1
|
Chen Q, Xu Z, Dai H, Shen Y, Zhang J, Liu Z, Pei Y, Yu J. A large-scale curated and filterable dataset for cryo-EM foundation model pre-training. Sci Data 2025; 12:960. [PMID: 40483273 PMCID: PMC12145456 DOI: 10.1038/s41597-025-05179-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 05/09/2025] [Indexed: 06/11/2025] Open
Abstract
Cryo-electron microscopy (cryo-EM) is a transformative imaging technology that enables near-atomic resolution 3D reconstruction of target biomolecule, playing a critical role in structural biology and drug discovery. Cryo-EM faces significant challenges due to its extremely low signal-to-noise ratio (SNR) where the complexity of data processing becomes particularly pronounced. To address this challenge, foundation models have shown great potential in other biological imaging domains. However, their application in cryo-EM has been limited by the lack of large-scale, high-quality datasets. To fill this gap, we introduce CryoCRAB, the first large-scale dataset for cryo-EM foundation models. CryoCRAB includes 746 proteins, comprising 152,385 sets of raw movie frames (116.8 TB in total). To tackle the high-noise nature of cryo-EM data, each movie is split into odd and even frames to generate paired micrographs for denoising tasks. The dataset is stored in HDF5 chunked format, significantly improving random sampling efficiency and training speed. CryoCRAB offers diverse data support for cryo-EM foundation models, enabling advancements in image denoising and general-purpose feature extraction for downstream tasks.
Collapse
Affiliation(s)
- Qihe Chen
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Zhenyang Xu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Haizhao Dai
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Yingjun Shen
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Jiakai Zhang
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China
- Cellverse, Cellverse Co., Ltd., Shanghai, 201210, China
| | - Zhijie Liu
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| | - Yuan Pei
- iHuman Institute, ShanghaiTech University, Shanghai, 201210, China.
| | - Jingyi Yu
- School of Information Science and Technology, ShanghaiTech University, Shanghai, 201210, China.
| |
Collapse
|
2
|
Ma C, Zhao R, Li SW, Zhao J, Jia Z, Tang L, Song Y, Wang RJ, Yang J, Peng YL. Glutamate dehydrogenase MoGDH2 modulates the environmental and host pH to enhance adaptation and virulence of the rice blast fungus Pyricularia oryzae. Int J Biol Macromol 2025; 308:142465. [PMID: 40139586 DOI: 10.1016/j.ijbiomac.2025.142465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/09/2025] [Accepted: 03/22/2025] [Indexed: 03/29/2025]
Abstract
pH adaptation and modulation are essential for the survival and infection of fungal pathogens. Pyricularia oryzae is a hemi-biotrophic fungal pathogen causes devastating blast disease on rice. How P. oryzae achieves host pH alkalization during the biotrophic-infection stage is unclear. Here, we characterized the NAD+-glutamate dehydrogenase encoding gene MoGDH2 in P. oryzae. The Δmogdh2 mutant failed to utilize glutamate to release NH3 and alkalize the environmental pH. MoGDH2 mediated pH homeostasis under acidic conditions but not alkaline environments. During glutamate utilization and fungal infection, MoGDH2 exhibited high expression levels, and modulated host pH at biotrophic stage. The apoplastic pH of host cells infected by wild-type strain P131 was sharply acidified at 24 h post inoculation (hpi), and the cytoplasmic pH gradually increased from 24 to 36 hpi. In comparison, the pH change patterns disappeared in cells infected by Δmogdh2. Furthermore, MoGDH2 is critical for reactive oxygen species tolerance and virulence, which is regulated via phosphorylation at the T47 site. Protein kinase MoDbf2 directly interacted with and phosphorylated MoGDH2. This study sheds new light on the function of MoGDH2 in pH modulation and infection.
Collapse
Affiliation(s)
- Chang Ma
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China.
| | - Rui Zhao
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China.
| | - Shi-Wang Li
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China; MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing, China.
| | - Jianhui Zhao
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China; MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing, China.
| | - Zhishuo Jia
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China.
| | - Liu Tang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China.
| | - Yue Song
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China.
| | - Rui-Jin Wang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China; MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing, China.
| | - Jun Yang
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China; MARA Key Laboratory of Surveillance and Management for Plant Quarantine Pests, Department of Plant Biosecurity, China Agricultural University, Beijing, China.
| | - You-Liang Peng
- MARA Key Laboratory of Pest Monitoring and Green Management, Department of Plant Pathology, China Agricultural University, Beijing, China.
| |
Collapse
|
3
|
Chen J, Zhu YY, Huang L, Zhang SS, Gu SX. Application of deuterium in research and development of drugs. Eur J Med Chem 2025; 287:117371. [PMID: 39952095 DOI: 10.1016/j.ejmech.2025.117371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/03/2025] [Accepted: 02/04/2025] [Indexed: 02/17/2025]
Abstract
Deuterium is gaining increased attention and utilization due to its unique physical and chemical properties. Deuteration has the unique benefit of positively impacting metabolic fate of pharmacologically active compounds without altering their chemical structures, physical properties, or biological activity and selectivity. In these favorable cases, deuterium substitution can in principle improve the pharmacokinetic properties and safety of therapeutic agents. The use of deuterium to create a new chemical entity not only starts with an existing drug, but can be achieved from iterative optimization in the de novo design of new compounds. Furthermore, deuterium has become a powerful tool in pharmaceutical analysis, including deuterium-labeled compounds as internal standards for extensive analysis, metabolomics, ADME, clinical pharmacology studies. This review highlights the application of deuterium in enhancing the pharmacological effects of active molecules during drug discovery and development. Additionally, deuterium-enabled pharmaceutical analysis is also covered. This review is aimed to provide references for the discovery of new deuterium-containing chemical entities with improved pharmacological properties and for the research of fate of drugs.
Collapse
Affiliation(s)
- Jiong Chen
- School of Chemical Engineering and Pharmacy, and Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China
| | - Yuan-Yuan Zhu
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China
| | - Lu Huang
- School of Chemical Engineering and Pharmacy, and Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China
| | - Shuang-Shuang Zhang
- School of Chemical Engineering and Pharmacy, and Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China; Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China.
| | - Shuang-Xi Gu
- School of Chemical Engineering and Pharmacy, and Hubei Key Laboratory of Novel Reactor and Green Chemical Technology, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China; Key Laboratory of Green Chemical Process, Ministry of Education, Wuhan Institute of Technology, Wuhan, Hubei, 430205, China.
| |
Collapse
|
4
|
Takemoto M, Delghandi S, Abo M, Yurimoto K, Odagi M, Singh VP, Wang J, Nakagawa R, Sato SI, Takemoto Y, Farrag AMAS, Kawaguchi Y, Nagasawa K, Honjo T, Chamoto K, Uesugi M. Covalent Plant Natural Product that Potentiates Antitumor Immunity. J Am Chem Soc 2025; 147:2902-2912. [PMID: 39794153 DOI: 10.1021/jacs.4c17837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2025]
Abstract
Despite the unprecedented therapeutic potential of immune checkpoint antibody therapies, their efficacy is limited partly by the dysfunction of T cells within the cancer microenvironment. Combination therapies with small molecules have also been explored, but their clinical implementation has been met with significant challenges. To search for antitumor immunity activators, the present study developed a cell-based system that emulates cancer-attenuated T cells. The cell-based screening of 232 natural products containing electrophilic reactive functional groups led to the identification of arvenin I, also known as cucurbitacin B 2-O-β-d-glucoside (CuBg), as a plant natural product that activates T cells within the cancer-competitive environment. Chemoproteomic and mechanistic analyses indicated that arvenin I covalently reacts with and hyperactivates MKK3, thereby reviving the mitochondrial fitness of exhausted T cells through the activation of the p38MAPK pathway. In mice, administration of arvenin I enhanced the efficacy of cancer immunotherapy when used alone or in combination with an immune checkpoint inhibitor. These findings highlight the potential of arvenin I as a covalent kinase activator that potentiates antitumor immunity.
Collapse
Affiliation(s)
- Misao Takemoto
- Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Sara Delghandi
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Masahiro Abo
- Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Keiko Yurimoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Minami Odagi
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Vaibhav Pal Singh
- Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Jun Wang
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Reiko Nakagawa
- Laboratory for Cell-Free Protein Synthesis, RIKEN Center for Biosystems Dynamics Research, Kobe, Hyogo 650-0047, Japan
| | - Shin-Ichi Sato
- Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yasushi Takemoto
- Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Asmaa M A S Farrag
- Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Yoshimasa Kawaguchi
- Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
| | - Kazuo Nagasawa
- Department of Biotechnology and Life Science, Graduate School of Technology, Tokyo University of Agriculture and Technology, Koganei, Tokyo 184-8588, Japan
| | - Tasuku Honjo
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Kenji Chamoto
- Department of Immunology and Genomic Medicine, Center for Cancer Immunotherapy and Immunobiology, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
- Department of Immuno-Oncology PDT, Graduate School of Medicine, Kyoto University, Kyoto 606-8501, Japan
| | - Motonari Uesugi
- Division of Biochemistry, Institute for Chemical Research (ICR), Kyoto University, Uji, Kyoto 611-0011, Japan
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University, Kyoto 606-8372, Japan
- School of Pharmacy, Fudan University, Shanghai 201203, China
| |
Collapse
|
5
|
Xie X, Shin YR, Kim TS, Seong YS, Yi YW, Kim DJ. Identification of sinensetin as a selective inhibitor for mitogen-activated protein kinase kinase 6 and an anticancer agent for non-small cell lung cancer. Am J Cancer Res 2025; 15:113-126. [PMID: 39949939 PMCID: PMC11815360 DOI: 10.62347/rgzg2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/03/2025] [Indexed: 02/16/2025] Open
Abstract
Natural compounds are an invaluable source for bioactive small molecules. Cellular activities modulated by them are generally achieved by binding specific cellular targets. However, identification of target(s) for a natural compound is challenging and a hurdle for further development of them as drugs. Sinensetin is derived from Schisandra sphenanthera and the major component of a traditional medicine. Although Sinensetin possesses pharmacological activities, including antioxidants, anti-inflammatory, and anticancer, the molecular mechanisms for its activities remain unclear due to lack of information for its target. In addition, the anticancer effects of sinensetin against non-small cell lung cancer (NSCLC) have not been studied. Here, we described sinensetin as a specific inhibitor of MKK6 with a KD value of 66.27 μM. Sinensetin inhibited the proliferation of NSCLC cells and lung patient-derived xenograft-derived organoids (LPDXO), and induced G1 phase cell-cycle arrest. Sinensetin attenuated the MAPK signaling pathway by directly inhibiting MKK6, but not MKK3. In silico molecular docking analysis indicated that sinensetin was specifically bound near the αG-helix of MKK6, but not MKK3. High MKK6 expression levels were observed in NSCLC patients. MKK6 knockout abolished the sinensetin-mediated inhibition of NSCLC cell proliferation. Taken together, sinensetin is a novel MKK6 inhibitor with therapeutic potential for NSCLC.
Collapse
Affiliation(s)
- Xiaomeng Xie
- Chest Hospital of Zhengzhou UniversityZhengzhou 450000, Henan, China
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou UniversityZhengzhou 450008, Henan, China
- China-US (Henan) Hormel Cancer InstituteZhengzhou 450008, Henan, China
| | - Young Ran Shin
- Department of Microbiology, College of Medicine, Dankook UniversityCheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook UniversityCheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Tae-Sung Kim
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook UniversityCheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook UniversityCheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yeon-Sun Seong
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook UniversityCheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook UniversityCheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Yong Weon Yi
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook UniversityCheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Department of Biochemistry, College of Medicine, Dankook UniversityCheonan-si 31116, Chungcheongnam-do, Republic of Korea
| | - Dong Joon Kim
- Department of Pathophysiology, School of Basic Medical Sciences, Academy of Medical Science, College of Medicine, Zhengzhou UniversityZhengzhou 450008, Henan, China
- China-US (Henan) Hormel Cancer InstituteZhengzhou 450008, Henan, China
- Department of Microbiology, College of Medicine, Dankook UniversityCheonan-si 31116, Chungcheongnam-do, Republic of Korea
- Multidrug-Resistant Refractory Cancer Convergence Research Center (MRCRC), Dankook UniversityCheonan-si 31116, Chungcheongnam-do, Republic of Korea
| |
Collapse
|
6
|
Stadnicki EJ, Ludewig H, Kumar RP, Wang X, Qiao Y, Kern D, Bradshaw N. Dual-action kinase inhibitors influence p38α MAP kinase dephosphorylation. Proc Natl Acad Sci U S A 2025; 122:e2415150122. [PMID: 39739785 PMCID: PMC11725910 DOI: 10.1073/pnas.2415150122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 12/03/2024] [Indexed: 01/02/2025] Open
Abstract
Reversible protein phosphorylation directs essential cellular processes including cell division, cell growth, cell death, inflammation, and differentiation. Because protein phosphorylation drives diverse diseases, kinases and phosphatases have been targets for drug discovery, with some achieving remarkable clinical success. Most protein kinases are activated by phosphorylation of their activation loops, which shifts the conformational equilibrium of the kinase toward the active state. To turn off the kinase, protein phosphatases dephosphorylate these sites, but how the conformation of the dynamic activation loop contributes to dephosphorylation was not known. To answer this, we modulated the activation loop conformational equilibrium of human p38α ΜΑP kinase with existing kinase inhibitors that bind and stabilize specific inactive activation loop conformations. From this, we identified three inhibitors that increase the rate of dephosphorylation of the activation loop phospho-threonine by the PPM serine/threonine phosphatase WIP1. Hence, these compounds are "dual-action" inhibitors that simultaneously block the active site and promote p38α dephosphorylation. Our X-ray crystal structures of phosphorylated p38α bound to the dual-action inhibitors reveal a shared flipped conformation of the activation loop with a fully accessible phospho-threonine. In contrast, our X-ray crystal structure of phosphorylated apo human p38α reveals a different activation loop conformation with an inaccessible phospho-threonine, thereby explaining the increased rate of dephosphorylation upon inhibitor binding. These findings reveal a conformational preference of phosphatases for their targets and suggest a unique approach to achieving improved potency and specificity for therapeutic kinase inhibitors.
Collapse
Affiliation(s)
| | - Hannes Ludewig
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | | | - Xicong Wang
- Department of Biochemistry, Brandeis University, Waltham, MA02454
| | - Youwei Qiao
- Department of Biochemistry, Brandeis University, Waltham, MA02454
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University, Waltham, MA02454
- HHMI, Brandeis University, Waltham, MA02454
| | - Niels Bradshaw
- Department of Biochemistry, Brandeis University, Waltham, MA02454
| |
Collapse
|
7
|
Kong Z, Li S, Li J, Chen Y, Chen M, Zhang X, Wang D, Liu J. Combinatorial Targeting of Common Docking and ATP Binding Sites on Mps1 MAPK for Management of Pathogenic Fungi. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:27115-27124. [PMID: 39622772 PMCID: PMC11640755 DOI: 10.1021/acs.jafc.4c09504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/25/2024] [Accepted: 11/25/2024] [Indexed: 12/12/2024]
Abstract
Resistance in pathogenic fungi necessitates the development of fungicides with new mechanisms of action. The Mps1 MAPK of Magnaporthe oryzae, the pathogen of rice blast disease, has been shown to be a molecular target for fungicide research. Here, we present compound TAK-733 that interacts with the common docking (CD) site of Mps1 and can be used in combination with ATP-competitive inhibitors. We initially identified compounds PLX-4720 and TAK-733 that interact with Mps1. Subsequent assays show that PLX-4720 is an ATP-competitive inhibitor, whereas TAK-733 binds to the CD site of Mps1─an interaction site for its MAPKK─but not to the ATP-binding pocket as it does in the kinase MEK1. In vivo assays demonstrated that TAK-733 exhibits combinational effects with ATP-competitive inhibitors PLX-4720 and A378-0. Collectively, we present TAK-733 as having a new mechanism of action suitable for combinational application with ATP-competitive inhibitors in the management of pathogenic fungi.
Collapse
Affiliation(s)
- Zhiwei Kong
- State
Key Laboratory of Maize Bio-breeding, Joint International Research
Laboratory of Crop Molecular Breeding, China
Agricultural University, Beijing 100193, China
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Saijie Li
- State
Key Laboratory of Maize Bio-breeding, Joint International Research
Laboratory of Crop Molecular Breeding, China
Agricultural University, Beijing 100193, China
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Juxian Li
- State
Key Laboratory of Maize Bio-breeding, Joint International Research
Laboratory of Crop Molecular Breeding, China
Agricultural University, Beijing 100193, China
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Yitong Chen
- State
Key Laboratory of Maize Bio-breeding, Joint International Research
Laboratory of Crop Molecular Breeding, China
Agricultural University, Beijing 100193, China
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Meiqing Chen
- State
Key Laboratory of Maize Bio-breeding, Joint International Research
Laboratory of Crop Molecular Breeding, China
Agricultural University, Beijing 100193, China
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Xin Zhang
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Dongli Wang
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
| | - Junfeng Liu
- State
Key Laboratory of Maize Bio-breeding, Joint International Research
Laboratory of Crop Molecular Breeding, China
Agricultural University, Beijing 100193, China
- Ministry
of Agriculture Key Laboratory for Crop Pest Monitoring and Green Control,
College of Plant Protection, China Agricultural
University, Beijing 100193, China
- Sanya
Institute of China Agricultural University, Sanya 572024, China
| |
Collapse
|
8
|
Seger R. Special Issue: MAPK Signaling Cascades in Human Health and Diseases. Int J Mol Sci 2024; 25:11226. [PMID: 39457006 PMCID: PMC11509016 DOI: 10.3390/ijms252011226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
In order to survive and fulfil their functions, cells of any organism need to be able to respond to a large number of extracellular factors, also termed extracellular stimuli [...].
Collapse
Affiliation(s)
- Rony Seger
- Department of Immunology and Regenerative Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| |
Collapse
|
9
|
Pellegrini E, Juyoux P, von Velsen J, Baxter NJ, Dannatt HRW, Jin Y, Cliff MJ, Waltho JP, Bowler MW. Metal fluorides-multi-functional tools for the study of phosphoryl transfer enzymes, a practical guide. Structure 2024; 32:1834-1846.e3. [PMID: 39106858 DOI: 10.1016/j.str.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/24/2024] [Accepted: 07/10/2024] [Indexed: 08/09/2024]
Abstract
Enzymes facilitating the transfer of phosphate groups constitute the most extensive protein families across all kingdoms of life. They make up approximately 10% of the proteins found in the human genome. Understanding the mechanisms by which enzymes catalyze these reactions is essential in characterizing the processes they regulate. Metal fluorides can be used as multifunctional tools to study these enzymes. These ionic species bear the same charge as phosphate and the transferring phosphoryl group and, in addition, allow the enzyme to be trapped in catalytically important states with spectroscopically sensitive atoms interacting directly with active site residues. The ionic nature of these phosphate surrogates also allows their removal and replacement with other analogs. Here, we describe the best practices to obtain these complexes, their use in NMR, X-ray crystallography, cryo-EM, and SAXS and describe a new metal fluoride, scandium tetrafluoride, which has significant anomalous signal using soft X-rays.
Collapse
Affiliation(s)
- Erika Pellegrini
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Pauline Juyoux
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Jill von Velsen
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France
| | - Nicola J Baxter
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Hugh R W Dannatt
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Yi Jin
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK
| | - Matthew J Cliff
- Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK
| | - Jonathan P Waltho
- School of Biosciences, The University of Sheffield, Firth Court, Western Bank, Sheffield S10 2TN, UK; Manchester Institute of Biotechnology, University of Manchester, Manchester M1 7DN, UK.
| | - Matthew W Bowler
- European Molecular Biology Laboratory, 71 avenue des Martyrs, CS 90181, 38042 Grenoble, France.
| |
Collapse
|
10
|
Zhang Y, Wu K, Mao D, Iberg CA, Yin-Declue H, Sun K, Wikfors HA, Keeler SP, Li M, Young D, Yantis J, Crouch EC, Chartock JR, Han Z, Byers DE, Brody SL, Romero AG, Holtzman MJ. A first-in-kind MAPK13 inhibitor that can correct stem cell reprogramming and post-injury disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.21.608990. [PMID: 39229202 PMCID: PMC11370402 DOI: 10.1101/2024.08.21.608990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
The stress kinase MAPK13 (aka p38δ-MAPK) is an attractive entry point for therapeutic intervention because it regulates the structural remodeling that can develop after epithelial barrier injury in the lung and likely other tissue sites. However, a selective, safe, and effective MAPK13 inhibitor is not yet available for experimental or clinical application. Here we identify a first-in-kind MAPK13 inhibitor using structure-based drug design combined with a screening funnel for cell safety and molecular specificity. This inhibitor (designated NuP-4) down-regulates basal-epithelial stem cell reprogramming, structural remodeling, and pathophysiology equivalently to Mapk13 gene-knockout in mouse and mouse organoid models of post-viral lung disease. This therapeutic benefit persists after stopping treatment as a sign of disease modification and attenuates key aspects of inflammation and remodeling as an indication of disease reversal. Similarly, NuP-4 treatment can directly control cytokine-stimulated growth, immune activation, and mucinous differentiation in human basal-cell organoids. The data thereby provide a new tool and potential fix for long-term stem cell reprogramming after viral injury and related conditions that require MAPK13 induction-activation.
Collapse
Affiliation(s)
- Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Dailing Mao
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Courtney A Iberg
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Huiqing Yin-Declue
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Kelly Sun
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Hallie A Wikfors
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Shamus P Keeler
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Ming Li
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Deanna Young
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Jennifer Yantis
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Erika C Crouch
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Joshua R Chartock
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Zhenfu Han
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Derek E Byers
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Steven L Brody
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Arthur G Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
| | - Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO 63110
- NuPeak Therapeutics Inc., St. Louis, MO 63105
| |
Collapse
|
11
|
Sun J, Shi M, Song Z, Hua F, Yan X, Zhang M, Duan H, Liu J. CD146-dependent macrophage infiltration promotes epidural fibrosis via the Erdr1/ERK/CCR2 pathway. Int Immunopharmacol 2024; 137:112528. [PMID: 38908086 DOI: 10.1016/j.intimp.2024.112528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/14/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
Low back pain due to epidural fibrosis is a major complication after spine surgery. Macrophages infiltrate the wound area post laminectomy, but the role of macrophages in epidural fibrosis remains largely elusive. In a mouse model of laminectomy, macrophage depletion decreased epidural fibrosis. CD146, an adhesion molecule involved in cell migration, is expressed by macrophages. CD146-defective macrophages exhibited impaired migration, which was mediated by reduced expression of CCR2 and suppression of the MAPK/ERK signaling pathway. CD146-defective macrophages suppress the MAPK/ERK signaling pathway by increasing Erdr1. In vivo, CD146 deficiency decreased macrophage infiltration and reduced extracellular matrix deposition in wound tissues. Moreover, the anti-CD146 antibody AA98 suppressed macrophage infiltration and epidural fibrosis. Taken together, these findings demonstrated that CD146 deficiency alleviates epidural fibrosis by decreasing the migration of macrophages via the Erdr1/ERK/CCR2 pathway. Blocking CD146 and macrophage infiltration may help alleviate epidural fibrosis.
Collapse
Affiliation(s)
- Jinpeng Sun
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mohan Shi
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zeyuan Song
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Feng Hua
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiyun Yan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| | - Mingshun Zhang
- NHC Key Laboratory of Antibody Technique, Jiangsu Province Engineering Research Center of Antibody Drug, Department of Immunology, Nanjing Medical University, Nanjing, China.
| | - Hongxia Duan
- Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| | - Jun Liu
- Department of Orthopedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
12
|
Stadnicki EJ, Ludewig H, Kumar RP, Wang X, Qiao Y, Kern D, Bradshaw N. Dual-Action Kinase Inhibitors Influence p38α MAP Kinase Dephosphorylation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.15.594272. [PMID: 39149408 PMCID: PMC11326130 DOI: 10.1101/2024.05.15.594272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Reversible protein phosphorylation directs essential cellular processes including cell division, cell growth, cell death, inflammation, and differentiation. Because protein phosphorylation drives diverse diseases, kinases and phosphatases have been targets for drug discovery, with some achieving remarkable clinical success. Most protein kinases are activated by phosphorylation of their activation loops, which shifts the conformational equilibrium of the kinase towards the active state. To turn off the kinase, protein phosphatases dephosphorylate these sites, but how the conformation of the dynamic activation loop contributes to dephosphorylation was not known. To answer this, we modulated the activation loop conformational equilibrium of human p38α ΜΑP kinase with existing kinase inhibitors that bind and stabilize specific inactive activation loop conformations. From this, we discovered three inhibitors that increase the rate of dephosphorylation of the activation loop phospho-threonine by the PPM serine/threonine phosphatase WIP1. Hence, these compounds are "dual-action" inhibitors that simultaneously block the active site and stimulate p38α dephosphorylation. Our X-ray crystal structures of phosphorylated p38α bound to the dual-action inhibitors reveal a shared flipped conformation of the activation loop with a fully accessible phospho-threonine. In contrast, our X-ray crystal structure of phosphorylated apo human p38α reveals a different activation loop conformation with an inaccessible phospho-threonine, thereby explaining the increased rate of dephosphorylation upon inhibitor binding. These findings reveal a conformational preference of phosphatases for their targets and suggest a new approach to achieving improved potency and specificity for therapeutic kinase inhibitors.
Collapse
Affiliation(s)
- Emily J Stadnicki
- Department of Biochemistry, Brandeis University
- Molecular and Cell Biology Program, Brandeis University
| | - Hannes Ludewig
- Department of Biochemistry, Brandeis University
- Howard Hughes Medical Institute
| | - Ramasamy P Kumar
- Department of Biochemistry, Brandeis University
- Present address: Northeastern University
| | - Xicong Wang
- Department of Biochemistry, Brandeis University
| | - Youwei Qiao
- Department of Biochemistry, Brandeis University
- Present address: UMass Medical School
| | - Dorothee Kern
- Department of Biochemistry, Brandeis University
- Howard Hughes Medical Institute
| | | |
Collapse
|
13
|
Guarra F, Colombo G. Conformational Dynamics, Energetics, and the Divergent Evolution of Allosteric Regulation: The Case of the Yeast MAPK Family. Chembiochem 2024; 25:e202400175. [PMID: 38775368 DOI: 10.1002/cbic.202400175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/24/2024] [Indexed: 07/06/2024]
Abstract
Allosteric mechanisms provide finely-tuned control over signalling proteins. Proteins of the same family may share high sequence identity and structural similarity but show distinct traits of allosteric control and evolutionary divergent regulation. Revealing the determinants of such properties may be important to understand the molecular bases of different regulatory pathways. Herein, we investigate whether and how evolutionarily-divergent traits of allosteric regulation in homologous proteins can be decoded in terms of internal dynamics and interaction networks that support functionally oriented conformations. In this framework, we start from the comparative analysis of the dynamics and energetics of the yeast MAP Kinases (MAPKs) Fus3 and Kss1 in their native basins. Importantly, distinctive dynamic and energetic stabilization features emerge, which can be related to the two proteins' differential ability to be phosphorylated and engage with the allosteric activator Ste5. We then expanded our study to other evolutionarily-related MAPKs. We show that the dynamical and energetical traits defining the distinct regulatory profiles of Fus3 and Kss1 can be traced along their evolutionary tree. Overall, our approach is able to reconnect (latent) allostery with the principal elements of protein structural stabilization and dynamics, showing how allosteric regulation was encrypted in MAPKs structure well before Ste5 appearance.
Collapse
Affiliation(s)
- Federica Guarra
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italia
| | - Giorgio Colombo
- Department of Chemistry, University of Pavia, Via Taramelli 12, 27100, Pavia, Italia
| |
Collapse
|
14
|
Frasnetti E, Magni A, Castelli M, Serapian SA, Moroni E, Colombo G. Structures, dynamics, complexes, and functions: From classic computation to artificial intelligence. Curr Opin Struct Biol 2024; 87:102835. [PMID: 38744148 DOI: 10.1016/j.sbi.2024.102835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/14/2024] [Accepted: 04/22/2024] [Indexed: 05/16/2024]
Abstract
Computational approaches can provide highly detailed insight into the molecular recognition processes that underlie drug binding, the assembly of protein complexes, and the regulation of biological functional processes. Classical simulation methods can bridge a wide range of length- and time-scales typically involved in such processes. Lately, automated learning and artificial intelligence methods have shown the potential to expand the reach of physics-based approaches, ushering in the possibility to model and even design complex protein architectures. The synergy between atomistic simulations and AI methods is an emerging frontier with a huge potential for advances in structural biology. Herein, we explore various examples and frameworks for these approaches, providing select instances and applications that illustrate their impact on fundamental biomolecular problems.
Collapse
Affiliation(s)
- Elena Frasnetti
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Andrea Magni
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Matteo Castelli
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | - Stefano A Serapian
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy
| | | | - Giorgio Colombo
- Department of Chemistry, University of Pavia, via Taramelli 12, 27100 Pavia, Italy.
| |
Collapse
|
15
|
Herrington NB, Li YC, Stein D, Pandey G, Schlessinger A. A comprehensive exploration of the druggable conformational space of protein kinases using AI-predicted structures. PLoS Comput Biol 2024; 20:e1012302. [PMID: 39046952 PMCID: PMC11268620 DOI: 10.1371/journal.pcbi.1012302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
Protein kinase function and interactions with drugs are controlled in part by the movement of the DFG and ɑC-Helix motifs that are related to the catalytic activity of the kinase. Small molecule ligands elicit therapeutic effects with distinct selectivity profiles and residence times that often depend on the active or inactive kinase conformation(s) they bind. Modern AI-based structural modeling methods have the potential to expand upon the limited availability of experimentally determined kinase structures in inactive states. Here, we first explored the conformational space of kinases in the PDB and models generated by AlphaFold2 (AF2) and ESMFold, two prominent AI-based protein structure prediction methods. Our investigation of AF2's ability to explore the conformational diversity of the kinome at various multiple sequence alignment (MSA) depths showed a bias within the predicted structures of kinases in DFG-in conformations, particularly those controlled by the DFG motif, based on their overabundance in the PDB. We demonstrate that predicting kinase structures using AF2 at lower MSA depths explored these alternative conformations more extensively, including identifying previously unobserved conformations for 398 kinases. Ligand enrichment analyses for 23 kinases showed that, on average, docked models distinguished between active molecules and decoys better than random (average AUC (avgAUC) of 64.58), but select models perform well (e.g., avgAUCs for PTK2 and JAK2 were 79.28 and 80.16, respectively). Further analysis explained the ligand enrichment discrepancy between low- and high-performing kinase models as binding site occlusions that would preclude docking. The overall results of our analyses suggested that, although AF2 explored previously uncharted regions of the kinase conformational space and select models exhibited enrichment scores suitable for rational drug discovery, rigorous refinement of AF2 models is likely still necessary for drug discovery campaigns.
Collapse
Affiliation(s)
- Noah B. Herrington
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Yan Chak Li
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - David Stein
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Avner Schlessinger
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, United States of America
| |
Collapse
|
16
|
Condeminas M, Macias MJ. Overcoming challenges in structural biology with integrative approaches and nanobody-derived technologies. Curr Opin Struct Biol 2024; 84:102764. [PMID: 38215529 DOI: 10.1016/j.sbi.2023.102764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 11/24/2023] [Accepted: 12/11/2023] [Indexed: 01/14/2024]
Abstract
A full understanding of protein structure is key to unraveling how these systems work, how mutations affect their function, and discovering new hotspots for drug discovery. Research tackling this field began with the analysis of globular proteins. In recent years, as technology has improved, research efforts have broadened their focus to include the study of multidomain proteins and the analysis of conformational variability, flexibility, and dynamic systems. Here, we have selected five recent examples that integrate complementary structural methods to provide insight into the behavior of modular, flexible, and transient contacts. We also describe the structural application of domains derived from single-chain antibodies, which are instrumental in overcoming the size limitation of cryogenic electron microscopy (cryoEM) studies. As these methods are continuously developed, they will lead to the interrogation of more complex systems, revealing how large signaling and transcriptional machines are assembled in the context of health and disease.
Collapse
Affiliation(s)
- Miriam Condeminas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 10, Barcelona 08028, Spain; Department of Medicine and Life Sciences, Universitat Pompeu Fabra (MELIS-UPF), Carrer del Doctor Aiguader 88, Barcelona 08003, Spain
| | - Maria J Macias
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Carrer de Baldiri Reixac 10, Barcelona 08028, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain.
| |
Collapse
|
17
|
Holtzman MJ, Zhang Y, Wu K, Romero AG. Mitogen-activated protein kinase-guided drug discovery for post-viral and related types of lung disease. Eur Respir Rev 2024; 33:230220. [PMID: 38417971 PMCID: PMC10900067 DOI: 10.1183/16000617.0220-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/18/2024] [Indexed: 03/01/2024] Open
Abstract
Respiratory viral infections are a major public health problem, with much of their morbidity and mortality due to post-viral lung diseases that progress and persist after the active infection is cleared. This paradigm is implicated in the most common forms of chronic lung disease, such as asthma and COPD, as well as other virus-linked diseases including progressive and long-term coronavirus disease 2019. Despite the impact of these diseases, there is a lack of small-molecule drugs available that can precisely modify this type of disease process. Here we will review current progress in understanding the pathogenesis of post-viral and related lung disease with characteristic remodelling phenotypes. We will also develop how this data leads to mitogen-activated protein kinase (MAPK) in general and MAPK13 in particular as key druggable targets in this pathway. We will also explore recent advances and predict the future breakthroughs in structure-based drug design that will provide new MAPK inhibitors as drug candidates for clinical applications. Each of these developments point to a more effective approach to treating the distinct epithelial and immune cell based mechanisms, which better account for the morbidity and mortality of post-viral and related types of lung disease. This progress is vital given the growing prevalence of respiratory viruses and other inhaled agents that trigger stereotyped progression to acute illness and chronic disease.
Collapse
Affiliation(s)
- Michael J Holtzman
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
- Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, MO, USA
- NuPeak Therapeutics Inc., St. Louis, MO, USA
| | - Yong Zhang
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Kangyun Wu
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Arthur G Romero
- Pulmonary and Critical Care Medicine, Department of Medicine, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
18
|
Takarada JE, Cunha MR, Almeida VM, Vasconcelos SNS, Santiago AS, Godoi PH, Salmazo A, Ramos PZ, Fala AM, de Souza LR, Da Silva IEP, Bengtson MH, Massirer KB, Couñago RM. Discovery of pyrazolo[3,4-d]pyrimidines as novel mitogen-activated protein kinase kinase 3 (MKK3) inhibitors. Bioorg Med Chem 2024; 98:117561. [PMID: 38157838 DOI: 10.1016/j.bmc.2023.117561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
The dual-specificity protein kinase MKK3 has been implicated in tumor cell proliferation and survival, yet its precise role in cancer remains inconclusive. A critical step in elucidating the kinase's involvement in disease biology is the identification of potent, cell-permeable kinase inhibitors. Presently, MKK3 lacks a dedicated tool compound for these purposes, along with validated methods for the facile screening, identification, and optimization of inhibitors. In this study, we have developed a TR-FRET-based enzymatic assay for the detection of MKK3 activity in vitro and a BRET-based assay to assess ligand binding to this enzyme within intact human cells. These assays were instrumental in identifying hit compounds against MKK3 that share a common chemical scaffold, sourced from a library of bioactive kinase inhibitors. Initial hits were subsequently expanded through the synthesis of novel analogs. The resulting structure-activity relationship (SAR) was rationalized using molecular dynamics simulations against a homology model of MKK3. We expect our findings to expedite the development of novel, potent, selective, and bioactive inhibitors, thus facilitating investigations into MKK3's role in various cancers.
Collapse
Affiliation(s)
- Jéssica E Takarada
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Micael R Cunha
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Vitor M Almeida
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Stanley N S Vasconcelos
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - André S Santiago
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Paulo H Godoi
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Anita Salmazo
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Priscila Z Ramos
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Angela M Fala
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Lucas R de Souza
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Italo E P Da Silva
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Mario H Bengtson
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, SP 13083-862, Brazil
| | - Katlin B Massirer
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil
| | - Rafael M Couñago
- Center of Medicinal Chemistry (CQMED), Center for Molecular Biology and Genetic Engineering (CBMEG), University of Campinas, Av. Dr. André Tosello 550, 13083-886 Campinas, Brazil; Structural Genomics Consortium and Division of Chemical Biology and Medicinal Chemistry, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, United States.
| |
Collapse
|
19
|
McGregor L, Acajjaoui S, Desfosses A, Saïdi M, Bacia-Verloop M, Schwarz JJ, Juyoux P, von Velsen J, Bowler MW, McCarthy AA, Kandiah E, Gutsche I, Soler-Lopez M. The assembly of the Mitochondrial Complex I Assembly complex uncovers a redox pathway coordination. Nat Commun 2023; 14:8248. [PMID: 38086790 PMCID: PMC10716376 DOI: 10.1038/s41467-023-43865-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The Mitochondrial Complex I Assembly (MCIA) complex is essential for the biogenesis of respiratory Complex I (CI), the first enzyme in the respiratory chain, which has been linked to Alzheimer's disease (AD) pathogenesis. However, how MCIA facilitates CI assembly, and how it is linked with AD pathogenesis, is poorly understood. Here we report the structural basis of the complex formation between the MCIA subunits ECSIT and ACAD9. ECSIT binding induces a major conformational change in the FAD-binding loop of ACAD9, releasing the FAD cofactor and converting ACAD9 from a fatty acid β-oxidation (FAO) enzyme to a CI assembly factor. We provide evidence that ECSIT phosphorylation downregulates its association with ACAD9 and is reduced in neuronal cells upon exposure to amyloid-β (Aβ) oligomers. These findings advance our understanding of the MCIA complex assembly and suggest a possible role for ECSIT in the reprogramming of bioenergetic pathways linked to Aβ toxicity, a hallmark of AD.
Collapse
Affiliation(s)
- Lindsay McGregor
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Samira Acajjaoui
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Ambroise Desfosses
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS (IBS), 38044, Grenoble, France
| | - Melissa Saïdi
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Maria Bacia-Verloop
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS (IBS), 38044, Grenoble, France
| | - Jennifer J Schwarz
- European Molecular Biology Laboratory (EMBL), 69117, Heidelberg, Germany
| | - Pauline Juyoux
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Jill von Velsen
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Matthew W Bowler
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Andrew A McCarthy
- European Molecular Biology Laboratory (EMBL), 38043, Grenoble, France
| | - Eaazhisai Kandiah
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France
| | - Irina Gutsche
- Institut de Biologie Structurale, Université Grenoble Alpes, CEA, CNRS (IBS), 38044, Grenoble, France.
- Department of Chemistry, Umeå University, Umeå, Sweden.
| | - Montserrat Soler-Lopez
- Structural Biology Group, European Synchrotron Radiation Facility (ESRF), 38043, Grenoble, France.
| |
Collapse
|