1
|
Cardoso A, Buck MD, Frederico B, Chakravarty P, Schulz O, Lim KHJ, Piot C, Pereira da Costa M, Giampazolias E, Gasparrini F, Rogers N, Reis e Sousa C. DNGR-1 regulates proliferation and migration of bone marrow dendritic cell progenitors. J Exp Med 2025; 222:e20241813. [PMID: 40358588 PMCID: PMC12071193 DOI: 10.1084/jem.20241813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 01/27/2025] [Accepted: 04/07/2025] [Indexed: 05/15/2025] Open
Abstract
Conventional dendritic cells (cDCs) are sentinel cells that play a crucial role in both innate and adaptive immune responses. cDCs originate from a progenitor (pre-cDC) in the bone marrow (BM) that travels via the blood to seed peripheral tissues before locally differentiating into functional cDC1 and cDC2 cells, as part of a process known as cDCpoiesis. How cDCpoiesis is regulated and whether this affects the output of cDCs is poorly understood. In this study, we show that DNGR-1, an innate immune receptor expressed by cDC progenitors and type 1 cDCs, can regulate cDCpoiesis in mice. In a competitive chimera setting, cDC progenitors lacking DNGR-1 exhibit increased proliferation and tissue migratory potential. Compared with their WT counterparts, DNGR-1-deficient cDC progenitor cells display superior colonization of peripheral tissues but an altered distribution. These findings suggest that cDCpoiesis can be regulated in part by precursor cell-intrinsic processes driven by signals from innate immune receptors such as DNGR-1 that may respond to alterations in the BM milieu.
Collapse
Affiliation(s)
- Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Michael D. Buck
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Bruno Frederico
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Probir Chakravarty
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Oliver Schulz
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | | - Cécile Piot
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | | | | | | - Neil Rogers
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | |
Collapse
|
2
|
Pingen M, Hughes CE, Medina-Ruiz L, Mathie H, Barrie JA, Hansell CA, Bartolini R, MacLeod MK, Graham GJ. Inflammatory chemokine receptors CCR1, CCR2, CCR3 and CCR5 are essential for an optimal T cell response to influenza. Mucosal Immunol 2025:S1933-0219(25)00052-2. [PMID: 40414601 DOI: 10.1016/j.mucimm.2025.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 05/09/2025] [Accepted: 05/14/2025] [Indexed: 05/27/2025]
Abstract
Inflammatory chemokine receptors CCR1/2/3/5 (iCCRs) play an important role in the recruitment of immune cells involved in innate immune functions and orchestrating the adaptive immune response. Here we utilise an influenza A virus (IAV) challenge to investigate the combinatorial roles of the iCCRs in the anti-IAV immune response. We did not observe any gross differences in infection-driven pathology in the absence of iCCRs. iCCR deletion resulted in decreased numbers of some antigen-presenting cell types in the lung (B cells, DC1s, monocytes and inflammatory macrophages), though cell numbers in the draining lymph node were not affected. Whilst the total number of T cells was similar in lungs of iCCR-deficient mice, the number of IAV-specific CD4 but not CD8 T cells in the lung was strongly reduced in the absence of iCCRs. Furthermore, fewer CD4, but not CD8, T cells produced IFN-γ. This CD4 T cell phenotype persisted into the memory stage of infection, with fewer IAV-specific and IFN-γ+ CD4 but not CD8 T cells at 29 days post infection. In conclusion, despite having limited impact on antigen-presenting cell migration between the lung and the draining lymph node, iCCR deletion is associated with an altered CD4 T cell response to IAV infection.
Collapse
Affiliation(s)
- Marieke Pingen
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| | - Catherine E Hughes
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Laura Medina-Ruiz
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Heather Mathie
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Jennifer A Barrie
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Chris Ah Hansell
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Robin Bartolini
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Megan Kl MacLeod
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom
| | - Gerard J Graham
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, United Kingdom.
| |
Collapse
|
3
|
Cuesta-Margolles G, Schlecht-Louf G, Bachelerie F. ACKR3 in Skin Homeostasis, an Overlooked Player in the CXCR4/CXCL12 Axis. J Invest Dermatol 2025; 145:1039-1049. [PMID: 39466217 DOI: 10.1016/j.jid.2024.08.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/28/2024] [Accepted: 08/30/2024] [Indexed: 10/29/2024]
Abstract
CXCL12 and its receptor CXCR4 emerge as critical regulators within the intricate network of processes ensuring skin homeostasis. In this review, we discuss their spatial distribution and function in steady-state skin; delve into their role in acute wound healing, with emphasis on fibrotic and regenerative responses; and explore their relevance in skin responses to commensals and pathogens. Given the lack of knowledge surrounding ACKR3, the atypical receptor of CXCL12, we speculate whether and how it might be involved in the processes mentioned earlier. Is ACKR3 the (a)typical friend who enjoys missing the party, or do we need to take a closer look?
Collapse
Affiliation(s)
| | - Géraldine Schlecht-Louf
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| | - Françoise Bachelerie
- Université Paris-Saclay, Inserm, Inflammation, Microbiome and Immunosurveillance, Orsay, France
| |
Collapse
|
4
|
Ren Q, Xu X, Dong Z, Qiu J, Shan Q, Chen R, Liu Y, Ma J, Liu S. Iron Deficiency Impairs Dendritic Cell Development and Function, Compromising Host Anti-Infection Capacity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2408348. [PMID: 40305750 PMCID: PMC12120711 DOI: 10.1002/advs.202408348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 03/23/2025] [Indexed: 05/02/2025]
Abstract
The prevalence of acute lower respiratory infections in individuals with iron deficiency (ID) has significantly increased, and is correlated with reduced numbers of immune cells and impaired immune function. Dendritic cells (DCs) play a crucial role in combating the influenza A virus (IAV) by initiating adaptive immune responses. However, the impact of ID on DCs and their response to IAV infection remain unclear. This study showed that ID impairs the antigen-presenting ability of DCs, thereby hindering their capacity to mediate T-cell proliferation and clear viruses. The restrictive effects of ID on DCs begin in the bone marrow and specifically affect the monocyte DC progenitor (MDP) stage. A reduction in the number of MDPs and compromised immune potential lead to a decrease in the population and functionality of DCs in the subsequent common DC precursor (CDP) stage in the blood, spleen, and lungs. This study highlights the previously unrecognized impact of ID on DCs and provides valuable insights into immune cell responses and the application of iron supplementation in the fight against viral infections.
Collapse
Affiliation(s)
- Quanzhong Ren
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- JST sarcopenia Research CentreNational Center for OrthopaedicsBeijing Research Institute of Traumatology and OrthopaedicsBeijing Jishuitan HospitalCapital Medical UniversityBeijing100035P. R. China
| | - Xiaotong Xu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Zheng Dong
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Jiahuang Qiu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Qing'e Shan
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| | - Rui Chen
- Department of Toxicology and Sanitary ChemistrySchool of Public HealthCapital Medical UniversityBeijing100069P. R. China
| | - Yajun Liu
- JST sarcopenia Research CentreNational Center for OrthopaedicsBeijing Research Institute of Traumatology and OrthopaedicsBeijing Jishuitan HospitalCapital Medical UniversityBeijing100035P. R. China
| | - Juan Ma
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
| | - Sijin Liu
- State Key Laboratory of Environmental Chemistry and EcotoxicologyResearch Center for Eco‐Environmental SciencesChinese Academy of SciencesBeijing100085P. R. China
- University of Chinese Academy of SciencesBeijing100049P. R. China
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical SciencesJinanShandong250117P. R. China
| |
Collapse
|
5
|
Iliakis CS, Crotta S, Wack A. The Interplay Between Innate Immunity and Nonimmune Cells in Lung Damage, Inflammation, and Repair. Annu Rev Immunol 2025; 43:395-422. [PMID: 40036704 DOI: 10.1146/annurev-immunol-082323-031852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
As the site of gas exchange, the lung is critical for organismal survival. It is also subject to continual environmental insults inflicted by pathogens, particles, and toxins. Sometimes, these insults result in structural damage and the initiation of an innate immune response. Operating in parallel, the immune response aims to eliminate the threat, while the repair process ensures continual physiological function of the lung. The inflammatory response and repair processes are thus inextricably linked in time and space but are often studied in isolation. Here, we review the interplay of innate immune cells and nonimmune cells during lung insult and repair. We highlight how cellular cross talk can fine-tune the circuitry of the immune response, how innate immune cells can facilitate or antagonize proper organ repair, and the prolonged changes to lung immunity and physiology that can result from acute immune responses and repair processes.
Collapse
Affiliation(s)
- Chrysante S Iliakis
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| | - Stefania Crotta
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, London, United Kingdom;
| |
Collapse
|
6
|
Rodriguez LIL, Amadio R, Piperno GM, Benvenuti F. Tissue-specific properties of type 1 dendritic cells in lung cancer: implications for immunotherapy. J Immunother Cancer 2025; 13:e010547. [PMID: 40132908 PMCID: PMC11938230 DOI: 10.1136/jitc-2024-010547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 02/22/2025] [Indexed: 03/27/2025] Open
Abstract
Checkpoint inhibitors have led to remarkable benefits in non-small cell lung cancer (NSCLC), yet response rates remain below expectations. High-dimensional analysis and mechanistic experiments in clinical samples and relevant NSCLC models uncovered the immune composition of lung cancer tissues, providing invaluable insights into the functional properties of tumor-infiltrating T cells and myeloid cells. Among myeloid cells, type 1 conventional dendritic cells (cDC1s) stand out for their unique ability to induce effector CD8 T cells against neoantigens and coordinate antitumoral immunity. Notably, lung resident cDC1 are particularly abundant and long-lived and express a unique tissue-specific gene program, underscoring their central role in lung immunity. Here, we discuss recent insights on the induction and regulation of antitumoral T cell responses in lung cancer, separating it from the tissue-agnostic knowledge generated from heterogeneous tumor models. We focus on the most recent studies dissecting functional states and spatial distribution of lung cDC1 across tumor stages and their impact on T cell responses to neoantigens. Finally, we highlight relevant gaps and emerging strategies to harness lung cDC1 immunostimulatory potential.
Collapse
Affiliation(s)
| | - Roberto Amadio
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
- Department of Life Sciences (DSV), University of Trieste, Trieste, Italy
| | - Giulia Maria Piperno
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Federica Benvenuti
- Cellular Immunology, International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| |
Collapse
|
7
|
Maia AR, Gonzalez L, Bounab B, Grassi L, Mousset C, Fromont-Hankard G, Cezard A, Hiemstra P, Baranek T, Paget C, Crabbé A, Si-Tahar M. Intranasal exposure to commensal bacterium Rothia mucilaginosa protects against influenza A virus infection. Antiviral Res 2025; 234:106076. [PMID: 39755332 DOI: 10.1016/j.antiviral.2025.106076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/28/2024] [Accepted: 01/01/2025] [Indexed: 01/06/2025]
Abstract
The respiratory tract hosts a diverse microbial community whose composition varies with anatomical location and throughout life. Rothia mucilaginosa, a common commensal of the upper respiratory tract and oral cavity, has recently been recognized for its ability to inhibit bacteria-triggered pro-inflammatory responses. However, its role in modulating the immune response to viral infections such as influenza A virus (IAV) pneumonia, remains unknown. Here, we demonstrate that R. mucilaginosa enhances protection against IAV, promoting viral clearance, reducing inflammation, preserving bronchial and alveolar structures, and improving survival in a mouse model of influenza pneumonia. The enhanced viral clearance observed in R. mucilaginosa-treated mice is associated with the recruitment of innate immune cells to the lungs, including PD-L1-expressing neutrophils, alongside the production of the anti-inflammatory cytokine IL-10, both of which are known to play regulatory roles in the context of IAV infection. Together, these findings highlight R. mucilaginosa-mediated innate immune priming as a key protective mechanism in the respiratory tract against IAV infection.
Collapse
Affiliation(s)
- Ana Raquel Maia
- INSERM, Research Center for Respiratory Diseases, UMR 1100, University of Tours, France
| | - Loïc Gonzalez
- INSERM, Research Center for Respiratory Diseases, UMR 1100, University of Tours, France
| | - Badreddine Bounab
- INSERM, Research Center for Respiratory Diseases, UMR 1100, University of Tours, France
| | - Lucia Grassi
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium
| | - Coralie Mousset
- Department of Pathology, CHU of Tours, University of Tours, Tours, France
| | | | - Adeline Cezard
- INSERM, Research Center for Respiratory Diseases, UMR 1100, University of Tours, France
| | - Pieter Hiemstra
- Department of Pulmonology, Leiden University Medical Centre, Leiden, Netherlands
| | - Thomas Baranek
- INSERM, Research Center for Respiratory Diseases, UMR 1100, University of Tours, France
| | - Christophe Paget
- INSERM, Research Center for Respiratory Diseases, UMR 1100, University of Tours, France
| | - Aurélie Crabbé
- Laboratory of Pharmaceutical Microbiology, Ghent University, Ghent, Belgium.
| | - Mustapha Si-Tahar
- INSERM, Research Center for Respiratory Diseases, UMR 1100, University of Tours, France.
| |
Collapse
|
8
|
Ronchese F, Webb GR, Ochiai S, Lamiable O, Brewerton M. How type-2 dendritic cells induce Th2 differentiation: Instruction, repression, or fostering T cell-T cell communication? Allergy 2025; 80:395-407. [PMID: 39324367 PMCID: PMC11804308 DOI: 10.1111/all.16337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 09/03/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
Allergic disease is caused by the activation of allergen-specific CD4+ type-2 T follicular helper cells (Tfh2) and T helper 2 (Th2) effector cells that secrete the cytokines IL-4, IL-5, IL-9, and IL-13 upon allergen encounter, thereby inducing IgE production by B cells and tissue inflammation. While it is accepted that the priming and differentiation of naïve CD4+ T cells into Th2 requires allergen presentation by type 2 dendritic cells (DC2s), the underlying signals remain unidentified. In this review we focus on the interaction between allergen-presenting DC2s and naïve CD4+ T cells in lymph node (LN), and the potential mechanisms by which DC2s might instruct Th2 differentiation. We outline recent advances in characterizing DC2 development and heterogeneity. We review mechanisms of allergen sensing and current proposed mechanisms of Th2 differentiation, with specific consideration of the role of DC2s and how they might contribute to each mechanism. Finally, we assess recent publications reporting a detailed analysis of DC-T cell interactions in LNs and how they support Th2 differentiation. Together, these studies are starting to shape our understanding of this key initial step of the allergic immune response.
Collapse
Affiliation(s)
| | - Greta R. Webb
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| | - Sotaro Ochiai
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
| | | | - Maia Brewerton
- Malaghan Institute of Medical ResearchWellingtonNew Zealand
- Department of Clinical Immunology and AllergyAuckland City HospitalAucklandNew Zealand
| |
Collapse
|
9
|
Finn CM, Dhume K, Baffoe E, Kimball LA, Strutt TM, McKinstry KK. Airway-resident memory CD4 T cell activation accelerates antigen presentation and T cell priming in draining lymph nodes. JCI Insight 2024; 10:e182615. [PMID: 39688906 PMCID: PMC11948587 DOI: 10.1172/jci.insight.182615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/13/2024] [Indexed: 12/18/2024] Open
Abstract
Specialized memory CD4 T cells that reside long-term within tissues are critical components of immunity at portals of pathogen entry. In the lung, such tissue-resident memory (Trm) cells are activated rapidly after infection and promote local inflammation to control pathogen levels before circulating T cells can respond. However, optimal clearance of Influenza A virus can require Trm and responses by other virus-specific T cells that reach the lung only several days after their activation in secondary lymphoid organs. Whether local CD4 Trm sentinel activity can affect the efficiency of T cell activation in secondary lymphoid organs is not clear. Here, we found that recognition of antigen by influenza-primed Trm in the airways promoted more rapid migration of highly activated antigen-bearing DC to the draining lymph nodes. This in turn accelerated the priming of naive T cells recognizing the same antigen, resulting in newly activated effector T cells reaching the lungs earlier than in mice not harboring Trm. Our findings, thus, reveal a circuit linking local and regional immunity whereby antigen recognition by Trm improves effector T cell recruitment to the site of infection though enhancing the efficiency of antigen presentation in the draining lymph node.
Collapse
|
10
|
Raquer-McKay HM, Maqueda-Alfaro RA, Saravanan S, Arroyo Hornero R, Clausen BE, Gottfried-Blackmore A, Idoyaga J. Monocytes give rise to Langerhans cells that preferentially migrate to lymph nodes at steady state. Proc Natl Acad Sci U S A 2024; 121:e2404927121. [PMID: 39541348 PMCID: PMC11588065 DOI: 10.1073/pnas.2404927121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024] Open
Abstract
Current evidence suggests that ontogeny may account for the functional heterogeneity of some tissue macrophages, but not others. Here, we asked whether developmental origin drives different functions of skin Langerhans cells (LCs), an embryo-derived mononuclear phagocyte with features of both tissue macrophages and dendritic cells. Using time-course analyses, bone marrow chimeras, and fate tracing models, we found that the complete elimination of embryo-derived LCs at steady state results in their repopulation from circulating monocytes. However, monocyte-derived LCs inefficiently replenished the epidermal niche. Instead, these cells preferentially migrated to skin-draining lymph nodes. Mechanistically, we show that the enhanced migratory capability of monocyte-derived LCs is associated with higher expression of CD207/Langerin, a C-type lectin involved in the capture of skin microbes. Our data demonstrate that ontogeny plays a role in the migratory behavior of epidermal LCs.
Collapse
Affiliation(s)
- Hayley M. Raquer-McKay
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
| | - Raul A. Maqueda-Alfaro
- Pharmacology Department, School of Medicine, University of California San Diego, La Jolla, CA92093
| | - Sanjana Saravanan
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
| | - Rebeca Arroyo Hornero
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
| | - Björn E. Clausen
- Institute for Molecular Medicine, Paul Klein Center for Immune Intervention, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
- Research Center for Immunotherapy (Forschungs-Zentrum für Immuntherapie), University Medical Center of the Johannes Gutenberg-University Mainz, Mainz55131, Germany
| | - Andres Gottfried-Blackmore
- Pharmacology Department, School of Medicine, University of California San Diego, La Jolla, CA92093
- Department of Medicine, Division of Gastroenterology, University of California San Diego, La Jolla, CA92093
- Veterans Affairs San Diego Healthcare System, Gastroenterology Section, La Jolla, CA92161
| | - Juliana Idoyaga
- Microbiology and Immunology Department, Stanford University School of Medicine, Stanford, CA94305
- Immunology Program, Stanford University School of Medicine, Stanford, CA94304
- Pharmacology Department, School of Medicine, University of California San Diego, La Jolla, CA92093
- Molecular Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA92093
| |
Collapse
|
11
|
Zhu Y, Wei L, Zwygart ACA, Gaínza P, Khac QO, Olgiati F, Kurum A, Tang L, Correia B, Tapparel C, Stellacci F. A Synthetic Multivalent Lipopeptide Derived from Pam3CSK4 with Irreversible Influenza Inhibition and Immuno-Stimulating Effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307709. [PMID: 38438885 DOI: 10.1002/smll.202307709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/23/2024] [Indexed: 03/06/2024]
Abstract
The activation of the host adaptive immune system is crucial for eliminating viruses. However, influenza infection often suppresses the innate immune response that precedes adaptive immunity, and the adaptive immune responses are typically delayed. Dendritic cells, serving as professional antigen-presenting cells, have a vital role in initiating the adaptive immune response. In this study, an immuno-stimulating antiviral system (ISAS) is introduced, which is composed of the immuno-stimulating adjuvant lipopeptide Pam3CSK4 that acts as a scaffold onto which it is covalently bound 3 to 4 influenza-inhibiting peptides. The multivalent display of peptides on the scaffold leads to a potent inhibition against H1N1 (EC50 = 20 nM). Importantly, the resulting lipopeptide, Pam3FDA, shows an irreversible inhibition mechanism. The chemical modification of peptides on the scaffold maintains Pam3CSK4's ability to stimulate dendritic cell maturation, thereby rendering Pam3FDA a unique antiviral. This is attributed to its immune activation capability, which also acts in synergy to expedite viral elimination.
Collapse
Affiliation(s)
- Yong Zhu
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Lixia Wei
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Arnaud Charles-Antoine Zwygart
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU Rue Michel-Servet 1, Geneva 4, CH-1211, Switzerland
| | - Pablo Gaínza
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Quy Ong Khac
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Francesca Olgiati
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Armand Kurum
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Li Tang
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Bruno Correia
- Interschool Institute of Bioengineering, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| | - Caroline Tapparel
- Department of Microbiology and Molecular Medicine, University of Geneva, CMU Rue Michel-Servet 1, Geneva 4, CH-1211, Switzerland
| | - Francesco Stellacci
- Institute of Materials, École Polytechnique Fédérale de Lausanne Station 12, Lausanne, CH-1015, Switzerland
| |
Collapse
|
12
|
Rocca G, Galli M, Celant A, Stucchi G, Marongiu L, Cozzi S, Innocenti M, Granucci F. Multiplexed imaging to reveal tissue dendritic cell spatial localisation and function. FEBS Lett 2024. [PMID: 38969618 DOI: 10.1002/1873-3468.14962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/20/2024] [Accepted: 05/28/2024] [Indexed: 07/07/2024]
Abstract
Dendritic cells (DCs) play a pivotal role in immune surveillance, acting as sentinels that coordinate immune responses within tissues. Although differences in the identity and functional states of DC subpopulations have been identified through multiparametric flow cytometry and single-cell RNA sequencing, these methods do not provide information about the spatial context in which the cells are located. This knowledge is crucial for understanding tissue organisation and cellular cross-talk. Recent developments in multiplex imaging techniques can now offer insights into this complex spatial and functional landscape. This review provides a concise overview of these imaging methodologies, emphasising their application in identifying DCs to delineate their tissue-specific functions and aiding newcomers in navigating this field.
Collapse
Affiliation(s)
- Giuseppe Rocca
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Marco Galli
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Anna Celant
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Giulia Stucchi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Laura Marongiu
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Stefano Cozzi
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Metello Innocenti
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| | - Francesca Granucci
- Department of Biotechnology and Biosciences, University of Milano Bicocca, Milan, Italy
| |
Collapse
|
13
|
Lu S, He S, Yue K, Mi J, Huang Y, Song L, Yang T, Ren Z, Ren L, Xu J. Lactobacillus plantarum GUANKE modulate anti-viral function of dendritic cells in mice. Int Immunopharmacol 2024; 134:112169. [PMID: 38728879 DOI: 10.1016/j.intimp.2024.112169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 05/12/2024]
Abstract
GUANKE is a Lactobacillus plantarum isolated from the feces of healthy volunteer. We have previously shown that GUANKE enhances the efficacy of the SARS-CoV-2 vaccine and prolongs the duration of vaccine protection by upregulating the IFN pathway and T and B lymphocyte functions of the host. The purpose of this study was to evaluate the protective effects and mechanism of oral administration of Lactobacillus plantarum GUANKE in the influenza (A virus A/Puerto Rico/8/34) infection mouse model. In our experiment, oral administration of GUANKE significantly decreased viral load and increased tight junction proteins expression in lung tissues of influenza-infected mice. After GUANKE was co-cultured with mBMDCs in vitro, mBMDCs' maturity and antiviral ability were enhanced, and matured mBMDCs induced polarization of naïve CD4+ T cells into T helper (Th) 1 cells. Adoptive transfer of GUANKE-treated mBMDCs could protect mice from influenza infections. This study suggests that oral administration of Lactobacillus plantarum GUANKE could provide protection against influenza infection in mice, and this protective effect may be mediated, at least in part, by dendritic cells.
Collapse
Affiliation(s)
- Simin Lu
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Siqin He
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Kun Yue
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jielan Mi
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Institute of Public Health, Nankai University, Tianjin, China
| | - Yuanming Huang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Liqiong Song
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Tao Yang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhihong Ren
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China.
| | - Lili Ren
- Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Jianguo Xu
- Research Unite for Unknown Microbe, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China; Institute of Public Health, Nankai University, Tianjin, China.
| |
Collapse
|
14
|
De Leeuw E, Hammad H. The role of dendritic cells in respiratory viral infection. Eur Respir Rev 2024; 33:230250. [PMID: 38811032 PMCID: PMC11134197 DOI: 10.1183/16000617.0250-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 03/19/2024] [Indexed: 05/31/2024] Open
Abstract
Respiratory viral infections represent one of the major causes of death worldwide. The recent coronavirus disease 2019 pandemic alone claimed the lives of over 6 million people around the globe. It is therefore crucial to understand how the immune system responds to these threats and how respiratory infection can be controlled and constrained. Dendritic cells (DCs) are one of the key players in antiviral immunity because of their ability to detect pathogens. They can orchestrate an immune response that will, in most cases, lead to viral clearance. Different subsets of DCs are present in the lung and each subset can contribute to antiviral responses through various mechanisms. In this review, we discuss the role of the different lung DC subsets in response to common respiratory viruses, with a focus on respiratory syncytial virus, influenza A virus and severe acute respiratory syndrome coronavirus 2. We also review how lung DC-mediated responses to respiratory viruses can lead to the worsening of an existing chronic pulmonary disease such as asthma. Throughout the review, we discuss results obtained from animal studies as well as results generated from infected patients.
Collapse
Affiliation(s)
- Elisabeth De Leeuw
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| | - Hamida Hammad
- Laboratory of Mucosal Immunology and Immunoregulation, VIB-UGent Center for Inflammation Research, Ghent, Belgium
- Department of Internal Medicine and Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
15
|
Gardet M, Haigh O, Meurisse F, Coindre S, Dimant N, Desjardins D, Bourgeois C, Goujard C, Vaslin B, Relouzat F, Le Grand R, Lambotte O, Favier B. Identification of macaque dendritic cell precursors in blood and tissue reveals their dysregulation in early SIV infection. Cell Rep 2024; 43:113994. [PMID: 38530856 DOI: 10.1016/j.celrep.2024.113994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 01/27/2024] [Accepted: 03/08/2024] [Indexed: 03/28/2024] Open
Abstract
Distinct dendritic cell (DC) subsets play important roles in shaping immune responses. Circulating DC precursors (pre-DCs) are more susceptible to HIV infection in vitro, which may explain the inefficiency of immune responses against HIV. However, the interplay between HIV and pre-DC is not defined in vivo. We identify human pre-DC equivalents in the cynomolgus macaque and then analyze their dynamics during simian immunodeficiency virus (SIV) infection to illustrate a sharp decrease of blood pre-DCs in early SIV infection and accumulation in lymph nodes (LNs), where they neglect to upregulate CD83/CD86 or MHC-II. Additionally, SIV infection attenuates the capacity of stimulated LN pre-DCs to produce IL-12p40. Analysis of HIV cohorts provides correlation between costimulatory molecule expression on pre-DCs and T cell activation in spontaneous HIV controllers. These findings pinpoint certain dynamics and functional changes of pre-DCs during SIV infection, providing a deeper understanding of immune dysregulation mechanisms elicited in people living with HIV.
Collapse
Affiliation(s)
- Margaux Gardet
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Oscar Haigh
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Florian Meurisse
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Sixtine Coindre
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Nastasia Dimant
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Delphine Desjardins
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Christine Bourgeois
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Cecile Goujard
- Paris-Saclay University Hospital Group, Assistance Publique Hôpitaux de Paris, Department of Internal Medicine and Clinical Immunology, Bicêtre Hospital, le Kremlin-Bicêtre, France; Centre de Recherche en Épidémiologie et Santé des Populations (CESP), INSERM U1018, University Paris Saclay, Paris, France
| | - Bruno Vaslin
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Francis Relouzat
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Roger Le Grand
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France
| | - Olivier Lambotte
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France; Paris-Saclay University Hospital Group, Assistance Publique Hôpitaux de Paris, Department of Internal Medicine and Clinical Immunology, Bicêtre Hospital, le Kremlin-Bicêtre, France
| | - Benoit Favier
- Université Paris-Saclay, Inserm, CEA, Center for Immunology of Viral, Auto-immune, Hematological and Bacterial Diseases (IMVA-HB/IDMIT), 92265 Fontenay-aux-Roses, France.
| |
Collapse
|
16
|
Amon L, Seichter A, Vurnek D, Heger L, Lächele L, Tochoedo NR, Kaszubowski T, Hatscher L, Baranska A, Tchitashvili G, Nimmerjahn F, Lehmann CHK, Dudziak D. Clec12A, CD301b, and FcγRIIB/III define the heterogeneity of murine DC2s and DC3s. Cell Rep 2024; 43:113949. [PMID: 38492222 DOI: 10.1016/j.celrep.2024.113949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 02/02/2024] [Accepted: 02/26/2024] [Indexed: 03/18/2024] Open
Abstract
Over the last decade, multiple studies have investigated the heterogeneity of murine conventional dendritic cells type 2 (cDC2s). However, their phenotypic similarity with monocytes and macrophages renders their clear identification challenging. By creating a protein atlas utilizing multiparameter flow cytometry, we show that ESAM+ cDC2s are a specialized feature of the spleen strongly differing in their proteome from other cDC2s. In contrast, all other tissues are populated by Clec12A+ cDC2s or Clec12A- cDC2s (high or low for Fcγ receptors, C-type lectin receptors, and CD11b, respectively), rendering Clec12A+ cDC2s classical sentinels. Further, expression analysis of CD301b, Clec12A, and FcγRIIB/III provides a conserved definition of cDC2 heterogeneity, including the discovery of putative FcγRIIB/III+ DC3s across tissues. Finally, our data reveal that cell identity (ontogeny) dictates the proteome that is further fine-tuned by the tissue environment on macrophages and dendritic cells (DCs), while monocytes and plasmacytoid DCs (pDCs) display subset intrinsic default settings.
Collapse
Affiliation(s)
- Lukas Amon
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Anna Seichter
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Damir Vurnek
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany
| | - Lukas Heger
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lukas Lächele
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Nounagnon Romaric Tochoedo
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Tomasz Kaszubowski
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Lukas Hatscher
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Department of Rheumatology and Clinical Immunology, Charité Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Anna Baranska
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Giorgi Tchitashvili
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, 91058 Erlangen, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany
| | - Christian Herbert Kurt Lehmann
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany; Department of Pediatrics and Adolescent Medicine, Friedrich-Alexander-University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Diana Dudziak
- Laboratory of Dendritic Cell Biology, Department of Dermatology, University Hospital Erlangen, Friedrich-Alexander-University Erlangen-Nürnberg, 91052 Erlangen, Germany; Institute of Immunology, Jena University Hospital, Friedrich-Schiller-University Jena, 07743 Jena, Germany; Medical Immunology Campus Erlangen, 91054 Erlangen, Germany; Deutsches Zentrum Immuntherapie (DZI), 91054 Erlangen, Germany; Comprehensive Cancer Center Erlangen-European Metropolitan Area of Nuremberg (CCC ER-EMN), 91054 Erlangen, Germany.
| |
Collapse
|
17
|
Minutti CM, Piot C, Pereira da Costa M, Chakravarty P, Rogers N, Huerga Encabo H, Cardoso A, Loong J, Bessou G, Mionnet C, Langhorne J, Bonnet D, Dalod M, Tomasello E, Reis e Sousa C. Distinct ontogenetic lineages dictate cDC2 heterogeneity. Nat Immunol 2024; 25:448-461. [PMID: 38351322 PMCID: PMC10907303 DOI: 10.1038/s41590-024-01745-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 01/08/2024] [Indexed: 03/03/2024]
Abstract
Conventional dendritic cells (cDCs) include functionally and phenotypically diverse populations, such as cDC1s and cDC2s. The latter population has been variously subdivided into Notch-dependent cDC2s, KLF4-dependent cDC2s, T-bet+ cDC2As and T-bet- cDC2Bs, but it is unclear how all these subtypes are interrelated and to what degree they represent cell states or cell subsets. All cDCs are derived from bone marrow progenitors called pre-cDCs, which circulate through the blood to colonize peripheral tissues. Here, we identified distinct mouse pre-cDC2 subsets biased to give rise to cDC2As or cDC2Bs. We showed that a Siglec-H+ pre-cDC2A population in the bone marrow preferentially gave rise to Siglec-H- CD8α+ pre-cDC2As in tissues, which differentiated into T-bet+ cDC2As. In contrast, a Siglec-H- fraction of pre-cDCs in the bone marrow and periphery mostly generated T-bet- cDC2Bs, a lineage marked by the expression of LysM. Our results showed that cDC2A versus cDC2B fate specification starts in the bone marrow and suggest that cDC2 subsets are ontogenetically determined lineages, rather than cell states imposed by the peripheral tissue environment.
Collapse
Affiliation(s)
- Carlos M Minutti
- Immunobiology Laboratory, The Francis Crick Institute, London, UK.
- Immunoregulation Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal.
| | - Cécile Piot
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | | - Probir Chakravarty
- Bioinformatics and Biostatistics, The Francis Crick Institute, London, UK
| | - Neil Rogers
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | | | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, London, UK
| | - Jane Loong
- Retroviral Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Gilles Bessou
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Cyrille Mionnet
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Jean Langhorne
- Malaria Immunology Laboratory, The Francis Crick Institute, London, UK
| | - Dominique Bonnet
- Haematopoietic Stem Cell Laboratory, The Francis Crick Institute, London, UK
| | - Marc Dalod
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | - Elena Tomasello
- Aix-Marseille University, Centre National de la Recherche Scientifique, Institut National de la Santé et de la Recherche Médicale, Centre d'Immunologie de Marseille-Luminy, Turing Center for Living Systems, Marseille, France
| | | |
Collapse
|
18
|
English K, Kwan R, Holz LE, McGuffog C, Krol JMM, Kempe D, Kaisho T, Heath WR, Lisowski L, Biro M, McCaughan GW, Bowen DG, Bertolino P. A hepatic network of dendritic cells mediates CD4 T cell help outside lymphoid organs. Nat Commun 2024; 15:1261. [PMID: 38341416 PMCID: PMC10858872 DOI: 10.1038/s41467-024-45612-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 01/30/2024] [Indexed: 02/12/2024] Open
Abstract
While CD4+ T cells are a prerequisite for CD8+ T cell-mediated protection against intracellular hepatotropic pathogens, the mechanisms facilitating the transfer of CD4-help to intrahepatic CD8+ T cells are unknown. Here, we developed an experimental system to investigate cognate CD4+ and CD8+ T cell responses to a model-antigen expressed de novo in hepatocytes and reveal that after initial priming, effector CD4+ and CD8+ T cells migrate into portal tracts and peri-central vein regions of the liver where they cluster with type-1 conventional dendritic cells. These dendritic cells are locally licensed by CD4+ T cells and expand the number of CD8+ T cells in situ, resulting in larger effector and memory CD8+ T cell pools. These findings reveal that CD4+ T cells promote intrahepatic immunity by amplifying the CD8+ T cell response via peripheral licensing of hepatic type-1 conventional dendritic cells and identify intrahepatic perivascular compartments specialized in facilitating effector T cell-dendritic cell interactions.
Collapse
Affiliation(s)
- Kieran English
- Centenary Institute and The University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- VIB-UGent Center for Inflammation Research, Ghent, Belgium
| | - Rain Kwan
- Centenary Institute and The University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Lauren E Holz
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Claire McGuffog
- Centenary Institute and The University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - Jelte M M Krol
- Centenary Institute and The University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
- Department of Parasitology, Leiden University Medical Centre, Leiden, The Netherlands
| | - Daryan Kempe
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Tsuneyasu Kaisho
- Department of Immunology, Institute of Advanced Medicine, Wakayama Medical University, Wakayama, Japan
| | - William R Heath
- Department of Microbiology and Immunology at The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Leszek Lisowski
- Children's Medical Research Institute, Translational Vectorology Research Unit, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
- Laboratory of Molecular Oncology and Innovative Therapies, Military Institute of Medicine, Warsaw, Poland
| | - Maté Biro
- EMBL Australia, Single Molecule Science node, School of Biomedical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Geoffrey W McCaughan
- Centenary Institute and The University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia
| | - David G Bowen
- Centenary Institute and The University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| | - Patrick Bertolino
- Centenary Institute and The University of Sydney, AW Morrow Gastroenterology and Liver Centre, Royal Prince Alfred Hospital, Sydney, NSW, Australia.
| |
Collapse
|
19
|
Pittet MJ, Di Pilato M, Garris C, Mempel TR. Dendritic cells as shepherds of T cell immunity in cancer. Immunity 2023; 56:2218-2230. [PMID: 37708889 PMCID: PMC10591862 DOI: 10.1016/j.immuni.2023.08.014] [Citation(s) in RCA: 75] [Impact Index Per Article: 37.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/03/2023] [Accepted: 08/17/2023] [Indexed: 09/16/2023]
Abstract
In cancer patients, dendritic cells (DCs) in tumor-draining lymph nodes can present antigens to naive T cells in ways that break immunological tolerance. The clonally expanded progeny of primed T cells are further regulated by DCs at tumor sites. Intratumoral DCs can both provide survival signals to and drive effector differentiation of incoming T cells, thereby locally enhancing antitumor immunity; however, the paucity of intratumoral DCs or their expression of immunoregulatory molecules often limits antitumor T cell responses. Here, we review the current understanding of DC-T cell interactions at both priming and effector sites of immune responses. We place emerging insights into DC functions in tumor immunity in the context of DC development, ontogeny, and functions in other settings and propose that DCs control at least two T cell-associated checkpoints of the cancer immunity cycle. Our understanding of both checkpoints has implications for the development of new approaches to cancer immunotherapy.
Collapse
Affiliation(s)
- Mikael J Pittet
- Department of Pathology and Immunology, University of Geneva, Geneva, Switzerland; Ludwig Institute for Cancer Research, Lausanne, Switzerland; AGORA Cancer Center, Swiss Cancer Center Leman, Lausanne, Switzerland; Department of Oncology, Geneva University Hospitals (HUG), Geneva, Switzerland.
| | - Mauro Di Pilato
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77054, USA
| | - Christopher Garris
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Thorsten R Mempel
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA 02115, USA; Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital, Boston, MA 02129, USA.
| |
Collapse
|
20
|
Pereira da Costa M, Minutti CM, Piot C, Giampazolias E, Cardoso A, Cabeza-Cabrerizo M, Rogers NC, Lebrusant-Fernandez M, Iliakis CS, Wack A, Reis e Sousa C. Interplay between CXCR4 and CCR2 regulates bone marrow exit of dendritic cell progenitors. Cell Rep 2023; 42:112881. [PMID: 37523265 DOI: 10.1016/j.celrep.2023.112881] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 05/02/2023] [Accepted: 07/13/2023] [Indexed: 08/02/2023] Open
Abstract
Conventional dendritic cells (cDCs) are found in most tissues and play a key role in initiation of immunity. cDCs require constant replenishment from progenitors called pre-cDCs that develop in the bone marrow (BM) and enter the blood circulation to seed all tissues. This process can be markedly accelerated in response to inflammation (emergency cDCpoiesis). Here, we identify two populations of BM pre-cDC marked by differential expression of CXCR4. We show that CXCR4lo cells constitute the migratory pool of BM pre-cDCs, which exits the BM and can be rapidly mobilized during challenge. We further show that exit of CXCR4lo pre-cDCs from BM at steady state is partially dependent on CCR2 and that CCR2 upregulation in response to type I IFN receptor signaling markedly increases efflux during infection with influenza A virus. Our results highlight a fine balance between retention and efflux chemokine cues that regulates steady-state and emergency cDCpoiesis.
Collapse
Affiliation(s)
| | - Carlos M Minutti
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Cécile Piot
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Evangelos Giampazolias
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Ana Cardoso
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Mar Cabeza-Cabrerizo
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Neil C Rogers
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Marta Lebrusant-Fernandez
- Immune Responses to Lipids Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Chrysante S Iliakis
- Immunoregulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Andreas Wack
- Immunoregulation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Caetano Reis e Sousa
- Immunobiology Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK.
| |
Collapse
|
21
|
Sulczewski FB, Maqueda-Alfaro RA, Alcántara-Hernández M, Perez OA, Saravanan S, Yun TJ, Seong D, Arroyo Hornero R, Raquer-McKay HM, Esteva E, Lanzar ZR, Leylek RA, Adams NM, Das A, Rahman AH, Gottfried-Blackmore A, Reizis B, Idoyaga J. Transitional dendritic cells are distinct from conventional DC2 precursors and mediate proinflammatory antiviral responses. Nat Immunol 2023; 24:1265-1280. [PMID: 37414907 PMCID: PMC10683792 DOI: 10.1038/s41590-023-01545-7] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 05/26/2023] [Indexed: 07/08/2023]
Abstract
High-dimensional approaches have revealed heterogeneity amongst dendritic cells (DCs), including a population of transitional DCs (tDCs) in mice and humans. However, the origin and relationship of tDCs to other DC subsets has been unclear. Here we show that tDCs are distinct from other well-characterized DCs and conventional DC precursors (pre-cDCs). We demonstrate that tDCs originate from bone marrow progenitors shared with plasmacytoid DCs (pDCs). In the periphery, tDCs contribute to the pool of ESAM+ type 2 DCs (DC2s), and these DC2s have pDC-related developmental features. Different from pre-cDCs, tDCs have less turnover, capture antigen, respond to stimuli and activate antigen-specific naïve T cells, all characteristics of differentiated DCs. Different from pDCs, viral sensing by tDCs results in IL-1β secretion and fatal immune pathology in a murine coronavirus model. Our findings suggest that tDCs are a distinct pDC-related subset with a DC2 differentiation potential and unique proinflammatory function during viral infections.
Collapse
Affiliation(s)
- Fernando Bandeira Sulczewski
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Raul A Maqueda-Alfaro
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Marcela Alcántara-Hernández
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Oriana A Perez
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Sanjana Saravanan
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Tae Jin Yun
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - David Seong
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Medical Scientist Training Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Rebeca Arroyo Hornero
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Hayley M Raquer-McKay
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Eduardo Esteva
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Zachary R Lanzar
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Rebecca A Leylek
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Nicholas M Adams
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Annesa Das
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA
| | - Adeeb H Rahman
- Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Human Immune Monitoring Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Andres Gottfried-Blackmore
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA
- Division of Gastroenterology and Hepatology, Department of Medicine, Stanford University School of Medicine, Redwood City, CA, USA
| | - Boris Reizis
- Department of Pathology, New York University Grossman School of Medicine, New York, NY, USA.
| | - Juliana Idoyaga
- Department of Microbiology and Immunology, Stanford University School of Medicine, Stanford, CA, USA.
- Immunology Program, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
22
|
Herzog BH, Baer JM, Borcherding N, Kingston NL, Belle JI, Knolhoff BL, Hogg GD, Ahmad F, Kang LI, Petrone J, Lin CY, Govindan R, DeNardo DG. Tumor-associated fibrosis impairs immune surveillance and response to immune checkpoint blockade in non-small cell lung cancer. Sci Transl Med 2023; 15:eadh8005. [PMID: 37285399 DOI: 10.1126/scitranslmed.adh8005] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 05/17/2023] [Indexed: 06/09/2023]
Abstract
Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related deaths. Immune checkpoint blockade has improved survival for many patients with NSCLC, but most fail to obtain long-term benefit. Understanding the factors leading to reduced immune surveillance in NSCLC is critical in improving patient outcomes. Here, we show that human NSCLC harbors large amounts of fibrosis that correlates with reduced T cell infiltration. In murine NSCLC models, the induction of fibrosis led to increased lung cancer progression, impaired T cell immune surveillance, and failure of immune checkpoint blockade efficacy. Associated with these changes, we observed that fibrosis leads to numerically and functionally impaired dendritic cells and altered macrophage phenotypes that likely contribute to immunosuppression. Within cancer-associated fibroblasts, distinct changes within the Col13a1-expressing population suggest that these cells produce chemokines to recruit macrophages and regulatory T cells while limiting recruitment of dendritic cells and T cells. Targeting fibrosis through transforming growth factor-β receptor signaling overcame the effects of fibrosis to enhance T cell responses and improved the efficacy of immune checkpoint blockade but only in the context of chemotherapy. Together, these data suggest that fibrosis in NSCLC leads to reduced immune surveillance and poor responsiveness to checkpoint blockade and highlight antifibrotic therapies as a candidate strategy to overcome immunotherapeutic resistance.
Collapse
Affiliation(s)
- Brett H Herzog
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - John M Baer
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Nicholas Borcherding
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Natalie L Kingston
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jad I Belle
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Brett L Knolhoff
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Graham D Hogg
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Faiz Ahmad
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Liang-I Kang
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jessica Petrone
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Chieh-Yu Lin
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ramaswamy Govindan
- Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - David G DeNardo
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
- Department of Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
23
|
Jirmo AC, Grychtol R, Gaedcke S, Liu B, DeStefano S, Happle C, Halle O, Monteiro JT, Habener A, Breiholz OD, DeLuca D, Hansen G. Single cell RNA sequencing reveals distinct clusters of Irf8-expressing pulmonary conventional dendritic cells. Front Immunol 2023; 14:1127485. [PMID: 37251386 PMCID: PMC10213693 DOI: 10.3389/fimmu.2023.1127485] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 04/25/2023] [Indexed: 05/31/2023] Open
Abstract
A single population of interferon-regulatory factor 8 (Irf8)-dependent conventional dendritic cell (cDC type1) is considered to be responsible for both immunogenic and tolerogenic responses depending on the surrounding cytokine milieu. Here, we challenge this concept of an omnipotent single Irf8-dependent cDC1 cluster through analysis of pulmonary cDCs at single cell resolution. We report existence of a pulmonary cDC1 cluster lacking Xcr1 with an immunogenic signature that clearly differs from the Xcr1 positive cDC1 cluster. The Irf8+Batf3+Xcr1- cluster expresses high levels of pro-inflammatory genes associated with antigen presentation, migration and co-stimulation such as Ccr7, Cd74, MHC-II, Ccl5, Il12b and Relb while, the Xcr1+ cDC1 cluster expresses genes corresponding to immune tolerance mechanisms like Clec9a, Pbx1, Cadm1, Btla and Clec12a. In concordance with their pro-inflammatory gene expression profile, the ratio of Xcr1- cDC1s but not Xcr1+cDC1 is increased in the lungs of allergen-treated mice compared to the control group, in which both cDC1 clusters are present in comparable ratios. The existence of two distinct Xcr1+ and Xcr1- cDC1 clusters is furthermore supported by velocity analysis showing markedly different temporal patterns of Xcr1- and Xcr1+cDC1s. In summary, we present evidence for the existence of two different cDC1 clusters with distinct immunogenic profiles in vivo. Our findings have important implications for DC-targeting immunomodulatory therapies.
Collapse
Affiliation(s)
- Adan Chari Jirmo
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Ruth Grychtol
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Svenja Gaedcke
- Biomedical Research in Endstage and Obstructive Lung Disease Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Bin Liu
- Biomedical Research in Endstage and Obstructive Lung Disease Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Stephanie DeStefano
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
| | - Christine Happle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Olga Halle
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Joao T. Monteiro
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Excellence Cluster Resolving Infection Susceptibility RESIST (EXC 2155), Deutsche Forschungsgemeinschaft, Hannover Medical School, Hannover, Germany
| | - Anika Habener
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Oliver D. Breiholz
- Research Core Unit Genomics (RCUG), Hannover Medical School, Hannover, Germany
| | - David DeLuca
- Biomedical Research in Endstage and Obstructive Lung Disease Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
| | - Gesine Hansen
- Department of Pediatric Pneumology, Allergology and Neonatology, Hannover Medical School, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Biomedical Research in Endstage and Obstructive Lung Disease (BREATH), Member of the German Center for Lung Research (DZL), Hannover, Germany
- Excellence Cluster Resolving Infection Susceptibility RESIST (EXC 2155), Deutsche Forschungsgemeinschaft, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Rodrigues PF, Kouklas A, Cvijetic G, Bouladoux N, Mitrovic M, Desai JV, Lima-Junior DS, Lionakis MS, Belkaid Y, Ivanek R, Tussiwand R. pDC-like cells are pre-DC2 and require KLF4 to control homeostatic CD4 T cells. Sci Immunol 2023; 8:eadd4132. [PMID: 36827419 PMCID: PMC10165717 DOI: 10.1126/sciimmunol.add4132] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 02/02/2023] [Indexed: 02/26/2023]
Abstract
Plasmacytoid dendritic cells (pDCs) have been shown to play an important role during immune responses, ranging from initial viral control through the production of type I interferons to antigen presentation. However, recent studies uncovered unexpected heterogeneity among pDCs. We identified a previously uncharacterized immune subset, referred to as pDC-like cells, that not only resembles pDCs but also shares conventional DC (cDC) features. We show that this subset is a circulating precursor distinct from common DC progenitors, with prominent cDC2 potential. Our findings from human CD2-iCre and CD300c-iCre lineage tracing mouse models suggest that a substantial fraction of cDC2s originates from pDC-like cells, which can therefore be referred to as pre-DC2. This precursor subset responds to homeostatic cytokines, such as macrophage colony stimulating factor, by expanding and differentiating into cDC2 that efficiently prime T helper 17 (TH17) cells. Development of pre-DC2 into CX3CR1+ ESAM- cDC2b but not CX3CR1- ESAM+ cDC2a requires the transcription factor KLF4. Last, we show that, under homeostatic conditions, this developmental pathway regulates the immune threshold at barrier sites by controlling the pool of TH17 cells within skin-draining lymph nodes.
Collapse
Affiliation(s)
| | | | - Grozdan Cvijetic
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Nicolas Bouladoux
- Metaorganism Immunity Section, Laboratory of Host Microbiome and Immunity, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Mladen Mitrovic
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Jigar V Desai
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Djalma S Lima-Junior
- Metaorganism Immunity Section, Laboratory of Host Microbiome and Immunity, National Institute of Allergy and Infectious Diseases (NIAID), National Institute of Health (NIH), Bethesda, MD 20892, USA
| | - Michail S. Lionakis
- Fungal Pathogenesis Section, Laboratory of Clinical Immunology & Microbiology, NIAID, NIH, Bethesda, MD 20892, USA
| | - Yasmine Belkaid
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| | - Robert Ivanek
- Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
- Swiss Institute of Bioinformatics, 4058 Basel, Switzerland
| | - Roxane Tussiwand
- National Institute of Dental and Craniofacial Research (NIDCR), NIH, Bethesda, MD 20892, USA
| |
Collapse
|
25
|
Falck‐Jones S, Österberg B, Smed‐Sörensen A. Respiratory and systemic monocytes, dendritic cells, and myeloid-derived suppressor cells in COVID-19: Implications for disease severity. J Intern Med 2023; 293:130-143. [PMID: 35996885 PMCID: PMC9538918 DOI: 10.1111/joim.13559] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the beginning of the SARS-CoV-2 pandemic in 2020, researchers worldwide have made efforts to understand the mechanisms behind the varying range of COVID-19 disease severity. Since the respiratory tract is the site of infection, and immune cells differ depending on their anatomical location, studying blood is not sufficient to understand the full immunopathogenesis in patients with COVID-19. It is becoming increasingly clear that monocytes, dendritic cells (DCs), and monocytic myeloid-derived suppressor cells (M-MDSCs) are involved in the immunopathology of COVID-19 and may play important roles in determining disease severity. Patients with mild COVID-19 display an early antiviral (interferon) response in the nasopharynx, expansion of activated intermediate monocytes, and low levels of M-MDSCs in blood. In contrast, patients with severe COVID-19 seem to lack an early efficient induction of interferons, and skew towards a more suppressive response in blood. This is characterized by downregulation of activation markers and decreased functional capacity of blood monocytes and DCs, reduced circulating DCs, and increased levels of HLA-DRlo CD14+ M-MDSCs. These suppressive characteristics could potentially contribute to delayed T-cell responses in severe COVID-19 cases. In contrast, airways of patients with severe COVID-19 display hyperinflammation with elevated levels of inflammatory monocytes and monocyte-derived macrophages, and reduced levels of tissue-resident alveolar macrophages. These monocyte-derived cells contribute to excess inflammation by producing cytokines and chemokines. Here, we review the current knowledge on the role of monocytes, DCs, and M-MDSCs in COVID-19 and how alterations and the anatomical distribution of these cell populations may relate to disease severity.
Collapse
Affiliation(s)
- Sara Falck‐Jones
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Björn Österberg
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Anna Smed‐Sörensen
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| |
Collapse
|
26
|
Hargrave KE, MacLeod MK, Worrell JC. Antigen presenting cells: professionals, amateurs, and spectators in the 'long game' of lung immunity. Int J Biochem Cell Biol 2022; 153:106331. [DOI: 10.1016/j.biocel.2022.106331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/31/2022] [Accepted: 11/06/2022] [Indexed: 11/09/2022]
|