spinocerebellar ataxia by means of in vivo two-photon calcium imaging. STAR Protoc 2024; 5:102911. [PMID: 38412102 PMCID: PMC10907221 DOI: 10.1016/j.xpro.2024.102911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/28/2023] [Accepted: 02/06/2024] [Indexed: 02/29/2024] Open
Abstract
Purkinje neuron degeneration characterizes spinocerebellar ataxia type 1, yet the comprehension of the impact on the broader cerebellar circuit remains incomplete. We here detail simultaneous in vivo two-photon calcium imaging of diverse neuronal populations in the cerebellar cortex of Sca1 mice while they are navigating a virtual environment. We outline surgical procedures and protocols to chronically record from identical neurons, and we detail data post-processing and analysis to delineate disease-related alterations in neuronal activity and sensorimotor-driven response properties. For complete details on the use and execution of this protocol, please refer to Pilotto et al.1.
Collapse
Affiliation(s)
- Christopher Douthwaite
- Institute of Clinical Neuroimmunology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians University Munich, Martinsried, Germany; Graduate School of Systemic Neurosciences, Munich, Germany
| | - Christoph Tietje
- Institute of Clinical Neuroimmunology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universitaet Muenchen, Ludwig-Maximilians University Munich, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; University of Cologne & Department of Neurology, University hospital Cologne, Cologne, Germany.
| |
Collapse
|
23
|
Amartumur S, Nguyen H, Huynh T, Kim TS, Woo RS, Oh E, Kim KK, Lee LP, Heo C. Neuropathogenesis-on-chips for neurodegenerative diseases. Nat Commun 2024; 15:2219. [PMID: 38472255 PMCID: PMC10933492 DOI: 10.1038/s41467-024-46554-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
Developing diagnostics and treatments for neurodegenerative diseases (NDs) is challenging due to multifactorial pathogenesis that progresses gradually. Advanced in vitro systems that recapitulate patient-like pathophysiology are emerging as alternatives to conventional animal-based models. In this review, we explore the interconnected pathogenic features of different types of ND, discuss the general strategy to modelling NDs using a microfluidic chip, and introduce the organoid-on-a-chip as the next advanced relevant model. Lastly, we overview how these models are being applied in academic and industrial drug development. The integration of microfluidic chips, stem cells, and biotechnological devices promises to provide valuable insights for biomedical research and developing diagnostic and therapeutic solutions for NDs.
Collapse
Affiliation(s)
- Sarnai Amartumur
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Huong Nguyen
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Thuy Huynh
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea
| | - Testaverde S Kim
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea
| | - Ran-Sook Woo
- Department of Anatomy and Neuroscience, College of Medicine, Eulji University, Daejeon, 34824, Korea
| | - Eungseok Oh
- Department of Neurology, Chungnam National University Hospital, Daejeon, 35015, Korea
| | - Kyeong Kyu Kim
- Department of Precision Medicine, Graduate School of Basic Medical Science (GSBMS), Institute for Anti-microbial Resistance Research and Therapeutics, Sungkyunkwan University School of Medicine, Suwon, 16419, Korea
| | - Luke P Lee
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Harvard Medical School, Division of Engineering in Medicine and Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, MA, 02115, USA.
- Department of Bioengineering, Department of Electrical Engineering and Computer Science, University of California, Berkeley, CA, 94720, USA.
| | - Chaejeong Heo
- Department of Biophysics, Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, 16419, Korea.
- Center for Integrated Nanostructure Physics (CINAP), Institute for Basic Science (IBS), Suwon, 16419, Korea.
| |
Collapse
|
24
|
Louessard M, Cailleret M, Jarrige M, Bigarreau J, Lenoir S, Dufour N, Rey M, Saudou F, Deglon N, Perrier AL. Mono- and Biallelic Inactivation of Huntingtin Gene in Patient-Specific Induced Pluripotent Stem Cells Reveal HTT Roles in Striatal Development and Neuronal Functions. J Huntingtons Dis 2024; 13:41-53. [PMID: 38427495 DOI: 10.3233/jhd-231509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2024]
Abstract
Background Mutations in the Huntingtin (HTT) gene cause Huntington's disease (HD), a neurodegenerative disorder. As a scaffold protein, HTT is involved in numerous cellular functions, but its normal and pathogenic functions during human forebrain development are poorly understood. Objective To investigate the developmental component of HD, with a specific emphasis on understanding the functions of wild-type and mutant HTT alleles during forebrain neuron development in individuals carrying HD mutations. Methods We used CRISPR/Cas9 gene-editing technology to disrupt the ATG region of the HTT gene via non-homologous end joining to produce mono- or biallelic HTT knock-out human induced pluripotent stem cell (iPSC) clones. Results We showed that the loss of wild-type, mutant, or both HTT isoforms does not affect the pluripotency of iPSCs or their transition into neural cells. However, we observed that HTT loss causes division impairments in forebrain neuro-epithelial cells and alters maturation of striatal projection neurons (SPNs) particularly in the acquisition of DARPP32 expression, a key functional marker of SPNs. Finally, young post-mitotic neurons derived from HTT-/- human iPSCs display cellular dysfunctions observed in adult HD neurons. Conclusions We described a novel collection of isogenic clones with mono- and biallelic HTT inactivation that complement existing HD-hiPSC isogenic series to explore HTT functions and test therapeutic strategies in particular HTT-lowering drugs. Characterizing neural and neuronal derivatives from human iPSCs of this collection, we show evidence that HTT loss or mutation has impacts on neuro-epithelial and striatal neurons maturation, and on basal DNA damage and BDNF axonal transport in post-mitotic neurons.
Collapse
Affiliation(s)
- Morgane Louessard
- Université Paris-Saclay, CEA, Molecular Imaging Research Center, Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: Mécanismes, Thérapies, Imagerie, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, Univ Evry, Institut des Cellules Souches pour le Traitement et l'étude des Maladies Monogéniques, Corbeil-Essonne, France
| | - Michel Cailleret
- Université Paris-Saclay, Inserm, Univ Evry, Institut des Cellules Souches pour le Traitement et l'étude des Maladies Monogéniques, Corbeil-Essonne, France
| | - Margot Jarrige
- CECS/AFM, Institut des Cellules Souches pour le Traitement et l'étude des Maladies Monogéniques, Corbeil-Essonne, France
| | - Julie Bigarreau
- Université Paris-Saclay, Inserm, Univ Evry, Institut des Cellules Souches pour le Traitement et l'étude des Maladies Monogéniques, Corbeil-Essonne, France
| | - Sophie Lenoir
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Noëlle Dufour
- Université Paris-Saclay, CEA, Molecular Imaging Research Center, Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: Mécanismes, Thérapies, Imagerie, Fontenay-aux-Roses, France
| | - Maria Rey
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), and Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies, Lausanne, Switzerland
| | - Frédéric Saudou
- Univ. Grenoble Alpes, Inserm, U1216, CHU Grenoble Alpes, Grenoble Institut Neuroscience, GIN, Grenoble, France
| | - Nicole Deglon
- Lausanne University Hospital (CHUV) and University of Lausanne (UNIL), Department of Clinical Neurosciences (DNC), and Neuroscience Research Center (CRN), Laboratory of Cellular and Molecular Neurotherapies, Lausanne, Switzerland
| | - Anselme L Perrier
- Université Paris-Saclay, CEA, Molecular Imaging Research Center, Fontenay-aux-Roses, France
- Université Paris-Saclay, CEA, CNRS, Laboratoire des Maladies Neurodégénératives: Mécanismes, Thérapies, Imagerie, Fontenay-aux-Roses, France
- Université Paris-Saclay, Inserm, Univ Evry, Institut des Cellules Souches pour le Traitement et l'étude des Maladies Monogéniques, Corbeil-Essonne, France
| |
Collapse
|
25
|
Thompson LM, Orr HT. HD and SCA1: Tales from two 30-year journeys since gene discovery. Neuron 2023; 111:3517-3530. [PMID: 37863037 PMCID: PMC10842341 DOI: 10.1016/j.neuron.2023.09.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/21/2023] [Accepted: 09/26/2023] [Indexed: 10/22/2023]
Abstract
One of the more transformative findings in human genetics was the discovery that the expansion of unstable nucleotide repeats underlies a group of inherited neurological diseases. A subset of these unstable repeat neurodegenerative diseases is due to the expansion of a CAG trinucleotide repeat encoding a stretch of glutamines, i.e., the polyglutamine (polyQ) repeat neurodegenerative diseases. Among the CAG/polyQ repeat diseases are Huntington's disease (HD) and spinocerebellar ataxia type 1 (SCA1), in which the expansions are within widely expressed proteins. Although both HD and SCA1 are autosomal dominantly inherited, and both typically cause mid- to late-life-onset movement disorders with cognitive decline, they each are characterized by distinct clinical characteristics and predominant sites of neuropathology. Importantly, the respective affected proteins, Huntingtin (HTT, HD) and Ataxin 1 (ATXN1, SCA1), have unique functions and biological properties. Here, we review HD and SCA1 with a focus on how their disease-specific and shared features may provide informative insights.
Collapse
Affiliation(s)
- Leslie M Thompson
- Department of Psychiatry and Human Behavior, Department of Neurobiology and Behavior, Department of Biological Chemistry, Institute of Memory Impairments and Neurological Disorders, Sue and Bill Gross Stem Cell Center, University of California Irvine, Irvine, CA 92697, USA
| | - Harry T Orr
- Department of Laboratory Medicine and Pathology, Institute for Translational Neuroscience, University of Minnesota, Minneapolis and Saint Paul, MN 55455, USA.
| |
Collapse
|
26
|
Estevez-Fraga C, Altmann A, Parker CS, Scahill RI, Costa B, Chen Z, Manzoni C, Zarkali A, Durr A, Roos RAC, Landwehrmeyer B, Leavitt BR, Rees G, Tabrizi SJ, McColgan P. Genetic topography and cortical cell loss in Huntington's disease link development and neurodegeneration. Brain 2023; 146:4532-4546. [PMID: 37587097 PMCID: PMC10629790 DOI: 10.1093/brain/awad275] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 07/12/2023] [Accepted: 07/28/2023] [Indexed: 08/18/2023] Open
Abstract
Cortical cell loss is a core feature of Huntington's disease (HD), beginning many years before clinical motor diagnosis, during the premanifest stage. However, it is unclear how genetic topography relates to cortical cell loss. Here, we explore the biological processes and cell types underlying this relationship and validate these using cell-specific post-mortem data. Eighty premanifest participants on average 15 years from disease onset and 71 controls were included. Using volumetric and diffusion MRI we extracted HD-specific whole brain maps where lower grey matter volume and higher grey matter mean diffusivity, relative to controls, were used as proxies of cortical cell loss. These maps were combined with gene expression data from the Allen Human Brain Atlas (AHBA) to investigate the biological processes relating genetic topography and cortical cell loss. Cortical cell loss was positively correlated with the expression of developmental genes (i.e. higher expression correlated with greater atrophy and increased diffusivity) and negatively correlated with the expression of synaptic and metabolic genes that have been implicated in neurodegeneration. These findings were consistent for diffusion MRI and volumetric HD-specific brain maps. As wild-type huntingtin is known to play a role in neurodevelopment, we explored the association between wild-type huntingtin (HTT) expression and developmental gene expression across the AHBA. Co-expression network analyses in 134 human brains free of neurodegenerative disorders were also performed. HTT expression was correlated with the expression of genes involved in neurodevelopment while co-expression network analyses also revealed that HTT expression was associated with developmental biological processes. Expression weighted cell-type enrichment (EWCE) analyses were used to explore which specific cell types were associated with HD cortical cell loss and these associations were validated using cell specific single nucleus RNAseq (snRNAseq) data from post-mortem HD brains. The developmental transcriptomic profile of cortical cell loss in preHD was enriched in astrocytes and endothelial cells, while the neurodegenerative transcriptomic profile was enriched for neuronal and microglial cells. Astrocyte-specific genes differentially expressed in HD post-mortem brains relative to controls using snRNAseq were enriched in the developmental transcriptomic profile, while neuronal and microglial-specific genes were enriched in the neurodegenerative transcriptomic profile. Our findings suggest that cortical cell loss in preHD may arise from dual pathological processes, emerging as a consequence of neurodevelopmental changes, at the beginning of life, followed by neurodegeneration in adulthood, targeting areas with reduced expression of synaptic and metabolic genes. These events result in age-related cell death across multiple brain cell types.
Collapse
Affiliation(s)
- Carlos Estevez-Fraga
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Andre Altmann
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Christopher S Parker
- Centre for Medical Image Computing, University College London, London WC1V 6LJ, UK
| | - Rachael I Scahill
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Beatrice Costa
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
- Gladstone Institutes, San Francisco, CA 94158, USA
| | - Zhongbo Chen
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Claudia Manzoni
- School of Pharmacy, University College London, London WC1N 1AX, UK
| | - Angeliki Zarkali
- Dementia Research Centre, University College London, London WC1N 3AR, UK
| | - Alexandra Durr
- Sorbonne Université, Paris Brain Institute (ICM), AP-HP, Inserm, CNRS, Paris 75013, France
| | - Raymund A C Roos
- Department of Neurology, Leiden University Medical Centre, Leiden 2333, The Netherlands
| | | | - Blair R Leavitt
- Centre for Molecular Medicine and Therapeutics, Department of Medical Genetics, University of British Columbia, Vancouver BC V5Z 4H4Canada
- Division of Neurology, Department of Medicine, University of British Columbia Hospital, Vancouver BC V6T 2B5, Canada
| | - Geraint Rees
- Wellcome Centre for Human Neuroimaging, UCL Queen Square Institute of Neurology, University College London, London WC1N 3AR, UK
| | - Sarah J Tabrizi
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| | - Peter McColgan
- Department of Neurodegenerative Disease, University College London, London WC1B 5EH, UK
| |
Collapse
|
27
|
Tramutola A, Bakels HS, Perrone F, Di Nottia M, Mazza T, Abruzzese MP, Zoccola M, Pagnotta S, Carrozzo R, de Bot ST, Perluigi M, van Roon-Mom WMC, Squitieri F. GLUT-1 changes in paediatric Huntington disease brain cortex and fibroblasts: an observational case-control study. EBioMedicine 2023; 97:104849. [PMID: 37898095 PMCID: PMC10630613 DOI: 10.1016/j.ebiom.2023.104849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND Paediatric Huntington disease with highly expanded mutations (HE-PHD; >80 CAG repeats) presents atypically, compared to adult-onset Huntington disease (AOHD), with neurodevelopmental delay, epilepsy, abnormal brain glucose metabolism, early striatal damage, and reduced lifespan. Since genetic GLUT-1 deficiency syndrome shows a symptom spectrum similar to HE-PHD, we investigated the potential role of the two main glucose transporters, GLUT-1 and GLUT-3, in HE-PHD. METHODS We compared GLUT-1 and GLUT-3 protein expression in HE-PHD, juvenile-onset (JOHD), and AOHD brains (n = 2; n = 3; n = 6) and periphery (n = 3; n = 2; n = 2) versus healthy adult controls (n = 6; n = 6). We also investigated mitochondrial complexes and hexokinase-II protein expression. FINDINGS GLUT-1 and GLUT-3 expression were significantly lower in HE-PHD frontal cortex (p = 0.009, 95% [CI 13.4, 14.7]; p = 0.017, 95% [CI 14.2, 14.5]) versus controls. In fibroblasts, GLUT-1 and GLUT-3 expression were lower compared to controls (p < 0.0001, 95% [CI 0.91, 1.09]; p = 0.046, 95% [CI 0.93, 1.07]). In the frontal cortex, this occurred without evidence of extensive neuronal degeneration. Patients with HE-PHD had deregulated mitochondrial complex expression, particularly complexes II-III, levels of which were lower in frontal cortex versus controls (p = 0.027, 95% [CI 17.1, 17.6]; p = 0.002, 95% CI [16.6, 16.9]) and patients with AOHD (p = 0.052, 95% [CI 17.0, 17.6]; p = 0.002, 95% [CI 16.6, 16.7]). Hexokinase-II expression was also lower in HE-PHD frontal cortex and striatum versus controls (p = 0.010, 95% [CI 17.8, 18.2]; p = 0.045, 95% [CI 18.6, 18.7]) and in frontal cortex versus patients with AOHD (p = 0.013, 95% [CI 17.7, 18.1]). Expression JOHD levels were consistently different to those of HE-PHD but similar to those of AOHD. INTERPRETATION Our data suggest a dysfunctional hypometabolic state occurring specifically in paediatric Huntington disease brains. FUNDING '5 × 1000' Personal Income Tax donation to LIRH Foundation; Italian Ministry of HealthRC2301MH04 and RF-2016-02364123 to CSS.
Collapse
Affiliation(s)
- Antonella Tramutola
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Hannah S Bakels
- Department of Neurology, Leiden University Medical Centre, ZA Leiden 2311, the Netherlands
| | - Federica Perrone
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza (CSS) Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Michela Di Nottia
- Unit of Cellular Biology and Mitochondrial Diseases, IRCCS Bambino Gesú Children's Hospital, Rome 00146, Italy
| | - Tommaso Mazza
- Bioinformatics Unit, IRCCS Casa Sollievo della Sofferenza (CSS) Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Maria Pia Abruzzese
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza (CSS) Research Hospital, San Giovanni Rotondo 71013, Italy
| | - Martina Zoccola
- Unit of Cellular Biology and Mitochondrial Diseases, IRCCS Bambino Gesú Children's Hospital, Rome 00146, Italy
| | - Sara Pagnotta
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | - Rosalba Carrozzo
- Unit of Cellular Biology and Mitochondrial Diseases, IRCCS Bambino Gesú Children's Hospital, Rome 00146, Italy
| | - Susanne T de Bot
- Department of Neurology, Leiden University Medical Centre, ZA Leiden 2311, the Netherlands
| | - Marzia Perluigi
- Department of Biochemical Sciences, Sapienza University of Rome, Rome 00185, Italy
| | | | - Ferdinando Squitieri
- Huntington and Rare Diseases Unit, IRCCS Casa Sollievo della Sofferenza (CSS) Research Hospital, San Giovanni Rotondo 71013, Italy; Centre for Rare Neurological Diseases (CMRN), Italian League for Research on Huntington (LIRH) Foundation, Viale di Villa Massimo 4, Rome 00161, Italy.
| |
Collapse
|
28
|
Hatsuda A, Kurisu J, Fujishima K, Kawaguchi A, Ohno N, Kengaku M. Calcium signals tune AMPK activity and mitochondrial homeostasis in dendrites of developing neurons. Development 2023; 150:dev201930. [PMID: 37823352 DOI: 10.1242/dev.201930] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/05/2023] [Indexed: 10/13/2023]
Abstract
Dendritic outgrowth in immature neurons is enhanced by neuronal activity and is considered one of the mechanisms of neural circuit optimization. It is known that calcium signals affect transcriptional regulation and cytoskeletal remodeling necessary for dendritic outgrowth. Here, we demonstrate that activity-dependent calcium signaling also controls mitochondrial homeostasis via AMP-activated protein kinase (AMPK) in growing dendrites of differentiating mouse hippocampal neurons. We found that the inhibition of neuronal activity induced dendritic hypotrophy with abnormally elongated mitochondria. In growing dendrites, AMPK is activated by neuronal activity and dynamically oscillates in synchrony with calcium spikes, and this AMPK oscillation was inhibited by CaMKK2 knockdown. AMPK activation led to phosphorylation of MFF and ULK1, which initiate mitochondrial fission and mitophagy, respectively. Dendritic mitochondria in AMPK-depleted neurons exhibited impaired fission and mitophagy and displayed multiple signs of dysfunction. Genetic inhibition of fission led to dendritic hypoplasia that was reminiscent of AMPK-deficient neurons. Thus, AMPK activity is finely tuned by the calcium-CaMKK2 pathway and regulates mitochondrial homeostasis by facilitating removal of damaged components of mitochondria in growing neurons during normal brain development.
Collapse
Affiliation(s)
- Akane Hatsuda
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Junko Kurisu
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Kazuto Fujishima
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| | - Ayano Kawaguchi
- Department of Anatomy and Cell Biology, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Department of Human Morphology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Nobuhiko Ohno
- Department of Anatomy, Division of Histology and Cell Biology, Jichi Medical University, Shimotsuke 329-0498, Japan
- Division of Ultrastructural Research, National Institute for Physiological Sciences, Okazaki 444-8585, Japan
| | - Mineko Kengaku
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
29
|
Prévot V, Tena-Sempere M, Pitteloud N. New Horizons: Gonadotropin-Releasing Hormone and Cognition. J Clin Endocrinol Metab 2023; 108:2747-2758. [PMID: 37261390 DOI: 10.1210/clinem/dgad319] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/02/2023]
Abstract
Pulsatile secretion of gonadotropin-releasing hormone (GnRH) is essential for activating and maintaining the function of the hypothalamic-pituitary-gonadal axis, which controls the onset of puberty and fertility. Two recent studies suggest that, in addition to controlling reproduction, the neurons in the brain that produce GnRH are also involved in the control of postnatal brain maturation, odor discrimination, and adult cognition. This review will summarize the development and establishment of the GnRH system, with particular attention to the importance of its first postnatal activation, a phenomenon known as minipuberty, for later reproductive and nonreproductive functions. In addition, we will discuss the beneficial effects of restoring physiological (ie, pulsatile) GnRH levels on olfactory and cognitive alterations in preclinical Down syndrome and Alzheimer disease models, as well as the potential risks associated with long-term continuous (ie, nonphysiological) GnRH administration in certain disorders. Finally, this review addresses the intriguing possibility that pulsatile GnRH therapy may hold therapeutic potential for the management of some neurodevelopmental cognitive disorders and pathological aging in elderly people.
Collapse
Affiliation(s)
- Vincent Prévot
- University of Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR S1172, Lille F-59000, France
| | - Manuel Tena-Sempere
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), 14004 Córdoba, Spain
- Department of Cell Biology, Physiology and Immunology, University of Córdoba, 14004 Córdoba, Spain
- CIBER Fisiopatología de la Obesidad y Nutrición, Instituto de Salud Carlos III, 14004 Córdoba, Spain
| | - Nelly Pitteloud
- Department of Endocrinology, Diabetology and Metabolism, Lausanne University Hospital, Lausanne 1011, Switzerland
- Faculty of Biology and Medicine, Université of Lausanne, Lausanne 1005, Switzerland
| |
Collapse
|
30
|
Prévot V, Duittoz A. A role for GnRH in olfaction and cognition: Implications for veterinary medicine. Reprod Domest Anim 2023; 58 Suppl 2:109-124. [PMID: 37329313 DOI: 10.1111/rda.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/19/2023]
Abstract
Pulsatile secretion of gonadotropin-releasing hormone (GnRH) is essential for the activation and maintenance of the function of the hypothalamic-pituitary-gonadal (HPG) axis, which controls the onset of puberty and fertility. Two provocative recent studies suggest that, in addition to control reproduction, the neurons in the brain that produce GnRH are also involved in the control postnatal brain maturation, odour discrimination and adult cognition. Long-acting GnRH antagonists and agonists are commonly used to control fertility and behaviour in veterinary medicine, primarily in males. This review puts into perspective the potential risks of these androgen deprivation therapies and immunization on olfactory and cognitive performances and well-aging in domestic animals, including pets. We will also discuss the results reporting beneficial effects of pharmacological interventions restoring physiological GnRH levels on olfactory and cognitive alterations in preclinical models of Alzheimer's disease, which shares many pathophysiological and behavioural hallmarks with canine cognitive dysfunction. These novel findings raise the intriguing possibility that pulsatile GnRH therapy holds therapeutic potential for the management of this behavioural syndrome affecting older dogs.
Collapse
Affiliation(s)
- Vincent Prévot
- Univ. Lille, Inserm, CHU Lille, Laboratory of Development and Plasticity of the Neuroendocrine Brain, Lille Neuroscience & Cognition, UMR_S1172, Lille, France
| | - Anne Duittoz
- Physiologie de la Reproduction et des Comportements (PRC) UMR7247 INRA, CNRS, Centre INRAE Val de Loire, IFCE, Université de Tours, Nouzilly, France
| |
Collapse
|
31
|
Laundos TL, Li S, Cheang E, De Santis R, Piccolo FM, Brivanlou AH. Huntingtin CAG-expansion mutation results in a dominant negative effect. Front Cell Dev Biol 2023; 11:1252521. [PMID: 37727506 PMCID: PMC10505792 DOI: 10.3389/fcell.2023.1252521] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 08/14/2023] [Indexed: 09/21/2023] Open
Abstract
Introduction: Huntington's disease (HD) remains an incurable and fatal neurodegenerative disease long after CAG-expansion mutation in the huntingtin gene (HTT) was identified as the cause. The underlying pathological mechanism, whether HTT loss of function or gain of toxicity results from mutation, remains a matter of debate. Methods: In this study, we genetically modulated wild-type or mutant HTT expression levels in isogenic human embryonic stem cells to systematically investigate their contribution to HD-specific phenotypes. Results: Using highly reproducible and quantifiable in vitro micropattern-based assays, we observed comparable phenotypes with HD mutation and HTT depletion. However, halving endogenous wild-type HTT levels did not strongly recapitulate the HD phenotypes, arguing against a classical loss of function mechanism. Remarkably, expression of CAG-expanded HTT in non-HD cells induced HD like phenotypes akin to HTT depletion. Discussion: By corollary, these results indicate a dominant negative effect of mutated HTT on its wild-type counterpart. Complementation with additional copies of wild-type HTT ameliorated the HD-associated phenotypes, strongly supporting a classical dominant negative mechanism. Understanding the molecular basis of this dominant negative effect will guide the development of efficient clinical strategies to counteract the deleterious impact of mutant HTT on the wild-type HTT function.
Collapse
Affiliation(s)
- Tiago L. Laundos
- Laboratory of Synthetic Embryology, The Rockefeller University, New York City, NY, United States
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB—Instituto de Engenharia Biomédica, Universidade do Porto, Porto, Portugal
| | - Shu Li
- Laboratory of Synthetic Embryology, The Rockefeller University, New York City, NY, United States
| | - Eric Cheang
- Laboratory of Synthetic Embryology, The Rockefeller University, New York City, NY, United States
| | - Riccardo De Santis
- Laboratory of Synthetic Embryology, The Rockefeller University, New York City, NY, United States
| | - Francesco M. Piccolo
- Laboratory of Synthetic Embryology, The Rockefeller University, New York City, NY, United States
| | - Ali H. Brivanlou
- Laboratory of Synthetic Embryology, The Rockefeller University, New York City, NY, United States
| |
Collapse
|
32
|
Opal P. Spinocerebellar ataxia type 1: It's not just about Purkinje cells. Neuron 2023; 111:2461-2462. [PMID: 37591199 DOI: 10.1016/j.neuron.2023.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 08/19/2023]
Abstract
In this issue of Neuron, Pilotto et al.1 use state-of-the-art in vivo imaging in mice to show that excitatory/inhibitory imbalance drives SCA1 pathophysiology, with hyperexcitable molecular layer interneurons overinhibiting Purkinje cells, leading to hallmark neurodegeneration.
Collapse
Affiliation(s)
- Puneet Opal
- Davee Department of Neurology and Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
33
|
Pilotto F, Douthwaite C, Diab R, Ye X, Al Qassab Z, Tietje C, Mounassir M, Odriozola A, Thapa A, Buijsen RAM, Lagache S, Uldry AC, Heller M, Müller S, van Roon-Mom WMC, Zuber B, Liebscher S, Saxena S. Early molecular layer interneuron hyperactivity triggers Purkinje neuron degeneration in SCA1. Neuron 2023; 111:2523-2543.e10. [PMID: 37321222 PMCID: PMC10431915 DOI: 10.1016/j.neuron.2023.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 03/17/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
Toxic proteinaceous deposits and alterations in excitability and activity levels characterize vulnerable neuronal populations in neurodegenerative diseases. Using in vivo two-photon imaging in behaving spinocerebellar ataxia type 1 (Sca1) mice, wherein Purkinje neurons (PNs) degenerate, we identify an inhibitory circuit element (molecular layer interneurons [MLINs]) that becomes prematurely hyperexcitable, compromising sensorimotor signals in the cerebellum at early stages. Mutant MLINs express abnormally elevated parvalbumin, harbor high excitatory-to-inhibitory synaptic density, and display more numerous synaptic connections on PNs, indicating an excitation/inhibition imbalance. Chemogenetic inhibition of hyperexcitable MLINs normalizes parvalbumin expression and restores calcium signaling in Sca1 PNs. Chronic inhibition of mutant MLINs delayed PN degeneration, reduced pathology, and ameliorated motor deficits in Sca1 mice. Conserved proteomic signature of Sca1 MLINs, shared with human SCA1 interneurons, involved the higher expression of FRRS1L, implicated in AMPA receptor trafficking. We thus propose that circuit-level deficits upstream of PNs are one of the main disease triggers in SCA1.
Collapse
Affiliation(s)
- Federica Pilotto
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Christopher Douthwaite
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Rim Diab
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - XiaoQian Ye
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Zahraa Al Qassab
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Christoph Tietje
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany
| | - Meriem Mounassir
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany
| | | | - Aishwarya Thapa
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Ronald A M Buijsen
- Department of Human Genetics, Leiden University Medical Center, Leiden, the Netherlands
| | - Sophie Lagache
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Anne-Christine Uldry
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Manfred Heller
- Proteomics and Mass Spectrometry Core Facility, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Stefan Müller
- Flow Cytometry and Cell sorting, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | | | - Benoît Zuber
- Institute of Anatomy, University of Bern, Bern, Switzerland
| | - Sabine Liebscher
- Institute of Clinical Neuroimmunology, Klinikum der Universität München, Ludwig-Maximilians University Munich, Martinsried, Germany; Munich Cluster for Systems Neurology (SyNergy), Munich, Germany; University Hospital Cologne, Deptartment of Neurology, Cologne, Germany.
| | - Smita Saxena
- Department of Neurology, Inselspital University Hospital, Bern, Switzerland; Department for BioMedical Research, University of Bern, Bern, Switzerland.
| |
Collapse
|
34
|
Coarelli G, Coutelier M, Durr A. Autosomal dominant cerebellar ataxias: new genes and progress towards treatments. Lancet Neurol 2023; 22:735-749. [PMID: 37479376 DOI: 10.1016/s1474-4422(23)00068-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/07/2023] [Accepted: 02/22/2023] [Indexed: 07/23/2023]
Abstract
Dominantly inherited spinocerebellar ataxias (SCAs) are associated with phenotypes that range from pure cerebellar to multisystemic. The list of implicated genes has lengthened in the past 5 years with the inclusion of SCA37/DAB1, SCA45/FAT2, SCA46/PLD3, SCA47/PUM1, SCA48/STUB1, SCA50/NPTX1, SCA25/PNPT1, SCA49/SAM9DL, and SCA27B/FGF14. In some patients, co-occurrence of multiple potentially pathogenic variants can explain variable penetrance or more severe phenotypes. Given this extreme clinical and genetic heterogeneity, genome sequencing should become the diagnostic tool of choice but is still not available in many clinical settings. Treatments tested in phase 2 and phase 3 studies, such as riluzole and transcranial direct current stimulation of the cerebellum and spinal cord, have given conflicting results. To enable early intervention, preataxic carriers of pathogenic variants should be assessed with biomarkers, such as neurofilament light chain and brain MRI; these biomarkers could also be used as outcome measures, given that clinical outcomes are not useful in the preataxic phase. The development of bioassays measuring the concentration of the mutant protein (eg, ataxin-3) might facilitate monitoring of target engagement by gene therapies.
Collapse
Affiliation(s)
- Giulia Coarelli
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Marie Coutelier
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Alexandra Durr
- Sorbonne Université, ICM Institut du Cerveau, Pitié-Salpeêtrieère University Hospital, Paris, France; Institut National de la Santé Et de la Recherche Médicale, Paris, France; Centre National de la Recherche Scientifique, Paris, France; Assistance Publique-Hôpitaux de Paris, Paris, France.
| |
Collapse
|
35
|
Delva A, Van Laere K, Vandenberghe W. Longitudinal Imaging of Regional Brain Volumes, SV2A, and Glucose Metabolism In Huntington's Disease. Mov Disord 2023; 38:1515-1526. [PMID: 37382295 DOI: 10.1002/mds.29501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/03/2023] [Accepted: 05/18/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Development of disease-modifying treatments for Huntington's disease (HD) could be aided by the use of imaging biomarkers of disease progression. Positron emission tomography (PET) with 11 C-UCB-J, a radioligand for the brain-wide presynaptic marker synaptic vesicle protein 2A (SV2A), detects more widespread brain changes in early HD than volumetric magnetic resonance imaging (MRI) and 18 F-fludeoxyglucose (18 F-FDG) PET, but longitudinal 11 C-UCB-J PET data have not been reported. The aim of this study was to compare the sensitivity of 11 C-UCB-J PET, 18 F-FDG PET, and volumetric MRI for detection of longitudinal changes in early HD. METHODS Seventeen HD mutation carriers (six premanifest and 11 early manifest) and 13 healthy controls underwent 11 C-UCB-J PET, 18 F-FDG PET, and volumetric MRI at baseline (BL) and after 21.4 ± 2.7 months (Y2). Within-group and between-group longitudinal clinical and imaging changes were assessed. RESULTS The HD group showed significant 2-year worsening of Unified Huntington's Disease Rating Scale motor scores. There was significant longitudinal volume loss within the HD group in caudate (-4.5% ± 3.8%), putamen (-3.6% ± 3.5%), pallidum (-3.0% ± 2.7%), and frontal cortex (-2.0% ± 2.1%) (all P < 0.001). Within the HD group there was longitudinal loss of putaminal SV2A binding (6.4% ± 8.8%, P = 0.01) and putaminal glucose metabolism (-2.8% ± 4.4%, P = 0.008), but these changes were not significant after correction for multiple comparisons. Premanifest subjects at BL only had significantly lower SV2A binding than controls in basal ganglia structures, but at Y2 additionally had significant SV2A loss in frontal and parietal cortex, indicating spread of SV2A loss from subcortical to cortical regions. CONCLUSIONS Volumetric MRI may be more sensitive than 11 C-UCB-J PET and 18 F-FDG PET for detection of 2-year brain changes in early HD. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Aline Delva
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Koen Van Laere
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Division of Nuclear Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Wim Vandenberghe
- Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
36
|
Müller-Nedebock AC, Dekker MCJ, Farrer MJ, Hattori N, Lim SY, Mellick GD, Rektorová I, Salama M, Schuh AFS, Stoessl AJ, Sue CM, Tan AH, Vidal RL, Klein C, Bardien S. Different pieces of the same puzzle: a multifaceted perspective on the complex biological basis of Parkinson's disease. NPJ Parkinsons Dis 2023; 9:110. [PMID: 37443150 DOI: 10.1038/s41531-023-00535-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
The biological basis of the neurodegenerative movement disorder, Parkinson's disease (PD), is still unclear despite it being 'discovered' over 200 years ago in Western Medicine. Based on current PD knowledge, there are widely varying theories as to its pathobiology. The aim of this article was to explore some of these different theories by summarizing the viewpoints of laboratory and clinician scientists in the PD field, on the biological basis of the disease. To achieve this aim, we posed this question to thirteen "PD experts" from six continents (for global representation) and collated their personal opinions into this article. The views were varied, ranging from toxin exposure as a PD trigger, to LRRK2 as a potential root cause, to toxic alpha-synuclein being the most important etiological contributor. Notably, there was also growing recognition that the definition of PD as a single disease should be reconsidered, perhaps each with its own unique pathobiology and treatment regimen.
Collapse
Affiliation(s)
- Amica C Müller-Nedebock
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa
| | - Marieke C J Dekker
- Department of Internal Medicine, Kilimanjaro Christian Medical Centre, Moshi, Tanzania
| | - Matthew J Farrer
- Norman Fixel Institute for Neurological Diseases, McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Nobutaka Hattori
- Research Institute of Disease of Old Age, Graduate School of Medicine, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Department of Neurology, Juntendo University School of Medicine, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
- Neurodegenerative Disorders Collaborative Laboratory, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama, 351-0106, Japan
| | - Shen-Yang Lim
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - George D Mellick
- Griffith Institute of Drug Discovery (GRIDD), Griffith University, Brisbane, QLD, Australia
| | - Irena Rektorová
- First Department of Neurology and International Clinical Research Center, St. Anne's University Hospital and Faculty of Medicine, Masaryk University, Brno, Czech Republic
- Applied Neuroscience Research Group, CEITEC, Masaryk University, Brno, Czech Republic
| | - Mohamed Salama
- Institute of Global Health and Human Ecology (I-GHHE), The American University in Cairo (AUC), New Cairo, 11835, Egypt
- Faculty of Medicine, Mansoura University, Dakahleya, Egypt
- Atlantic Senior Fellow for Equity in Brain Health at the Global Brain Health Institute (GBHI), Trinity College Dublin (TCD), Dublin, Ireland
| | - Artur F S Schuh
- Departamento de Farmacologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
- Serviço de Neurologia, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - A Jon Stoessl
- Pacific Parkinson's Research Centre, Department of Medicine (Division of Neurology), Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada
| | - Carolyn M Sue
- Neuroscience Research Australia; Faculty of Medicine, University of New South Wales; Kinghorn Centre for Clinical Genomics, Garvan Institute of Medical Research, Darlinghurst; Department of Neurology, Prince of Wales Hospital, South Eastern Sydney Local Health District, Randwick, NSW, Australia
| | - Ai Huey Tan
- Division of Neurology, Department of Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
- The Mah Pooi Soo & Tan Chin Nam Centre for Parkinson's & Related Disorders, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Rene L Vidal
- Instituto de Neurociencia Biomédica (BNI), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Centro FONDAP de Gerociencia, Salud Mental y Metabolismo (GERO), Santiago, Chile
- Centro de Biología Integrativa, Facultad de Ciencias, Universidad Mayor, Santiago, Chile
| | - Christine Klein
- Institute of Neurogenetics, University of Lübeck and University Hospital Schleswig-Holstein, Lübeck, Germany.
| | - Soraya Bardien
- Division of Molecular Biology and Human Genetics, Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
- South African Medical Research Council/Stellenbosch University Genomics of Brain Disorders Research Unit, Stellenbosch University, Cape Town, South Africa.
| |
Collapse
|
37
|
Singh J, Goodman-Vincent E, Santosh P. Evidence Synthesis of Gene Therapy and Gene Editing from Different Disorders-Implications for Individuals with Rett Syndrome: A Systematic Review. Int J Mol Sci 2023; 24:ijms24109023. [PMID: 37240368 DOI: 10.3390/ijms24109023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/06/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
This systematic review and thematic analysis critically evaluated gene therapy trials in amyotrophic lateral sclerosis, haemoglobinopathies, immunodeficiencies, leukodystrophies, lysosomal storage disorders and retinal dystrophies and extrapolated the key clinical findings to individuals with Rett syndrome (RTT). The PRISMA guidelines were used to search six databases during the last decade, followed by a thematic analysis to identify the emerging themes. Thematic analysis across the different disorders revealed four themes: (I) Therapeutic time window of gene therapy; (II) Administration and dosing strategies for gene therapy; (III) Methods of gene therapeutics and (IV) Future areas of clinical interest. Our synthesis of information has further enriched the current clinical evidence base and can assist in optimising gene therapy and gene editing studies in individuals with RTT, but it would also benefit when applied to other disorders. The findings suggest that gene therapies have better outcomes when the brain is not the primary target. Across different disorders, early intervention appears to be more critical, and targeting the pre-symptomatic stage might prevent symptom pathology. Intervention at later stages of disease progression may benefit by helping to clinically stabilise patients and preventing disease-related symptoms from worsening. If gene therapy or editing has the desired outcome, older patients would need concerted rehabilitation efforts to reverse their impairments. The timing of intervention and the administration route would be critical parameters for successful outcomes of gene therapy/editing trials in individuals with RTT. Current approaches also need to overcome the challenges of MeCP2 dosing, genotoxicity, transduction efficiencies and biodistribution.
Collapse
Affiliation(s)
- Jatinder Singh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - Ella Goodman-Vincent
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| | - Paramala Santosh
- Department of Child and Adolescent Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE5 8AF, UK
- Centre for Interventional Paediatric Psychopharmacology and Rare Diseases (CIPPRD), South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
- Centre for Interventional Paediatric Psychopharmacology (CIPP) Rett Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London and South London and Maudsley NHS Foundation Trust, London SE5 8AZ, UK
| |
Collapse
|
38
|
Wennagel D, Braz BY, Humbert S. [Treating early transient neuronal defects in a mouse model of Huntington's disease delays the signs of the disease in adulthood]. Med Sci (Paris) 2023; 39:313-316. [PMID: 37094259 DOI: 10.1051/medsci/2023036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023] Open
Affiliation(s)
- Doris Wennagel
- Univ. Grenoble Alpes, Inserm U1216, Grenoble institut des neurosciences, Grenoble, France
| | - Barbara Yael Braz
- Univ. Grenoble Alpes, Inserm U1216, Grenoble institut des neurosciences, Grenoble, France
| | - Sandrine Humbert
- Univ. Grenoble Alpes, Inserm U1216, Grenoble institut des neurosciences, Grenoble, France - Sorbonne université, institut du cerveau, AP-HP, Inserm, CNRS, Hôpital Pitié-Salpêtrière, Paris, France
| |
Collapse
|
39
|
Gamma oscillations provide insights into cortical circuit development. Pflugers Arch 2023; 475:561-568. [PMID: 36864347 PMCID: PMC10105678 DOI: 10.1007/s00424-023-02801-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/04/2023]
Abstract
Rhythmic coordination in gamma oscillations provides temporal structure to neuronal activity. Gamma oscillations are commonly observed in the mammalian cerebral cortex, are altered early on in several neuropsychiatric disorders, and provide insights into the development of underlying cortical networks. However, a lack of knowledge on the developmental trajectory of gamma oscillations prevented the combination of findings from the immature and the adult brain. This review is intended to provide an overview on the development of cortical gamma oscillations, the maturation of the underlying network, and the implications for cortical function and dysfunction. The majority of information is drawn from work in rodents with particular emphasis on the prefrontal cortex, the developmental trajectory of gamma oscillations, and potential implications for neuropsychiatric disorders. Current evidence supports the idea that fast oscillations during development are indeed an immature form of adult gamma oscillations and can help us understand the pathology of neuropsychiatric disorders.
Collapse
|
40
|
Klein C, Bloem BR. Research in movement disorders in 2022: a new era of biomarker and treatment development. Lancet Neurol 2023; 22:17-19. [PMID: 36517158 DOI: 10.1016/s1474-4422(22)00494-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 11/25/2022] [Indexed: 12/15/2022]
Affiliation(s)
- Christine Klein
- Institute of Neurogenetics, University of Lübeck, Lübeck, 23538, Germany.
| | - Bastiaan R Bloem
- Radboud University Medical Centre, Donders Institute for Brain, Cognition and Behaviour, Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Nijmegen, the Netherlands
| |
Collapse
|
41
|
Estevez-Fraga C, Tabrizi SJ. Disentangling the Connection Between Neurodevelopment and Neurodegeneration in Huntington's Disease. Mov Disord 2022; 37:2343-2344. [PMID: 36308728 DOI: 10.1002/mds.29267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 01/13/2023] Open
Affiliation(s)
- Carlos Estevez-Fraga
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Sarah J Tabrizi
- Huntington's Disease Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
| |
Collapse
|
42
|
Evidences for Mutant Huntingtin Inducing Musculoskeletal and Brain Growth Impairments via Disturbing Testosterone Biosynthesis in Male Huntington Disease Animals. Cells 2022; 11:cells11233779. [PMID: 36497038 PMCID: PMC9737670 DOI: 10.3390/cells11233779] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/11/2022] [Accepted: 11/20/2022] [Indexed: 11/29/2022] Open
Abstract
Body weight (BW) loss and reduced body mass index (BMI) are the most common peripheral alterations in Huntington disease (HD) and have been found in HD mutation carriers and HD animal models before the manifestation of neurological symptoms. This suggests that, at least in the early disease stage, these changes could be due to abnormal tissue growth rather than tissue atrophy. Moreover, BW and BMI are reported to be more affected in males than females in HD animal models and patients. Here, we confirmed sex-dependent growth alterations in the BACHD rat model for HD and investigated the associated contributing factors. Our results showed growth abnormalities along with decreased plasma testosterone and insulin-like growth factor 1 (IGF-1) levels only in males. Moreover, we demonstrated correlations between growth parameters, IGF-1, and testosterone. Our analyses further revealed an aberrant transcription of testosterone biosynthesis-related genes in the testes of BACHD rats with undisturbed luteinizing hormone (LH)/cAMP/PKA signaling, which plays a key role in regulating the transcription process of some of these genes. In line with the findings in BACHD rats, analyses in the R6/2 mouse model of HD showed similar results. Our findings support the view that mutant huntingtin may induce abnormal growth in males via the dysregulation of gene transcription in the testis, which in turn can affect testosterone biosynthesis.
Collapse
|
43
|
Whalley K. Correcting early circuit errors. Nat Rev Neurosci 2022; 23:708. [PMID: 36271033 DOI: 10.1038/s41583-022-00648-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|