1
|
Lebegge E, Kancheva D, Van Craenenbroeck J, Ernst S, Bardet PMR, Caro AA, Kiss M, Jumapili NA, Barthelmess RM, Zivalj M, Assaf N, Ali L, Elkrim Y, Demuytere J, De Jonge J, Raes G, Hadadi E, Devoogdt N, Vincke C, Mohavedi K, Vereecke L, Ceelen W, Stijlemans B, Laoui D, Arnouk SM, Van Ginderachter JA. VSIG4-Expressing Macrophages Contribute to Antiparasitic and Antimetastatic Responses in the Peritoneal Cavity. Eur J Immunol 2025; 55:e202551804. [PMID: 40346775 PMCID: PMC12064866 DOI: 10.1002/eji.202551804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Revised: 04/29/2025] [Accepted: 04/29/2025] [Indexed: 05/12/2025]
Abstract
Large peritoneal macrophages (LPMs) play a role as gatekeepers of peritoneal homeostasis by providing a first line of defense against pathogens. A third of the LPMs express the surface receptor VSIG4, but it is unclear whether these cells differ from their VSIG4-negative counterparts and perform dedicated functions. We demonstrate that VSIG4+, but not VSIG4-, LPMs are in the majority derived from embryonal precursors, and their occurrence is largely independent of sex and microbiota but increases with age. Although their transcriptome and surface proteome are indistinguishable from VSIG4- LPMs at steady-state, VSIG4+ LPMs are superior in phagocytosing S. aureus bioparticles and colorectal carcinoma (CRC) cells. Anti-VSIG4 nanobody constructs that are ADCC-enabled allowed a selective elimination of the VSIG4+ LPM subset without affecting overall LPM abundance. This strategy uncovered a role for VSIG4+ LPMs in lowering the first peak of parasitemia in a Trypanosoma brucei brucei infection model and in reducing CRC outgrowth in the peritoneal cavity, a prime metastatic site in CRC patients. Altogether, our data uncover a protective role for VSIG4+ LPMs in infectious and oncological diseases in the peritoneal cavity.
Collapse
|
2
|
Saris J, Li Yim AYF, Bootsma S, Lenos KJ, Franco Fernandez R, Khan HN, Verhoeff J, Poel D, Mrzlikar NM, Xiong L, Schijven MP, van Grieken NCT, Kranenburg O, Wildenberg ME, Logiantara A, Jongerius C, Garcia Vallejo JJ, Gisbertz SS, Derks S, Tuynman JB, D'Haens GRAM, Vermeulen L, Grootjans J. Peritoneal resident macrophages constitute an immunosuppressive environment in peritoneal metastasized colorectal cancer. Nat Commun 2025; 16:3669. [PMID: 40246872 PMCID: PMC12006467 DOI: 10.1038/s41467-025-58999-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 04/09/2025] [Indexed: 04/19/2025] Open
Abstract
Patients with peritoneal metastasized colorectal cancer (PM-CRC) have a dismal prognosis. We hypothesized that an immunosuppressive environment in the peritoneal cavity underlies poor prognosis. We define the composition of the human peritoneal immune system (PerIS) using single-cell technologies in 18 patients with- and without PM-CRC, as well as in matched peritoneal metastases (n = 8). Here we show that the PerIS contains abundant immunosuppressive C1Q+VSIG4+ and SPP1+VSIG4+ peritoneal-resident macrophages (PRMs), as well as monocyte-like cavity macrophages (mono-CMs), which share features with tumor-associated macrophages, even in homeostasis. In PM-CRC, expression of immunosuppressive cytokines IL10 and VEGF increases, while simultaneously expression of antigen-presenting molecules decreases in PRMs. These intratumoral suppressive PRMs originate from the PerIS, and intraperitoneal depletion of PRMs in vivo using anti-CSF1R combined with anti-PD1 significantly reduces tumor burden and improves survival. Thus, PRMs define a metastatic site-specific immunosuppressive niche, and targeting PRMs is a promising treatment strategy for PM-CRC.
Collapse
Affiliation(s)
- J Saris
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - A Y F Li Yim
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
| | - S Bootsma
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - K J Lenos
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - R Franco Fernandez
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - H N Khan
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - J Verhoeff
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
- Molecular Cell Biology & Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D Poel
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - N M Mrzlikar
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - L Xiong
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - M P Schijven
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Public Health, Digital Health, Amsterdam, The Netherlands
| | - N C T van Grieken
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - O Kranenburg
- Laboratory Translational Oncology, Division of Imaging and Cancer, University Medical Center Utrecht, Utrecht, The Netherlands
- Utrecht Platform for Organoid Technology, Utrecht University, Utrecht, The Netherlands
| | - M E Wildenberg
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - A Logiantara
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - C Jongerius
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
| | - J J Garcia Vallejo
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands
- Molecular Cell Biology & Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - S S Gisbertz
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - S Derks
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - J B Tuynman
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - G R A M D'Haens
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
| | - L Vermeulen
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Oncode Institute, Amsterdam, The Netherlands
- Discovery Oncology, Genentech Inc., South San Francisco, CA, USA
| | - J Grootjans
- Department of Gastroenterology and Hepatology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Amsterdam Gastroenterology Endocrinology Metabolism, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Laboratory for Experimental Oncology and Radiobiology, Cancer Center Amsterdam, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Oncode Institute, Amsterdam, The Netherlands.
- Amsterdam Infection & Immunity Institute, Amsterdam, The Netherlands.
| |
Collapse
|
3
|
Gallerand A, Han J, Mintz RL, Chen J, Lee DD, Chan MM, Harmon TT, Lin X, Huckstep CG, Du S, Liu T, Kipnis J, Lavine KJ, Schilling JD, Morley SC, Zinselmeyer BH, Murphy KM, Randolph GJ. Tracing LYVE1 + peritoneal fluid macrophages unveils two paths to resident macrophage repopulation with differing reliance on monocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.19.644175. [PMID: 40166277 PMCID: PMC11957119 DOI: 10.1101/2025.03.19.644175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Mouse resident peritoneal macrophages, called large cavity macrophages (LCM), arise from embryonic progenitors that proliferate as mature, CD73+Gata6+ tissue-specialized macrophages. After injury from irradiation or inflammation, monocytes are thought to replenish CD73+Gata6+ LCMs through a CD73-LYVE1+ LCM intermediate. Here, we show that CD73-LYVE1+ LCMs indeed yield Gata6+CD73+ LCMs through integrin-mediated interactions with mesothelial surfaces. CD73-LYVE1+ LCM repopulation of the peritoneum was reliant upon and quantitatively proportional to recruited monocytes. Unexpectedly, fate mapping indicated that only ~10% of Gata6-dependent LCMs that repopulated the peritoneum after injury depended on the LYVE1+ LCM stage. Further supporting nonoverlapping lifecycles of CD73-LYVE1+ and CD73+Gata6+ LCMs, in mice bearing a paucity of monocytes, Gata6+CD73+ LCMs rebounded after ablative irradiation substantially more efficiently than their presumed LYVE1+ or CD73- LCM upstream precursors. Thus, after inflammatory insult, two temporally parallel pathways, each generating distinct differentiation intermediates with varying dependencies on monocytes, contribute to the replenish hment of Gata6+ resident peritoneal macrophages.
Collapse
Affiliation(s)
- Alexandre Gallerand
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jichang Han
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Rachel L. Mintz
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Biomedical Engineering Graduate Program, Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Jing Chen
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences Graduate Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Daniel D. Lee
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Mandy M. Chan
- Division of Biology and Biomedical Sciences Graduate Program, Washington University School of Medicine, St. Louis, MO, USA
- Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Tyler T. Harmon
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences Graduate Program, Washington University School of Medicine, St. Louis, MO, USA
- Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Xue Lin
- Division of Infectious Disease, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Christopher G. Huckstep
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Siling Du
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences Graduate Program, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiantian Liu
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jonathan Kipnis
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kory J. Lavine
- Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - Joel D. Schilling
- Division of Cardiology, Department of Internal Medicine, Washington University School of Medicine, St. Louis, MO, USA
| | - S. Celeste Morley
- Division of Infectious Disease, Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Bernd H. Zinselmeyer
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kenneth M. Murphy
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Gwendalyn J. Randolph
- Division of Immunobiology, Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
4
|
Harvey ME, Shi M, Oh Y, Mitchell DA, Slayden OD, MacLean JA, Hayashi K. Multiple lesion inductions intensify central sensitization driven by neuroinflammation in a mouse model of endometriosis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.23.634555. [PMID: 39896574 PMCID: PMC11785222 DOI: 10.1101/2025.01.23.634555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Introduction Endometriosis is an inflammatory disease associated with chronic pelvic pain (CPP). Growing evidence indicates that endometriotic lesions are not the sole source of pain. Instead, central nervous system (CNS) dysfunction created by prolonged peripheral and central sensitization plays a role in developing endometriosis-associated CPP. This study investigated how CPP is established using a multiple lesion induction mouse model of endometriosis, as repeated retrograde menstruation is considered underlying endometriosis pathogenesis. Methods We generated endometriosis-like lesions by injecting endometrial tissue fragments into the peritoneal cavity in mice. The mice received a single (1x) or multiple inductions (6x) to simulate recurrent retrograde menstruation. Lesion development, hyperalgesia by behavioral testing, signs of peripheral sensitization, chronic inflammation, and neuroinflammation were examined with lesions, peritoneal fluids, dorsal root ganglia (DRG), spinal codes, and brain. Results Multiple lesion inductions increased lesion numbers and elevated abdominal and hind paw hypersensitivity compared to single induction mice. Elevated persistent glial cell activation across several brain regions and/or spinal cords was found in the multiple induction mice. Specifically, IBA1+ microglial soma size was increased in the hippocampus and thalamus. IBA1+ cells were abundant in the cortex, hippocampus, thalamus, and hypothalamus of the multiple induction mice. GFAP+ astrocytes were mainly elevated in the hippocampus. Elevated TRPV1, SP, and CGRP expressions in the DRG were persistent in the multiple induction mice. Furthermore, multiple inductions induced the severe disappearance of TIM4hi MHCIIlo residential macrophages and the influx of increased proinflammatory TIM4lo MHCIIhi macrophages in the peritoneal cavity. The single and multiple inductions elevated secreted TNFα, IL-1β, and IL-6 levels in the peritoneal cavity at 2 weeks. Elevated cytokine levels returned to the pre-induction levels in the single induction mice at 6 weeks; however, they remained elevated in the multiple induction mice. Conclusions Our results indicate that the repeatedly occurring lesion inductions (=mimic retrograde menstruation) can be a peripheral stimulus that induces nociceptive pain and creates composite chronic inflammatory stimuli to cause neuroinflammation and sensitize the CNS. The circuits of neuroplasticity and stimulation of peripheral organs via a feedback loop of neuroinflammation may mediate widespread endometriosis-associated CPP.
Collapse
Affiliation(s)
- Madeleine E. Harvey
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Mingxin Shi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Yeongseok Oh
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Debra A. Mitchell
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Ov D. Slayden
- Division of Reproductive and Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - James A. MacLean
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| | - Kanako Hayashi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, 1770 NE Stadium Way, Pullman, WA, 99164, USA
| |
Collapse
|
5
|
Liu Z, Zhang T, Ergashev A, Bo Z, Wang J, Shi F, Pan Z, Xie H, Chen G, Ma F, Kong L. CIP2A inhibitors TD52 and Ethoxysanguinarine promote macrophage autophagy and alleviates acute pancreatitis by modulating the AKT-mTOR pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156263. [PMID: 39615212 DOI: 10.1016/j.phymed.2024.156263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 10/02/2024] [Accepted: 11/13/2024] [Indexed: 01/30/2025]
Abstract
BACKGROUND Acute pancreatitis (AP) is a prevalent and serious condition within the digestive system, with approximately 20 % to 30 % of cases advancing to severe acute pancreatitis (SAP). During the initial phases of SAP, macrophages are activated in response to the substantial amounts of acinar cell contents and damage-associated molecular patterns (DAMPs) resulting from acinar cell destruction. Subsequently, activated macrophages release a significant array of pro-inflammatory factors that exacerbate the progression of SAP. Cancerous inhibitor of protein phosphatase 2A (CIP2A) is an oncogenic protein that is intimately linked to immune regulation. While the role of CIP2A in T-cell-mediated specific immune responses has been reported, its function and mechanism in macrophages, a component of non-specific immunity, have not been widely studied. This research fills this knowledge gap by elucidating the critical role of CIP2A in regulating macrophage autophagy and inflammation. This finding not only expands our understanding of CIP2A in immune modulation but also provides a new scientific basis and potential application prospects for targeting CIP2A in the treatment of AP. METHODS We established AP using a combination of palmitoleic acid with anhydrous ethanol or using caerulein alone. The effects of TD52 and Ethoxysanguinarine (Etho) on SAP were evaluated through serological, histopathological, and tissue inflammation observations. The effect of TD52 on macrophage activation in vitro was examined using primary macrophages (PMs) and RAW264.7 cells. RESULTS We found that TD52 and Etho inhibit CIP2A expression while reducing the levels of serum amylase, lipase, and inflammatory cytokines, thereby alleviating the pathological symptoms of SAP. Additionally, TD52 could reduce the infiltration of macrophages into pancreatic tissue. Therefore, we established a model of macrophage inflammatory response mimicking the pathophysiological process of AP and detected changes in inflammation, apoptosis, and autophagy through pre-treatment of macrophages with TD52. The results show that inhibiting CIP2A expression decreases the release of inflammatory cytokines and reduces apoptosis in macrophages. Further exploration revealed that TD52 promoted macrophage autophagy regulation and inhibited the AKT-mTOR pathway to modulate macrophage activation. CONCLUSION In summary, our findings indicate that TD52 and Etho can alleviate the severity of SAP. TD52 can block the AKT-mTOR pathway to promote macrophage autophagy, thereby improving SAP. Thus, CIP2A may serve as one of the molecular targets in SAP, highlighting its potential as a therapeutic option.
Collapse
Affiliation(s)
- Zhu Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China; Department of Hepatobiliary Surgery, Pingyang People's Hospital Affiliated to Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Tan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Akmal Ergashev
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Zhiyuan Bo
- Department of Surgery, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, 310006, China
| | - Jinhui Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Fengyu Shi
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Zhenyan Pan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Haonan Xie
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China
| | - Gang Chen
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China.
| | - Feng Ma
- National Key Laboratory of Immunity and Inflammation, and CAMS Key Laboratory of Synthetic Biology Regulatory Elements, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou 215123, China.
| | - Lingming Kong
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Zhejiang Key Laboratory of intelligent Cancer Biomarker Discovery & Translation, The First Affiliated Hospital of Wenzhou Medical University, Zhejiang, 325035, China; Zhejiang-Germany Interdisciplinary Joint Laboratory of Hepatobiliary-Pancreatic Tumor and Bioengineering, Wenzhou, Zhejiang, 325035, China.
| |
Collapse
|
6
|
Gallerand A, Han J, Ivanov S, Randolph GJ. Mouse and human macrophages and their roles in cardiovascular health and disease. NATURE CARDIOVASCULAR RESEARCH 2024; 3:1424-1437. [PMID: 39604762 DOI: 10.1038/s44161-024-00580-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 10/11/2024] [Indexed: 11/29/2024]
Abstract
The past 15 years have witnessed a leap in understanding the life cycle, gene expression profiles, origins and functions of mouse macrophages in many tissues, including macrophages of the artery wall and heart that have critical roles in cardiovascular health. Here, we review the phenotypical and functional diversity of macrophage populations in multiple organs and discuss the roles that proliferation, survival, and recruitment and replenishment from monocytes have in maintaining macrophages in homeostasis and inflammatory states such as atherosclerosis and myocardial infarction. We also introduce emerging data that better characterize the life cycle and phenotypic profiles of human macrophages. We discuss the similarities and differences between murine and human macrophages, raising the possibility that tissue-resident macrophages in humans may rely more on bone marrow-derived monocytes than in mouse.
Collapse
Affiliation(s)
- Alexandre Gallerand
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | - Jichang Han
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA
| | | | - Gwendalyn J Randolph
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Spear S, Le Saux O, Mirza HB, Iyer N, Tyson K, Grundland Freile F, Walton JB, Woodman C, Jarvis S, Ennis DP, Aguirre Hernandez C, Xu Y, Spiliopoulou P, Brenton JD, Costa-Pereira AP, Cook DP, Vanderhyden BC, Keun HC, Triantafyllou E, Arnold JN, McNeish IA. PTEN Loss Shapes Macrophage Dynamics in High-Grade Serous Ovarian Carcinoma. Cancer Res 2024; 84:3772-3787. [PMID: 39186679 PMCID: PMC7616669 DOI: 10.1158/0008-5472.can-23-3890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 07/11/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
High-grade serous ovarian carcinoma (HGSC) remains a disease with poor prognosis that is unresponsive to current immune checkpoint inhibitors. Although PI3K pathway alterations, such as PTEN loss, are common in HGSC, attempts to target this pathway have been unsuccessful. We hypothesized that aberrant PI3K pathway activation may alter the HGSC immune microenvironment and present a targeting opportunity. Single-cell RNA sequencing identified populations of resident macrophages specific to Pten-null omental tumors in murine models, which were confirmed by flow cytometry. These macrophages were derived from peritoneal fluid macrophages and exhibited a unique gene expression program, marked by high expression of the enzyme heme oxygenase-1 (HMOX1). Targeting resident peritoneal macrophages prevented the appearance of HMOX1hi macrophages and reduced tumor growth. In addition, direct inhibition of HMOX1 extended survival in vivo. RNA sequencing identified IL33 in Pten-null tumor cells as a likely candidate driver, leading to the appearance of HMOX1hi macrophages. Human HGSC tumors also contained HMOX1hi macrophages with a corresponding gene expression program. Moreover, the presence of these macrophages was correlated with activated tumoral PI3K/mTOR signaling and poor overall survival in patients with HGSC. In contrast, tumors with low numbers of HMOX1hi macrophages were marked by increased adaptive immune response gene expression. These data suggest targeting HMOX1hi macrophages as a potential therapeutic strategy for treating poor prognosis HGSC. Significance: Macrophages with elevated HMOX1 expression are enriched in PTEN-deficient high-grade serous ovarian carcinoma, promote tumor growth, and represent a potential therapeutic target.
Collapse
Affiliation(s)
- Sarah Spear
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Olivia Le Saux
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
- Centre Léon Bérard, Department of Medical Oncology, Lyon, France
| | - Hasan B. Mirza
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Nayana Iyer
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Katie Tyson
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Fabio Grundland Freile
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Josephine B. Walton
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
- Centre for Cancer and Inflammation, Barts Cancer Institute, Queen Mary University of London, London, United Kingdom
| | - Chloé Woodman
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Sheba Jarvis
- Department of Surgery & Cancer, Imperial College London, London, United Kingdom
| | - Darren P. Ennis
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Carmen Aguirre Hernandez
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Yuewei Xu
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Pavlina Spiliopoulou
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
- Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - James D. Brenton
- CRUK Cambridge Institute, University of Cambridge, United Kingdom
| | - Ana P. Costa-Pereira
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - David P. Cook
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, Canada
| | | | - Hector C. Keun
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| | - Evangelos Triantafyllou
- Department of Metabolism, Digestion and Reproduction, Imperial College London, London, United Kingdom
| | - James N. Arnold
- School of Cancer and Pharmaceutical Sciences, King’s College London, London, United Kingdom
| | - Iain A. McNeish
- Ovarian Cancer Action Research Centre, Department of Surgery & Cancer, Imperial College London; London, United Kingdom
| |
Collapse
|
8
|
Viola MF, Franco Taveras E, Mass E. Developmental programming of tissue-resident macrophages. Front Immunol 2024; 15:1475369. [PMID: 39575254 PMCID: PMC11578957 DOI: 10.3389/fimmu.2024.1475369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024] Open
Abstract
Macrophages are integral components of the innate immune system that colonize organs early in development and persist into adulthood through self-renewal. Their fate, whether they are replaced by monocytes or retain their embryonic origin, depends on tissue type and integrity. Macrophages are influenced by their environment, a phenomenon referred to as developmental programming. This influence extends beyond the local tissue microenvironment and includes soluble factors that can reach the macrophage niche. These factors include metabolites, antibodies, growth factors, and cytokines, which may originate from maternal diet, lifestyle, infections, or other developmental triggers and perturbations. These influences can alter macrophage transcriptional, epigenetic, and metabolic profiles, affecting cell-cell communication and tissue integrity. In addition to their crucial role in tissue immunity, macrophages play vital roles in tissue development and homeostasis. Consequently, developmental programming of these long-lived cells can modulate tissue physiology and pathology throughout life. In this review, we discuss the ontogeny of macrophages, the necessity of developmental programming by the niche for macrophage identity and function, and how developmental perturbations can affect the programming of macrophages and their subtissular niches, thereby influencing disease onset and progression in adulthood. Understanding these effects can inform targeted interventions or preventive strategies against diseases. Finally, understanding the consequences of developmental programming will shed light on how maternal health and disease may impact the well-being of future generations.
Collapse
Affiliation(s)
| | | | - Elvira Mass
- Developmental Biology of the Immune System, Life and Medical Sciences (LIMES) Institute, University of Bonn, Bonn, Germany
| |
Collapse
|
9
|
Staley HA, Jernigan JE, Bolen ML, Titus AM, Neighbarger N, Cole C, Menees KB, Wallings RL, Tansey MG. Alzheimer's disease-associated protective variant Plcg2-P522R modulates peripheral macrophage function in a sex-dimorphic manner. J Neuroinflammation 2024; 21:280. [PMID: 39487477 PMCID: PMC11529260 DOI: 10.1186/s12974-024-03271-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024] Open
Abstract
Genome-wide association studies have identified a protective mutation in the phospholipase C gamma 2 (PLCG2) gene which confers protection against Alzheimer's disease (AD)-associated cognitive decline. Therefore, PLCG2, which is primarily expressed in immune cells, has become a target of interest for potential therapeutic intervention. The protective allele, known as P522R, has been shown to be hyper-morphic in microglia, increasing phagocytosis of amyloid-beta (Aβ), and increasing the release of inflammatory cytokines. However, the effect of this protective mutation on peripheral tissue-resident macrophages, and the extent to which sex modifies this effect, has yet to be assessed. Herein, we show that peripheral macrophages carrying the P522R mutation do indeed show functional differences compared to their wild-type (WT) counterparts, however, these alterations occur in a sex-dependent manner. In macrophages from females, the P522R mutation increases lysosomal protease activity, cytokine secretion, and gene expression associated with cytokine secretion and apoptosis. In contrast, in macrophages from males, the mutation causes decreased phagocytosis and lysosomal protease activity, modest increases in cytokine secretion, and induction of gene expression associated with negative regulation of the immune response. Taken together, these results suggest that the mutation may be conferring different effects dependent on sex and cell type, and highlight the importance of considering sex as a biological variable when assessing the effects of genetic variants and implications for potential immune system-targeted therapies.
Collapse
Affiliation(s)
- Hannah A Staley
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Janna E Jernigan
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - MacKenzie L Bolen
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Ann M Titus
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Noelle Neighbarger
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Cassandra Cole
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Kelly B Menees
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Rebecca L Wallings
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA
| | - Malú Gámez Tansey
- Department of Neuroscience, University of Florida College of Medicine, Gainesville, FL, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida College of Medicine, Gainesville, FL, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, USA.
- Norman Fixel Institute for Neurological Diseases, University of Florida Health, Gainesville, FL, USA.
| |
Collapse
|
10
|
Henlon Y, Panir K, McIntyre I, Hogg C, Dhami P, Cuff AO, Senior A, Moolchandani-Adwani N, Courtois ET, Horne AW, Rosser M, Ott S, Greaves E. Single-cell analysis identifies distinct macrophage phenotypes associated with prodisease and proresolving functions in the endometriotic niche. Proc Natl Acad Sci U S A 2024; 121:e2405474121. [PMID: 39255000 PMCID: PMC11420174 DOI: 10.1073/pnas.2405474121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 07/24/2024] [Indexed: 09/11/2024] Open
Abstract
Endometriosis negatively impacts the health-related quality of life of 190 million women worldwide. Novel advances in nonhormonal treatments for this debilitating condition are desperately needed. Macrophages play a vital role in the pathophysiology of endometriosis and represent a promising therapeutic target. In the current study, we revealed the full transcriptomic complexity of endometriosis-associated macrophage subpopulations using single-cell analyses in a preclinical mouse model of experimental endometriosis. We have identified two key lesion-resident populations that resemble i) tumor-associated macrophages (characterized by expression of Folr2, Mrc1, Gas6, and Ccl8+) that promoted expression of Col1a1 and Tgfb1 in human endometrial stromal cells and increased angiogenic meshes in human umbilical vein endothelial cells, and ii) scar-associated macrophages (Mmp12, Cd9, Spp1, Trem2+) that exhibited a phenotype associated with fibrosis and matrix remodeling. We also described a population of proresolving large peritoneal macrophages that align with a lipid-associated macrophage phenotype (Apoe, Saa3, Pid1) concomitant with altered lipid metabolism and cholesterol efflux. Gain of function experiments using an Apoe mimetic resulted in decreased lesion size and fibrosis, and modification of peritoneal macrophage populations in the preclinical model. Using cross-species analysis of mouse and human single-cell datasets, we determined the concordance of peritoneal and lesion-resident macrophage subpopulations, identifying key similarities and differences in transcriptomic phenotypes. Ultimately, we envisage that these findings will inform the design and use of specific macrophage-targeted therapies and open broad avenues for the treatment of endometriosis.
Collapse
Affiliation(s)
- Yasmin Henlon
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CoventryCV4 7AL, United Kingdom
- Centre for Early Life, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Kavita Panir
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CoventryCV4 7AL, United Kingdom
- Centre for Early Life, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Iona McIntyre
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CoventryCV4 7AL, United Kingdom
- Centre for Early Life, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Chloe Hogg
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, EdinburghEH16 4UU, United Kingdom
| | - Priya Dhami
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CoventryCV4 7AL, United Kingdom
- Centre for Early Life, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Antonia O. Cuff
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CoventryCV4 7AL, United Kingdom
- Centre for Early Life, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Anna Senior
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Niky Moolchandani-Adwani
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CoventryCV4 7AL, United Kingdom
- Centre for Early Life, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Elise T. Courtois
- Single Cell Biology Lab, The Jackson Laboratory for Genomic Medicine, Farmington, CT06032
| | - Andrew W. Horne
- Centre for Reproductive Health, Institute of Regeneration and Repair, The University of Edinburgh, EdinburghEH16 4UU, United Kingdom
| | - Matthew Rosser
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CoventryCV4 7AL, United Kingdom
- Centre for Early Life, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Sascha Ott
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CoventryCV4 7AL, United Kingdom
- Centre for Early Life, University of Warwick, CoventryCV4 7AL, United Kingdom
| | - Erin Greaves
- Division of Biomedical Sciences, Warwick Medical School, University of Warwick, CoventryCV4 7AL, United Kingdom
- Centre for Early Life, University of Warwick, CoventryCV4 7AL, United Kingdom
| |
Collapse
|
11
|
Leek C, Cantu A, Sonti S, Gutierrez MC, Eldredge L, Sajti E, Xu HN, Lingappan K. Role of sex as a biological variable in neonatal alveolar macrophages. Redox Biol 2024; 75:103296. [PMID: 39098263 PMCID: PMC11345582 DOI: 10.1016/j.redox.2024.103296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/09/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024] Open
Abstract
The lung macrophages play a crucial role in health and disease. Sexual dimorphism significantly impacts the phenotype and function of tissue-resident macrophages. The primary mechanisms responsible for sexually dimorphic outcomes in bronchopulmonary dysplasia (BPD) remain unidentified. We tested the hypothesis that biological sex plays a crucial role in the transcriptional state of alveolar macrophages, using neonatal murine hyperoxia-induced lung injury as a relevant model for human BPD. The effects of neonatal hyperoxia exposure (95 % FiO2, PND1-5: saccular stage) on the lung myeloid cells acutely after injury and during normoxic recovery were measured. Alveolar macrophages (AM) from room air- and hyperoxia exposed from male and female neonatal murine lungs were subjected to bulk-RNA Sequencing. AMs are significantly depleted in the hyperoxia-exposed lung acutely after injury, with subsequent recovery in both sexes. The transcriptome of the alveolar macrophages is impacted by neonatal hyperoxia exposure and by sex as a biological variable. Pathways related to DNA damage and interferon-signaling were positively enriched in female AMs. Metabolic pathways related to glucose and carbohydrate metabolism were positively enriched in the male AMs, while oxidative phosphorylation was negatively enriched. These pathways were shared with monocytes and airway macrophages from intubated male and female human premature neonates.
Collapse
Affiliation(s)
- Connor Leek
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Abiud Cantu
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Shilpa Sonti
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Manuel Cantu Gutierrez
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA
| | - Laurie Eldredge
- Department of Pediatrics, Division of Pediatric Pulmonology, University of Washington School of Medicine, Seattle Children's Hospital, WA, USA
| | - Eniko Sajti
- Department of Pediatrics, Division of Neonatology, University of California San Diego, San Diego, CA, USA
| | - He N Xu
- Britton Chance Laboratory of Redox Imaging, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Krithika Lingappan
- Department of Pediatrics, Division of Neonatology, Children's Hospital of Philadelphia, University of Pennsylvania, PA, USA.
| |
Collapse
|
12
|
Wculek SK, Forisch S, Miguel V, Sancho D. Metabolic homeostasis of tissue macrophages across the lifespan. Trends Endocrinol Metab 2024; 35:793-808. [PMID: 38763781 DOI: 10.1016/j.tem.2024.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/21/2024]
Abstract
Macrophages are present in almost all organs. Apart from being immune sentinels, tissue-resident macrophages (TRMs) have organ-specific functions that require a specialized cellular metabolism to maintain homeostasis. In addition, organ-dependent metabolic adaptations of TRMs appear to be fundamentally distinct in homeostasis and in response to a challenge, such as infection or injury. Moreover, TRM function becomes aberrant with advancing age, contributing to inflammaging and organ deterioration, and a metabolic imbalance may underlie TRM immunosenescence. Here, we outline current understanding of the particular metabolic states of TRMs across organs and the relevance for their function. Moreover, we discuss the concomitant aging-related decline in metabolic plasticity and functions of TRMs, highlighting potential novel therapeutic avenues to promote healthy aging.
Collapse
Affiliation(s)
- Stefanie K Wculek
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain.
| | - Stephan Forisch
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain
| | - David Sancho
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| |
Collapse
|
13
|
Shi M, MacLean JA, Hayashi K. The involvement of peritoneal GATA6 + macrophages in the pathogenesis of endometriosis. Front Immunol 2024; 15:1396000. [PMID: 39192982 PMCID: PMC11348394 DOI: 10.3389/fimmu.2024.1396000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/26/2024] [Indexed: 08/29/2024] Open
Abstract
Endometriosis is a chronic inflammatory disease that causes debilitating pelvic pain in women. Macrophages are considered to be key players in promoting disease progression, as abundant macrophages are present in ectopic lesions and elevated in the peritoneum. In the present study, we examined the role of GATA6+ peritoneal macrophages on endometriosis-associated hyperalgesia using mice with a specific myeloid deficiency of GATA6. Lesion induction induced the disappearance of TIM4hi MHCIIlo residential macrophages and the influx of increased Ly6C+ monocytes and TIM4lo MHCIIhi macrophages. The recruitment of MHCIIhi inflammatory macrophages was extensive in Mac Gata6 KO mice due to the severe disappearance of TIM4hi MHCIIlo residential macrophages. Ki67 expression confirmed GATA6-dependent proliferative ability, showing different proliferative phenotypes of TIM4+ residential macrophages in Gata6f/f and Mac Gata6 KO mice. Peritoneal proinflammatory cytokines were elevated after lesion induction. When cytokine levels were compared between Gata6f/f and Mac Gata6 KO mice, TNFα at day 21 in Gata6f/f mice was higher than in Mac Gata6 KO mice. Lesion induction increased both abdominal and hind paw sensitivities. Gata6f/f mice tended to show higher sensitivity in the abdomen after day 21. Elevated expression of TRPV1 and CGRP was observed in the dorsal root ganglia after ELL induction in Gata6f/f mice until days 21 and 42, respectively. These results support that peritoneal GATA6+ macrophages are involved in the recruitment and reprogramming of monocyte-derived macrophages. The extensive recruitment of monocyte-derived macrophages in Mac Gata6 KO mice might protect against inflammatory stimuli during the resolution phase, whereas GATA6 deficiency did not affect lesion initiation and establishment at the acute phase of inflammation. GATA6+ residential macrophages act to sustain local inflammation in the peritoneum and sensitivities in the neurons, reflecting endometriosis-associated hyperalgesia.
Collapse
Affiliation(s)
| | | | - Kanako Hayashi
- School of Molecular Biosciences, Center for Reproductive Biology, Washington State University, Pullman, WA, United States
| |
Collapse
|
14
|
Dolfi B, Gallerand A, Caillot Z, Castiglione A, Zair FN, Leporati L, Giacchero M, Goës E, Strazzulla A, Dombrowicz D, Guinamard RR, Bertola A, Ivanov S. Sex-specific impact of psychosocial stress on hematopoiesis and blood leukocytes. Eur J Immunol 2024; 54:e2350851. [PMID: 38803021 DOI: 10.1002/eji.202350851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 04/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
Stress exposure has been shown to modulate innate and adaptive immune responses. Indeed, stress favors myelopoiesis and monocyte generation and contributes to cardiovascular disease development. As sex hormones regulate innate and adaptive immune responses, we decided to investigate whether stress exposure leads to a different immune response in female and male mice. Our data demonstrated that psychosocial stressinduced neutrophilia in male, but not female mice. Importantly, we identified that B-cell numbers were reduced in female, but not male mice upon exposure to stress. Thus, our study revealed that the stress-induced immune alterations are sex-dependent, and this is an important feature to consider for future investigations.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Eloïse Goës
- Université Côte d'Azur, CNRS, LP2M, Nice, France
| | | | - David Dombrowicz
- Univ. Lille, INSERM, CHU Lille, Institut Pasteur de Lille, U1011-EGID, Lille, France
| | | | | | | |
Collapse
|
15
|
Purvis GSD, McNeill E, Wright B, Channon KM, Greaves DR. Ly6C hi Monocytes Are Metabolically Reprogrammed in the Blood during Inflammatory Stimulation and Require Intact OxPhos for Chemotaxis and Monocyte to Macrophage Differentiation. Cells 2024; 13:916. [PMID: 38891050 PMCID: PMC11171939 DOI: 10.3390/cells13110916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Acute inflammation is a rapid and dynamic process involving the recruitment and activation of multiple cell types in a coordinated and precise manner. Here, we investigate the origin and transcriptional reprogramming of monocytes using a model of acute inflammation, zymosan-induced peritonitis. Monocyte trafficking and adoptive transfer experiments confirmed that monocytes undergo rapid phenotypic change as they exit the blood and give rise to monocyte-derived macrophages that persist during the resolution of inflammation. Single-cell transcriptomics revealed significant heterogeneity within the surface marker-defined CD11b+Ly6G-Ly6Chi monocyte populations within the blood and at the site of inflammation. We show that two major transcriptional reprogramming events occur during the initial six hours of Ly6Chi monocyte mobilisation, one in the blood priming monocytes for migration and a second at the site of inflammation. Pathway analysis revealed an important role for oxidative phosphorylation (OxPhos) during both these reprogramming events. Experimentally, we demonstrate that OxPhos via the intact mitochondrial electron transport chain is essential for murine and human monocyte chemotaxis. Moreover, OxPhos is needed for monocyte-to-macrophage differentiation and macrophage M(IL-4) polarisation. These new findings from transcriptional profiling open up the possibility that shifting monocyte metabolic capacity towards OxPhos could facilitate enhanced macrophage M2-like polarisation to aid inflammation resolution and tissue repair.
Collapse
Affiliation(s)
- Gareth S. D. Purvis
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (E.M.); (B.W.); (K.M.C.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Eileen McNeill
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (E.M.); (B.W.); (K.M.C.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
| | - Benjamin Wright
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (E.M.); (B.W.); (K.M.C.)
| | - Keith M. Channon
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK; (E.M.); (B.W.); (K.M.C.)
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford OX3 9DU, UK
- British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK
| | - David R. Greaves
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK;
- British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford OX3 9DU, UK
| |
Collapse
|
16
|
Czubala MA, Jenkins RH, Gurney M, Wallace L, Cossins B, Dennis J, Rosas M, Andrews R, Fraser D, Taylor PR. Tissue-specific transcriptional programming of macrophages controls the microRNA transcriptome targeting multiple functional pathways. J Biol Chem 2024; 300:107244. [PMID: 38556087 PMCID: PMC11067537 DOI: 10.1016/j.jbc.2024.107244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 03/22/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
Recent interest in the biology and function of peritoneal tissue resident macrophages (pMΦ) has led to a better understanding of their cellular origin, programming, and renewal. The programming of pMΦ is dependent on microenvironmental cues and tissue-specific transcription factors, including GATA6. However, the contribution of microRNAs remains poorly defined. We conducted a detailed analysis of the impact of GATA6 deficiency on microRNA expression in mouse pMΦ. Our data suggest that for many of the pMΦ, microRNA composition may be established during tissue specialization and that the effect of GATA6 knockout is largely unable to be rescued in the adult by exogenous GATA6. The data are consistent with GATA6 modulating the expression pattern of specific microRNAs, directly or indirectly, and including miR-146a, miR-223, and miR-203 established by the lineage-determining transcription factor PU.1, to achieve a differentiated pMΦ phenotype. Lastly, we showed a significant dysregulation of miR-708 in pMΦ in the absence of GATA6 during homeostasis and in response to LPS/IFN-γ stimulation. Overexpression of miR-708 in mouse pMΦ in vivo altered 167 mRNA species demonstrating functional downregulation of predicted targets, including cell immune responses and cell cycle regulation. In conclusion, we demonstrate dependence of the microRNA transcriptome on tissue-specific programming of tissue macrophages as exemplified by the role of GATA6 in pMΦ specialization.
Collapse
Affiliation(s)
- Magdalena A Czubala
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK.
| | - Robert H Jenkins
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Mark Gurney
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Leah Wallace
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Benjamin Cossins
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - James Dennis
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Marcela Rosas
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Robert Andrews
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK
| | - Donald Fraser
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK; Wales Kidney Research Unit, Cardiff University, Cardiff, UK
| | - Philip R Taylor
- Systems Immunity Research Institute and Division of Infection and Immunity, Cardiff University, Cardiff, UK; UK Dementia Research Institute at Cardiff, Cardiff University, Cardiff, UK.
| |
Collapse
|
17
|
Nechanitzky R, Ramachandran P, Nechanitzky D, Li WY, Wakeham AC, Haight J, Saunders ME, Epelman S, Mak TW. CaSSiDI: novel single-cell "Cluster Similarity Scoring and Distinction Index" reveals critical functions for PirB and context-dependent Cebpb repression. Cell Death Differ 2024; 31:265-279. [PMID: 38383888 PMCID: PMC10923835 DOI: 10.1038/s41418-024-01268-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 01/15/2024] [Accepted: 02/07/2024] [Indexed: 02/23/2024] Open
Abstract
PirB is an inhibitory cell surface receptor particularly prominent on myeloid cells. PirB curtails the phenotypes of activated macrophages during inflammation or tumorigenesis, but its functions in macrophage homeostasis are obscure. To elucidate PirB-related functions in macrophages at steady-state, we generated and compared single-cell RNA-sequencing (scRNAseq) datasets obtained from myeloid cell subsets of wild type (WT) and PirB-deficient knockout (PirB KO) mice. To facilitate this analysis, we developed a novel approach to clustering parameter optimization called "Cluster Similarity Scoring and Distinction Index" (CaSSiDI). We demonstrate that CaSSiDI is an adaptable computational framework that facilitates tandem analysis of two scRNAseq datasets by optimizing clustering parameters. We further show that CaSSiDI offers more advantages than a standard Seurat analysis because it allows direct comparison of two or more independently clustered datasets, thereby alleviating the need for batch-correction while identifying the most similar and different clusters. Using CaSSiDI, we found that PirB is a novel regulator of Cebpb expression that controls the generation of Ly6Clo patrolling monocytes and the expansion properties of peritoneal macrophages. PirB's effect on Cebpb is tissue-specific since it was not observed in splenic red pulp macrophages (RPMs). However, CaSSiDI revealed a segregation of the WT RPM population into a CD68loIrf8+ "neuronal-primed" subset and an CD68hiFtl1+ "iron-loaded" subset. Our results establish the utility of CaSSiDI for single-cell assay analyses and the determination of optimal clustering parameters. Our application of CaSSiDI in this study has revealed previously unknown roles for PirB in myeloid cell populations. In particular, we have discovered homeostatic functions for PirB that are related to Cebpb expression in distinct macrophage subsets.
Collapse
Affiliation(s)
- Robert Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Providence Therapeutics Holdings Inc., Calgary, AB, Canada.
| | - Parameswaran Ramachandran
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Duygu Nechanitzky
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Wanda Y Li
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China
| | - Andrew C Wakeham
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Jillian Haight
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Mary E Saunders
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network, Toronto, ON, Canada
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada
- Peter Munk Cardiac Centre, UHN, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Departments of Immunology and Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Tak W Mak
- Princess Margaret Cancer Centre, Ontario Cancer Institute, University Health Network, Toronto, ON, Canada.
- Centre for Oncology and Immunology, Hong Kong Science Park, Hong Kong SAR, China.
- Department of Pathology Department of Pathology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
18
|
Ahlback A, Gentek R. Fate-Mapping Macrophages: From Ontogeny to Functions. Methods Mol Biol 2024; 2713:11-43. [PMID: 37639113 DOI: 10.1007/978-1-0716-3437-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Macrophages are vital to the physiological function of most tissues, but also contribute to disease through a multitude of pathological roles. They are thus highly plastic and heterogeneous. It is now well recognized that macrophages develop from several distinct progenitors from embryogenesis onwards and extending throughout life. Tissue-resident macrophages largely originate from embryonic sources and in many cases self-maintain independently without monocyte input. However, in certain tissues, monocyte-derived macrophages replace these over time or as a result of tissue injury and inflammation. This additional layer of heterogeneity has introduced many questions regarding the influence of origin on fate and function of macrophages in health and disease. To comprehensively address these questions, appropriate methods of tracing macrophage ontogeny are required. This chapter explores why ontogeny is of vital importance in macrophage biology and how to delineate macrophage populations by origin through genetic fate mapping. First, we summarize the current view of macrophage ontogeny and briefly discuss how origin may influence macrophage function in homeostasis and pathology. We go on to make the case for genetic fate mapping as the gold standard and briefly review different fate-mapping models. We then put forward our recommendations for fate-mapping strategies best suited to answer specific research questions and finally discuss the strengths and limitations of currently available models.
Collapse
Affiliation(s)
- Anna Ahlback
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK
| | - Rebecca Gentek
- The University of Edinburgh, Institute for Regeneration and Repair, Centre for Reproductive Health & Centre for Inflammation Research, Edinburgh, UK.
| |
Collapse
|
19
|
Dunn SE, Perry WA, Klein SL. Mechanisms and consequences of sex differences in immune responses. Nat Rev Nephrol 2024; 20:37-55. [PMID: 37993681 DOI: 10.1038/s41581-023-00787-w] [Citation(s) in RCA: 62] [Impact Index Per Article: 62.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/26/2023] [Indexed: 11/24/2023]
Abstract
Biological sex differences refer to differences between males and females caused by the sex chromosome complement (that is, XY or XX), reproductive tissues (that is, the presence of testes or ovaries), and concentrations of sex steroids (that is, testosterone or oestrogens and progesterone). Although these sex differences are binary for most human individuals and mice, transgender individuals receiving hormone therapy, individuals with genetic syndromes (for example, Klinefelter and Turner syndromes) and people with disorders of sexual development reflect the diversity in sex-based biology. The broad distribution of sex steroid hormone receptors across diverse cell types and the differential expression of X-linked and autosomal genes means that sex is a biological variable that can affect the function of all physiological systems, including the immune system. Sex differences in immune cell function and immune responses to foreign and self antigens affect the development and outcome of diverse diseases and immune responses.
Collapse
Affiliation(s)
- Shannon E Dunn
- Department of Immunology, University of Toronto, Toronto, Ontario, Canada
- Women's College Research Institute, Women's College Hospital, Toronto, Ontario, Canada
| | - Whitney A Perry
- Division of Geographic Medicine and Infectious Diseases, Tufts Medical Center, Boston, MA, USA
| | - Sabra L Klein
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
20
|
Hopkin SJ, Pezhman L, Begum J, Kavanagh D, McGettrick HM, Iqbal AJ, Chimen M. Aging modulates homeostatic leukocyte trafficking to the peritoneal cavity in a sex-specific manner. J Leukoc Biol 2023; 114:301-314. [PMID: 37309034 PMCID: PMC10533226 DOI: 10.1093/jleuko/qiad053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/28/2023] [Accepted: 04/28/2023] [Indexed: 06/14/2023] Open
Abstract
Aging is associated with exacerbated systemic inflammation (inflammaging) and the progressive loss of immune system function (immunosenescence). Leukocyte migration is necessary for effective immunity; however, dysregulated trafficking of leukocytes into tissue contributes to inflammaging and the development of age-related inflammatory diseases. Aging modulates leukocyte trafficking under inflammatory conditions; however, whether aging modulates leukocyte trafficking under homeostatic conditions remains to be elucidated. Although immune responses are evidently sexually dimorphic, limited studies have investigated the effect of sex on age-related changes to leukocyte trafficking processes. Here, we investigated age-related and sex-specific changes to the leukocyte populations within the peritoneal cavity of young (3-mo), middle-aged (18-mo) and old (21-mo) male and female wild-type mice in the steady state. We found an age-related increase in the number of leukocytes within the peritoneal cavity of female mice, predominantly B cells, which may reflect increased trafficking through this tissue with age. This was accompanied by an increased inflammatory environment within the aged cavity, including increased levels of chemoattractants, including B cell chemoattractants CXCL13 and CCL21, soluble adhesion molecules, and proinflammatory cytokines, which was more pronounced in aged female mice. Intravital microscopy techniques revealed altered vascular structure and increased vascular permeability within the peritoneal membrane of aged female mice, which may support increased leukocyte trafficking to the cavity with age. Together, these data indicate that aging affects homeostatic leukocyte trafficking processes in a sex-specific fashion.
Collapse
Affiliation(s)
- Sophie J Hopkin
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Laleh Pezhman
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Jenefa Begum
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Dean Kavanagh
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Helen M McGettrick
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Asif J Iqbal
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Myriam Chimen
- Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
21
|
Heieis GA, Patente TA, Almeida L, Vrieling F, Tak T, Perona-Wright G, Maizels RM, Stienstra R, Everts B. Metabolic heterogeneity of tissue-resident macrophages in homeostasis and during helminth infection. Nat Commun 2023; 14:5627. [PMID: 37699869 PMCID: PMC10497597 DOI: 10.1038/s41467-023-41353-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/01/2023] [Indexed: 09/14/2023] Open
Abstract
Tissue-resident macrophage populations constitute a mosaic of phenotypes, yet how their metabolic states link to the range of phenotypes and functions in vivo is still poorly defined. Here, using high-dimensional spectral flow cytometry, we observe distinct metabolic profiles between different organs and functionally link acetyl CoA carboxylase activity to efferocytotic capacity. Additionally, differences in metabolism are evident within populations from a specific site, corresponding to relative stages of macrophage maturity. Immune perturbation with intestinal helminth infection increases alternative activation and metabolic rewiring of monocyte-derived macrophage populations, while resident TIM4+ intestinal macrophages remain immunologically and metabolically hyporesponsive. Similar metabolic signatures in alternatively-activated macrophages are seen from different tissues using additional helminth models, but to different magnitudes, indicating further tissue-specific contributions to metabolic states. Thus, our high-dimensional, flow-based metabolic analyses indicates complex metabolic heterogeneity and dynamics of tissue-resident macrophage populations at homeostasis and during helminth infection.
Collapse
Affiliation(s)
- Graham A Heieis
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| | - Thiago A Patente
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Luís Almeida
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Frank Vrieling
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE, Wageningen, The Netherlands
| | - Tamar Tak
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Georgia Perona-Wright
- School of Infection and Immunity, University of Glasgow, 120 University Place, G12 8TA, Glasgow, UK
| | - Rick M Maizels
- School of Infection and Immunity, University of Glasgow, 120 University Place, G12 8TA, Glasgow, UK
| | - Rinke Stienstra
- Nutrition, Metabolism and Genomics Group, Division of Human Nutrition and Health, Wageningen University, 6708WE, Wageningen, The Netherlands
| | - Bart Everts
- Department of Parasitology, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands.
| |
Collapse
|
22
|
Li J, Ruggiero-Ruff RE, He Y, Qiu X, Lainez N, Villa P, Godzik A, Coss D, Nair MG. Sexual dimorphism in obesity is governed by RELMα regulation of adipose macrophages and eosinophils. eLife 2023; 12:e86001. [PMID: 37162190 PMCID: PMC10171862 DOI: 10.7554/elife.86001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 04/18/2023] [Indexed: 05/11/2023] Open
Abstract
Obesity incidence is increasing worldwide with the urgent need to identify new therapeutics. Sex differences in immune cell activation drive obesity-mediated pathologies where males are more susceptible to obesity comorbidities and exacerbated inflammation. Here, we demonstrate that the macrophage-secreted protein RELMα critically protects females against high-fat diet (HFD)-induced obesity. Compared to male mice, serum RELMα levels were higher in both control and HFD-fed females and correlated with frequency of adipose macrophages and eosinophils. RELMα-deficient females gained more weight and had proinflammatory macrophage accumulation and eosinophil loss in the adipose stromal vascular fraction (SVF), while RELMα treatment or eosinophil transfer rescued this phenotype. Single-cell RNA-sequencing of the adipose SVF was performed and identified sex and RELMα-dependent changes. Genes involved in oxygen sensing and iron homeostasis, including hemoglobin and lncRNA Gm47283/Gm21887, correlated with increased obesity, while eosinophil chemotaxis and response to amyloid-beta were protective. Monocyte-to-macrophage transition was also dysregulated in RELMα-deficient animals. Collectively, these studies implicate a RELMα-macrophage-eosinophil axis in sex-specific protection against obesity and uncover new therapeutic targets for obesity.
Collapse
Affiliation(s)
- Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Rebecca E Ruggiero-Ruff
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Yuxin He
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Xinru Qiu
- Graduate Program in Genetics, Genomics and Bioinformatics, University of California RiversideRiversideUnited States
| | - Nancy Lainez
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Pedro Villa
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Adam Godzik
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California RiversideRiversideUnited States
| |
Collapse
|
23
|
Finlay CM, Parkinson JE, Zhang L, Chan BHK, Ajendra J, Chenery A, Morrison A, Kaymak I, Houlder EL, Murtuza Baker S, Dickie BR, Boon L, Konkel JE, Hepworth MR, MacDonald AS, Randolph GJ, Rückerl D, Allen JE. T helper 2 cells control monocyte to tissue-resident macrophage differentiation during nematode infection of the pleural cavity. Immunity 2023; 56:1064-1081.e10. [PMID: 36948193 PMCID: PMC7616141 DOI: 10.1016/j.immuni.2023.02.016] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 10/07/2022] [Accepted: 02/21/2023] [Indexed: 03/24/2023]
Abstract
The recent revolution in tissue-resident macrophage biology has resulted largely from murine studies performed in C57BL/6 mice. Here, using both C57BL/6 and BALB/c mice, we analyze immune cells in the pleural cavity. Unlike C57BL/6 mice, naive tissue-resident large-cavity macrophages (LCMs) of BALB/c mice failed to fully implement the tissue-residency program. Following infection with a pleural-dwelling nematode, these pre-existing differences were accentuated with LCM expansion occurring in C57BL/6, but not in BALB/c mice. While infection drove monocyte recruitment in both strains, only in C57BL/6 mice were monocytes able to efficiently integrate into the resident pool. Monocyte-to-macrophage conversion required both T cells and interleukin-4 receptor alpha (IL-4Rα) signaling. The transition to tissue residency altered macrophage function, and GATA6+ tissue-resident macrophages were required for host resistance to nematode infection. Therefore, during tissue nematode infection, T helper 2 (Th2) cells control the differentiation pathway of resident macrophages, which determines infection outcome.
Collapse
Affiliation(s)
- Conor M Finlay
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK; Trinity Health Kidney Centre, Trinity Translational Medicine Institute, Trinity College, Dublin D08 W9RT, Ireland.
| | - James E Parkinson
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Lili Zhang
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Brian H K Chan
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Jesuthas Ajendra
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Alistair Chenery
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Anya Morrison
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Irem Kaymak
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Emma L Houlder
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Syed Murtuza Baker
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK; Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Ben R Dickie
- Division of Informatics, Imaging & Data Sciences, School of Health Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Geoffrey Jefferson Brain Research Centre, Manchester Academic Health Science Centre, Northern Care Alliance NHS Group, University of Manchester, Salford M6 8HD, UK
| | | | - Joanne E Konkel
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Matthew R Hepworth
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Gwendalyn J Randolph
- Department of Pathology & Immunology, Washington University, St. Louis, MO 63110, USA
| | - Dominik Rückerl
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK
| | - Judith E Allen
- Lydia Becker Institute of Immunology and Inflammation, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
24
|
Ardavín C, Alvarez‐Ladrón N, Ferriz M, Gutiérrez‐González A, Vega‐Pérez A. Mouse Tissue-Resident Peritoneal Macrophages in Homeostasis, Repair, Infection, and Tumor Metastasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206617. [PMID: 36658699 PMCID: PMC10104642 DOI: 10.1002/advs.202206617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Large peritoneal macrophages (LPMs) are long-lived, tissue-resident macrophages, formed during embryonic life, developmentally and functionally confined to the peritoneal cavity. LPMs provide the first line of defense against life-threatening pathologies of the peritoneal cavity, such as abdominal sepsis, peritoneal metastatic tumor growth, or peritoneal injuries caused by trauma, or abdominal surgery. Apart from their primary phagocytic function, reminiscent of primitive defense mechanisms sustained by coelomocytes in the coelomic cavity of invertebrates, LPMs fulfill an essential homeostatic function by achieving an efficient clearance of apoptotic, that is crucial for the maintenance of self-tolerance. Research performed over the last few years, in mice, has unveiled the mechanisms by which LPMs fulfill a crucial role in repairing peritoneal injuries and controlling microbial and parasitic infections, reflecting that the GATA6-driven LPM transcriptional program can be modulated by extracellular signals associated with pathological conditions. In contrast, recent experimental evidence supports that peritoneal tumors can subvert LPM metabolism and function, leading to the acquisition of a tumor-promoting potential. The remarkable functional plasticity of LPMs can be nevertheless exploited to revert tumor-induced LPM protumor potential, providing the basis for the development of novel immunotherapeutic approaches against peritoneal tumor metastasis based on macrophage reprogramming.
Collapse
Affiliation(s)
- Carlos Ardavín
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | - Natalia Alvarez‐Ladrón
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | - Margarita Ferriz
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
| | | | - Adrián Vega‐Pérez
- Departamento de Inmunología y OncologíaCentro Nacional de Biotecnología/CSICDarwin 3Madrid28049Spain
- Present address:
Sandra and Edward Meyer Cancer CenterWeill Cornell Medicine1300 York AvenueNew YorkNY10065USA
| |
Collapse
|
25
|
Defining and targeting tumor-associated macrophages in malignant mesothelioma. Proc Natl Acad Sci U S A 2023; 120:e2210836120. [PMID: 36821580 PMCID: PMC9992826 DOI: 10.1073/pnas.2210836120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Defining the ontogeny of tumor-associated macrophages (TAM) is important to develop therapeutic targets for mesothelioma. We identified two distinct macrophage populations in mouse peritoneal and pleural cavities, the monocyte-derived, small peritoneal/pleural macrophages (SPM), and the tissue-resident large peritoneal/pleural macrophages (LPM). SPM rapidly increased in tumor microenvironment after tumor challenge and contributed to the vast majority of M2-like TAM. The selective depletion of M2-like TAM by conditional deletion of the Dicer1 gene in myeloid cells (D-/-) promoted tumor rejection. Sorted SPM M2-like TAM initiated tumorigenesis in vivo and in vitro, confirming their capacity to support tumor development. The transcriptomic and single-cell RNA sequencing analysis demonstrated that both SPM and LPM contributed to the tumor microenvironment by promoting the IL-2-STAT5 signaling pathway, inflammation, and epithelial-mesenchymal transition. However, while SPM preferentially activated the KRAS and TNF-α/NFkB signaling pathways, LPM activated the IFN-γ response. The importance of LPM in the immune response was confirmed by depleting LPM with intrapleural clodronate liposomes, which abrogated the antitumoral memory immunity. SPM gene signature could be identified in pleural effusion and tumor from patients with untreated mesothelioma. Five genes, TREM2, STAB1, LAIR1, GPNMB, and MARCO, could potentially be specific therapeutic targets. Accordingly, Trem2 gene deletion led to reduced SPM M2-like TAM with compensatory increase in LPM and slower tumor growth. Overall, these experiments demonstrate that SPM M2-like TAM play a key role in mesothelioma development, while LPM more specifically contribute to the immune response. Therefore, selective targeting of monocyte-derived TAM may enhance antitumor immunity through compensatory expansion of tissue-resident TAM.
Collapse
|
26
|
Tian L, Sun T, Fan M, Lu H, Sun C. Novel silk protein/hyaluronic acid hydrogel loaded with azithromycin as an immunomodulatory barrier to prevent postoperative adhesions. Int J Biol Macromol 2023; 235:123811. [PMID: 36841387 DOI: 10.1016/j.ijbiomac.2023.123811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/12/2023] [Accepted: 02/18/2023] [Indexed: 02/25/2023]
Abstract
Peritoneal adhesions, a common postoperative complication of laparotomy, are still treated with physical barriers, but their efficacy and ease of use are controversial. In this paper, we developed a wound microenvironment-responsive hydrogel composed of Antheraea pernyi silk protein (ASF) from wild cocoons and tyramine-modified hyaluronic acid (HA-Ph) loaded with azithromycin (AZI), glucose oxidase (GOX), and horseradish peroxidase (HRP). In addition, GOX-catalyzed oxygen production enhanced the antibacterial ability of the hydrogel. Moreover, the drug-loaded hydrogel increased macrophage CD206 expression while decreasing IL-6 and TNF-α expression. More importantly, the retarding effect of this novel hydrogel system on AZI almost eliminated the appearance of postoperative adhesions in rats. It was also found that the novel hydrogel enhanced the modulation of the TLR-4/Myd88/NF-κB pathway and TGF-β/Smad2/3 pathway by azithromycin in the locally damaged peritoneum of rats, which accelerated the remodeling of damaged tissues and dramatically reduced the deposition of collagen. Therefore, spraying the novel drug-loaded hydrogel on postoperative abdominal wounds can effectively inhibit the formation of postoperative adhesions.
Collapse
Affiliation(s)
- Linan Tian
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Tongtong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Mengyao Fan
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Hongyan Lu
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Changshan Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
27
|
Gata6 + large peritoneal macrophages: an evolutionarily conserved sentinel and effector system for infection and injury. Trends Immunol 2023; 44:129-145. [PMID: 36623953 DOI: 10.1016/j.it.2022.12.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 01/08/2023]
Abstract
There are striking similarities between the sea urchin cavity macrophage-like phagocytes (coelomocytes) and mammalian cavity macrophages in not only their location, but also their behaviors. These cells are crucial for maintaining homeostasis within the cavity following a breach, filling the gap and functioning as a barrier between vital organs and the environment. In this review, we summarize the evolving literature regarding these Gata6+ large peritoneal macrophages (GLPMs), focusing on ontogeny, their responses to perturbations, including their rapid aggregation via coagulation, as well as scavenger receptor cysteine-rich domains and their potential roles in diseases, such as cancer. We challenge the 50-year old phenomenon of the 'macrophage disappearance reaction' (MDR) and propose the new term 'macrophage disturbance of homeostasis reaction' (MDHR), which may better describe this complex phenomenon.
Collapse
|
28
|
Shimizu M, Hojo M, Ikushima K, Yamamoto Y, Maeno A, Sakamoto Y, Ishimaru N, Taquahashi Y, Kanno J, Hirose A, Suzuki J, Inomata A, Nakae D. Continuous infiltration of small peritoneal macrophages in the mouse peritoneum through CCR2-dependent and -independent routes during fibrosis and mesothelioma development induced by a multiwalled carbon nanotube, MWNT-7. J Toxicol Sci 2023; 48:617-639. [PMID: 38044124 DOI: 10.2131/jts.48.617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Although toxicities of multiwalled carbon nanotube (MWCNT) have been found to be related with activities of macrophages phagocytosing the fibers, the exact relationship between macrophage population and pathogenesis of fibrosis and mesotheliomas induced by MWCNTs is largely unknown. CCL2-CCR2 axis, a major monocyte/macrophage infiltration route, is thought to be involved in not only acute inflammation but also the formation of tumor microenvironment. We therefore described a time-course of alteration of macrophage population in an attempt to clarify the contribution of the Ccr2 gene to mesotheliomagenesis. Wild-type (WT) C57BL/6 mice and Ccr2-knockout (KO) mice were intraperitoneally administered with MWNT-7 and were sequentially necropsied at 1, 7, 28, 90, and 245 day(s) after the injection. Peritoneal fibrosis was prominent in all MWCNT-treated mice, with a lower severity in the KO mice. No differences were observed in the incidences of neoplastic lesions of mesothelia between WT and KO mice. A flow cytometric analysis revealed that after gross disappearance of macrophages after MWCNT exposure, small peritoneal macrophages (SPMs) were exclusively refurbished by the CCR2-dependent route at day 1 (as Ly-6C+MHC class II- cells), followed by additional CCR2-independent routes (as Ly-6C-MHC class II- cells); i.e., the only route in KO mice; with a delay of 1-7 days. The SPMs derived from both routes appeared to differentiate into maturated cells as Ly-6C-MHC class II+, whose ratio increased in a time-dependent manner among the total SPM population. Additionally, most macrophages expressed M1-like features, but a small fraction of macrophages exhibited an M1/M2 mixed status in MWCNT-treated animals. Our findings demonstrate a long-persistent activation of the CCL2-CCR2 axis after MWCNT exposure and enable a better understanding of the participation and potential roles of SPMs in fibrous material-induced chronic toxicities.
Collapse
Affiliation(s)
- Motomu Shimizu
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Motoki Hojo
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Kiyomi Ikushima
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Yukio Yamamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Ai Maeno
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Yoshimitsu Sakamoto
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Naozumi Ishimaru
- Department of Oral Molecular Pathology, Tokushima University Graduate School of Biomedical Sciences
| | - Yuhji Taquahashi
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Jun Kanno
- Division of Cellular and Molecular Toxicology, Center for Biological Safety and Research, National Institute of Health Sciences
| | - Akihiko Hirose
- Chemicals Assessment and Research Center, Chemicals Evaluation and Research Institute, Japan
| | - Jin Suzuki
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Akiko Inomata
- Department of Pharmaceutical and Environmental Sciences, Tokyo Metropolitan Institute of Public Health
| | - Dai Nakae
- Department of Medical Sports, Faculty of Health Care and Medical Sports, Teikyo Heisei University
| |
Collapse
|
29
|
Niclosamide targets the dynamic progression of macrophages for the resolution of endometriosis in a mouse model. Commun Biol 2022; 5:1225. [DOI: 10.1038/s42003-022-04211-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/01/2022] [Indexed: 11/13/2022] Open
Abstract
AbstractDue to the vital roles of macrophages in the pathogenesis of endometriosis, targeting macrophages could be a promising therapeutic direction. Here, we investigated the efficacy of niclosamide for the resolution of a perturbed microenvironment caused by dysregulated macrophages in a mouse model of endometriosis. Single-cell transcriptomic analysis revealed the heterogeneity of macrophages including three intermediate subtypes with sharing characteristics of traditional “small” or “large” peritoneal macrophages (SPMs and LPMs) in the peritoneal cavity. Endometriosis-like lesions (ELL) enhanced the differentiation of recruited macrophages, promoted the replenishment of resident LPMs, and increased the ablation of embryo-derived LPMs, which were stepwise suppressed by niclosamide. In addition, niclosamide restored intercellular communications between macrophages and B cells. Therefore, niclosamide rescued the perturbed microenvironment in endometriosis through its fine regulations on the dynamic progression of macrophages. Validation of similar macrophage pathogenesis in patients will further promote the clinical usage of niclosamide for endometriosis treatment.
Collapse
|
30
|
Bertola A, Gallerand A, Ivanov S. Immune cell involvement in brown adipose tissue functions. DISCOVERY IMMUNOLOGY 2022; 1:kyac007. [PMID: 38566905 PMCID: PMC10917225 DOI: 10.1093/discim/kyac007] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Accepted: 10/28/2022] [Indexed: 04/04/2024]
Abstract
Brown adipose tissue (BAT) contains many immune cells. The presence of macrophages, monocytes, dendritic cells, T cells, B cells, and mast cells was documented in BAT. However, in comparison to white adipose tissue, relatively little is known on the impact of immune cells on BAT function. By directly interacting with BAT stromal cells, or by secreting pro- and anti-inflammatory mediators, immune cells modulate BAT activation and subsequently influence on adaptative thermogenesis and heat generation. In the current manuscript, we will focus on the diversity and functions of BAT immune cells.
Collapse
|
31
|
Wilmouth JJ, Olabe J, Garcia-Garcia D, Lucas C, Guiton R, Roucher-Boulez F, Dufour D, Damon-Soubeyrand C, Sahut-Barnola I, Pointud JC, Renaud Y, Levasseur A, Tauveron I, Lefrançois-Martinez AM, Martinez A, Val P. Sexually dimorphic activation of innate antitumor immunity prevents adrenocortical carcinoma development. SCIENCE ADVANCES 2022; 8:eadd0422. [PMID: 36240276 PMCID: PMC9565812 DOI: 10.1126/sciadv.add0422] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 08/25/2022] [Indexed: 05/31/2023]
Abstract
Unlike most cancers, adrenocortical carcinomas (ACCs) are more frequent in women than in men, but the underlying mechanisms of this sexual dimorphism remain elusive. Here, we show that inactivation of Znrf3 in the mouse adrenal cortex, recapitulating the most frequent alteration in ACC patients, is associated with sexually dimorphic tumor progression. Although female knockouts develop metastatic carcinomas at 18 months, adrenal hyperplasia regresses in male knockouts. This male-specific phenotype is associated with androgen-dependent induction of senescence, recruitment, and differentiation of highly phagocytic macrophages that clear out senescent cells. In contrast, in females, macrophage recruitment is delayed and dampened, which allows for aggressive tumor progression. Consistently, analysis of TCGA-ACC data shows that phagocytic macrophages are more prominent in men and are associated with better prognosis. Together, these data show that phagocytic macrophages are key players in the sexual dimorphism of ACC that could be previously unidentified allies in the fight against this devastating cancer.
Collapse
Affiliation(s)
- James J. Wilmouth
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Julie Olabe
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Diana Garcia-Garcia
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Cécily Lucas
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Rachel Guiton
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Florence Roucher-Boulez
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
- Laboratoire de Biochimie et Biologie Moléculaire, UM Pathologies Endocriniennes, Groupement Hospitalier Est, Hospices Civils de Lyon, Bron, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Damien Dufour
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Christelle Damon-Soubeyrand
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Isabelle Sahut-Barnola
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Jean-Christophe Pointud
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Yoan Renaud
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Adrien Levasseur
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Igor Tauveron
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
- Endocrinologie Diabétologie CHU Clermont Ferrand, 58 rue Montalembert, F63000 Clermont-Ferrand, France
| | - Anne-Marie Lefrançois-Martinez
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Antoine Martinez
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| | - Pierre Val
- Institut GReD (Genetics, Reproduction and Development), CNRS UMR 6293, Inserm U1103, Université Clermont Auvergne, 28 Place Henri Dunant, 63000 Clermont-Ferrand, France
| |
Collapse
|
32
|
Sahputra R, Dejyong K, Woolf AS, Mack M, Allen JE, Rückerl D, Herrick SE. Monocyte-derived peritoneal macrophages protect C57BL/6 mice against surgery-induced adhesions. Front Immunol 2022; 13:1000491. [PMID: 36275765 PMCID: PMC9583908 DOI: 10.3389/fimmu.2022.1000491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/13/2022] [Indexed: 02/02/2023] Open
Abstract
Peritoneal adhesions commonly occur after abdominal or pelvic surgery. These scars join internal organs to each other or to the cavity wall and can present with abdominal or pelvic pain, and bowel obstruction or female infertility. The mechanisms underlying adhesion formation remain unclear and thus, effective treatments are not forthcoming. Peritoneal macrophages accumulate after surgery and previous studies have attributed either pro- or anti-scarring properties to these cells. We propose that there are complex and nuanced responses after surgery with respect to both resident and also monocyte-derived peritoneal macrophage subpopulations. Moreover, we contend that differences in responses of specific macrophage subpopulations in part explain the risk of developing peritoneal scars. We characterized alterations in peritoneal macrophage subpopulations after surgery-induced injury using two strains of mice, BALB/c and C57BL/6, with known differences in macrophage response post-infection. At 14 days post-surgery, BALB/c mice displayed more adhesions compared with C57BL/6 mice. This increase in scarring correlated with a lower influx of monocyte-derived macrophages at day 3 post-surgery. Moreover, BALB/c mice showed distinct macrophage repopulation dynamics after surgery. To confirm a role for monocyte-derived macrophages, we used Ccr2-deficient mice as well as antibody-mediated depletion of CCR2 expressing cells during initial stages of adhesion formation. Both Ccr2-deficient and CCR2-depleted mice showed a significant increase in adhesion formation associated with the loss of peritoneal monocyte influx. These findings revealed an important protective role for monocyte-derived cells in reducing adhesion formation after surgery.
Collapse
Affiliation(s)
- Rinal Sahputra
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Krittee Dejyong
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Faculty of Veterinary Science, Prince of Songkla University, Songkhla, Thailand
| | - Adrian S. Woolf
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Royal Manchester Children’s Hospital, Manchester University National Health Service (NHS) Foundation Trust, Manchester, United Kingdom
| | - Matthias Mack
- Department of Nephrology, Universitätsklinikum Regensburg, Regensburg, Germany
| | - Judith E. Allen
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Dominik Rückerl
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Sarah E. Herrick
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Manchester Academic Health Science Centre, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
- Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
Zhang Y, Ouyang D, Chen YH, Xia H. Peritoneal resident macrophages in tumor metastasis and immunotherapy. Front Cell Dev Biol 2022; 10:948952. [PMID: 36035994 PMCID: PMC9402905 DOI: 10.3389/fcell.2022.948952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 07/20/2022] [Indexed: 11/30/2022] Open
Abstract
Macrophages residing in various tissues play crucial roles in innate immunity, tissue repair, and immune homeostasis. The development and differentiation of macrophages in non-lymphoid tissues are highly regulated by the tissue microenvironment. Peritoneum provides a unique metastatic niche for certain types of tumor cells. As the dominant immune cell type in peritoneal cavity, macrophages control the immune response to tumor and influence the efficacy of anti-tumor therapy. Considering the heterogeneity of macrophages in origin, metabolism, and function, it is always challenging to define the precise roles of macrophages in tumor microenvironment. We review here recent progresses in peritoneal resident macrophage research in the context of physiological and metastatic tumor conditions, which may benefit the development of new anti-tumor therapies through targeting macrophages.
Collapse
Affiliation(s)
- Yu Zhang
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongyun Ouyang
- Department of Immunobiology, College of Life Science and Technology, Jinan University, Guangzhou, China
| | - Youhai H. Chen
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Houjun Xia
- Center for Cancer Immunology, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- *Correspondence: Houjun Xia,
| |
Collapse
|
34
|
Louwe PA, Forbes SJ, Bénézech C, Pridans C, Jenkins SJ. Cell origin and niche availability dictate the capacity of peritoneal macrophages to colonize the cavity and omentum. Immunology 2022; 166:458-474. [PMID: 35437746 PMCID: PMC7613338 DOI: 10.1111/imm.13483] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Accepted: 03/15/2022] [Indexed: 12/02/2022] Open
Abstract
The relationship between macrophages of the peritoneal cavity and the adjacent omentum remains poorly understood. Here, we describe two populations of omental macrophages distinguished by CD102 expression and use an adoptive cell transfer approach to investigate whether these arise from peritoneal macrophages, and whether this depends upon inflammatory status, the origin of peritoneal macrophages and availability of the omental niches. We show that whereas established resident peritoneal macrophages largely fail to migrate to the omentum, monocyte-derived resident cells readily migrate and form a substantial component of omental CD102+ macrophages in the months following resolution of peritoneal inflammation. In contrast, both populations had the capacity to migrate to the omentum in the absence of endogenous peritoneal and omental macrophages. However, inflammatory macrophages expanded more effectively and more efficiently repopulated both CD102+ and CD102- omental populations, whereas established resident macrophages partially reconstituted the omental niche via recruitment of monocytes. Hence, cell origin determines the migration of peritoneal macrophages to the omentum and predisposes established resident macrophages to drive infiltration of monocyte-derived cells.
Collapse
Affiliation(s)
- Pieter A. Louwe
- Queens Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
- Laboratory of Myeloid Cell Biology in Tissue Damage and Inflammation, VIB Center for Inflammation Research, Ghent, Belgium
| | - Stuart J. Forbes
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh, UK
| | - Cécile Bénézech
- Queens Medical Research Institute, University of Edinburgh Centre for Cardiovascular Science, Edinburgh, UK
| | - Clare Pridans
- Queens Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
- Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Stephen J. Jenkins
- Queens Medical Research Institute, University of Edinburgh Centre for Inflammation Research, Edinburgh, UK
| |
Collapse
|
35
|
Bain CC, Louwe PA, Steers NJ, Bravo‐Blas A, Hegarty LM, Pridans C, Milling SW, MacDonald AS, Rückerl D, Jenkins SJ. CD11c identifies microbiota and EGR2-dependent MHCII + serous cavity macrophages with sexually dimorphic fate in mice. Eur J Immunol 2022; 52:1243-1257. [PMID: 35568024 PMCID: PMC7613339 DOI: 10.1002/eji.202149756] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 11/27/2022]
Abstract
The murine serous cavities contain a rare and enigmatic population of short-lived F4/80lo MHCII+ macrophages but what regulates their development, survival, and fate is unclear. Here, we show that mature F4/80lo MHCII+ peritoneal macrophages arise after birth, but that this occurs largely independently of colonization by microbiota. Rather, microbiota specifically regulate development of a subpopulation of CD11c+ cells that express the immunoregulatory cytokine RELM-α, are reliant on the transcription factor EGR2, and develop independently of the growth factor CSF1. Furthermore, we demonstrate that intrinsic expression of RELM-α, a signature marker shared by CD11c+ and CD11c- F4/80lo MHCII+ cavity macrophages, regulates survival and differentiation of these cells in the peritoneal cavity in a sex-specific manner. Thus, we identify a previously unappreciated diversity in serous cavity F4/80lo MHCII+ macrophages that is regulated by microbiota, and describe a novel sex and site-specific function for RELM-α in regulating macrophage endurance that reveals the unique survival challenge presented to monocyte-derived macrophages by the female peritoneal environment.
Collapse
Affiliation(s)
- Calum C. Bain
- Queens Medical Research InstituteUniversity of Edinburgh Centre for Inflammation ResearchEdinburghUK
| | - Pieter A. Louwe
- Queens Medical Research InstituteUniversity of Edinburgh Centre for Inflammation ResearchEdinburghUK
| | | | - Alberto Bravo‐Blas
- Institute of Infection, Immunity, and InflammationUniversity of GlasgowGlasgowUK
| | - Lizi M. Hegarty
- Queens Medical Research InstituteUniversity of Edinburgh Centre for Inflammation ResearchEdinburghUK
| | - Clare Pridans
- Queens Medical Research InstituteUniversity of Edinburgh Centre for Inflammation ResearchEdinburghUK
- Simons Initiative for the Developing Brain, Centre for Discovery Brain SciencesUniversity of EdinburghEdinburghUK
| | - Simon W.F. Milling
- Institute of Infection, Immunity, and InflammationUniversity of GlasgowGlasgowUK
| | - Andrew S. MacDonald
- Lydia Becker Institute for Immunology and Infection, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Dominik Rückerl
- Lydia Becker Institute for Immunology and Infection, School of Biological Sciences, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Stephen J. Jenkins
- Queens Medical Research InstituteUniversity of Edinburgh Centre for Inflammation ResearchEdinburghUK
| |
Collapse
|
36
|
Unravelling the sex-specific diversity and functions of adrenal gland macrophages. Cell Rep 2022; 39:110949. [PMID: 35705045 PMCID: PMC9210345 DOI: 10.1016/j.celrep.2022.110949] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 03/10/2022] [Accepted: 05/23/2022] [Indexed: 12/02/2022] Open
Abstract
Despite the ubiquitous function of macrophages across the body, the diversity, origin, and function of adrenal gland macrophages remain largely unknown. We define the heterogeneity of adrenal gland immune cells using single-cell RNA sequencing and use genetic models to explore the developmental mechanisms yielding macrophage diversity. We define populations of monocyte-derived and embryonically seeded adrenal gland macrophages and identify a female-specific subset with low major histocompatibility complex (MHC) class II expression. In adulthood, monocyte recruitment dominates adrenal gland macrophage maintenance in female mice. Adrenal gland macrophage sub-tissular distribution follows a sex-dimorphic pattern, with MHC class IIlow macrophages located at the cortico-medullary junction. Macrophage sex dimorphism depends on the presence of the cortical X-zone. Adrenal gland macrophage depletion results in altered tissue homeostasis, modulated lipid metabolism, and decreased local aldosterone production during stress exposure. Overall, these data reveal the heterogeneity of adrenal gland macrophages and point toward sex-restricted distribution and functions of these cells. Adrenal glands contain multiple macrophage populations Macrophage sex dimorphism depends on the presence of the cortical X zone Embryonic and monocyte-derived macrophages co-exist in adrenal glands Adrenal gland macrophage depletion alters tissue lipid metabolism
Collapse
|
37
|
Jayakumar P, Laganson A, Deng M. GATA6 + Peritoneal Resident Macrophage: The Immune Custodian in the Peritoneal Cavity. Front Pharmacol 2022; 13:866993. [PMID: 35401237 PMCID: PMC8984154 DOI: 10.3389/fphar.2022.866993] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 03/08/2022] [Indexed: 12/14/2022] Open
Abstract
Peritoneal resident macrophages (PRMs) have been a prominent topic in the research field of immunology due to their critical roles in immune surveillance in the peritoneal cavity. PRMs initially develop from embryonic progenitor cells and are replenished by bone marrow origin monocytes during inflammation and aging. Furthermore, PRMs have been shown to crosstalk with other cells in the peritoneal cavity to control the immune response during infection, injury, and tumorigenesis. With the advance in genetic studies, GATA-binding factor 6 (GATA6) has been identified as a lineage determining transcription factor of PRMs controlling the phenotypic and functional features of PRMs. Here, we review recent advances in the developmental origin, the phenotypic identity, and functions of PRMs, emphasizing the role of GATA6 in the pathobiology of PRMs in host defense, tissue repairing, and peritoneal tumorigenesis.
Collapse
Affiliation(s)
- Preethi Jayakumar
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Andrea Laganson
- Department of Surgery, The Ohio State University, Columbus, OH, United States
| | - Meihong Deng
- Department of Surgery, The Ohio State University, Columbus, OH, United States.,Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| |
Collapse
|
38
|
Brandi ML. Are sex hormones promising candidates to explain sex disparities in the COVID-19 pandemic? Rev Endocr Metab Disord 2022; 23:171-183. [PMID: 34761329 PMCID: PMC8580578 DOI: 10.1007/s11154-021-09692-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/25/2021] [Indexed: 12/14/2022]
Abstract
Emerging evidence suggests that the novel Coronavirus disease-2019 (COVID-19) is deadlier for men than women both in China and in Europe. Male sex is a risk factor for COVID-19 mortality. The meccanisms underlying the reduced morbidity and lethality in women are currently unclear, even though hypotheses have been posed (Brandi and Giustina in Trends Endocrinol Metab. 31:918-27, 2020). This article aims to describe the role of sex hormones in sex- and gender-related fatality of COVID-19. We discuss the possibility that potential sex-specific mechanisms modulating the course of the disease include both the androgen- and the estrogen-response cascade. Sex hormones regulate the respiratory function, the innate and adaptive immune responses, the immunoaging, the cardiovascular system, and the entrance of the virus in the cells. Recommendations for the future government policies and for the management of COVID-19 patients should include a dimorphic approach for males and females. As the estrogen receptor signaling appears critical for protection in women, more studies are needed to translate the basic knowledge into clinical actions. Understanding the etiological bases of sexual dimorphism in COVID-19 could help develop more effective strategies in individual patients in both sexes, including designing a good vaccine.
Collapse
Affiliation(s)
- Maria Luisa Brandi
- Fondazione Italiana Per La Ricerca Sulle Malattie Dell'Osso, Florence, Italy.
| |
Collapse
|
39
|
Lee SE, Rudd BD, Smith NL. Fate-mapping mice: new tools and technology for immune discovery. Trends Immunol 2022; 43:195-209. [PMID: 35094945 PMCID: PMC8882138 DOI: 10.1016/j.it.2022.01.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/20/2022]
Abstract
The fate-mapping mouse has become an essential tool in the immunologist's toolbox. Although traditionally used by developmental biologists to trace the origins of cells, immunologists are turning to fate-mapping to better understand the development and function of immune cells. Thus, an expansion in the variety of fate-mapping mouse models has occurred to answer fundamental questions about the immune system. These models are also being combined with new genetic tools to study cancer, infection, and autoimmunity. In this review, we summarize different types of fate-mapping mice and describe emerging technologies that might allow immunologists to leverage this valuable tool and expand our functional knowledge of the immune system.
Collapse
Affiliation(s)
- Scarlett E Lee
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Brian D Rudd
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA
| | - Norah L Smith
- Department of Microbiology and Immunology, Cornell University, Ithaca, NY 14850, USA.
| |
Collapse
|
40
|
Bell RMB, Conway BR. Macrophages in the kidney in health, injury and repair. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2022; 367:101-147. [PMID: 35461656 DOI: 10.1016/bs.ircmb.2022.01.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Macrophages are a key component of the renal mononuclear phagocyte system, playing a major role in defense against infection, renal injury and repair. Yolk sac macrophage precursors seed the early embryonic kidney and are important for renal development. Later, renal macrophages are derived from hematopoietic stem cells and in adult life, there is a significant contribution from circulating monocytes, which is enhanced in response to infection or injury. Macrophages are highly plastic and can alter their phenotype in response to cues from parenchymal renal cells. Danger-associated molecules released from injured kidney cells may activate macrophages toward a pro-inflammatory phenotype, mediating further recruitment of inflammatory cells, exacerbating renal injury and activating renal fibroblasts to promote scarring. In acute kidney injury, once the injury stimulus has abated, macrophages may adopt a more reparative phenotype, dampening the immune response and promoting repair of renal tissue. However, in chronic kidney disease ongoing activation of pro-inflammatory monocytes and persistence of reparative macrophages leads to glomerulosclerosis and tubulointerstitial fibrosis, the hallmarks of end-stage kidney disease. Several strategies to inhibit the recruitment, activation and secretory products of pro-inflammatory macrophages have proven beneficial in pre-clinical models and are now undergoing clinical trials in patients with kidney disease. In addition, macrophages may be utilized in cell therapy as a "Trojan Horse" to deliver targeted therapies to the kidney. Single-cell RNA sequencing has identified a previously unappreciated spectrum of macrophage phenotypes, which may be selectively present in injury or repair, and ongoing functional analyses of these subsets may identify more specific targets for therapeutic intervention.
Collapse
Affiliation(s)
- Rachel M B Bell
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom
| | - Bryan R Conway
- Centre for Cardiovascular Science, University of Edinburgh, Edinburgh, United Kingdom.
| |
Collapse
|
41
|
Bain CC, MacDonald AS. The impact of the lung environment on macrophage development, activation and function: diversity in the face of adversity. Mucosal Immunol 2022; 15:223-234. [PMID: 35017701 PMCID: PMC8749355 DOI: 10.1038/s41385-021-00480-w] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/04/2021] [Accepted: 12/18/2021] [Indexed: 02/04/2023]
Abstract
The last decade has been somewhat of a renaissance period for the field of macrophage biology. This renewed interest, combined with the advent of new technologies and development of novel model systems to assess different facets of macrophage biology, has led to major advances in our understanding of the diverse roles macrophages play in health, inflammation, infection and repair, and the dominance of tissue environments in influencing all of these areas. Here, we discuss recent developments in our understanding of lung macrophage heterogeneity, ontogeny, metabolism and function in the context of health and disease, and highlight core conceptual advances and key unanswered questions that we believe should be focus of work in the coming years.
Collapse
Affiliation(s)
- Calum C Bain
- The University of Edinburgh Centre for Inflammation Research, Queen's Medical Research Institute, Edinburgh Bioquarter, Edinburgh, EH16 4TJ, UK.
| | - Andrew S MacDonald
- Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, M13 9NT, UK.
| |
Collapse
|
42
|
Lee JW, Profant M, Wang C. Metabolic Sex Dimorphism of the Brain at the Gene, Cell, and Tissue Level. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2022; 208:212-220. [PMID: 35017210 DOI: 10.4049/jimmunol.2100853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 11/09/2021] [Indexed: 12/21/2022]
Abstract
The palpable observation in the sex bias of disease prevalence in the CNS has fascinated scientists for several generations. Brain sex dimorphism has been visualized by imaging and analytical tools at the tissue, cellular, and molecular levels. Recent work highlighted the specificity of such sex bias in the brain and its subregions, offering a unique lens through which disease pathogenesis can be investigated. The brain is the largest consumer of energy in the body and provides a unique metabolic environment for diverse lineages of cells. Immune cells are increasingly recognized as an integral part of brain physiology, and their function depends on metabolic homeostasis. This review focuses on metabolic sex dimorphism in brain tissue, resident, and infiltrating immune cells. In this context, we highlight the relevance of recent advances in metabolomics and RNA sequencing technologies at the single cell resolution and the development of novel computational approaches.
Collapse
Affiliation(s)
- Jun Won Lee
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and
| | - Martin Profant
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and.,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| | - Chao Wang
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Ontario, Canada; and .,Department of Immunology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
43
|
Dick SA, Wong A, Hamidzada H, Nejat S, Nechanitzky R, Vohra S, Mueller B, Zaman R, Kantores C, Aronoff L, Momen A, Nechanitzky D, Li WY, Ramachandran P, Crome SQ, Becher B, Cybulsky MI, Billia F, Keshavjee S, Mital S, Robbins CS, Mak TW, Epelman S. Three tissue resident macrophage subsets coexist across organs with conserved origins and life cycles. Sci Immunol 2022; 7:eabf7777. [PMID: 34995099 DOI: 10.1126/sciimmunol.abf7777] [Citation(s) in RCA: 281] [Impact Index Per Article: 93.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Sarah A Dick
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada
| | - Anthony Wong
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Homaira Hamidzada
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Sara Nejat
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada
| | - Robert Nechanitzky
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
| | - Shabana Vohra
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada.,Peter Munk Cardiac Centre, UHN, Toronto, ON, Canada
| | | | - Rysa Zaman
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Crystal Kantores
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada
| | - Laura Aronoff
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Abdul Momen
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada
| | - Duygu Nechanitzky
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
| | - Wanda Y Li
- Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada
| | | | - Sarah Q Crome
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zürich, Zürich 8057, Switzerland
| | - Myron I Cybulsky
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Peter Munk Cardiac Centre, UHN, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Filio Billia
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada.,Peter Munk Cardiac Centre, UHN, Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Depatment of Pathology, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Shaf Keshavjee
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Toronto Lung Transplant Program, UHN Department of Surgery, University of Toronto, Toronto, ON, Canada
| | - Seema Mital
- Division of Cardiology, Department of Pediatrics, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| | - Clint S Robbins
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Peter Munk Cardiac Centre, UHN, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Tak W Mak
- Department of Immunology, University of Toronto, Toronto, ON, Canada.,Princess Margaret Cancer Centre, University Health Network (UHN), Toronto, ON, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,Depatment of Pathology, University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Slava Epelman
- Toronto General Hospital Research Institute, University Health Network (UHN), Toronto, ON, Canada.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, Toronto, ON, Canada.,Department of Immunology, University of Toronto, Toronto, ON, Canada.,Peter Munk Cardiac Centre, UHN, Toronto, ON, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
44
|
Eddins DJ, Kosters A, Waters J, Sosa J, Phillips M, Yadava K, Herzenberg LA, Kuipers HF, Ghosn EEB. Hematopoietic Stem Cell Requirement for Macrophage Regeneration Is Tissue Specific. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2021; 207:3028-3037. [PMID: 34810224 DOI: 10.4049/jimmunol.2100344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/19/2021] [Indexed: 12/24/2022]
Abstract
Tissue-resident macrophages (TRMΦ) are important immune sentinels responsible for maintaining tissue and immune homeostasis within their specific niche. Recently, the origins of TRMΦ have undergone intense scrutiny, in which now most TRMΦ are thought to originate early during embryonic development independent of hematopoietic stem cells (HSCs). We previously characterized two distinct subsets of mouse peritoneal cavity macrophages (MΦ) (large and small peritoneal MΦ) whose origins and relationship to both fetal and adult long-term (LT) HSCs have not been fully investigated. In this study, we employ highly purified LT-HSC transplantation and in vivo lineage tracing to show a dual ontogeny for large and small peritoneal MΦ, in which the initial wave of peritoneal MΦ is seeded from yolk sac-derived precursors, which later require LT-HSCs for regeneration. In contrast, transplanted fetal and adult LT-HSCs are not able to regenerate brain-resident microglia. Thus, we demonstrate that LT-HSCs retain the potential to develop into TRMΦ, but their requirement is tissue specific in the peritoneum and brain.
Collapse
Affiliation(s)
- Devon J Eddins
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA.,Division of Rheumatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.,Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| | - Astrid Kosters
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA
| | - Jeffrey Waters
- Department of Genetics, Stanford University, Stanford, CA; and
| | - Jasmine Sosa
- Department of Genetics, Stanford University, Stanford, CA; and
| | - Megan Phillips
- Department of Genetics, Stanford University, Stanford, CA; and
| | - Koshika Yadava
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | | | - Hedwich F Kuipers
- Division of Infectious Diseases and Geographic Medicine, Department of Medicine, Stanford University School of Medicine, Stanford, CA
| | - Eliver Eid Bou Ghosn
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University School of Medicine, Atlanta, GA; .,Division of Rheumatology, Department of Pediatrics, Emory University School of Medicine, Atlanta, GA.,Emory Vaccine Center, Yerkes National Primate Research Center, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
45
|
Rodrigo MJ, Subías M, Montolío A, Méndez-Martínez S, Martínez-Rincón T, Arias L, García-Herranz D, Bravo-Osuna I, Garcia-Feijoo J, Pablo L, Cegoñino J, Herrero-Vanrell R, Carretero A, Ruberte J, Garcia-Martin E, Pérez del Palomar A. Analysis of Parainflammation in Chronic Glaucoma Using Vitreous-OCT Imaging. Biomedicines 2021; 9:biomedicines9121792. [PMID: 34944608 PMCID: PMC8698891 DOI: 10.3390/biomedicines9121792] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/22/2021] [Accepted: 11/25/2021] [Indexed: 11/25/2022] Open
Abstract
Glaucoma causes blindness due to the progressive death of retinal ganglion cells. The immune response chronically and subclinically mediates a homeostatic role. In current clinical practice, it is impossible to analyse neuroinflammation non-invasively. However, analysis of vitreous images using optical coherence tomography detects the immune response as hyperreflective opacities. This study monitors vitreous parainflammation in two animal models of glaucoma, comparing both healthy controls and sexes over six months. Computational analysis characterizes in vivo the hyperreflective opacities, identified histologically as hyalocyte-like Iba-1+ (microglial marker) cells. Glaucomatous eyes showed greater intensity and number of vitreous opacities as well as dynamic fluctuations in the percentage of activated cells (50–250 microns2) vs. non-activated cells (10–50 microns2), isolated cells (10 microns2) and complexes (>250 microns2). Smaller opacities (isolated cells) showed the highest mean intensity (intracellular machinery), were the most rounded at earlier stages (recruitment) and showed the greatest change in orientation (motility). Study of vitreous parainflammation could be a biomarker of glaucoma onset and progression.
Collapse
Affiliation(s)
- María Jesús Rodrigo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
- Correspondence: ; Tel.: +34-976765558; Fax: +34-976566234
| | - Manuel Subías
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Alberto Montolío
- Biomaterials Group, Aragon Engineering Research Institute (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (A.M.); (J.C.); (A.P.d.P.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Silvia Méndez-Martínez
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Teresa Martínez-Rincón
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - Lorena Arias
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
| | - David García-Herranz
- Innovation, Therapy and Pharmaceutical Development in Ophthalmology (InnOftal) Research Group, UCM 920415, Department of Pharmaceutics and Food Technology, Faculty of Pharmacy, Complutense University of Madrid (UCM), 28040 Madrid, Spain;
- Health Research Institute of the San Carlos Clinical Hospital (IdISSC), 28040 Madrid, Spain
- University Institute of Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Irene Bravo-Osuna
- University Institute of Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Julian Garcia-Feijoo
- Department of Ophthalmology, San Carlos Clinical Hospital, UCM, 28040 Madrid, Spain;
| | - Luis Pablo
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
| | - José Cegoñino
- Biomaterials Group, Aragon Engineering Research Institute (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (A.M.); (J.C.); (A.P.d.P.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| | - Rocio Herrero-Vanrell
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
- University Institute of Industrial Pharmacy (IUFI), School of Pharmacy, Complutense University of Madrid, 28040 Madrid, Spain;
| | - Ana Carretero
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.C.); (J.R.)
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Jesus Ruberte
- Centre for Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain; (A.C.); (J.R.)
- CIBER for Diabetes and Associated Metabolic Diseases (CIBERDEM), 28029 Madrid, Spain
- Department of Animal Health and Anatomy, School of Veterinary Medicine, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Elena Garcia-Martin
- Department of Ophthalmology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (M.S.); (S.M.-M.); (T.M.-R.); (L.A.); (L.P.); (E.G.-M.)
- Miguel Servet Ophthalmology Research Group (GIMSO), Aragon Health Research Institute (IIS Aragon), 50009 Zaragoza, Spain
- National Ocular Pathology Network (OFTARED), Carlos III Health Institute, 28040 Madrid, Spain;
| | - Amaya Pérez del Palomar
- Biomaterials Group, Aragon Engineering Research Institute (I3A), University of Zaragoza, 50018 Zaragoza, Spain; (A.M.); (J.C.); (A.P.d.P.)
- Department of Mechanical Engineering, University of Zaragoza, 50018 Zaragoza, Spain
| |
Collapse
|
46
|
Yang Q, Zhang H, Wei T, Lin A, Sun Y, Luo P, Zhang J. Single-Cell RNA Sequencing Reveals the Heterogeneity of Tumor-Associated Macrophage in Non-Small Cell Lung Cancer and Differences Between Sexes. Front Immunol 2021; 12:756722. [PMID: 34804043 PMCID: PMC8602907 DOI: 10.3389/fimmu.2021.756722] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 10/21/2021] [Indexed: 12/25/2022] Open
Abstract
Non-Small Cell Lung Cancer (NSCLC) is a disease with high morbidity and mortality, which has sex-related differences in prognosis and immunotherapy efficacy. However, the difference in the mechanisms remains unclear. Macrophages, characterized by high plasticity and heterogeneity, act as one of the key cells that exert anti-tumor effects in the tumor microenvironment (TME) and play a complicated role in the process of tumor progression. To elucidate the subtype composition and functional heterogeneity of tumor-associated macrophages (TAMs) in NSCLC and further compare the sex-mediated differences, we conducted a single-cell level analysis in early-stage smoking NSCLC patients, combined with ssGSEA analysis, pseudotime ordering, and SCENIC analysis. We found two universally presented immune-suppressive TAMs with different functional and metabolic characteristics in the TME of NSCLC. Specifically, CCL18+ macrophages exerted immune-suppressive effects by inhibiting the production of inflammatory factors and manifested high levels of fatty acid oxidative phosphorylation metabolism. Conversely, the main metabolism pathway for SPP1+ macrophage was glycolysis which contributed to tumor metastasis by promoting angiogenesis and matrix remodeling. In terms of the differentially expressed genes, the complement gene C1QC and the matrix remodeling relevant genes FN1 and SPP1 were differentially expressed in the TAMs between sexes, of which the male upregulated SPP1 showed the potential as an ideal target for adjuvant immunotherapy and improving the efficacy of immunotherapy. According to the early-stage TCGA-NSCLC cohort, high expression of the above three genes in immune cells were associated with poor prognosis and acted as independent prognostic factors. Moreover, through verification at the transcription factor, transcriptome, and protein levels, we found that TAMs from women showed stronger immunogenicity with higher interferon-producing and antigen-presenting ability, while men-derived TAMs upregulated the PPARs and matrix remodeling related pathways, thus were more inclined to be immunosuppressive. Deconstruction of the TAMs at the single-cell level deepens our understanding of the mechanism for tumor occurrence and progress, which could be helpful to achieve the precise sex-specific tumor treatment sooner.
Collapse
Affiliation(s)
- Qi Yang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Hongman Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Wei
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yueqin Sun
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
47
|
García-Peñarrubia P, Ruiz-Alcaraz AJ, Ruiz-Ballester M, Ramírez-Pávez TN, Martínez-Esparza M. Recent insights into the characteristics and role of peritoneal macrophages from ascites of cirrhotic patients. World J Gastroenterol 2021; 27:7014-7024. [PMID: 34887625 PMCID: PMC8613641 DOI: 10.3748/wjg.v27.i41.7014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/02/2021] [Accepted: 10/11/2021] [Indexed: 02/06/2023] Open
Abstract
Macrophages are a diverse myeloid cell population involved in innate and adaptive immune responses, embryonic development, wound repair, and regulation of tissue homeostasis. These cells link the innate and adaptive immunities and are crucial in the development and sustainment of various inflammatory diseases. Macrophages are tissue-resident cells in steady-state conditions; however, they are also recruited from blood monocytes after local pathogen invasion or tissue injury. Peritoneal macrophages vary based on their cell complexity, phenotype, and functional capabilities. These cells regulate inflammation and control bacterial infections in the ascites of decompensated cirrhotic patients. Our recent work reported several phenotypic and functional characteristics of these cells under both healthy and pathological conditions. A direct association between cell size, CD14/CD16 expression, intracellular level of GATA-6, and expression of CD206 and HLA-DR activation/maturation markers, indicate that the large peritoneal macrophage CD14highCD16high subset constitutes the mature phenotype of human resident peritoneal macrophages during homeostasis. Moreover, elevated expression of CD14/CD16 is related to the phagocytic capacity. The novel large CD14highCD16high peritoneal subpopulation is increased in the ascites of cirrhotic patients and is highly sensitive to lipopolysaccharide (LPS)-induced activation, thereby exhibiting features of inflammatory priming. Thus, phosphorylation of ERK1/2, PKB/Akt, and c-Jun is remarkably increased in response to LPS in vitro, whereas that of p38 MAPK is reduced compared with the monocyte-derived macrophages from the blood of healthy controls. Furthermore, in vitro activated monocyte-derived macrophages from ascites of cirrhotic patients secreted significantly higher levels of IL-6, IL-10, and TNF-α and lower amounts of IL-1β and IL-12 than the corresponding cells from healthy donor’s blood. Based on these results, other authors have recently reported that the surface expression level of CD206 can be used to identify mature, resident, inflammatory peritoneal macrophages in patients with cirrhosis. Soluble CD206 is released from activated large peritoneal macrophages, and increased concentrations in patients with cirrhosis and spontaneous bacterial peritonitis (SBP) indicate reduced odds of survival for 90 d. Hence, the level of soluble CD206 in ascites might be used to identify patients with SBP at risk of death. In conclusion, peritoneal macrophages present in ascites of cirrhotic patients display multiple phenotypic modifications characterized by reduced ratio of cells expressing several membrane markers, together with an increase in the ratios of complex and intermediate subpopulations and a decrease in the classic-like subset. These modifications may lead to the identification of novel pharmaceutical targets for prevention and treatment of hepatic damage.
Collapse
Affiliation(s)
- Pilar García-Peñarrubia
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia 30100, Spain
| | - Antonio José Ruiz-Alcaraz
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia 30100, Spain
| | - Miriam Ruiz-Ballester
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia 30100, Spain
| | - Tamara Nadira Ramírez-Pávez
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia 30100, Spain
| | - María Martínez-Esparza
- Department of Biochemistry and Molecular Biology B and Immunology, School of Medicine, University of Murcia, Murcia 30100, Spain
| |
Collapse
|
48
|
Chuah JJM, Hertzog PJ, Campbell NK. Immunoregulation by type I interferons in the peritoneal cavity. J Leukoc Biol 2021; 111:337-353. [PMID: 34612523 DOI: 10.1002/jlb.3mr0821-147r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The peritoneal cavity, a fluid-containing potential space surrounding the abdominal and pelvic organs, is home to a rich network of immune cells that maintain tissue homeostasis and provide protection against infection. However, under pathological conditions such as peritonitis, endometriosis, and peritoneal carcinomatosis, the peritoneal immune system can become dysregulated, resulting in nonresolving inflammation and disease progression. An enhanced understanding of the factors that regulate peritoneal immune cells under both homeostatic conditions and in disease contexts is therefore required to identify new treatment strategies for these often life-limiting peritoneal pathologies. Type I interferons (T1IFNs) are a family of cytokines with broad immunoregulatory functions, which provide defense against viruses, bacteria, and cancer. There have been numerous reports of immunoregulation by T1IFNs within the peritoneal cavity, which can contribute to both the resolution or propagation of peritoneal disease states, depending on the specifics of the disease setting and local environment. In this review, we provide an overview of the major immune cell populations that reside in the peritoneal cavity (or infiltrate it under inflammatory conditions) and highlight their contribution to the initiation, progression, or resolution of peritoneal diseases. Additionally, we will discuss the role of T1IFNs in the regulation of peritoneal immune cells, and summarize the results of laboratory studies and clinical trials which have investigated T1IFNs in peritonitis/sepsis, endometriosis, and peritoneal carcinomatosis.
Collapse
Affiliation(s)
- Jasmine J M Chuah
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia
| | - Paul J Hertzog
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| | - Nicole K Campbell
- Centre for Innate Immunity and Infectious Diseases, Hudson Institute of Medical Research, Clayton, Victoria, Australia.,Department of Molecular and Translational Sciences, Monash University, Clayton, Victoria, Australia
| |
Collapse
|
49
|
Babagana M, Oh KS, Chakraborty S, Pacholewska A, Aqdas M, Sung MH. Hedgehog dysregulation contributes to tissue-specific inflammaging of resident macrophages. Aging (Albany NY) 2021; 13:19207-19229. [PMID: 34390567 PMCID: PMC8386529 DOI: 10.18632/aging.203422] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/03/2021] [Indexed: 12/31/2022]
Abstract
Age-associated low-grade sterile inflammation, commonly referred to as inflammaging, is a recognized hallmark of aging, which contributes to many age-related diseases. While tissue-resident macrophages are innate immune cells that secrete many types of inflammatory cytokines in response to various stimuli, it is not clear whether they have a role in driving inflammaging. Here we characterized the transcriptional changes associated with physiological aging in mouse resident macrophage populations across different tissues and sexes. Although the age-related transcriptomic signatures of resident macrophages were strikingly tissue-specific, the differentially expressed genes were collectively enriched for those with important innate immune functions such as antigen presentation, cytokine production, and cell adhesion. The brain-resident microglia had the most wide-ranging age-related alterations, with compromised expression of tissue-specific genes and relatively exaggerated responses to endotoxin stimulation. Despite the tissue-specific patterns of aging transcriptomes, components of the hedgehog (Hh) signaling pathway were decreased in aged macrophages across multiple tissues. In vivo suppression of Hh signaling in young animals increased the expression of pro-inflammatory cytokines, while in vitro activation of Hh signaling in old macrophages, in turn, suppressed the expression of these inflammatory cytokines. This suggests that hedgehog signaling could be a potential intervention axis for mitigating age-associated inflammation and related diseases. Overall, our data represent a resourceful catalog of tissue-specific and sex-specific transcriptomic changes in resident macrophages of peritoneum, liver, and brain, during physiological aging.
Collapse
Affiliation(s)
- Mahamat Babagana
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Kyu-Seon Oh
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Sayantan Chakraborty
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Alicja Pacholewska
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.,Present Address: Institute for Translational Epigenetics, University Hospital Cologne, Cologne, Germany
| | - Mohammad Aqdas
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Myong-Hee Sung
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| |
Collapse
|
50
|
Li J, Kim SY, Lainez NM, Coss D, Nair MG. Macrophage-Regulatory T Cell Interactions Promote Type 2 Immune Homeostasis Through Resistin-Like Molecule α. Front Immunol 2021; 12:710406. [PMID: 34349768 PMCID: PMC8327085 DOI: 10.3389/fimmu.2021.710406] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Accepted: 06/29/2021] [Indexed: 11/20/2022] Open
Abstract
RELMα is a small, secreted protein expressed by type 2 cytokine-activated “M2” macrophages in helminth infection and allergy. At steady state and in response to type 2 cytokines, RELMα is highly expressed by peritoneal macrophages, however, its function in the serosal cavity is unclear. In this study, we generated RELMα TdTomato (Td) reporter/knockout (RαTd) mice and investigated RELMα function in IL-4 complex (IL-4c)-induced peritoneal inflammation. We first validated the RELMαTd/Td transgenic mice and showed that IL-4c injection led to the significant expansion of large peritoneal macrophages that expressed Td but not RELMα protein, while RELMα+/+ mice expressed RELMα and not Td. Functionally, RELMαTd/Td mice had increased IL-4 induced peritoneal macrophage responses and splenomegaly compared to RELMα+/+ mice. Gene expression analysis indicated that RELMαTd/Td peritoneal macrophages were more proliferative and activated than RELMα+/+ macrophages, with increased genes associated with T cell responses, growth factor and cytokine signaling, but decreased genes associated with differentiation and maintenance of myeloid cells. We tested the hypothesis that RαTd/Td macrophages drive aberrant T cell activation using peritoneal macrophage and T cell co-culture. There were no differences in CD4+ T cell effector responses when co-cultured with RELMα+/+ or RELMαTd/Td macrophages, however, RELMαTd/Td macrophages were impaired in their ability to sustain proliferation of FoxP3+ regulatory T cells (Treg). Supportive of the in vitro results, immunofluorescent staining of the spleens revealed significantly decreased FoxP3+ cells in the RELMαTd/Td spleens compared to RELMα+/+ spleens. Taken together, these studies identify a new RELMα regulatory pathway whereby RELMα-expressing macrophages directly sustain Treg proliferation to limit type 2 inflammatory responses.
Collapse
Affiliation(s)
- Jiang Li
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Sang Yong Kim
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Nancy M Lainez
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| | - Meera G Nair
- Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, CA, United States
| |
Collapse
|