1
|
Sato Y. The Role of Tregs in the Tumor Microenvironment. Biomedicines 2025; 13:1173. [PMID: 40427000 PMCID: PMC12108874 DOI: 10.3390/biomedicines13051173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/06/2025] [Accepted: 05/08/2025] [Indexed: 05/29/2025] Open
Abstract
The tumor microenvironment (TME) is a unique ecosystem that surrounds tumor tissues. The TME is composed of extracellular matrix, immune cells, blood vessels, stromal cells, and fibroblasts. These environments enhance cancer development, progression, and metastasis. Recent success in immune checkpoint blockade also supports the importance of the TME and immune cells residing in the tumor niche. Although the TME can be identified in almost all cancer types, the role of the TME may not be similar among different cancer types. Regulatory T cells (Tregs) play a pivotal role in immune homeostasis and are frequently found in the TME. Owing to their suppressive function, Tregs are often considered unfavorable factors that allow the immune escape of cancer cells. However, the presence of Tregs is not always linked to an unfavorable phenotype, which can be explained by the heterogeneity and plasticity of Tregs. In this review, the current understanding of the role of Tregs in TME is addressed for each cancer cell type. Moreover, recently a therapeutic approach targeting Tregs infiltrating in the TME has been developed including drug antibody conjugate, immunotoxin, and FOXP3 inhibiting peptide. Thus, understanding the role of Tregs in the TME may lead to the development of novel therapies that directly target the TME.
Collapse
Affiliation(s)
- Yohei Sato
- Laboratory of Immune Cell Therapy, Project Research Unit, The Jikei University School of Medicine, Tokyo 105-8461, Japan; ; Tel.: +81-3-3433-1111 (ext. 2430)
- Core Research Facilities, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo 105-8461, Japan
- Immunology and Allergy Research Unit, Division of Otorhinolaryngology Head & Neck Surgery, Faculty of Medicine, University of Fukui, Fukui 910-1193, Japan
| |
Collapse
|
2
|
Hou Y, Lv Z, Hu Q, Zhu A, Niu H. The immune mechanisms of the urinary tract against infections. Front Cell Infect Microbiol 2025; 15:1540149. [PMID: 40308964 PMCID: PMC12040696 DOI: 10.3389/fcimb.2025.1540149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 03/28/2025] [Indexed: 05/02/2025] Open
Abstract
Urinary tract infection (UTI), a common clinical infectious disease, is marked by high incidence and frequent recurrence. Recurrent UTIs can cause severe complications, negatively affecting health. The emergence and spread of drug-resistant bacteria present significant challenges to UTI treatment. This article systematically reviews the key immune mechanisms in the body's defense against UTI pathogens. It discusses various immune response components, such as the urinary tract mucosal epithelium, neutrophils, macrophages, dendritic cells, mast cells, innate lymphocytes, T cells, and B cells, with the aim of providing insights for future UTI research.
Collapse
Affiliation(s)
- Yilin Hou
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhuoxuan Lv
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Quanjie Hu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Aisong Zhu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongxia Niu
- School of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
- Key Laboratory of Blood-Stasis-Toxin Syndrome, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Liao WJ, Jiang YH, Jhang JF, Chen SF, Lee YK, Lee CL, Chang TL, Kuo HC. Pathophysiology and potential treatment modalities in women with recurrent urinary tract infection. Tzu Chi Med J 2025; 37:117-124. [PMID: 40321964 PMCID: PMC12048121 DOI: 10.4103/tcmj.tcmj_286_24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 12/03/2024] [Accepted: 12/16/2024] [Indexed: 05/08/2025] Open
Abstract
Urinary tract infection (UTI) of the urinary bladder is a common bacterial infection that predominantly affects women, with many experiencing recurrent episodes. Recurrent UTIs (rUTIs) are associated with significant physical, psychological, and social difficulties. Further, they are closely related to lower urinary tract dysfunction (LUTD). LUTD affects bladder function and structure, thereby contributing to urinary urgency, frequency, and incontinence, which, in turn, increases the risk of recurrent infections due to impaired urothelial defense mechanisms. The current study explored the pathophysiology of LUTD in women with rUTIs. Potential treatments for rUTIs include long-term prophylactic antibiotics, probiotics, D-mannose, vaccines, small molecule inhibitors, and stem cell therapy. Moreover, it evaluated the use of platelet-rich plasma (PRP) therapy as a treatment modality for LUTD. PRP has regenerative and anti-inflammatory properties. Hence, it can be a promising option for enhancing urothelial barrier integrity and reducing infection recurrence. Repeated intravesical PRP injections are effective in improving bladder symptoms and decreasing UTI recurrences by enhancing the proliferative ability of the urothelium in patients with rUTIs. Further, this review examined the potential predictors of successful PRP treatment outcomes such as cytokine and urothelial biomarker levels, which provided insights into patient selection and individualized treatment strategies. Identifying the predictive biomarkers of treatment responsiveness is essential for optimizing PRP therapy. Hence, to improve the clinical outcomes and quality of life of patients with rUTIs, future research should focus on refining the use of PRP, exploring combination therapies, and validating biomarkers.
Collapse
Affiliation(s)
- Wei-Ju Liao
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Yuan-Hong Jiang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Jia-Fong Jhang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Sheng-Fu Chen
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Yu Khun Lee
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Cheng-Ling Lee
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Tien-Lin Chang
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Hann-Chorng Kuo
- Department of Urology, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
- Department of Urology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| |
Collapse
|
4
|
Deltourbe LG, Durand M, Costas A, Ingersoll MA. A bladder blueprint to build better models for understanding homeostasis and disease. Nat Rev Urol 2025:10.1038/s41585-025-01013-x. [PMID: 40140722 DOI: 10.1038/s41585-025-01013-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2025] [Indexed: 03/28/2025]
Abstract
The bladder is a complex organ that can be affected by various pathologies, such as cancer or infection. It has a specific tissue structure composed of many different cell types and layers, including urothelial and endothelial cells but also a muscle layer controlling stretch and contraction to void urine. The bladder has constitutive and induced immune responses to infection or damage and harbours a microbiome. Each of these features can be influenced by factors including age and biological sex, which makes modelling homeostasis and disease in the bladder complex and challenging. To model diseases that affect the bladder, mouse models are an invaluable tool to understand the bladder in situ. However, stark differences exist between mice and humans, and so mouse models of human disease have limitations. Thus, models that more closely approximate human physiology would be expected to contribute to improved understanding of bladder biology. As technology advances, improvements in model development and creation of 3D bladder structures are enabling scientists to recapitulate essential aspects of human bladder physiology to gain increased understanding of bladder homeostasis and diseases.
Collapse
Affiliation(s)
- Léa G Deltourbe
- Mucosal Inflammation and Immunity Team, Université Paris Cité, CNRS, Inserm, Institut Cochin and Department of Immunology, Institut Pasteur, Paris, France
| | - Méline Durand
- Mucosal Inflammation and Immunity Team, Université Paris Cité, CNRS, Inserm, Institut Cochin and Department of Immunology, Institut Pasteur, Paris, France
| | - Ariana Costas
- Mucosal Inflammation and Immunity Team, Université Paris Cité, CNRS, Inserm, Institut Cochin and Department of Immunology, Institut Pasteur, Paris, France
- Australian Institute for Microbiology and Infection, University of Technology Sydney, ULTIMO, Sydney, Australia
| | - Molly A Ingersoll
- Mucosal Inflammation and Immunity Team, Université Paris Cité, CNRS, Inserm, Institut Cochin and Department of Immunology, Institut Pasteur, Paris, France.
| |
Collapse
|
5
|
Xu G, Li Y, Lu G, Xie D. Tissue-resident memory T cells in urinary tract diseases. Front Immunol 2025; 16:1535930. [PMID: 40066439 PMCID: PMC11891219 DOI: 10.3389/fimmu.2025.1535930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Accepted: 02/11/2025] [Indexed: 04/02/2025] Open
Abstract
Tissue-resident memory T (TRM) cells are a specialized subset of memory T cells that permanently reside in non-lymphoid tissues, providing localized and long-lasting immune protection. In the urinary tract, TRM cells play critical roles in defending against infections, mediating tumor immunity, and influencing the pathogenesis of chronic inflammatory diseases. Their therapeutic potential is immense, with promising avenues for vaccine development, enhanced cancer immunotherapy, and targeted treatments for chronic inflammation. However, challenges remain in harnessing their protective roles while minimizing their pathological effects, particularly in immunosuppressive or inflammatory microenvironments. This review explores the diverse roles of TRM cells in urinary tract diseases, including infections, cancer, and chronic inflammation, and discusses therapeutic strategies and future directions for leveraging TRM cells to improve clinical outcomes. By advancing our understanding of TRM cell biology, we can develop innovative interventions that balance their immune-protective and regulatory functions.
Collapse
Affiliation(s)
- Guofeng Xu
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yuying Li
- Inflammation and Allergic Diseases Research Unit, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Respiratory Critical Care, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Guanting Lu
- Laboratory of Translational Medicine Research, Deyang People’s Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| | - Daoyuan Xie
- Laboratory of Translational Medicine Research, Deyang People’s Hospital of Chengdu University of Traditional Chinese Medicine, Deyang, China
| |
Collapse
|
6
|
Timm MR, Russell SK, Hultgren SJ. Urinary tract infections: pathogenesis, host susceptibility and emerging therapeutics. Nat Rev Microbiol 2025; 23:72-86. [PMID: 39251839 DOI: 10.1038/s41579-024-01092-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 09/11/2024]
Abstract
Urinary tract infections (UTIs), which include any infection of the urethra, bladder or kidneys, account for an estimated 400 million infections and billions of dollars in health-care spending per year. The most common bacterium implicated in UTI is uropathogenic Escherichia coli, but diverse pathogens including Klebsiella, Enterococcus, Pseudomonas, Staphylococcus and even yeast such as Candida species can also cause UTIs. UTIs occur in both women and men and in both healthy and immunocompromised patients. However, certain patient factors predispose to disease: for example, female sex, history of prior UTI, or the presence of a urinary catheter or other urinary tract abnormality. The current clinical paradigm for the treatment of UTIs involves the use of antibiotics. Unfortunately, the efficacy of this approach is dwindling as the prevalence of antimicrobial resistance rises among UTI isolates, and the immense quantity of antibiotics prescribed annually for these infections contributes to the emergence of resistant pathogens. Therefore, there is an urgent need for new antibiotics and non-antibiotic treatment and prevention strategies. In this Review, we discuss how recent studies of bacterial pathogenesis, recurrence, persistence, host-pathogen interactions and host susceptibility factors have elucidated new and promising targets for the treatment and prevention of UTIs.
Collapse
Affiliation(s)
- Morgan R Timm
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA
| | - Seongmi K Russell
- Department of Paediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Scott J Hultgren
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
7
|
Iftimie S, Ladero-Palacio P, López-Azcona AF, Pujol-Galarza L, Pont-Salvadó A, Gabaldó-Barrios X, Joven J, Camps J, Castro A, Pascual-Queralt M. Evaluating the use of Uromune ® autovaccine in recurrent urinary tract infections: a pilot unicenter retrospective study in Reus, Spain. BMC Infect Dis 2025; 25:117. [PMID: 39856603 PMCID: PMC11762519 DOI: 10.1186/s12879-025-10524-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 01/20/2025] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND Urinary tract infections (UTIs) are a significant global health issue, especially among women, with growing concerns related to antibiotic resistance and adverse effects. The Uromune®, a sublingual, heat-inactivated, polybacterial vaccine, represents a promising therapeutic alternative by enhancing immune responses against uropathogens. METHODS This pilot retrospective study, conducted at Hospital Universitari de Sant Joan de Reus from January 2018 to August 2022, assessed the association between Uromune® administration and changes in recurrent UTIs. Patients received personalized autovaccines administered as two sublingual puffs daily for three months. Clinical, microbiological, and demographic data were analyzed to assess treatment outcomes and identify recurrence-associated factors. RESULTS Forty-nine patients (mean age, 61 years, and 59.2% women) were included in the study. Uromune® treatment decreased UTI episodes from 3.73 ± 0.97 the year before to 0.98 ± 1.36 (p < 0.001) the year after its administration. The number of patients who suffered three or more episodes per year dropped from 43 (87.7%) before the intervention to 7 (14.3%) afterwards. The maximum effectiveness of the autovaccine was observed three months post-administration, with 44 patients not experiencing any UTI episodes. Regression analysis identified having had a urostomy, chronic kidney disease, and being immunosuppressed as predictors of recurrence. CONCLUSION Uromune® autovaccine was associated with a significant reduction in the frequency of recurrent UTIs and related hospitalizations, offering substantial relief to patients. These findings suggest that Uromune® may be a promising option for managing recurrent UTIs, though controlled studies are needed to confirm its efficacy compared to standard treatments.
Collapse
Affiliation(s)
- Simona Iftimie
- Research Group on Autoimmunity, Infection and Thrombosis (GRAIIT), Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Paula Ladero-Palacio
- Research Group on Autoimmunity, Infection and Thrombosis (GRAIIT), Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Ana F López-Azcona
- Research Group on Autoimmunity, Infection and Thrombosis (GRAIIT), Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Laia Pujol-Galarza
- Department of Urology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Antoni Pont-Salvadó
- Department of Urology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Xavier Gabaldó-Barrios
- Department of Clinical Laboratory, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jorge Joven
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Jordi Camps
- Unitat de Recerca Biomèdica, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain.
| | - Antoni Castro
- Research Group on Autoimmunity, Infection and Thrombosis (GRAIIT), Department of Internal Medicine, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| | - Mercè Pascual-Queralt
- Department of Urology, Hospital Universitari de Sant Joan, Institut d'Investigació Sanitària Pere Virgili, Universitat Rovira i Virgili, Reus, Spain
| |
Collapse
|
8
|
Caneparo C, Carignan L, Lonina E, Goulet SM, Pellerin FA, Chabaud S, Bordeleau F, Bolduc S, Pelletier M. Impact of Endocrine Disruptors on the Genitourinary Tract. J Xenobiot 2024; 14:1849-1888. [PMID: 39728407 DOI: 10.3390/jox14040099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 11/04/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Over the last decades, the human species has seen an increase in the incidence of pathologies linked to the genitourinary tract. Observations in animals have allowed us to link these increases, at least in part, to changes in the environment and, in particular, to an increasing presence of endocrine disruptors. These can be physical agents, such as light or heat; natural products, such as phytoestrogens; or chemicals produced by humans. Endocrine disruptors may interfere with the signaling pathways mediated by the endocrine system, particularly those linked to sex hormones. These factors and their general effects are presented before focusing on the male and female genitourinary tracts by describing their anatomy, development, and pathologies, including bladder and prostate cancer.
Collapse
Affiliation(s)
- Christophe Caneparo
- Department of Pediatrics, Gynecology and Obstetrics, Faculty of Medicine, Geneva University Hospitals, University of Geneva, CH-1205 Geneva, Switzerland
| | - Laurence Carignan
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Elena Lonina
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Sarah-Maude Goulet
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Felix-Antoine Pellerin
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - Stéphane Chabaud
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
| | - François Bordeleau
- Oncology Division, CHU de Québec-Université Laval Research Center and Université Laval Cancer Research Center, Quebec, QC G1R 3S3, Canada
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Molecular Biology, Medical Biochemistry and Pathology, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Stéphane Bolduc
- Regenerative Medicine Division, Centre de Recherche en Organogénèse Expérimentale/LOEX, CHU de Québec-Université Laval Research Center, Université Laval, Quebec, QC G1J 5B3, Canada
- Department of Surgery, Université Laval, Quebec, QC G1V 0A6, Canada
| | - Martin Pelletier
- Infectious and Immune Diseases Division, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Intersectorial Centre for Endocrine Disruptors Analysis, Institut National de La Recherche Scientifique (INRS), Montreal, QC H4V 1B7, Canada
- Department of Microbiology-Infectious Diseases and Immunology, Faculty of Medicine, Laval University; ARThrite Research Center, Université Laval, Quebec, QC G1V 0A6, Canada
| |
Collapse
|
9
|
Chen Y, Ma T. Hematologic cancers and infections: how to detect infections in advance and determine the type? Front Cell Infect Microbiol 2024; 14:1476543. [PMID: 39559703 PMCID: PMC11570547 DOI: 10.3389/fcimb.2024.1476543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/16/2024] [Indexed: 11/20/2024] Open
Abstract
Infection is one of the leading causes of death in patients with hematologic cancers. Hematologic cancer patients with compromised immune systems are already susceptible to infections, which come on even more rapidly and are difficult to control after they develop neutrophil deficiencies from high-dose chemotherapy. After patients have developed an infection, the determination of the type of infection becomes a priority for clinicians. In this review, we summarize the biomarkers currently used for the prediction of infections in patients with hematologic cancers; procalcitonin, CD64, cytokines, and CD14 et al. can be used to determine bacterial infections, and (1-3)-β-D-glucan and galactomannan et al. can be used as a determination of fungal infections. We have also focused on the use of metagenomic next-generation sequencing in infections in patients with hematologic cancers, which has excellent clinical value in infection prediction and can detect microorganisms that cannot be detected by conventional testing methods such as blood cultures. Of course, we also focused on infection biomarkers that are not yet used in blood cancer patients but could be used as a future research direction, e.g., human neutrophil lipocalin, serum amyloid A, and heparin-binding protein et al. Finally, clinicians need to combine multiple infection biomarkers, the patient's clinical condition, local susceptibility to the type of infection, and many other factors to make a determination of the type of infection.
Collapse
Affiliation(s)
- Yan Chen
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Tao Ma
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
10
|
Yang Z, Liu Y, Xiang Y, Chen R, Chen L, Wang S, Lv L, Zang M, Zhou N, Li S, Shi B, Li Y. ILC2-derived CGRP triggers acute inflammation and nociceptive responses in bacterial cystitis. Cell Rep 2024; 43:114859. [PMID: 39412984 DOI: 10.1016/j.celrep.2024.114859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/25/2024] [Indexed: 10/18/2024] Open
Abstract
Calcitonin gene-related peptide (CGRP), a neuropeptide involved in nociceptor neuronal function, plays a critical role in mediating neuroinflammation and pain. In this study, we find that bladder group 2 innate lymphoid cells (ILC2s) function as primary producers of CGRP in the early phase of bacterial cystitis, contributing to increased inflammation, altered voiding behavior, and heightened pelvic allodynia. Furthermore, we demonstrate that interleukin (IL)-33, a cytokine secreted by urothelial cells, upregulates CGRP production by ILC2s in the bladder during uropathogenic Escherichia coli (UPEC) infection. Moreover, our research reveals that monocytes expressing high levels of receptor activity-modifying protein 1 (RAMP1), a CGRP receptor, mediate the pro-inflammatory effects of CGRP-producing ILC2s. In summary, our results underscore the significance of the immune cell-derived neuropeptides in the pathology of UPEC infection, suggesting a promising therapeutic approach targeting the IL-33-ILC2-CGRP axis for managing lower urinary tract symptoms in bacterial cystitis.
Collapse
Affiliation(s)
- Zizhuo Yang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Yaxiao Liu
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Yinrui Xiang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Rui Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Lipeng Chen
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Shuai Wang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Linchen Lv
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Maolin Zang
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Nan Zhou
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China
| | - Shiyang Li
- Department of Gastroenterology, Qilu Hospital of Shandong University, Jinan, Shandong, China; Advanced Medical Research Institute, Shandong University, Jinan, Shandong, China.
| | - Benkang Shi
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen, China.
| | - Yan Li
- Department of Urology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; Key Laboratory of Urinary Precision Diagnosis and Treatment in Universities of Shandong, Jinan, Shandong, China; Shenzhen Research Institute of Shandong University, Shenzhen, China.
| |
Collapse
|
11
|
Collins CA, Waller C, Batourina E, Kumar L, Mendelsohn CL, Gilbert NM. Nur77 protects the bladder urothelium from intracellular bacterial infection. Nat Commun 2024; 15:8308. [PMID: 39333075 PMCID: PMC11436794 DOI: 10.1038/s41467-024-52454-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 09/06/2024] [Indexed: 09/29/2024] Open
Abstract
Intracellular infections by Gram-negative bacteria are a significant global health threat. The nuclear receptor Nur77 (also called TR3, NGFI-B, or NR4A1) was recently shown to sense cytosolic bacterial lipopolysaccharide (LPS). However, the potential role for Nur77 in controlling intracellular bacterial infection has not been examined. Here we show that Nur77 protects against intracellular infection in the bladder by uropathogenic Escherichia coli (UPEC), the leading cause of urinary tract infections (UTI). Nur77 deficiency in mice promotes the formation of UPEC intracellular bacterial communities (IBCs) in the cells lining the bladder lumen, leading to persistent infection in bladder tissue. Conversely, treatment with a small-molecule Nur77 agonist, cytosporone B, inhibits invasion and enhances the expulsion of UPEC from human urothelial cells in vitro, and significantly reduces UPEC IBC formation and bladder infection in mice. Our findings reveal a new role for Nur77 in control of bacterial infection and suggest that pharmacologic agonism of Nur77 function may represent a promising antibiotic-sparing therapeutic approach for UTI.
Collapse
Affiliation(s)
- Christina A Collins
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Chevaughn Waller
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Ekaterina Batourina
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Lokesh Kumar
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA
| | - Cathy L Mendelsohn
- Department of Urology, Columbia University Irving Medical Center, New York, NY, USA
| | - Nicole M Gilbert
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, St. Louis, MO, USA.
- Center for Women's Infectious Disease Research, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
12
|
Leddy O, Yuki Y, Carrington M, Bryson BD, White FM. PathMHC: a workflow to selectively target pathogen-derived MHC peptides in discovery immunopeptidomics experiments for vaccine target identification. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.11.612454. [PMID: 39314426 PMCID: PMC11419027 DOI: 10.1101/2024.09.11.612454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Vaccine-elicited T cell responses can contribute to immune protection against emerging infectious disease risks such as antimicrobials-resistant (AMR) microbial pathogens and viruses with pandemic potential, but rapidly identifying appropriate targets for T cell priming vaccines remains challenging. Mass spectrometry (MS) analysis of peptides presented on major histocompatibility complexes (MHCs) can identify potential targets for protective T cell responses in a proteome-wide manner. However, pathogen-derived peptides are outnumbered by self peptides in the MHC repertoire and may be missed in untargeted MS analyses. Here we present a novel approach, termed PathMHC, that uses computational analysis of untargeted MS data followed by targeted MS to discover novel pathogen-derived MHC peptides more efficiently than untargeted methods alone. We applied this workflow to identify MHC peptides derived from multiple microbes, including potential vaccine targets presented on MHC-I by human dendritic cells infected with Mycobacterium tuberculosis . PathMHC will facilitate antigen discovery campaigns for vaccine development.
Collapse
|
13
|
Sher EK, Džidić-Krivić A, Sesar A, Farhat EK, Čeliković A, Beća-Zećo M, Pinjic E, Sher F. Current state and novel outlook on prevention and treatment of rising antibiotic resistance in urinary tract infections. Pharmacol Ther 2024; 261:108688. [PMID: 38972453 DOI: 10.1016/j.pharmthera.2024.108688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/16/2024] [Accepted: 07/04/2024] [Indexed: 07/09/2024]
Abstract
Antibiotic-resistant bacteria are currently an important public health concern posing a serious threat due to their resistance to the current arsenal of antibiotics. Uropathogens Escherichia coli (UPEC), Proteus mirabilis, Klebsiella pneumoniae and Enterococcus faecalis, antibiotic-resistant gram-negative bacteria, cause serious cases of prolonged UTIs, increasing healthcare costs and potentially even leading to the death of an affected patient. This review discusses current knowledge about the increasing resistance to currently recommended antibiotics for UTI therapy, as well as novel therapeutic options. Traditional antibiotics are still a part of the therapy guidelines for UTIs, although they are often not effective and have serious side effects. Hence, novel drugs are being developed, such as combinations of β-lactam antibiotics with cephalosporins and carbapenems. Siderophoric cephalosporins, such as cefiderocol, have shown potential in the treatment of individuals with significant gram-negative bacterial infections, as well as aminoglycosides, fluoroquinolones and tetracyclines that are also undergoing clinical trials. The use of cranberry and probiotics is another potential curative and preventive method that has shown antimicrobial and anti-inflammatory effects. However, further studies are needed to assess the efficacy and safety of probiotics containing cranberry extract for UTI prevention and treatment. An emerging novel approach for UTI treatment is the use of immuno-prophylactic vaccines, as well as different nanotechnology solutions such as nanoparticles (NP). NP have the potential to be used as delivery systems for drugs to specific targets. Furthermore, nanotechnology could enable the development of nano antibiotics with improved features by the application of different NPs in their structure, such as gold and copper NPs. However, further high-quality research is required for the synthesis and testing of these novel molecules, such as safety evaluation and pharmacovigilance.
Collapse
Affiliation(s)
- Emina K Sher
- School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| | - Amina Džidić-Krivić
- Department of Neurology, Cantonal Hospital Zenica, Zenica 72000, Bosnia and Herzegovina; International Society of Engineering Science and Technology, Nottingham, United Kingdom
| | - Ana Sesar
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Health Studies, Victoria International University, Mostar 88000, Bosnia and Herzegovina
| | - Esma K Farhat
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Croatia
| | - Amila Čeliković
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Medicine, University of Zenica, Zenica 71000, Bosnia and Herzegovina
| | - Merima Beća-Zećo
- International Society of Engineering Science and Technology, Nottingham, United Kingdom; Faculty of Health Studies, Victoria International University, Mostar 88000, Bosnia and Herzegovina
| | - Emma Pinjic
- Department of Radiology, Beth Israel Deaconess Medical Center (BIDMC), Boston, MA, United States
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham NG11 8NS, United Kingdom.
| |
Collapse
|
14
|
Iijima N. The emerging role of effector functions exerted by tissue-resident memory T cells. OXFORD OPEN IMMUNOLOGY 2024; 5:iqae006. [PMID: 39193473 PMCID: PMC11213632 DOI: 10.1093/oxfimm/iqae006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 04/14/2024] [Accepted: 06/04/2024] [Indexed: 08/29/2024] Open
Abstract
The magnitude of the effector functions of memory T cells determines the consequences of the protection against invading pathogens and tumor development or the pathogenesis of autoimmune and allergic diseases. Tissue-resident memory T cells (TRM cells) are unique T-cell populations that persist in tissues for long periods awaiting re-encounter with their cognate antigen. Although TRM cell reactivation primarily requires the presentation of cognate antigens, recent evidence has shown that, in addition to the conventional concept, TRM cells can be reactivated without the presentation of cognate antigens. Non-cognate TRM cell activation is triggered by cross-reactive antigens or by several combinations of cytokines, including interleukin (IL)-2, IL-7, IL-12, IL-15 and IL-18. The activation mode of TRM cells reinforces their cytotoxic activity and promotes the secretion of effector cytokines (such as interferon-gamma and tumor necrosis factor-alpha). This review highlights the key features of TRM cell maintenance and reactivation and discusses the importance of effector functions that TRM cells exert upon being presented with cognate and/or non-cognate antigens, as well as cytokines secreted by TRM and non-TRM cells within the tissue microenvironment.
Collapse
Affiliation(s)
- Norifumi Iijima
- Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition (NIBN), Ibaraki, Osaka, Japan
| |
Collapse
|
15
|
Qiu L, Chirman D, Clark JR, Xing Y, Hernandez Santos H, Vaughan EE, Maresso AW. Vaccines against extraintestinal pathogenic Escherichia coli (ExPEC): progress and challenges. Gut Microbes 2024; 16:2359691. [PMID: 38825856 PMCID: PMC11152113 DOI: 10.1080/19490976.2024.2359691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/04/2024] Open
Abstract
The emergence of antimicrobial resistance (AMR) is a principal global health crisis projected to cause 10 million deaths annually worldwide by 2050. While the Gram-negative bacteria Escherichia coli is commonly found as a commensal microbe in the human gut, some strains are dangerously pathogenic, contributing to the highest AMR-associated mortality. Strains of E. coli that can translocate from the gastrointestinal tract to distal sites, called extraintestinal E. coli (ExPEC), are particularly problematic and predominantly afflict women, the elderly, and immunocompromised populations. Despite nearly 40 years of clinical trials, there is still no vaccine against ExPEC. One reason for this is the remarkable diversity in the ExPEC pangenome across pathotypes, clades, and strains, with hundreds of genes associated with pathogenesis including toxins, adhesins, and nutrient acquisition systems. Further, ExPEC is intimately associated with human mucosal surfaces and has evolved creative strategies to avoid the immune system. This review summarizes previous and ongoing preclinical and clinical ExPEC vaccine research efforts to help identify key gaps in knowledge and remaining challenges.
Collapse
Affiliation(s)
- Ling Qiu
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Dylan Chirman
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Justin R. Clark
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Yikun Xing
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Haroldo Hernandez Santos
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| | - Ellen E. Vaughan
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
| | - Anthony W. Maresso
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX, USA
- Tailored Antibacterials and Innovative Laboratories for Phage (Φ) Research (TAILΦR), Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
16
|
Hawas S, Vagenas D, Haque A, Totsika M. Bladder-draining lymph nodes support germinal center B cell responses during urinary tract infection in mice. Infect Immun 2023; 91:e0031723. [PMID: 37882531 PMCID: PMC10652902 DOI: 10.1128/iai.00317-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 10/02/2023] [Indexed: 10/27/2023] Open
Abstract
Bacterial urinary tract infections (UTIs) are both common and exhibit high recurrence rates in women. UTI healthcare costs are increasing due to the rise of multidrug-resistant (MDR) bacteria, necessitating alternative approaches for infection control. Here, we directly observed host adaptive immune responses in acute UTI. We employed a mouse model in which wild-type C57BL/6J mice were transurethrally inoculated with a clinically relevant MDR UTI strain of uropathogenic Escherichia coli (UPEC). Firstly, we noted that rag1-/- C57BL/6J mice harbored larger bacterial burdens than wild-type counterparts, consistent with a role for adaptive immunity in UTI control. Consistent with this, UTI triggered in the bladders of wild-type mice early increases of myeloid cells, including CD11chi conventional dendritic cells, suggesting possible involvement of these professional antigen-presenting cells. Importantly, germinal center B cell responses developed by 4 weeks post-infection in bladder-draining lymph nodes of wild-type mice and, although modest in magnitude and transient in nature, could not be boosted with a second UTI. Thus, our data reveal for the first time in a mouse model that UPEC UTI induces local B cell immune responses in bladder-draining lymph nodes, which could potentially serve to control infection.
Collapse
Affiliation(s)
- Sophia Hawas
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Dimitrios Vagenas
- Research Methods Group, School of Public Health and Social Work, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Ashraful Haque
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
- Department of Microbiology and Immunology, University of Melbourne, The Peter Doherty Institute for Infection and Immunity, Parkville, Victoria, Australia
| | - Makrina Totsika
- Centre for Immunology and Infection Control, School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
17
|
Kuhn HW, Hreha TN, Hunstad DA. Immune defenses in the urinary tract. Trends Immunol 2023; 44:701-711. [PMID: 37591712 PMCID: PMC10528756 DOI: 10.1016/j.it.2023.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/10/2023] [Accepted: 07/10/2023] [Indexed: 08/19/2023]
Abstract
Recent advances in preclinical modeling of urinary tract infections (UTIs) have enabled the identification of key facets of the host response that influence pathogen clearance and tissue damage. Here, we review new insights into the functions of neutrophils, macrophages, and antimicrobial peptides in innate control of uropathogens and in mammalian infection-related tissue injury and repair. We also discuss novel functions for renal epithelial cells in innate antimicrobial defense. In addition, epigenetic modifications during bacterial cystitis have been implicated in bladder remodeling, conveying susceptibility to recurrent UTI. In total, contemporary work in this arena has better defined host processes that shape UTI susceptibility and severity and might inform the development of novel preventive and therapeutic approaches for acute and recurrent UTI.
Collapse
Affiliation(s)
- Hunter W Kuhn
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - Teri N Hreha
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA
| | - David A Hunstad
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
18
|
Frimodt-Møller N, Bjerrum L. Treating urinary tract infections in the era of antibiotic resistance. Expert Rev Anti Infect Ther 2023; 21:1301-1308. [PMID: 37922147 DOI: 10.1080/14787210.2023.2279104] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/31/2023] [Indexed: 11/05/2023]
Abstract
INTRODUCTION Urinary tract infections (UTIs) are associated with 25-40% of antibiotics consumed in primary care and are, therefore, driving antibiotic resistance. The worldwide increase in antibiotic resistance especially in Escherichia coli has complicated the treatment choices for UTIs and absence of effective oral antibiotics may lead to increasing need for more effective treatments. AREAS COVERED In this review we focus on the importance of the correct diagnosis of UTI as based on proof of urinary pathogens in the urine and discuss diagnostic measures including microscopy, dipstick, and culture. Antibiotic treatment can often await diagnostic measures with pain relief such as ibuprofen. The risk of an uncomplicated UTI leading to pyelonephritis is low (1-2%) and presence of bacteria in the bladder leaves some time for the immune system to react. Three antibiotics are recommended as based on their activity, and low propensity to select for resistance, i.e. nitrofurantoin, fosfomycin, and pivmecillinam, and in general, 3-5 days of treatment will suffice. EXPERT OPINION Understanding the usual benign course of uUTIs can help reduce antibiotic treatment in many cases, e.g. starting treatment by pain relief and awaiting the course of infection without antibiotics. Better rapid tests in primary care are urgently needed to enforce such policies.
Collapse
Affiliation(s)
| | - Lars Bjerrum
- Research Unit and Section of General Practice, Dept of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
19
|
Fuchs S, Gong R, Gerhard M, Mejías-Luque R. Immune Biology and Persistence of Helicobacter pylori in Gastric Diseases. Curr Top Microbiol Immunol 2023; 444:83-115. [PMID: 38231216 DOI: 10.1007/978-3-031-47331-9_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Helicobacter pylori is a prevalent pathogen, which affects more than 40% of the global population. It colonizes the human stomach and persists in its host for several decades or even a lifetime, if left untreated. The persistent infection has been linked to various gastric diseases, including gastritis, peptic ulcers, and an increased risk for gastric cancer. H. pylori infection triggers a strong immune response directed against the bacterium associated with the infiltration of innate phagocytotic immune cells and the induction of a Th1/Th17 response. Even though certain immune cells seem to be capable of controlling the infection, the host is unable to eliminate the bacteria as H. pylori has developed remarkable immune evasion strategies. The bacterium avoids its killing through innate recognition mechanisms and manipulates gastric epithelial cells and immune cells to support its persistence. This chapter focuses on the innate and adaptive immune response induced by H. pylori infection, and immune evasion strategies employed by the bacterium to enable persistent infection.
Collapse
Affiliation(s)
- Sonja Fuchs
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Ruolan Gong
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Markus Gerhard
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany
| | - Raquel Mejías-Luque
- Institute for Medical Microbiology, Immunology and Hygiene, TUM School of Medicine and Health, Department Preclinical Medicine, Technical University of Munich (TUM), Trogerstraße 30, 81675, Munich, Germany.
| |
Collapse
|