1
|
Li D, Yu Q, Shao F, Wang J, Wu R, Guo Y, Yoo KH, Wang Z, Wei W, Feng D. Decoding the crossroads of aging and cancer through single-cell analysis: Implications for precision oncology. Int J Cancer 2025. [PMID: 40268523 DOI: 10.1002/ijc.35456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/25/2025]
Abstract
Single-cell analysis is a transformative approach to understanding cellular heterogeneity in aging and cancer, interconnected processes driven by mechanisms like senescence and immune modulation. This review explores how aging influences cancer initiation, progression, and treatment resistance within the tumor microenvironment (TME). By examining recent studies using single-cell technologies, we reveal the nuanced roles of aging in tumorigenesis, immune interactions, and therapeutic outcomes. Aging is closely tied to cancer progression, with senescent cells demonstrating heightened proliferative, invasive, and metastatic capabilities. Emerging senolytic therapies targeting aging-related pathways hold promise for enhancing treatment efficacy. Advanced tools such as spatial transcriptomics, molecular probes, and artificial intelligence further refine our understanding of aging-related heterogeneity in the TME. By integrating single-cell analysis with these technologies, future research can clarify the intricate interactions between aging and cancer, advancing precision oncology and improving outcomes for aging cancer patients.
Collapse
Affiliation(s)
- Dengxiong Li
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Qingxin Yu
- Department of Pathology, Ningbo Clinical Pathology Diagnosis Center, Ningbo City, Zhejiang Province, China
- Department of Pathology, Ningbo Medical Centre Lihuili Hospital, Ningbo City, Zhejiang Province, China
| | - Fanglin Shao
- Department of Rehabilitation, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jie Wang
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Ruicheng Wu
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Yiqing Guo
- Department of Public Research Platform, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Linhai, China
| | - Koo Han Yoo
- Department of Urology, Kyung Hee University, Seoul, South Korea
| | - Zhipeng Wang
- Department of Urology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| | - Wuran Wei
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
| | - Dechao Feng
- Department of Urology, Institute of Urology, West China Hospital, Sichuan University, Chengdu, China
- Division of Surgery & Interventional Science, University College London, London, UK
| |
Collapse
|
2
|
Chen M, Su Z, Xue J. Targeting T-cell Aging to Remodel the Aging Immune System and Revitalize Geriatric Immunotherapy. Aging Dis 2025:AD.2025.0061. [PMID: 40153576 DOI: 10.14336/ad.2025.0061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2025] [Accepted: 03/12/2025] [Indexed: 03/30/2025] Open
Abstract
The aging immune system presents profound challenges, notably through the decline of T cell function, which is critical for effective immune responses. As age-related changes lead to diminished T cell diversity and heighten immunosuppressive environments, older individuals face increased susceptibility to infections, autoimmune diseases, and reduced efficacy of immunotherapies. This review investigates the intricate mechanisms by which T cell aging drives immunosenescence, including immune suppression, immune evasion, reduced antigen reactivity, and the overexpression of immune checkpoint molecules. By delving into innovative therapeutic strategies aimed at rejuvenating T cell populations and modifying the immunological landscape, we highlight the potential for enhancing immune resilience in the elderly. Ultimately, our goal is to outline actionable pathways for restoring immune function, thereby improving health outcomes for aging individuals facing immunological decline.
Collapse
Affiliation(s)
- Mi Chen
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Department of Oncology, The Third Hospital of Mianyang, Sichuan Mental Health Center, Mianyang, Sichuan, China
| | - Zhou Su
- Department of Oncology, Mianyang 404 Hospital, Mianyang, Sichuan, China
| | - Jianxin Xue
- Division of Thoracic Tumor Multimodality Treatment, Cancer Center & State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
- Laboratory of Clinical Cell Therapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
3
|
Liapodimitri A, Tetens AR, Craig-Schwartz J, Lunsford K, Skalitzky KO, Koldobskiy MA. Progress Toward Epigenetic Targeted Therapies for Childhood Cancer. Cancers (Basel) 2024; 16:4149. [PMID: 39766049 PMCID: PMC11674401 DOI: 10.3390/cancers16244149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Among the most significant discoveries from cancer genomics efforts has been the critical role of epigenetic dysregulation in cancer development and progression. Studies across diverse cancer types have revealed frequent mutations in genes encoding epigenetic regulators, alterations in DNA methylation and histone modifications, and a dramatic reorganization of chromatin structure. Epigenetic changes are especially relevant to pediatric cancers, which are often characterized by a low rate of genetic mutations. The inherent reversibility of epigenetic lesions has led to an intense interest in the development of epigenetic targeted therapies. Additionally, the recent appreciation of the interplay between the epigenome and immune regulation has sparked interest in combination therapies and synergistic immunotherapy approaches. Further, the recent appreciation of epigenetic variability as a driving force in cancer evolution has suggested new roles for epigenetic therapies in limiting plasticity and resistance. Here, we review recent progress and emerging directions in the development of epigenetic targeted therapeutics and their promise across the landscape of childhood cancers.
Collapse
Affiliation(s)
- Athanasia Liapodimitri
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Ashley R. Tetens
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Jordyn Craig-Schwartz
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kayleigh Lunsford
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kegan O. Skalitzky
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Michael A. Koldobskiy
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
4
|
Ning J, Wang Y, Tao Z. The complex role of immune cells in antigen presentation and regulation of T-cell responses in hepatocellular carcinoma: progress, challenges, and future directions. Front Immunol 2024; 15:1483834. [PMID: 39502703 PMCID: PMC11534672 DOI: 10.3389/fimmu.2024.1483834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 09/30/2024] [Indexed: 11/08/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent form of liver cancer that poses significant challenges regarding morbidity and mortality rates. In the context of HCC, immune cells play a vital role, especially concerning the presentation of antigens. This review explores the intricate interactions among immune cells within HCC, focusing on their functions in antigen presentation and the modulation of T-cell responses. We begin by summarizing the strategies that HCC uses to escape immune recognition, emphasizing the delicate equilibrium between immune surveillance and evasion. Next, we investigate the specific functions of various types of immune cells, including dendritic cells, natural killer (NK) cells, and CD8+ T cells, in the process of antigen presentation. We also examine the impact of immune checkpoints, such as cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) and the pathways involving programmed cell death protein 1 (PD-1) and programmed death ligand 1 (PD-L1), on antigen presentation, while taking into account the clinical significance of checkpoint inhibitors. The review further emphasizes the importance of immune-based therapies, including cancer vaccines and CAR-T cell therapy, in improving antigen presentation. In conclusion, we encapsulate the latest advancements in research, propose future avenues for exploration, and stress the importance of innovative technologies and customized treatment strategies. By thoroughly analyzing the interactions of immune cells throughout the antigen presentation process in HCC, this review provides an up-to-date perspective on the field, setting the stage for new therapeutic approaches.
Collapse
Affiliation(s)
- Jianbo Ning
- The Fourth Clinical College, China Medical University, Shenyang, China
| | - Yutao Wang
- Department of Urology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zijia Tao
- Department of Interventional Radiology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
5
|
Kang TG, Lan X, Mi T, Chen H, Alli S, Lim SE, Bhatara S, Vasandan AB, Ward G, Bentivegna S, Jang J, Spatz ML, Han JH, Schlotmann BC, Jespersen JS, Derenzo C, Vogel P, Yu J, Baylin S, Jones P, O’Connell C, Grønbæk K, Youngblood B, Zebley CC. Epigenetic regulators of clonal hematopoiesis control CD8 T cell stemness during immunotherapy. Science 2024; 386:eadl4492. [PMID: 39388542 PMCID: PMC11697317 DOI: 10.1126/science.adl4492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 05/09/2024] [Accepted: 08/15/2024] [Indexed: 10/12/2024]
Abstract
Epigenetic reinforcement of T cell exhaustion is known to be a major barrier limiting T cell responses during immunotherapy. However, the core epigenetic regulators restricting antitumor immunity during prolonged antigen exposure are not clear. We investigated three commonly mutated epigenetic regulators that promote clonal hematopoiesis to determine whether they affect T cell stemness and response to checkpoint blockade immunotherapy. CD8 T cells lacking Dnmt3a, Tet2, or Asxl1 preserved a progenitor-exhausted (Tpex) population for more than 1 year during chronic antigen exposure without undergoing malignant transformation. Asxl1 controlled the self-renewal capacity of T cells and reduced CD8 T cell differentiation through H2AK119 ubiquitination and epigenetic modification of the polycomb group-repressive deubiquitinase pathway. Asxl1-deficient T cells synergized with anti-PD-L1 immunotherapy to improve tumor control in experimental models and conferred a survival advantage to mutated T cells from treated patients.
Collapse
Affiliation(s)
- Tae Gun Kang
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Xin Lan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38105
| | - Tian Mi
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Hongfeng Chen
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Shanta Alli
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Song-Eun Lim
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN 38105
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Sheetal Bhatara
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Anoop Babu Vasandan
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Grace Ward
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Sofia Bentivegna
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Josh Jang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503
| | | | | | | | - Jakob Schmidt Jespersen
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
| | - Christopher Derenzo
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Peter Vogel
- Department of Pathology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Jiyang Yu
- Department of Computational Biology, St. Jude Children’s Research Hospital, Memphis, TN38105
| | - Stephen Baylin
- Deparment of Oncology, The Sidney Kimmel Comprehensive Cancer Institute at Johns Hopkins, Baltimore, Maryland, 21231
| | - Peter Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503
| | - Casey O’Connell
- Jane Anne Nohl Division of Hematology, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Kirsten Grønbæk
- Department of Hematology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Biotech Research and Innovation Center (BRIC), University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ben Youngblood
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105
| | - Caitlin C. Zebley
- Department of Immunology, St. Jude Children’s Research Hospital, Memphis, TN 38105
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN 38105
| |
Collapse
|
6
|
Li Z, Han B, Qi M, Li Y, Duan Y, Yao Y. Modulating macrophage-mediated programmed cell removal: An attractive strategy for cancer therapy. Biochim Biophys Acta Rev Cancer 2024; 1879:189172. [PMID: 39151808 DOI: 10.1016/j.bbcan.2024.189172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 08/11/2024] [Accepted: 08/12/2024] [Indexed: 08/19/2024]
Abstract
Macrophage-mediated programmed cell removal (PrCR) is crucial for the identification and elimination of needless cells that maintain tissue homeostasis. The efficacy of PrCR depends on the balance between pro-phagocytic "eat me" signals and anti-phagocytic "don't eat me" signals. Recently, a growing number of studies have shown that tumourigenesis and progression are closely associated with PrCR. In the tumour microenvironment, PrCR activated by the "eat me" signal is counterbalanced by the "don't eat me" signal of CD47/SIRPα, resulting in tumour immune escape. Therefore, targeting exciting "eat me" signalling while simultaneously suppressing "don't eat me" signalling and eventually inducing macrophages to produce effective PrCR will be a very attractive antitumour strategy. Here, we comprehensively review the functions of PrCR-activating signal molecules (CRT, PS, Annexin1, SLAMF7) and PrCR-inhibiting signal molecules (CD47/SIRPα, MHC-I/LILRB1, CD24/Siglec-10, SLAMF3, SLAMF4, PD-1/PD-L1, CD31, GD2, VCAM1), the interactions between these molecules, and Warburg effect. In addition, we highlight the molecular regulatory mechanisms that affect immune system function by exciting or suppressing PrCR. Finally, we review the research advances in tumour therapy by activating PrCR and discuss the challenges and potential solutions to smooth the way for tumour treatment strategies that target PrCR.
Collapse
Affiliation(s)
- Zhenzhen Li
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Bingqian Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Menghui Qi
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yongtao Duan
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| | - Yongfang Yao
- Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| |
Collapse
|
7
|
Mahasa KJ, Ouifki R, de Pillis L, Eladdadi A. A Role of Effector CD 8 + T Cells Against Circulating Tumor Cells Cloaked with Platelets: Insights from a Mathematical Model. Bull Math Biol 2024; 86:89. [PMID: 38884815 DOI: 10.1007/s11538-024-01323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 05/31/2024] [Indexed: 06/18/2024]
Abstract
Cancer metastasis accounts for a majority of cancer-related deaths worldwide. Metastasis occurs when the primary tumor sheds cells into the blood and lymphatic circulation, thereby becoming circulating tumor cells (CTCs) that transverse through the circulatory system, extravasate the circulation and establish a secondary distant tumor. Accumulating evidence suggests that circulating effector CD 8 + T cells are able to recognize and attack arrested or extravasating CTCs, but this important antitumoral effect remains largely undefined. Recent studies highlighted the supporting role of activated platelets in CTCs's extravasation from the bloodstream, contributing to metastatic progression. In this work, a simple mathematical model describes how the primary tumor, CTCs, activated platelets and effector CD 8 + T cells participate in metastasis. The stability analysis reveals that for early dissemination of CTCs, effector CD 8 + T cells can present or keep secondary metastatic tumor burden at low equilibrium state. In contrast, for late dissemination of CTCs, effector CD 8 + T cells are unlikely to inhibit secondary tumor growth. Moreover, global sensitivity analysis demonstrates that the rate of the primary tumor growth, intravascular CTC proliferation, as well as the CD 8 + T cell proliferation, strongly affects the number of the secondary tumor cells. Additionally, model simulations indicate that an increase in CTC proliferation greatly contributes to tumor metastasis. Our simulations further illustrate that the higher the number of activated platelets on CTCs, the higher the probability of secondary tumor establishment. Intriguingly, from a mathematical immunology perspective, our simulations indicate that if the rate of effector CD 8 + T cell proliferation is high, then the secondary tumor formation can be considerably delayed, providing a window for adjuvant tumor control strategies. Collectively, our results suggest that the earlier the effector CD 8 + T cell response is enhanced the higher is the probability of preventing or delaying secondary tumor metastases.
Collapse
Affiliation(s)
- Khaphetsi Joseph Mahasa
- Department of Mathematics and Computer Science, National University of Lesotho, Roma, Maseru, Lesotho.
| | - Rachid Ouifki
- Department of Mathematics and Applied Mathematics, Mafikeng Campus, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | | | - Amina Eladdadi
- Division of Mathematical Sciences, The National Science Foundation, Alexandria, VA, USA
| |
Collapse
|
8
|
Lan X, Mi T, Alli S, Guy C, Djekidel MN, Liu X, Boi S, Chowdhury P, He M, Zehn D, Feng Y, Youngblood B. Antitumor progenitor exhausted CD8 + T cells are sustained by TCR engagement. Nat Immunol 2024; 25:1046-1058. [PMID: 38816618 DOI: 10.1038/s41590-024-01843-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 04/16/2024] [Indexed: 06/01/2024]
Abstract
The durability of an antitumor immune response is mediated in part by the persistence of progenitor exhausted CD8+ T cells (Tpex). Tpex serve as a resource for replenishing effector T cells and preserve their quantity through self-renewal. However, it is unknown how T cell receptor (TCR) engagement affects the self-renewal capacity of Tpex in settings of continued antigen exposure. Here we use a Lewis lung carcinoma model that elicits either optimal or attenuated TCR signaling in CD8+ T cells to show that formation of Tpex in tumor-draining lymph nodes and their intratumoral persistence is dependent on optimal TCR engagement. Notably, attenuated TCR stimulation accelerates the terminal differentiation of optimally primed Tpex. This TCR-reinforced Tpex development and self-renewal is coupled to proximal positioning to dendritic cells and epigenetic imprinting involving increased chromatin accessibility at Egr2 and Tcf1 target loci. Collectively, this study highlights the critical function of TCR engagement in sustaining Tpex during tumor progression.
Collapse
MESH Headings
- Animals
- CD8-Positive T-Lymphocytes/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, Antigen, T-Cell/immunology
- Mice
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/pathology
- Carcinoma, Lewis Lung/metabolism
- Mice, Inbred C57BL
- Hepatocyte Nuclear Factor 1-alpha/metabolism
- Cell Differentiation/immunology
- Dendritic Cells/immunology
- Signal Transduction/immunology
- Mice, Knockout
- Lymphocyte Activation/immunology
- Cell Self Renewal
- Mice, Transgenic
- Early Growth Response Protein 2
Collapse
Affiliation(s)
- Xin Lan
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
- College of Graduate Health Sciences, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Tian Mi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Shanta Alli
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cliff Guy
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | | | - Xueyan Liu
- Department of Mathematics, University of New Orleans, New Orleans, LA, USA
| | - Shannon Boi
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Partha Chowdhury
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Minghong He
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dietmar Zehn
- Division of Animal Physiology and Immunology, School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Yongqiang Feng
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Ben Youngblood
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN, USA.
| |
Collapse
|
9
|
Upadhye A, Meza Landeros KE, Ramírez-Suástegui C, Schmiedel BJ, Woo E, Chee SJ, Malicki D, Coufal NG, Gonda D, Levy ML, Greenbaum JA, Seumois G, Crawford J, Roberts WD, Schoenberger SP, Cheroutre H, Ottensmeier CH, Vijayanand P, Ganesan AP. Intra-tumoral T cells in pediatric brain tumors display clonal expansion and effector properties. NATURE CANCER 2024; 5:791-807. [PMID: 38228835 DOI: 10.1038/s43018-023-00706-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 12/11/2023] [Indexed: 01/18/2024]
Abstract
Brain tumors in children are a devastating disease in a high proportion of patients. Owing to inconsistent results in clinical trials in unstratified patients, the role of immunotherapy remains unclear. We performed an in-depth survey of the single-cell transcriptomes and clonal relationship of intra-tumoral T cells from children with brain tumors. Our results demonstrate that a large fraction of T cells in the tumor tissue are clonally expanded with the potential to recognize tumor antigens. Such clonally expanded T cells display enrichment of transcripts linked to effector function, tissue residency, immune checkpoints and signatures of neoantigen-specific T cells and immunotherapy response. We identify neoantigens in pediatric brain tumors and show that neoantigen-specific T cell gene signatures are linked to better survival outcomes. Notably, among the patients in our cohort, we observe substantial heterogeneity in the degree of clonal expansion and magnitude of T cell response. Our findings suggest that characterization of intra-tumoral T cell responses may enable selection of patients for immunotherapy, an approach that requires prospective validation in clinical trials.
Collapse
Affiliation(s)
- Aditi Upadhye
- La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Kevin E Meza Landeros
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Center for Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, Mexico
| | | | | | - Edwin Woo
- Southampton University Hospitals NHS Trust, Southampton, UK
| | - Serena J Chee
- Department of Respiratory Medicine, Liverpool Heart and Chest Hospital NHS Foundation Trust, Liverpool, UK
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Denise Malicki
- Department of Pathology, University of California San Diego, La Jolla, CA, USA
- Rady Children's Hospital, San Diego, CA, USA
| | - Nicole G Coufal
- Rady Children's Hospital, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | - David Gonda
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA
| | - Michael L Levy
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurological Surgery, University of California San Diego, La Jolla, CA, USA
| | | | | | - John Crawford
- Rady Children's Hospital, San Diego, CA, USA
- Department of Neurosciences, University of California San Diego, La Jolla, CA, USA
- Department of Pediatrics, University of California Irvine, Irvine, CA, USA
- Children's Hospital Orange County, Irvine, CA, USA
| | - William D Roberts
- Rady Children's Hospital, San Diego, CA, USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA
| | | | | | - Christian H Ottensmeier
- La Jolla Institute for Immunology, La Jolla, CA, USA
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
- Clatterbridge Cancer Center NHS Foundation Trust, Liverpool, UK
| | - Pandurangan Vijayanand
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Department of Molecular and Clinical Cancer Medicine, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK.
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
| | - Anusha-Preethi Ganesan
- La Jolla Institute for Immunology, La Jolla, CA, USA.
- Rady Children's Hospital, San Diego, CA, USA.
- Department of Pediatrics, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
10
|
Shao C, Yan X, Pang S, Nian D, Ren L, Li H, Sun J. Bifunctional molecular probe targeting tumor PD-L1 enhances anti-tumor efficacy by promoting ferroptosis in lung cancer mouse model. Int Immunopharmacol 2024; 130:111781. [PMID: 38442580 DOI: 10.1016/j.intimp.2024.111781] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/07/2024]
Abstract
PURPOSE Immune checkpoint inhibitors (ICIs) targeting tumor-specific PD-1/PD-L1 significantly improve the overall survival rate of patients with advanced cancer by reactivating the immune system to attack cancer cells. To explore their tumor killing effect, we used the radionuclide iodine-131 (131I) to label the anti-PD-L1 antibody Atezolizumab (131I-PD-L1 mAb). METHOD We prepared the radioimmunoassay molecular probe 131I-PD-L1 mAb by the chloramine-T method and evaluated its affinity using Lewis lung cancer (LLC) cells. The uptake of 131I-PD-L1 mAb by transplanted tumors was examined through SPECT and its in vivo distribution. We then compared the in vitro and in vivo anti-tumor efficacy of groups treated with control, PD-L1 mAb, 131I-PD-L1 mAb, and 131I-PD-L1 mAb + PD-L1 mAb combined treatment. We performed H&E staining to examine the changes in tumor, as well as the damage in major tissues and organs caused by potential side effects. The anti-tumor mechanism of 131I-PD-L1 mAb was analyzed by Western blot, RT-qPCR and immunohistochemistry (IHC). RESULT 131I-PD-L1 mAb was highly stable and specific, and easily penetrated into tumor. 131I-PD-L1 mAb suppressed cancer cell proliferation in vitro, and inhibited tumor growth in vivo by inducing ferroptosis, thus prolonging the survival of experimental animals while demonstrating biological safety. CONCLUSION Therefore, our study suggested that 131I-PD-L1 mAb affected the expression of tumor-related factors through β-rays and thus promoted ferroptosis in tumor. Combined treatment showed better anti-tumor effect compared to single ICI treatment.
Collapse
Affiliation(s)
- Chenxu Shao
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Anhui Province, Bengbu 233000, PR China
| | - Xiaoping Yan
- Department of Radiology, The People's Hospital of Jiangyou, Jiangyou 621700, PR China
| | - Shangjie Pang
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Anhui Province, Bengbu 233000, PR China
| | - Di Nian
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Anhui Province, Bengbu 233000, PR China
| | - Li Ren
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Anhui Province, Bengbu 233000, PR China
| | - Hui Li
- Department of Nuclear Medicine, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, PR China
| | - Junjie Sun
- Department of Nuclear Medicine, School of Laboratory Medicine, Bengbu Medical University, Anhui Province, Bengbu 233000, PR China.
| |
Collapse
|
11
|
Zhao M, Yan CY, Wei YN, Zhao XH. Breaking the mold: Overcoming resistance to immune checkpoint inhibitors. Antiviral Res 2023; 219:105720. [PMID: 37748652 DOI: 10.1016/j.antiviral.2023.105720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/27/2023] [Accepted: 09/17/2023] [Indexed: 09/27/2023]
Abstract
Immune checkpoint blockade-based therapies are effective against a sorts of cancers. However, drug resistance is a problem that cannot be ignored. This review intends to elucidate the mechanisms underlying drug tolerance induced by PD-1/PD-L1 inhibitors, as well as to outline proposed mechanism-based combination therapies and small molecule drugs that target intrinsic immunity and immune checkpoints. According to the differences of patients and types of cancer, the optimization of individualized combination therapy will help to enhance PD-1/PD-L1-mediated immunoregulation, reduce chemotherapy resistance, and provide new ideas for chemotherapy-resistant cancer.
Collapse
Affiliation(s)
- Menglu Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Chun-Yan Yan
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Ya-Nan Wei
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China
| | - Xi-He Zhao
- Department of Clinical Oncology, Shengjing Hospital of China Medical University, Shenyang, 110022, PR China.
| |
Collapse
|
12
|
Could CAR-T-cell therapy offer hope to children with cancer? Nature 2022; 612:S50-S52. [PMID: 36536212 DOI: 10.1038/d41586-022-04344-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
13
|
Liu H, Lin J, Zhou W, Moses R, Dai Z, Kossenkov AV, Drapkin R, Bitler BG, Karakashev S, Zhang R. KDM5A Inhibits Antitumor Immune Responses Through Downregulation of the Antigen-Presentation Pathway in Ovarian Cancer. Cancer Immunol Res 2022; 10:1028-1038. [PMID: 35726891 PMCID: PMC9357105 DOI: 10.1158/2326-6066.cir-22-0088] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/31/2022] [Accepted: 05/26/2022] [Indexed: 02/05/2023]
Abstract
The extent to which effector CD8+ T cells infiltrate into tumors is one of the major predictors of clinical outcome for patients with epithelial ovarian cancer (EOC). Immune cell infiltration into EOC is a complex process that could be affected by the epigenetic makeup of the tumor. Here, we have demonstrated that a lysine 4 histone H3 (H3K4) demethylase, (lysine-specific demethylase 5A; KDM5A) impairs EOC infiltration by immune cells and inhibits antitumor immune responses. Mechanistically, we found that KDM5A silenced genes involved in the antigen processing and presentation pathway. KDM5A inhibition restored the expression of genes involved in the antigen-presentation pathway in vitro and promoted antitumor immune responses mediated by CD8+ T cells in vivo in a syngeneic EOC mouse model. A negative correlation between expression of KDM5A and genes involved in the antigen processing and presentation pathway such as HLA-A and HLA-B was observed in the majority of cancer types. In summary, our results establish KDM5A as a regulator of CD8+ T-cell infiltration of tumors and demonstrate that KDM5A inhibition may provide a novel therapeutic strategy to boost antitumor immune responses.
Collapse
Affiliation(s)
- Heng Liu
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Jianhuang Lin
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Wei Zhou
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Renyta Moses
- Cell and Molecular Biology Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Zhongping Dai
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Andrew V. Kossenkov
- Gene Expression and Regulation Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Benjamin G. Bitler
- Division of Reproductive Sciences, Department of Obstetrics and Gynecology, The University of Colorado, Aurora, CO 13001, USA
| | - Sergey Karakashev
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA,Corresponding authors: Rugang Zhang, Ph.D., 3601 Spruce Street, Philadelphia, PA 19104; Phone: 215-495-6840;.; Sergey Karakashev, Ph.D., 3601 Spruce Street, Philadelphia, PA 19104; Phone: 215-707-8901;
| | - Rugang Zhang
- Immunology, Microenvironment and Metastasis Program, The Wistar Institute, Philadelphia, PA 19104, USA,Corresponding authors: Rugang Zhang, Ph.D., 3601 Spruce Street, Philadelphia, PA 19104; Phone: 215-495-6840;.; Sergey Karakashev, Ph.D., 3601 Spruce Street, Philadelphia, PA 19104; Phone: 215-707-8901;
| |
Collapse
|