1
|
Golden A, Davis JM. Smoking, Obesity, and Post-Cessation Weight Gain: Neurobiological Intersection and Treatment Recommendations. J Multidiscip Healthc 2025; 18:2889-2900. [PMID: 40438565 PMCID: PMC12118490 DOI: 10.2147/jmdh.s509971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Accepted: 05/08/2025] [Indexed: 06/01/2025] Open
Abstract
In the US, 28.8 million adults currently smoke cigarettes, and approximately 1.25 billion people use tobacco globally. Unfortunately, post-cessation weight gain is a substantial barrier to smoking cessation and sustained abstinence. Among people who smoke, 36% meet the body mass index (BMI) criteria for obesity and over 50% meet the waist circumference criteria for central obesity. Despite this, primary care providers currently have limited guidance on how to best treat their patients who want to quit smoking without post-cessation weight gain. There are common neurobiologic and endocrine dysregulations in nicotine dependence and weight gain. For example, nicotine dependence and obesity are both associated with dysregulation in hypothalamic neuropeptide systems and dopaminergic pathways. Medications for nicotine dependence act on dopaminergic pathways and hypothalamic pro-opiomelanocortin (POMC) cells. Similarly, medications for obesity may increase dopamine and norepinephrine signaling and stimulate POMC activity. A unique medication, the fixed-dose extended-release combination of naltrexone and bupropion, supports both smoking cessation and weight loss by increasing dopamine and norepinephrine signaling and stimulating POMC-producing cells. This narrative review outlines neurobiologic mechanisms common to smoking and obesity and compares the effects of available pharmacotherapies on dopaminergic system and neuroendocrine dysregulation. Finally, this review outlines factors that primary care professionals should consider when treating people who want to stop smoking but are at risk of post-cessation weight gain.
Collapse
Affiliation(s)
- Angela Golden
- NP From Home LLC and NP Obesity Treatment Clinic, Flagstaff, AZ, USA
| | - James M Davis
- Duke University School of Medicine, Durham, NC, USA
- Duke Cancer Institute, Durham, NC, USA
| |
Collapse
|
2
|
Montemarano A, Fox LD, Alkhaleel FA, Ostman AE, Sohail H, Pandey S, Murdaugh LB, Fox ME. A Drd1-cre mouse line with nucleus accumbens gene dysregulation exhibits blunted fentanyl seeking. Neuropsychopharmacology 2025:10.1038/s41386-025-02116-0. [PMID: 40316698 DOI: 10.1038/s41386-025-02116-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 04/04/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025]
Abstract
The synthetic opioid fentanyl remains abundant in the illicit drug supply, contributing to tens of thousands of overdose deaths every year. Despite this, the neurobiological effects of fentanyl use remain largely understudied. The nucleus accumbens (NAc) is a central locus promoting persistent drug use and relapse, largely dependent on activity of dopamine D1 receptors. NAc D1 receptor-expressing medium spiny neurons (D1-MSNs) undergo molecular and physiological neuroadaptations in response to chronic fentanyl that may promote relapse. Here, we obtained Drd1-cre120Mxu mice to investigate D1-dependent mechanisms of fentanyl relapse. We serendipitously discovered this mouse line has reduced fentanyl seeking, despite similar intravenous fentanyl self-administration, similar sucrose self-administration and seeking, and greater fentanyl-induced locomotion compared to wildtype counterparts. We found drug-naïve Drd1-cre120Mxu mice have elevated D1 receptor expression in NAc and increased sensitivity to the D1 receptor agonist SKF-38393. After fentanyl self-administration, Drd1-cre120Mxu mice exhibit divergent expression of MSN markers, opioid receptors, glutamate receptor subunits, and TrkB which may underly their blunted fentanyl seeking. Finally, we show fentanyl-related behavior is unaltered by chemogenetic manipulation of NAc core D1-MSNs in Drd1-cre120Mxu mice. Conversely, chemogenetic stimulation of ventral mesencephalon-projecting NAc core MSNs (putative D1-MSNs) in wildtype mice recapitulated the blunted fentanyl seeking of Drd1-cre120Mxu mice, supporting a role for aberrant D1-MSN signaling in this behavior. Together, our data uncover alterations in NAc gene expression and function with implications for susceptibility and resistance to developing fentanyl use disorder.
Collapse
Affiliation(s)
- Annalisa Montemarano
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Logan D Fox
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Farrah A Alkhaleel
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Alexandria E Ostman
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Hajra Sohail
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Samiksha Pandey
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Laura B Murdaugh
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Megan E Fox
- Department of Anesthesiology and Perioperative Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
- Department of Neuroscience and Experimental Therapeutics, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
3
|
Brida KL, Day JJ. Molecular and genetic mechanisms of plasticity in addiction. Curr Opin Neurobiol 2025; 93:103032. [PMID: 40311544 DOI: 10.1016/j.conb.2025.103032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/21/2025] [Accepted: 04/07/2025] [Indexed: 05/03/2025]
Abstract
Drugs of abuse result in well-characterized changes in synapse function and number in brain reward regions such as the nucleus accumbens. However, recent reports demonstrate that only a small fraction of neurons in the nucleus accumbens are activated in response to psychostimulants such as cocaine. While these "ensemble" neurons are marked by drug-related transcriptional changes in immediate early genes, the mechanisms that ultimately link these early changes to enduring molecular alterations in the same neurons are less clear. In this review, we 1) describe potential mechanisms underlying regulation of diverse plasticity-related gene programs across drug-activated ensembles, 2) discuss factors conferring ensemble recruitment bias within seemingly homogeneous populations, and 3) speculate on the role of chromatin and epigenetic modifiers in gating metaplastic state transitions that contribute to addiction.
Collapse
Affiliation(s)
- Kasey L Brida
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd, SHEL 910, Birmingham, AL 35294, USA
| | - Jeremy J Day
- Department of Neurobiology, University of Alabama at Birmingham, 1825 University Blvd, SHEL 910, Birmingham, AL 35294, USA.
| |
Collapse
|
4
|
Browne CJ, Mews P, Estill M, Zhou X, Holt LM, Futamura R, Shen L, Zhang B, Nestler EJ. Cocaine and morphine induce shared and divergent transcriptional regulation in nucleus accumbens D1 and D2 medium spiny neurons. Mol Psychiatry 2025:10.1038/s41380-025-03004-1. [PMID: 40188314 DOI: 10.1038/s41380-025-03004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 03/07/2025] [Accepted: 03/27/2025] [Indexed: 04/07/2025]
Abstract
Substance use disorders (SUDs) induce widespread molecular dysregulation in nucleus accumbens (NAc), a brain region pivotal for coordinating motivation and reward, which is linked to neural and behavioral disturbances promoting addiction. Despite the overlapping symptomatology of SUDs, different drug classes exert partly unique influences on neural circuits, cell types, physiology, and gene expression. To better understand common and divergent molecular mechanisms governing SUD pathology, we characterized the cell-type-specific restructuring of the NAc transcriptional landscape after psychostimulant or opioid exposure. We combined fluorescence-activated nuclei sorting and deep RNA sequencing to profile NAc D1 and D2 medium spiny neurons (MSNs) across cocaine and morphine exposure paradigms, including initial exposure, prolonged withdrawal after repeated exposure, and re-exposure post-withdrawal. Our analyses reveal that D1 MSNs display many convergent transcriptional responses between the two drug classes, whereas D2 MSNs manifest highly divergent responses, with morphine causing more adaptations in this cell type. Utilizing multiscale embedded gene co-expression network analysis (MEGENA), we discerned transcriptional regulatory networks subserving biological functions altered by cocaine vs. morphine. We observed largely integrative engagement of overlapping gene networks across drug classes in D1 MSNs, but opposite regulation of key D2 networks, highlighting potential therapeutic gene network targets within MSNs. Analysis of gene regulatory systems at the level of enhancers revealed that morphine engages a unique enhancer landscape in D2 MSNs compared to cocaine. Our findings, and future work leveraging this dataset, will open avenues for the development of targeted therapeutic interventions, addressing the urgent need for more effective treatments for SUDs.
Collapse
Affiliation(s)
- Caleb J Browne
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Philipp Mews
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Dept. of Pharmacology, Physiology & Biophysics, Chobanian & Avedisian School of Medicine, Boston University, Boston, MA, USA
| | - Molly Estill
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Xianxiao Zhou
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Dept. of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Leanne M Holt
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Rita Futamura
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Li Shen
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bin Zhang
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Dept. of Genetics and Genomic Sciences and Icahn Institute for Data Science and Genomic Technology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Dept. of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
5
|
Zhu Z, Gong R, Rodriguez V, Quach KT, Chen X, Sternson SM. Hedonic eating is controlled by dopamine neurons that oppose GLP-1R satiety. Science 2025; 387:eadt0773. [PMID: 40146831 PMCID: PMC12009138 DOI: 10.1126/science.adt0773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Accepted: 01/27/2025] [Indexed: 03/29/2025]
Abstract
Hedonic eating is defined as food consumption driven by palatability without physiological need. However, neural control of palatable food intake is poorly understood. We discovered that hedonic eating is controlled by a neural pathway from the peri-locus ceruleus to the ventral tegmental area (VTA). Using photometry-calibrated optogenetics, we found that VTA dopamine (VTADA) neurons encode palatability to bidirectionally regulate hedonic food consumption. VTADA neuron responsiveness was suppressed during food consumption by semaglutide, a glucagon-like peptide receptor 1 (GLP-1R) agonist used as an antiobesity drug. Mice recovered palatable food appetite and VTADA neuron activity during repeated semaglutide treatment, which was reversed by consumption-triggered VTADA neuron inhibition. Thus, hedonic food intake activates VTADA neurons, which sustain further consumption, a mechanism that opposes appetite reduction by semaglutide.
Collapse
Affiliation(s)
- Zhenggang Zhu
- Department of Neurosciences, University of California, San Diego; La Jolla, CA 92093, USA
| | - Rong Gong
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
| | - Vicente Rodriguez
- Howard Hughes Medical Institute; University of California, San Diego; La Jolla, CA 92093, USA
| | - Kathleen T. Quach
- Howard Hughes Medical Institute; University of California, San Diego; La Jolla, CA 92093, USA
| | - Xinyu Chen
- Howard Hughes Medical Institute; University of California, San Diego; La Jolla, CA 92093, USA
| | - Scott M. Sternson
- Department of Neurosciences, University of California, San Diego; La Jolla, CA 92093, USA
- Janelia Research Campus, Howard Hughes Medical Institute; Ashburn, VA 20147, USA
- Howard Hughes Medical Institute; University of California, San Diego; La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Brida KL, Jorgensen ET, Phillips RA, Newman CE, Tuscher JJ, Morring EK, Zipperly ME, Ianov L, Montgomery KD, Tippani M, Hyde TM, Maynard KR, Martinowich K, Day JJ. Reelin marks cocaine-activated striatal neurons, promotes neuronal excitability, and regulates cocaine reward. SCIENCE ADVANCES 2025; 11:eads4441. [PMID: 40138397 PMCID: PMC12076537 DOI: 10.1126/sciadv.ads4441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 02/20/2025] [Indexed: 03/29/2025]
Abstract
Drugs of abuse activate defined neuronal populations in reward structures such as the nucleus accumbens (NAc), which promote the enduring synaptic, circuit, and behavioral consequences of drug exposure. While the molecular and cellular effects arising from experience with drugs like cocaine are increasingly well understood, mechanisms that dictate NAc neuronal recruitment remain unknown. Here, we leveraged unbiased single-nucleus transcriptional profiling and targeted in situ detection to identify Reln (encoding the secreted glycoprotein, Reelin) as a marker of cocaine-activated neuronal populations within the rat NAc. A CRISPR interference approach enabling selective Reln knockdown in the adult NAc altered expression of calcium signaling genes, promoted a transcriptional trajectory consistent with loss of cocaine sensitivity, and decreased MSN excitability. Behaviorally, Reln knockdown prevented cocaine locomotor sensitization, abolished cocaine place preference memory, and decreased cocaine self-administration behavior. These results identify Reelin as a critical mechanistic link between neuronal activation and cocaine-induced behavioral adaptations.
Collapse
Affiliation(s)
- Kasey L. Brida
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily T. Jorgensen
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Robert A. Phillips
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Catherine E. Newman
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Jennifer J. Tuscher
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Emily K. Morring
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Morgan E. Zipperly
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Lara Ianov
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
- Civitan International Research Center,
University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Kelsey D. Montgomery
- Lieber Institute for Brain Development,
Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development,
Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Thomas M. Hyde
- Lieber Institute for Brain Development,
Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral
Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Department of Neurology, Johns Hopkins
University School of Medicine, Baltimore, MD 21205, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development,
Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral
Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Department of Neuroscience, Johns Hopkins
University School of Medicine, Baltimore, MD 21205, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development,
Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral
Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205,
USA
- Department of Neuroscience, Johns Hopkins
University School of Medicine, Baltimore, MD 21205, USA
- The Kavli Neuroscience Discovery
Institute, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Jeremy J. Day
- Department of Neurobiology, University of
Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
7
|
Wang B, Wang J, Beacher NJ, Lin DT, Zhang Y. Cell-type specific epigenetic and transcriptional mechanisms in substance use disorder. Front Cell Neurosci 2025; 19:1552032. [PMID: 40226298 PMCID: PMC11985801 DOI: 10.3389/fncel.2025.1552032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Accepted: 03/13/2025] [Indexed: 04/15/2025] Open
Abstract
Substance use disorder (SUD) is a chronic and relapse-prone neuropsychiatric disease characterized by impaired brain circuitry within multiple cell types and neural circuits. Recent advancements in single-cell transcriptomics, epigenetics, and neural circuit research have unveiled molecular and cellular alterations associated with SUD. These studies have provided valuable insights into the transcriptional and epigenetic regulation of neuronal and non-neuronal cells, particularly in the context of drug exposure. Critical factors influencing the susceptibility of individuals to SUD include the regulation of gene expression during early developmental stages, neuroadaptive responses to psychoactive substances, and gene-environment interactions. Here we briefly review some of these mechanisms underlying SUD, with an emphasis on their crucial roles in in neural plasticity and maintenance of addiction and relapse in neuronal and non-neuronal cell-types. We foresee the possibility of integrating multi-omics technologies to devise targeted and personalized therapeutic strategies aimed at both the prevention and treatment of SUD. By utilizing these advanced methodologies, we can gain a deeper understanding of the fundamental biology of SUD, paving the way for more effective interventions.
Collapse
Affiliation(s)
- Bin Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jiale Wang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Nicholas J. Beacher
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
| | - Da-Ting Lin
- Intramural Research Program, National Institute on Drug Abuse, Baltimore, MD, United States
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yan Zhang
- National Institute on Drug Dependence and Beijing Key Laboratory of Drug Dependence Research, Peking University, Beijing, China
| |
Collapse
|
8
|
Eckenwiler EA, Ingebretson AE, Stolley JJ, Fusaro MA, Romportl AM, Ross JM, Petersen CL, Kale EM, Clark MS, Schattauer SS, Zweifel LS, Lemos JC. Corticotropin-Releasing Factor Release From a Unique Subpopulation of Accumbal Neurons Constrains Action-Outcome Acquisition in Reward Learning. Biol Psychiatry 2025; 97:637-650. [PMID: 39181385 PMCID: PMC11839403 DOI: 10.1016/j.biopsych.2024.08.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 08/01/2024] [Accepted: 08/07/2024] [Indexed: 08/27/2024]
Abstract
BACKGROUND The nucleus accumbens (NAc) mediates reward learning and motivation. Despite an abundance of neuropeptides, peptidergic neurotransmission from the NAc has not been integrated into current models of reward learning. The existence of a sparse population of neurons containing corticotropin-releasing factor (CRF) has been previously documented. Here, we provide a comprehensive analysis of their identity and functional role in shaping reward learning. METHODS Our multidisciplinary approach included fluorescent in situ hybridization (n = ≥3 mice), tract tracing (n = 5 mice), ex vivo electrophysiology (n = ≥30 cells), in vivo calcium imaging with fiber photometry (n = ≥4 mice), and use of viral strategies in transgenic lines to selectively delete CRF peptide from NAc neurons (n = ≥4 mice). Behaviors used were instrumental learning, sucrose preference, and spontaneous exploration in an open field. RESULTS We showed that the vast majority of NAc CRF-containing neurons are spiny projection neurons (SPNs) comprising dopamine D1-, D2-, or D1/D2-containing SPNs that primarily project and connect to the ventral pallidum and to a lesser extent the ventral midbrain. As a population, they display mature and immature SPN firing properties. We demonstrated that NAc CRF-containing neurons track reward outcomes during operant reward learning and that CRF release from these neurons acts to constrain initial acquisition of action-outcome learning and at the same time facilitates flexibility in the face of changing contingencies. CONCLUSIONS CRF release from this sparse population of SPNs is critical for reward learning under normal conditions.
Collapse
Affiliation(s)
- Elizabeth A Eckenwiler
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Anna E Ingebretson
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Jeffrey J Stolley
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Maxine A Fusaro
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Alyssa M Romportl
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Jack M Ross
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Christopher L Petersen
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Eera M Kale
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota
| | - Michael S Clark
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington
| | - Selena S Schattauer
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington; Department of Pharmacology, University of Washington, Seattle, Washington
| | - Larry S Zweifel
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, Washington; Department of Pharmacology, University of Washington, Seattle, Washington
| | - Julia C Lemos
- Department of Neuroscience, University of Minnesota Twin Cities, Minneapolis, Minnesota; Medical Discovery Team on Addiction, University of Minnesota, Minneapolis, Minnesota.
| |
Collapse
|
9
|
Li H, Wang S, Wang D, Li J, Song G, Guo Y, Yin L, Tong T, Zhang H, Dong H. Dopamine Drives Feedforward Inhibition to Orexin Feeding System, Mediating Weight Loss Induced by Morphine Addiction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2411858. [PMID: 39836540 PMCID: PMC11905075 DOI: 10.1002/advs.202411858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/02/2025] [Indexed: 01/23/2025]
Abstract
Feeding behavior changes induced by opioid addiction significantly contribute to the worsening opioid crisis. Activation of the reward system has shown to provoke binge eating disorder in individuals with opioid use disorder, whereas prolonged opioid exposure leads to weight loss. Understanding the mechanisms underlying these phenomena is essential for addressing this pressing societal issue. This study demonstrates that weight loss resulting from feeding behavior changes during morphine addiction requires the activation of the ventral tegmental area dopamine (DA) system, which suppresses the orexin feeding center. Specifically, DA exerts an inhibitory effect on orexin neurons in the lateral hypothalamus area (LHA) through a feedforward inhibition mediated by GABA neurons in the LHA, involving D1 receptors (D1R) and T-type Ca2+ channels. Moreover, the morphine addiction-induced reduction in body weight and food intake can be reversed by the D1R antagonist SCH23390 and chemogenetic silencing of GABA neurons in the LHA. These findings delineate a neuromodulatory mechanism underlying morphine addiction-associated feeding behavior changes and weight loss.
Collapse
Affiliation(s)
- Huiming Li
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Sa Wang
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Dan Wang
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Jiannan Li
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Ge Song
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Yongxin Guo
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Lu Yin
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Tingting Tong
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| | - Haopeng Zhang
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced ManufactureDepartment of AnesthesiologySchool of StomatologyThe Fourth Military Medical UniversityXi'an710032China
| | - Hailong Dong
- Department of Anesthesiology and Perioperative MedicineXijing HospitalThe Fourth Military Medical UniversityXi'an710032China
- Key Laboratory of Anesthesiology (The Fourth Military Medical University)Ministry of Education of ChinaXi'an710032China
| |
Collapse
|
10
|
Greydanus DE, Nazeer A, Patel DR. Opioid use and abuse in adolescents and young adults; dealing with science, laws and ethics: Charming the COBRAS. Dis Mon 2025; 71:101853. [PMID: 39809600 DOI: 10.1016/j.disamonth.2025.101853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The subject of substance use disorders in the pediatric population remains a disturbing conundrum for clinicians, researchers and society in general. Many of our youth are at risk of being damaged and even killed by drug addictions that result from the collision of rapidly developing as well as vulnerable central nervous systems encountering the current global drug addiction crisis. A major motif of this chemical calamity is opioid use disorder in adolescents and young adults that was stimulated by the 19th century identification of such highly addictive drugs as morphine, heroin and a non-opiate, cocaine. This analysis focuses on the pervasive presence of opioid drugs such as heroin and fentanyl that has become a major tragedy in the 21st century arising from an overall substance use and misuse phenomenon rampant in global society. Themes covered in this article include the history of addictive drugs in humans, diagnostic terms in use, the role of neurobiology in drug addiction, and current psychopharmacologic approaches to opioid overdose as well as addiction. Our youth are continuously confronted by dangers of high-risk behaviors including death and injury from opioid use disorders due to their central nervous system neuroplasticity as well as the widespread availability of these harmful chemicals. Healthcare professionals should actively assist our youth who unknowingly and even innocently encounter this deadly menace in the 21st century.
Collapse
Affiliation(s)
- Donald E Greydanus
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, United States.
| | - Ahsan Nazeer
- Division of Child and Adolescent Psychiatry, Sidra Medicine/Weill Cornell Medicine, Doha, Qatar
| | - Dilip R Patel
- Department of Pediatric and Adolescent Medicine, Western Michigan University, Homer Stryker M.D. School of Medicine, Kalamazoo, MI, USA
| |
Collapse
|
11
|
Montemarano A, Fox LD, Alkhaleel FA, Ostman AE, Sohail H, Pandey S, Fox ME. A Drd1-cre mouse line with nucleus accumbens gene dysregulation exhibits blunted fentanyl seeking. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.14.638324. [PMID: 40027693 PMCID: PMC11870424 DOI: 10.1101/2025.02.14.638324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
The synthetic opioid fentanyl remains abundant in the illicit drug supply, contributing to tens of thousands of overdose deaths every year. Despite this, the neurobiological effects of fentanyl use remain largely understudied. The nucleus accumbens (NAc) is a central locus promoting persistent drug use and relapse, largely dependent on activity of dopamine D1 receptors. NAc D1 receptor-expressing medium spiny neurons (D1-MSNs) undergo molecular and physiological adaptations that contribute to negative affect during fentanyl abstinence, but whether these neuroadaptations also promote fentanyl relapse is unclear. Here, we obtained Drd1-cre 120Mxu mice to investigate D1-dependent mechanisms of fentanyl relapse. We serendipitously discovered this mouse line is resistant to fentanyl seeking, despite similar intravenous fentanyl self-administration, and greater fentanyl-induced locomotion, compared to wildtype counterparts. In drug naïve mice, we found Drd1-cre 120Mxu mice have elevated D1 receptor expression in NAc, alongside increased expression of MSN marker genes Chrm4 and Penk . We show Drd1-cre 120Mxu mice have increased sensitivity to the D1 receptor agonist SKF-38393, and exhibit divergent expression of MSN markers, opioid receptors, glutamate receptor subunits, and TrkB after fentanyl self-administration that may underly blunted fentanyl seeking. Finally, we show fentanyl-related behavior is unaltered by chemogenetic manipulation of D1-MSNs in Drd1-cre 120Mxu mice. Conversely, chemogenetic stimulation of putative D1-MSNs in wildtype mice recapitulated the blunted fentanyl seeking of Drd1-cre 120Mxu mice, supporting a role for aberrant D1-MSN signaling in this behavior. Together, our data uncover alterations in NAc gene expression and function with implications for susceptibility and resistance to developing fentanyl use disorder.
Collapse
|
12
|
Aboharb F, Davoudian PA, Shao LX, Liao C, Rzepka GN, Wojtasiewicz C, Indajang J, Dibbs M, Rondeau J, Sherwood AM, Kaye AP, Kwan AC. Classification of psychedelics and psychoactive drugs based on brain-wide imaging of cellular c-Fos expression. Nat Commun 2025; 16:1590. [PMID: 39939591 PMCID: PMC11822132 DOI: 10.1038/s41467-025-56850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 01/31/2025] [Indexed: 02/14/2025] Open
Abstract
Psilocybin, ketamine, and MDMA are psychoactive compounds that exert behavioral effects with distinguishable but also overlapping features. The growing interest in using these compounds as therapeutics necessitates preclinical assays that can accurately screen psychedelics and related analogs. We posit that a promising approach may be to measure drug action on markers of neural plasticity in native brain tissues. We therefore developed a pipeline for drug classification using light sheet fluorescence microscopy of immediate early gene expression at cellular resolution followed by machine learning. We tested male and female mice with a panel of drugs, including psilocybin, ketamine, 5-MeO-DMT, 6-fluoro-DET, MDMA, acute fluoxetine, chronic fluoxetine, and vehicle. In one-versus-rest classification, the exact drug was identified with 67% accuracy, significantly above the chance level of 12.5%. In one-versus-one classifications, psilocybin was discriminated from 5-MeO-DMT, ketamine, MDMA, or acute fluoxetine with >95% accuracy. We used Shapley additive explanation to pinpoint the brain regions driving the machine learning predictions. Our results suggest a unique approach for characterizing and validating psychoactive drugs with psychedelic properties.
Collapse
Affiliation(s)
- Farid Aboharb
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Weill Cornell Medicine/Rockefeller/Sloan-Kettering Tri-Institutional MD/PhD Program, New York, NY, USA
| | - Pasha A Davoudian
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
- Medical Scientist Training Program, Yale University School of Medicine, New Haven, CT, USA
| | - Ling-Xiao Shao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Clara Liao
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
- Interdepartmental Neuroscience Program, Yale University School of Medicine, New Haven, CT, USA
| | - Gillian N Rzepka
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | | | - Jonathan Indajang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA
| | - Mark Dibbs
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | - Jocelyne Rondeau
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
| | | | - Alfred P Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, USA
- Wu Tsai Institute, Yale University, New Haven, CT, USA
| | - Alex C Kwan
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY, USA.
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
13
|
Nestler EJ. The biology of addiction. Sci Signal 2025; 18:eadq0031. [PMID: 39903810 DOI: 10.1126/scisignal.adq0031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Accepted: 12/10/2024] [Indexed: 02/06/2025]
Abstract
The tools of modern genetics and neurobiology have propelled a renaissance of research that has advanced our understanding of the pathophysiology of drug addiction. We know that an individual's risk for addiction is determined by interactions between genetics and environment and that only a minute fraction of chemical agents share the ability to act on this vulnerability to induce a state of addiction. Repeated exposure to these drugs causes addiction through repeated activation of dopaminergic transmission (and many other actions) in the brain, inducing changes at the molecular, cellular, and synaptic levels that, over time, rewire the circuitry throughout the limbic system. In this Review, I discuss how we are gaining a clearer picture of this drug-induced plasticity-some of which is shared by all addictive drugs, whereas other aspects are specific to certain drug classes-and of the ways in which these adaptations mediate the range of behavioral abnormalities that define the addicted state. Despite the challenges, there is reason for optimism in translating this rich biological understanding of addiction into improved treatments for the many individuals burdened by this illness around the world.
Collapse
Affiliation(s)
- Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
14
|
Li Y, Mao J, Chai G, Zheng R, Liu X, Xie J. Neurobiological mechanisms of nicotine's effects on feeding and body weight. Neurosci Biobehav Rev 2025; 169:106021. [PMID: 39826824 DOI: 10.1016/j.neubiorev.2025.106021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/14/2025] [Accepted: 01/15/2025] [Indexed: 01/22/2025]
Abstract
Nicotine, a neuroactive substance in tobacco products, has been widely studied for its effects on feeding and body weight, mostly focusing on the involvement of nervous system, metabolism, hormones, and gut microbiota. To elucidate the action mechanism of nicotine on feeding and body weight, especially the underlying neurobiological mechanisms, we reviewed the studies on nicotine's effects on feeding and body weight by the regulation of various nerve systems, energy expenditure, peripheral hormones, gut microbiota, etc. The role of neuronal signaling molecules such as AMP-activated protein kinase (AMPK) and kappa opioid receptor (κOR) were specialized in the nicotine-regulating energy expenditure. The energy homeostasis-related neurons, pro-opiomelanocortin (POMC), agouti-related peptide (AgRP), prolactin-releasing hormone (Prlh), etc, were discussed about the responsibility for nicotine's effects on feeding. Nicotine's actions on hypothalamus and its related neural circuits were described in view of peripheral nervous system, reward system, adipose browning, hormone secretion, and gut-brain axis. Elucidation of neurobiological mechanism of nicotine's actions on feeding and body weight will be of immense value to the therapeutic strategies of smoking, and advance the medicine research for the therapy of obesity.
Collapse
Affiliation(s)
- Ying Li
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China
| | - Jian Mao
- Beijing Life Science Academy, Beijing, China
| | - Guobi Chai
- Food Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Zhengzhou, Henan, China
| | - Ruimao Zheng
- Department of Anatomy Histology and Embryology School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xingyu Liu
- Beijing Life Science Academy, Beijing, China.
| | - Jianping Xie
- Department of Nutrition and Health, Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China; Beijing Life Science Academy, Beijing, China.
| |
Collapse
|
15
|
Lehmann CM, Miller NE, Nair VS, Costa KM, Schoenbaum G, Moussawi K. Generalized cue reactivity in rat dopamine neurons after opioids. Nat Commun 2025; 16:321. [PMID: 39747036 PMCID: PMC11697388 DOI: 10.1038/s41467-024-55504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/12/2024] [Indexed: 01/04/2025] Open
Abstract
Cue reactivity is the maladaptive neurobiological and behavioral response upon exposure to drug cues and is a major driver of relapse. A widely accepted assumption is that drugs of abuse result in disparate dopamine responses to cues that predict drug vs. natural rewards. The leading hypothesis is that drug-induced dopamine release represents a persistently positive reward prediction error that causes runaway enhancement of dopamine responses to drug cues, leading to their pathological overvaluation. However, this hypothesis has not been directly tested. Here, we develop Pavlovian and operant procedures in male rats to measure firing responses within the same dopamine neurons to drug versus natural reward cues, which we find to be similarly enhanced compared to cues predicting natural rewards in drug-naive controls. This enhancement is associated with increased behavioral reactivity to the drug cue, suggesting that dopamine neuronal activity may still be relevant to cue reactivity, albeit not as previously hypothesized. These results challenge the prevailing hypothesis of cue reactivity, warranting revised models of dopaminergic function in opioid addiction, and provide insights into the neurobiology of cue reactivity with potential implications for relapse prevention.
Collapse
Affiliation(s)
- Collin M Lehmann
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, 15219, USA
| | - Nora E Miller
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, 15219, USA
| | - Varun S Nair
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, 15219, USA
| | - Kauê M Costa
- Department of Psychology, University of Alabama at Birmingham, Birmingham, 35233, USA
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, 21224, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, 15219, USA.
- Department of Neurology, University of California San Francisco, San Francisco, 94158, USA.
| |
Collapse
|
16
|
Kim YB, Lee YH, Park SJ, Choi HJ. A unified theoretical framework underlying the regulation of motivated behavior. Bioessays 2024; 46:e2400016. [PMID: 39221529 DOI: 10.1002/bies.202400016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024]
Abstract
To orchestrate behaviors for survival, multiple psychological components have evolved. The current theories do not clearly distinguish the distinct components. In this article, we provide a unified theoretical framework. To optimize survival, there should be four components; (1) "need", an alarm based on a predicted deficiency. (2) "motivation", a direct behavior driver. (3) "pleasure", a teacher based on immediate outcomes. (4) "utility", a teacher based on final delayed outcomes. For behavior stability, need should be accumulated into motivation to drive behavior. Based on the immediate outcome of the behavior, the pleasure should teach whether to continue the current behavior. Based on the final delay outcome, the utility should teach whether to increase future behavior by reshaping the other three components. We provide several neural substrate candidates in the food context. The proposed theoretical framework, in combination with appropriate experiments, will unravel the neural components responsible for each theoretical component.
Collapse
Affiliation(s)
- Yu-Been Kim
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Hee Lee
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Shee-June Park
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
| | - Hyung Jin Choi
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Anatomy and Cell Biology, Seoul National University College of Medicine, Seoul, Republic of Korea
- Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Republic of Korea
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul, Republic of Korea
- Wide River Institute of Immunology, Seoul National University, Gangwon-do, Republic of Korea
| |
Collapse
|
17
|
Gulyaeva NV, Peregud DI. An Intricated pas de deux of Addicted Brain and Body Is Orchestrated by Stress and Neuroplasticity. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:1863-1867. [PMID: 39647816 DOI: 10.1134/s0006297924110014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 12/10/2024]
Abstract
Dependence on psychoactive substances is a phenomenon that is based on the alterations of common molecular and cellular mechanisms, structures and neuronal networks underlying normal brain functioning and realizing stress response, reinforcement and aversion, learning and memory. As a result, aberrant neuroplasticity states associated with somatic changes are formed, which determine the pathogenesis and symptoms of dependence and at the same time can be considered as targets for the development of therapies for such addictions. An integrative scheme of stress and neuroplastic changes participation in the formation of the vicious circle of substance use disorders based on a holistic approach is presented. This special issue of the journal focuses on the molecular mechanisms of psychoactive substance use disorders.
Collapse
Affiliation(s)
- Natalia V Gulyaeva
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia.
- Research and Clinical Center for Neuropsychiatry of Moscow Healthcare Department, Moscow, 115419, Russia
| | - Danil I Peregud
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Moscow, 117485, Russia
- Federal State Budgetary Institution "V. Serbsky National Medical Research Center for Psychiatry and Drug Addiction" of the Ministry of Health of the Russian Federation, Moscow, 119034, Russia
| |
Collapse
|
18
|
Browne CJ. Leaving an Impression: Morphine-Induced Disruptions to Brain Connectivity Persist Through Abstinence to Prime Future Drug Responses. Biol Psychiatry 2024; 96:689-690. [PMID: 39357967 DOI: 10.1016/j.biopsych.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Caleb J Browne
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, Ontario, Canada.
| |
Collapse
|
19
|
Schall TA, Li KL, Qi X, Lee BT, Wright WJ, Alpaugh EE, Zhao RJ, Liu J, Li Q, Zeng B, Wang L, Huang YH, Schlüter OM, Nestler EJ, Nieh EH, Dong Y. Temporal dynamics of nucleus accumbens neurons in male mice during reward seeking. Nat Commun 2024; 15:9285. [PMID: 39468146 PMCID: PMC11519475 DOI: 10.1038/s41467-024-53690-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 10/18/2024] [Indexed: 10/30/2024] Open
Abstract
The nucleus accumbens (NAc) regulates reward-motivated behavior, but the temporal dynamics of NAc neurons that enable "free-willed" animals to obtain rewards remain elusive. Here, we recorded Ca2+ activity from individual NAc neurons when mice performed self-paced lever-presses for sucrose. NAc neurons exhibited three temporally-sequenced clusters, defined by times at which they exhibited increased Ca2+ activity: approximately 0, -2.5 or -5 sec relative to the lever-pressing. Dopamine D1 receptor (D1)-expressing neurons and D2-neurons formed the majority of the -5-sec versus -2.5-sec clusters, respectively, while both neuronal subtypes were represented in the 0-sec cluster. We found that pre-press activity patterns of D1- or D2-neurons could predict subsequent lever-presses. Inhibiting D1-neurons at -5 sec or D2-neurons at -2.5 sec, but not at other timepoints, reduced sucrose-motivated lever-pressing. We propose that the time-specific activity of D1- and D2-neurons mediate key temporal features of the NAc through which reward motivation initiates reward-seeking behavior.
Collapse
Affiliation(s)
- Terra A Schall
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - King-Lun Li
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Xiguang Qi
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Brian T Lee
- School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - William J Wright
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Erin E Alpaugh
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Rachel J Zhao
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Jianwei Liu
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Qize Li
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Bo Zeng
- Department of Industrial Engineering, Swanson School of Engineering, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Lirong Wang
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA, 15213, USA
| | - Yanhua H Huang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Oliver M Schlüter
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA
| | - Eric J Nestler
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Edward H Nieh
- Department of Pharmacology, University of Virginia, Charlottesville, VA, 22903, USA
| | - Yan Dong
- Department of Neuroscience, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, 15260, USA.
| |
Collapse
|
20
|
Zhao Z, Stern SA. Homeostatic feeding in hedonic centres. Nat Metab 2024; 6:1433-1434. [PMID: 39147932 DOI: 10.1038/s42255-024-01089-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Affiliation(s)
- Zhe Zhao
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA
| | - Sarah A Stern
- Max Planck Florida Institute for Neuroscience, Jupiter, FL, USA.
| |
Collapse
|
21
|
Eckenwiler EA, Ingebretson AE, Stolley JJ, Fusaro MA, Romportl AM, Ross JM, Petersen CL, Kale EM, Clark MS, Schattauer SS, Zweifel LS, Lemos JC. CRF release from a unique subpopulation of accumbal neurons constrains action-outcome acquisition in reward learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.16.567495. [PMID: 39005420 PMCID: PMC11244858 DOI: 10.1101/2023.11.16.567495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background The nucleus accumbens (NAc) mediates reward learning and motivation. Despite an abundance of neuropeptides, peptidergic neurotransmission from the NAc has not been integrated into current models of reward learning. The existence of a sparse population of neurons containing corticotropin releasing factor (CRF) has been previously documented. Here we provide a comprehensive analysis of their identity and functional role in shaping reward learning. Methods To do this, we took a multidisciplinary approach that included florescent in situ hybridization (N mice ≥ 3), tract tracing (N mice = 5), ex vivo electrophysiology (N cells ≥ 30), in vivo calcium imaging with fiber photometry (N mice ≥ 4) and use of viral strategies in transgenic lines to selectively delete CRF peptide from NAc neurons (N mice ≥ 4). Behaviors used were instrumental learning, sucrose preference and spontaneous exploration in an open field. Results Here we show that the vast majority of NAc CRF-containing (NAc CRF ) neurons are spiny projection neurons (SPNs) comprised of dopamine D1-, D2- or D1/D2-containing SPNs that primarily project and connect to the ventral pallidum and to a lesser extent the ventral midbrain. As a population, they display mature and immature SPN firing properties. We demonstrate that NAc CRF neurons track reward outcomes during operant reward learning and that CRF release from these neurons acts to constrain initial acquisition of action-outcome learning, and at the same time facilitates flexibility in the face of changing contingencies. Conclusion We conclude that CRF release from this sparse population of SPNs is critical for reward learning under normal conditions.
Collapse
|
22
|
Brida KL, Jorgensen ET, Phillips RA, Newman CE, Tuscher JJ, Morring EK, Zipperly ME, Ianov L, Montgomery KD, Tippani M, Hyde TM, Maynard KR, Martinowich K, Day JJ. Reelin marks cocaine-activated striatal ensembles, promotes neuronal excitability, and regulates cocaine reward. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599348. [PMID: 38948801 PMCID: PMC11212904 DOI: 10.1101/2024.06.17.599348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Drugs of abuse activate defined neuronal ensembles in brain reward structures such as the nucleus accumbens (NAc), which are thought to promote the enduring synaptic, circuit, and behavioral consequences of drug exposure. While the molecular and cellular effects arising from experience with drugs like cocaine are increasingly well understood, the mechanisms that sculpt NAc ensemble participation are largely unknown. Here, we leveraged unbiased single-nucleus transcriptional profiling to identify expression of the secreted glycoprotein Reelin (encoded by the Reln gene) as a marker of cocaine-activated neuronal ensembles within the rat NAc. Multiplexed in situ detection confirmed selective expression of the immediate early gene Fos in Reln+ neurons after cocaine experience, and also revealed enrichment of Reln mRNA in Drd1 + medium spiny neurons (MSNs) in both the rat and human brain. Using a novel CRISPR interference strategy enabling selective Reln knockdown in the adult NAc, we observed altered expression of genes linked to calcium signaling, emergence of a transcriptional trajectory consistent with loss of cocaine sensitivity, and a striking decrease in MSN intrinsic excitability. At the behavioral level, loss of Reln prevented cocaine locomotor sensitization, abolished cocaine place preference memory, and decreased cocaine self-administration behavior. Together, these results identify Reelin as a critical mechanistic link between ensemble participation and cocaine-induced behavioral adaptations.
Collapse
|
23
|
Lehmann CM, Miller NE, Nair VS, Costa KM, Schoenbaum G, Moussawi K. Generalized cue reactivity in dopamine neurons after opioids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.597025. [PMID: 38853878 PMCID: PMC11160774 DOI: 10.1101/2024.06.02.597025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Cue reactivity is the maladaptive neurobiological and behavioral response upon exposure to drug cues and is a major driver of relapse. The leading hypothesis is that dopamine release by addictive drugs represents a persistently positive reward prediction error that causes runaway enhancement of dopamine responses to drug cues, leading to their pathological overvaluation compared to non-drug reward alternatives. However, this hypothesis has not been directly tested. Here we developed Pavlovian and operant procedures to measure firing responses, within the same dopamine neurons, to drug versus natural reward cues, which we found to be similarly enhanced compared to cues predicting natural rewards in drug-naïve controls. This enhancement was associated with increased behavioral reactivity to the drug cue, suggesting that dopamine release is still critical to cue reactivity, albeit not as previously hypothesized. These results challenge the prevailing hypothesis of cue reactivity, warranting new models of dopaminergic function in drug addiction, and provide critical insights into the neurobiology of cue reactivity with potential implications for relapse prevention.
Collapse
Affiliation(s)
- Collin M. Lehmann
- Department of Psychiatry, University of Pittsburgh; Pittsburgh, 15219, USA
| | - Nora E. Miller
- Department of Psychiatry, University of Pittsburgh; Pittsburgh, 15219, USA
| | - Varun S. Nair
- Department of Psychiatry, University of Pittsburgh; Pittsburgh, 15219, USA
| | - Kauê M. Costa
- Department of Psychology, University of Alabama at Birmingham; Birmingham, 35233, USA
| | - Geoffrey Schoenbaum
- National Institute on Drug Abuse, National Institutes of Health; Baltimore, 21224, USA
| | - Khaled Moussawi
- Department of Psychiatry, University of Pittsburgh; Pittsburgh, 15219, USA
- Department of Neurology, University of California San Francisco; San Francisco, 94158, USA
| |
Collapse
|
24
|
Millan EZ, McNally GP. Reprioritizing motivations in addiction. Science 2024; 384:271. [PMID: 38669580 DOI: 10.1126/science.ado9989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Drugs of abuse alter neuronal signaling.
Collapse
Affiliation(s)
- E Zayra Millan
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| | - Gavan P McNally
- School of Psychology, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|