1
|
Riviere C, Aljieli M, Mévélec MN, Lantier L, Boursin F, Lajoie L, Ducournau C, Germon S, Moiré N, Dimier-Poisson I, Aubrey N, di Tommaso A. Neospora caninum as delivery vehicle for anti-PD-L1 scFv-Fc: A novel approach for cancer immunotherapy. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200968. [PMID: 40236994 PMCID: PMC11999461 DOI: 10.1016/j.omton.2025.200968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/29/2024] [Accepted: 03/16/2025] [Indexed: 04/17/2025]
Abstract
Neospora caninum, a potential anticancer agent able to reactivate the immune response within the tumor microenvironment (TME), has recently shown enhanced immunomodulatory properties in different tumor models when armed with the cytokine, Il-15. In the current area of combination immunotherapy strategies designed to overcome treatment resistance, we engineered for the first time the protozoan Neospora caninum to vectorize and secrete a single-chain variable fragment fused to fragment crystallizable region (scFv-Fc) targeting human programmed cell death ligand 1 (PD-L1). Following validation of its secretion through the micronemes (protozoa secretory organelles), we demonstrated that the scFv-Fc could bind PD-L1 on mouse and human tumor cells, block the programmed cell death protein 1 (PD-1)/PD-L1 pathway leading to potentiate the T cell lymphocyte activity. Additionally, the scFv-Fc induced antibody-dependent cellular phagocytosis (ADCP) and antibody-dependent cellular cytotoxicity (ADCC). Those data demonstrate the feasibility of vectoring and secreting a functional antibody fragment by N. caninum, opening promising avenues for future research.
Collapse
Affiliation(s)
- Clément Riviere
- BioMAP, UMR ISP 1282 INRAe – Université de Tours, 37200 Tours, France
| | - Muna Aljieli
- BioMAP, UMR ISP 1282 INRAe – Université de Tours, 37200 Tours, France
- Faculty of Pharmacy, University of Gezira, Wad Madani, Sudan
| | | | - Louis Lantier
- BioMAP, UMR ISP 1282 INRAe – Université de Tours, 37200 Tours, France
| | - Fanny Boursin
- BioMAP, UMR ISP 1282 INRAe – Université de Tours, 37200 Tours, France
| | - Laurie Lajoie
- BioMAP, UMR ISP 1282 INRAe – Université de Tours, 37200 Tours, France
| | - Céline Ducournau
- BioMAP, UMR ISP 1282 INRAe – Université de Tours, 37200 Tours, France
| | - Stéphanie Germon
- BioMAP, UMR ISP 1282 INRAe – Université de Tours, 37200 Tours, France
| | - Nathalie Moiré
- BioMAP, UMR ISP 1282 INRAe – Université de Tours, 37200 Tours, France
| | | | - Nicolas Aubrey
- BioMAP, UMR ISP 1282 INRAe – Université de Tours, 37200 Tours, France
| | - Anne di Tommaso
- BioMAP, UMR ISP 1282 INRAe – Université de Tours, 37200 Tours, France
| |
Collapse
|
2
|
Parvanian S, Ge X, Garris CS. Recent developments in myeloid immune modulation in cancer therapy. Trends Cancer 2025; 11:365-375. [PMID: 39794212 DOI: 10.1016/j.trecan.2024.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/13/2025]
Abstract
Myeloid cells play a crucial dual role in cancer progression and response to therapy, promoting tumor growth, enabling immune suppression, and contributing to metastatic spread. The ability of these cells to modulate the immune system has made them attractive targets for therapeutic strategies aimed at shifting their function from tumor promotion to fostering antitumor immunity. Therapeutic approaches targeting myeloid cells focus on modifying their numbers, genetics, metabolism, and interactions within the tumor microenvironment. These strategies aim to reverse their suppressive functions and redirect them to support antitumor immune responses by inhibiting immunosuppressive pathways, targeting specific receptors, and promoting their differentiation into less immunosuppressive phenotypes. Here, we discuss recent approaches to clinically target tumor myeloid cells, focusing on reprogramming myeloid cells to promote antitumor immunity.
Collapse
Affiliation(s)
- Sepideh Parvanian
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA
| | - Xinying Ge
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA; Master's Program in Immunology Harvard Medical School, 200 Longwood Ave, Boston, MA 02115, USA
| | - Christopher S Garris
- Center for Systems Biology, Massachusetts General Hospital, 185 Cambridge St, CPZN 5206, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital, 55 Fruit St, Boston, MA 02114, USA.
| |
Collapse
|
3
|
Izadi S, Abrantes R, Gumpelmair S, Kunnummel V, Duarte HO, Steinberger P, Reis CA, Castilho A. An engineered PD1-Fc fusion produced in N. benthamiana plants efficiently blocks PD1/PDL1 interaction. PLANT CELL REPORTS 2025; 44:80. [PMID: 40119938 PMCID: PMC11929711 DOI: 10.1007/s00299-025-03475-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 03/04/2025] [Indexed: 03/25/2025]
Abstract
KEY MESSAGE Plant-made PD1-Fc fusions engineered for optimized glycosylation and Fc-receptor engagement are highly efficient in blocking PD1/PDL1 interactions and can be cost-effective alternatives to antibody-based immune checkpoint inhibitors. Immune checkpoint inhibitors (ICIs) are antibodies to receptors that have pivotal roles during T-cell activation processes. The programmed cell death 1 (PD1) can be regarded as the primary immune checkpoint and antibodies targeting PD1 or its ligand PDL1 have revolutionized immunotherapy of cancer. However, the majority of patients fail to respond, and treatment resistance as well as immune-related adverse events are commonly associated with this therapy. Alternatives to antibody-based ICIs targeting the PD1 pathway may bear the potential to overcome some of these shortcomings. Here, we have used a plant expression platform based on the tobacco relative Nicotiana benthamiana to generate immunoglobulin fusion proteins harboring the wild type or an affinity-enhanced PD1 ectodomain. We have exploited the versatility of our system to generate variants that differed regarding their glycosylation profile as well as their capability to engage Fc-receptors. Unlike its wild-type counterpart, the affinity-enhanced versions showed strongly augmented capabilities to engage PDL1 in both protein- and cell-based assays. Moreover, in contrast with clinical antibodies, their binding is not affected by the glycosylation status of PDL1. Importantly, we could demonstrate that the plant-made PD1 fusion proteins are highly efficient in blocking inhibitory PD1 signaling in a T cell reporter assay. Taken together, our study highlights the utility of our plant-based protein expression platform to generate biologics with therapeutic potential. Targeting PDL1 with plant derived affinity-enhanced PD1 immunoglobulin fusion proteins may reduce overstimulation associated with antibody-based therapies while retaining favorable features of ICIs such as long serum half-life.
Collapse
Affiliation(s)
- Shiva Izadi
- Department of Biotechnology and Food Science Institute of Plant Biotechnology and Cell Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Rafaela Abrantes
- i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Simon Gumpelmair
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Vinny Kunnummel
- Department of Biotechnology and Food Science Institute of Plant Biotechnology and Cell Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria
| | - Henrique O Duarte
- i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
| | - Peter Steinberger
- Division of Immune Receptors and T Cell Activation, Institute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of Vienna, Vienna, Austria
| | - Celso A Reis
- i3S Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Institute of Molecular Pathology and Immunology, University of Porto (IPATIMUP), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
- Faculty of Medicine (FMUP), University of Porto, Porto, Portugal
| | - Alexandra Castilho
- Department of Biotechnology and Food Science Institute of Plant Biotechnology and Cell Biology, BOKU University, Muthgasse 18, 1190, Vienna, Austria.
| |
Collapse
|
4
|
Peng J, Wang Y, Chi Z, Li S, Zhang Y, Li L, Bian D, Zhai Z, Yuan S, Zhang Y, Li W, Ye F, Wang L. Comparative effectiveness and safety of imported and domestic immune checkpoint inhibitors in China: A systematic review and pairwise and network meta-analyses. Pharmacol Res 2024; 210:107475. [PMID: 39571771 DOI: 10.1016/j.phrs.2024.107475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Multiple brands of immune checkpoint inhibitors (ICIs), including domestic and imported agents, have been approved as front-line therapy in China. However, little is known about the difference in efficacy and safety of these agents of different origins. This study aims to systematically compare the difference between National Medical Products Administration (NMPA) approved domestic and imported ICIs regarding their efficacy, safety, and price. METHODS We systematically searched PubMed, Embase, and Cochrane Central, from inception to July 1st, 2023, for phase III trials evaluating ICIs as first- or second-line settings that have available hazard ratio (HR) for Asians or non-Asians. Studies of domestic and imported ICIs were screened and paired by the matching clinical characteristics as mirror groups. The primary endpoint was to assess the difference in efficacy between domestic and imported ICIs regarding overall survival. An effect size was derived from each mirror group and then pooled across all groups using a random-effects model. Heterogeneity was assessed by I2 statistics. Monthly treatment costs for each drug were calculated based on dosing information on National Medical Products Administration (NMPA) label and prices extracted from INSIGHT database. The difference in monthly treatment costs was compared by unpaired T-test. The protocol is registered on PROSPERO, CRD42024580753. RESULTS Overall, domestic ICIs exhibited better efficacy regarding overall survival (HR, 0.87; 95 % CI, 0.79-0.97; P < 0.05; I2 = 0) compared with imported agents. No difference was observed regarding benefits in progression free survival (HR, 0.95; 95 % CI, 0.82-1.09; P > 0.05; I2 = 0). Consistent results were obtained through frequentists and Bayesian approaches. The differences in safety; measured by relative risk of treatment-related adverse events (TARE) of any grade, TARE of grade 3 or higher, immune-related adverse events(irAE) of any grade, irAE of grade 3 or higher, discontinuation due to treatment, and death due to treatment; were also similar between domestic and imported ICIs. Moreover, in current Chinese market, the monthly treatment prices of domestic ICIs was statistically lower than that of imported ICIs (P < 0.01). CONCLUSIONS Our research provides an essential reference of cost-effectiveness of ICIs manufactured in China for clinicians in routine practice of cancer care as well as public health authorities for decision making process.
Collapse
Affiliation(s)
- Jilin Peng
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yixu Wang
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, No. 11 Xizhimen South Street Xicheng District, Beijing 100044, China
| | - Zhenye Chi
- School of Nursing and Health, Zhengzhou University, Zhengzhou 450052, China
| | - Shichao Li
- Department of Otolaryngology Head and Neck Surgery, Henan Provincial People's Hospital, China; People's Hospital of Zhengzhou University, China; People's Hospital of Henan University, Zhengzhou, Henan 450003, China
| | - Yuan Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ling Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Di Bian
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Ziyu Zhai
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Sijie Yuan
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Yulin Zhang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Weijie Li
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Fanglei Ye
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| | - Le Wang
- Department of Otolaryngology Head and Neck Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
5
|
Wei X, Zhao L, Yang F, Yang Y, Zhang H, Du K, Tian X, Fan R, Si G, Wang K, Li Y, Wei Z, He M, Sui J. A CD25×TIGIT bispecific antibody induces anti-tumor activity through selective intratumoral Treg cell depletion. Mol Ther 2024; 32:4075-4094. [PMID: 39245938 PMCID: PMC11573620 DOI: 10.1016/j.ymthe.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/29/2024] [Accepted: 09/04/2024] [Indexed: 09/10/2024] Open
Abstract
Intratumoral regulatory T cells (Tregs) express high levels of CD25 and TIGIT, which are also recognized as markers of effector T cell (Teff) activation. Targeting these molecules each alone with monoclonal antibodies (mAbs) poses a risk of concurrently depleting both Teffs and peripheral Tregs, thereby compromising the effectiveness and selectivity of intratumoral Treg depletion. Here, leveraging the increased abundance of CD25+ TIGIT+ double-positive Tregs in the solid tumor microenvironment (but not in peripheral tissues), we explore the feasibility of using a CD25×TIGIT bispecific antibody (bsAb) to selectively deplete intratumoral Tregs. We initially constructed a bsAb co-targeting mouse CD25 and TIGIT, NSWm7210, and found that NSWm7210 conferred enhanced intratumoral Treg depletion, Teff activation, and tumor suppression as compared to the parental monotherapies in mouse models. We subsequently constructed a bsAb co-targeting human CD25 and TIGIT (NSWh7216), which preferentially eliminated CD25+ TIGIT+ double-positive cells over single-positive cells in vitro. NSWh7216 exhibited enhanced anti-tumor activity without toxicity of peripheral Tregs in CD25 humanized mice compared to the parental monotherapies. Our study illustrates the use of CD25×TIGIT bsAbs as effective agents against solid tumors based on selective depletion of intratumoral Tregs.
Collapse
Affiliation(s)
- Xin Wei
- School of Life Sciences, Beijing Normal University, Beijing 100875, China; National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Linlin Zhao
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Fang Yang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yajing Yang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Huixiang Zhang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Kaixin Du
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Xinxin Tian
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Ruihua Fan
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Guangxu Si
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Kailun Wang
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Yulu Li
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Zhizhong Wei
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Miaomiao He
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China
| | - Jianhua Sui
- National Institute of Biological Sciences, 7 Science Park Road, Beijing 102206, China; Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing 102206, China.
| |
Collapse
|
6
|
Dahan R, Korman AJ. Fc-optimized checkpoint antibodies for cancer immunotherapy. Trends Mol Med 2024:S1471-4914(24)00275-2. [PMID: 39487064 DOI: 10.1016/j.molmed.2024.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/09/2024] [Accepted: 10/10/2024] [Indexed: 11/04/2024]
Abstract
The development of checkpoint antibodies for cancer therapy has been guided by the principle of blocking T cell inhibitory signals. Recognition of the role of the Fc domain in therapeutic activities, through the depletion of immunosuppressive populations and myeloid cell activation, prompts a shift toward the development of optimized Fc-engineered checkpoint antibodies.
Collapse
Affiliation(s)
- Rony Dahan
- Department of Systems Immunology, Weizmann Institute of Science, Rehovot 7610001, Israel.
| | | |
Collapse
|
7
|
Gordeev A, Vaal A, Puchkova M, Smirnova I, Doronin A, Znobishcheva A, Zhmudanova D, Aleksandrov A, Sukchev M, Imyanitov E, Solovyev V, Iakovlev P. Preclinical comparison of prolgolimab, pembrolizumab and nivolumab. Sci Rep 2024; 14:23136. [PMID: 39367001 PMCID: PMC11452378 DOI: 10.1038/s41598-024-72118-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 09/03/2024] [Indexed: 10/06/2024] Open
Abstract
Prolgolimab is a recombinant IgG1-based anti-PD-1 antibody, whose properties were improved by the introduction of the LALA mutation, and which has demonstrated high efficacy in patients with metastatic melanoma. This paper presents the results of comparative preclinical studies of antigen-binding and effector functions involving prolgolimab and conventional IgG4 antibodies, nivolumab and pembrolizumab. None of the studied antibodies had undesirable antibody-dependent cellular cytotoxicity activity. Prolgolimab has shown higher PD-1 receptor occupancy and T-cell activation, but lower propensity to activate antibody-dependent cellular phagocytosis as compared to nivolumab and pembrolizumab. An in vivo study in mice inoculated with CT26.wt cancer cells showed that tumor growth inhibition was 16% for pembrolizumab and 56% for prolgolimab. This study warrants clinical comparison of IgG1- and IgG4-based anti-PD-1 antibodies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Evgeny Imyanitov
- Department of Tumor Growth Biology, N.N. Petrov Institute of Oncology, St.-Petersburg, Russia
| | | | | |
Collapse
|
8
|
Ma S, Gao J, Tian Y, Wen L. Recent progress in chemoenzymatic synthesis of human glycans. Org Biomol Chem 2024; 22:7767-7785. [PMID: 39246045 DOI: 10.1039/d4ob01006j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/10/2024]
Abstract
Glycan is an essential cell component that usually exists in either a free form or a glycoconjugated form. Glycosylation affects the regulatory function of glycoconjugates in health and disease development, indicating the key role of glycan in organisms. Because of the complexity and diversity of glycan structures, it is challenging to prepare structurally well-defined glycans, which hinders the investigation of biological functions at the molecular level. Chemoenzymatic synthesis is an attractive approach for preparing complex glycans, because it avoids tedious protecting group manipulations in chemical synthesis and ensures high regio- and stereo-selectivity of glucosides during glycan assembly. Herein, enzymes, such as glycosyltransferases (GTs) and glycosidases (GHs), and sugar donors involved in the chemoenzymatic synthesis of human glycans are initially discussed. Many state-of-the-art chemoenzymatic methodologies are subsequently displayed and summarized to illustrate the development of synthetic human glycans, for example, N- and O-linked glycans, human milk oligosaccharides, and glycosaminoglycans. Thus, we provide an overview of recent chemoenzymatic synthetic designs and applications for synthesizing complex human glycans, along with insights into the limitations and perspectives of the current methods.
Collapse
Affiliation(s)
- Shengzhou Ma
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhua Gao
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yinping Tian
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Liuqing Wen
- Carbohydrate-Based Drug Research Center, State Key Laboratory of Chemical Biology, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Nishimura K, Takahara K, Komura K, Ishida M, Hirosuna K, Maenosono R, Ajiro M, Sakamoto M, Iwatsuki K, Nakajima Y, Tsujino T, Taniguchi K, Tanaka T, Inamoto T, Hirose Y, Ono F, Kondo Y, Yoshimi A, Azuma H. Mechanistic insights into lethal hyper progressive disease induced by PD-L1 inhibitor in metastatic urothelial carcinoma. NPJ Precis Oncol 2024; 8:206. [PMID: 39289546 PMCID: PMC11408499 DOI: 10.1038/s41698-024-00707-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024] Open
Abstract
Hyper progressive disease (HPD) is a paradoxical phenomenon characterized by accelerated tumor growth following treatment with immune checkpoint inhibitors. However, the pathogenic causality and its predictor remain unknown. We herein report a fatal case of HPD in a 50-year-old man with metastatic bladder cancer. He had achieved a complete response (CR) through chemoradiation therapy followed by twelve cycles of chemotherapy, maintaining CR for 24 months. Three weeks after initiating maintenance use of a PD-L1 inhibitor, avelumab, a massive amount of metastases developed, leading to the patient's demise. Omics analysis, utilizing metastatic tissues obtained from an immediate autopsy, implied the contribution of M2 macrophages, TGF-β signaling, and interleukin-8 to HPD pathogenesis.
Collapse
Affiliation(s)
- Kazuki Nishimura
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Kiyoshi Takahara
- Department of Urology, Fujita-Health University School of Medicine, Toyoake City, Aichi, Japan
| | - Kazumasa Komura
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan.
| | - Mitsuaki Ishida
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Kensuke Hirosuna
- Department of Regenerative Science, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Ryoichi Maenosono
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Masahiko Ajiro
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Moritoshi Sakamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan
| | - Kengo Iwatsuki
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yuki Nakajima
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Takuya Tsujino
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Kohei Taniguchi
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Tomohito Tanaka
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Teruo Inamoto
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yoshinobu Hirose
- Department of Pathology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Fumihito Ono
- Division of Translational Research, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| | - Yoichi Kondo
- Department of Anatomy and Cell Biology, Faculty of Medicine, Osaka Medical and Pharmaceutical University, Takatsuki, Osaka, Japan
| | - Akihide Yoshimi
- Division of Cancer RNA Research, National Cancer Center Research Institute, Chuo-Ku, Tokyo, Japan.
| | - Haruhito Azuma
- Department of Urology, Osaka Medical and Pharmaceutical University, Takatsuki City, Osaka, Japan
| |
Collapse
|
10
|
Roozitalab G, Abedi B, Imani S, Farghadani R, Jabbarzadeh Kaboli P. Comprehensive assessment of TECENTRIQ® and OPDIVO®: analyzing immunotherapy indications withdrawn in triple-negative breast cancer and hepatocellular carcinoma. Cancer Metastasis Rev 2024; 43:889-918. [PMID: 38409546 DOI: 10.1007/s10555-024-10174-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/05/2024] [Indexed: 02/28/2024]
Abstract
Atezolizumab (TECENTRIQ®) and nivolumab (OPDIVO®) are both immunotherapeutic indications targeting programmed cell death 1 ligand 1 (PD-L1) and programmed cell death 1 (PD-1), respectively. These inhibitors hold promise as therapies for triple-negative breast cancer (TNBC) and hepatocellular carcinoma (HCC) and have demonstrated encouraging results in reducing the progression and spread of tumors. However, due to their adverse effects and low response rates, the US Food and Drug Administration (FDA) has withdrawn the approval of atezolizumab in TNBC and nivolumab in HCC treatment. The withdrawals of atezolizumab and nivolumab have raised concerns regarding their effectiveness and the ability to predict treatment responses. Therefore, the current study aims to investigate the immunotherapy withdrawal of PD-1/PD-L1 inhibitors, specifically atezolizumab for TNBC and nivolumab for HCC. This study will examine both the structural and clinical aspects. This review provides detailed insights into the structure of the PD-1 receptor and its ligands, the interactions between PD-1 and PD-L1, and their interactions with the withdrawn antibodies (atezolizumab and nivolumab) as well as PD-1 and PD-L1 modifications. In addition, this review further assesses these antibodies in the context of TNBC and HCC. It seeks to elucidate the factors that contribute to diverse responses to PD-1/PD-L1 therapy in different types of cancer and propose approaches for predicting responses, mitigating the potential risks linked to therapy withdrawals, and optimizing patient outcomes. By better understanding the mechanisms underlying responses to PD-1/PD-L1 therapy and developing strategies to predict these responses, it is possible to create more efficient treatments for TNBC and HCC.
Collapse
Affiliation(s)
- Ghazaal Roozitalab
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran
| | - Behnaz Abedi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Saber Imani
- Shulan International Medical College, Zhejiang Shuren University, Hangzhou, Zhejiang, People's Republic of China
| | - Reyhaneh Farghadani
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan.
| |
Collapse
|
11
|
Guo C, Dai X, Du Y, Xiong X, Gui X. Preclinical development of a novel CCR8/CTLA-4 bispecific antibody for cancer treatment by disrupting CTLA-4 signaling on CD8 T cells and specifically depleting tumor-resident Tregs. Cancer Immunol Immunother 2024; 73:210. [PMID: 39123089 PMCID: PMC11315865 DOI: 10.1007/s00262-024-03794-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024]
Abstract
Anti-CTLA-4 antibodies faced challenges due to frequent adverse events and limited efficacy, which spurred the exploration of next-generation CTLA-4 therapeutics to balance regulatory T cells (Tregs) depletion and CD8 T cells activation. CCR8, identified primarily on tumor-infiltrating Tregs, has become a target of interest due to the anti-tumor effects demonstrated by CCR8 antibody-mediated Tregs depletion. Single-cell RNA sequencing analysis reveals that CCR8-positive Tregs constitute a small subset, with concurrent expression of CCR8 and CTLA-4. Consequently, we proposed a novel bispecific antibody targeting CCR8 and CTLA-4 that had the potential to enhance T cell activation while selectively depleting intratumor Tregs. The candidate molecule 2MW4691 was developed in a tetravalent symmetric format, maintaining a strong binding affinity for CCR8 while exhibiting relatively weaker CTLA-4 binding. This selective binding ability allowed 2MW4691 to target and deplete tumor-infiltrating Tregs with higher specificity. In vitro assays verified the antibody's capacity for antibody-dependent cellular cytotoxicity (ADCC) to Tregs with high level of CTLA-4 expression, but not CD8 T cells with relatively low level of CTLA-4 on cell surface. Also, 2MW4691 inhibited the CTLA-4 pathway and enhanced T cell activation. The in vivo therapeutic efficacy of 2MW4691 was further demonstrated using hCCR8 or hCTLA-4 humanized mouse models and hCCR8/hCTLA-4 double knock-in mouse models. In cynomolgus monkeys, 2MW4691 was well-tolerated, exhibited the anticipated pharmacokinetic profile, and had a minimal impact on the peripheral T cell population. The promising preclinical results supported the further evaluation of 2MW4691 as a next-generation Treg-based therapeutics in clinical trials.
Collapse
Affiliation(s)
- Cuicui Guo
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xiaodong Dai
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Yulei Du
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xiumei Xiong
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China
| | - Xun Gui
- Mabwell (Shanghai) Bioscience Co., Ltd, Shanghai, 201210, China.
| |
Collapse
|
12
|
Sun Y, Xu X, Wu T, Fukuda T, Isaji T, Morii S, Nakano M, Gu J. Core fucosylation within the Fc-FcγR degradation pathway promotes enhanced IgG levels via exogenous L-fucose. J Biol Chem 2024; 300:107558. [PMID: 39002669 PMCID: PMC11345378 DOI: 10.1016/j.jbc.2024.107558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024] Open
Abstract
α1,6-Fucosyltransferase (Fut8) is the enzyme responsible for catalyzing core fucosylation. Exogenous L-fucose upregulates fucosylation levels through the GDP-fucose salvage pathway. This study investigated the relationship between core fucosylation and immunoglobulin G (IgG) amounts in serum utilizing WT (Fut8+/+), Fut8 heterozygous knockout (Fut8+/-), and Fut8 knockout (Fut8-/-) mice. The IgG levels in serum were lower in Fut8+/- and Fut8-/- mice compared with Fut8+/+ mice. Exogenous L-fucose increased IgG levels in Fut8+/- mice, while the ratios of core fucosylated IgG versus total IgG showed no significant difference among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. These ratios were determined by Western blot, lectin blot, and mass spectrometry analysis. Real-time PCR results demonstrated that mRNA levels of IgG Fc and neonatal Fc receptor, responsible for protecting IgG turnover, were similar among Fut8+/+, Fut8+/-, and Fut8+/- mice treated with L-fucose. In contrast, the expression levels of Fc-gamma receptor Ⅳ (FcγRⅣ), mainly expressed on macrophages and neutrophils, were increased in Fut8+/- mice compared to Fut8+/+ mice. The effect was reversed by administrating L-fucose, suggesting that core fucosylation primarily regulates the IgG levels through the Fc-FcγRⅣ degradation pathway. Consistently, IgG internalization and transcytosis were suppressed in FcγRⅣ-knockout cells while enhanced in Fut8-knockout cells. Furthermore, we assessed the expression levels of specific antibodies against ovalbumin and found they were downregulated in Fut8+/- mice, with potential recovery observed with L-fucose administration. These findings confirm that core fucosylation plays a vital role in regulating IgG levels in serum, which may provide insights into a novel mechanism in adaptive immune regulation.
Collapse
Affiliation(s)
- Yuhan Sun
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Xing Xu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tiangui Wu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomohiko Fukuda
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Tomoya Isaji
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan
| | - Sayaka Morii
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Miyako Nakano
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Jianguo Gu
- Division of Regulatory Glycobiology, Institute of Molecular Biomembrane and Glycobiology, Tohoku Medical and Pharmaceutical University, Sendai, Miyagi, Japan.
| |
Collapse
|
13
|
Lu Q, Yang D, Li H, Niu T, Tong A. Multiple myeloma: signaling pathways and targeted therapy. MOLECULAR BIOMEDICINE 2024; 5:25. [PMID: 38961036 PMCID: PMC11222366 DOI: 10.1186/s43556-024-00188-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/21/2024] [Indexed: 07/05/2024] Open
Abstract
Multiple myeloma (MM) is the second most common hematological malignancy of plasma cells, characterized by osteolytic bone lesions, anemia, hypercalcemia, renal failure, and the accumulation of malignant plasma cells. The pathogenesis of MM involves the interaction between MM cells and the bone marrow microenvironment through soluble cytokines and cell adhesion molecules, which activate various signaling pathways such as PI3K/AKT/mTOR, RAS/MAPK, JAK/STAT, Wnt/β-catenin, and NF-κB pathways. Aberrant activation of these pathways contributes to the proliferation, survival, migration, and drug resistance of myeloma cells, making them attractive targets for therapeutic intervention. Currently, approved drugs targeting these signaling pathways in MM are limited, with many inhibitors and inducers still in preclinical or clinical research stages. Therapeutic options for MM include non-targeted drugs like alkylating agents, corticosteroids, immunomodulatory drugs, proteasome inhibitors, and histone deacetylase inhibitors. Additionally, targeted drugs such as monoclonal antibodies, chimeric antigen receptor T cells, bispecific T-cell engagers, and bispecific antibodies are being used in MM treatment. Despite significant advancements in MM treatment, the disease remains incurable, emphasizing the need for the development of novel or combined targeted therapies based on emerging theoretical knowledge, technologies, and platforms. In this review, we highlight the key role of signaling pathways in the malignant progression and treatment of MM, exploring advances in targeted therapy and potential treatments to offer further insights for improving MM management and outcomes.
Collapse
Affiliation(s)
- Qizhong Lu
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Donghui Yang
- College of Veterinary Medicine, Shaanxi Center of Stem Cells Engineering and Technology, Northwest A&F University, Yangling, 712100, China
| | - Hexian Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Niu
- Department of Hematology, State Key Laboratory of Biotherapy and Cancer Center, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
| | - Aiping Tong
- State Key Laboratory of Biotherapy and Cancer Center, Research Unit of Gene and Immunotherapy, Chinese Academy of Medical Sciences, Collaborative Innovation Center of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontiers Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
14
|
Zheng R, Liu X, Zhang Y, Liu Y, Wang Y, Guo S, Jin X, Zhang J, Guan Y, Liu Y. Frontiers and future of immunotherapy for pancreatic cancer: from molecular mechanisms to clinical application. Front Immunol 2024; 15:1383978. [PMID: 38756774 PMCID: PMC11096556 DOI: 10.3389/fimmu.2024.1383978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/22/2024] [Indexed: 05/18/2024] Open
Abstract
Pancreatic cancer is a highly aggressive malignant tumor, that is becoming increasingly common in recent years. Despite advances in intensive treatment modalities including surgery, radiotherapy, biological therapy, and targeted therapy, the overall survival rate has not significantly improved in patients with pancreatic cancer. This may be attributed to the insidious onset, unknown pathophysiology, and poor prognosis of the disease. It is therefore essential to identify and develop more effective and safer treatments for pancreatic cancer. Tumor immunotherapy is the new and fourth pillar of anti-tumor therapy after surgery, radiotherapy, and chemotherapy. Significant progress has made in the use of immunotherapy for a wide variety of malignant tumors in recent years; a breakthrough has also been made in the treatment of pancreatic cancer. This review describes the advances in immune checkpoint inhibitors, cancer vaccines, adoptive cell therapy, oncolytic virus, and matrix-depletion therapies for the treatment of pancreatic cancer. At the same time, some new potential biomarkers and potential immunotherapy combinations for pancreatic cancer are discussed. The molecular mechanisms of various immunotherapies have also been elucidated, and their clinical applications have been highlighted. The current challenges associated with immunotherapy and proposed strategies that hold promise in overcoming these limitations have also been discussed, with the aim of offering new insights into immunotherapy for pancreatic cancer.
Collapse
Affiliation(s)
- Rui Zheng
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaobin Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yufu Zhang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Yan’an University, Yan’an, Shaanxi, China
| | - Yongxian Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yaping Wang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Shutong Guo
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Xiaoyan Jin
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Jing Zhang
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yuehong Guan
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| | - Yusi Liu
- Department of Medical Immunology, Medical College of Yan’an University, Yanan, Shaanxi, China
| |
Collapse
|
15
|
Izadi S, Gumpelmair S, Coelho P, Duarte HO, Gomes J, Leitner J, Kunnummel V, Mach L, Reis CA, Steinberger P, Castilho A. Plant-derived Durvalumab variants show efficient PD-1/PD-L1 blockade and therapeutically favourable FcR binding. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1224-1237. [PMID: 38050338 PMCID: PMC11022803 DOI: 10.1111/pbi.14260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/13/2023] [Accepted: 11/15/2023] [Indexed: 12/06/2023]
Abstract
Immune checkpoint blocking therapy targeting the PD-1/PD-L1 inhibitory signalling pathway has produced encouraging results in the treatment of a variety of cancers. Durvalumab (Imfinzi®) targeting PD-L1 is currently used for immunotherapy of several tumour malignancies. The Fc region of this IgG1 antibody has been engineered to reduce FcγR interactions with the aim of enhancing blockade of PD-1/PD-L1 interactions without the depletion of PD-L1-expressing immune cells. Here, we used Nicotiana benthamiana to produce four variants of Durvalumab (DL): wild-type IgG1 and its 'Fc-effector-silent' variant (LALAPG) carrying further modifications to increase antibody half-life (YTE); IgG4S228P and its variant (PVA) with Fc mutations to decrease binding to FcγRI. In addition, DL variants were produced with two distinct glycosylation profiles: afucosylated and decorated with α1,6-core fucose. Plant-derived DL variants were compared to the therapeutic antibody regarding their ability to (i) bind to PD-L1, (ii) block PD-1/PD-L1 inhibitory signalling and (iii) engage with the neonatal Fc receptor (FcRn) and various Fcγ receptors. It was found that plant-derived DL variants bind to recombinant PD-L1 and to PD-L1 expressed in gastrointestinal cancer cells and are able to effectively block its interaction with PD-1 on T cells, thereby enhancing their activation. Furthermore, we show a positive impact of Fc amino acid mutations and core fucosylation on DL's therapeutic potential. Compared to Imfinzi®, DL-IgG1 (LALAPG) and DL-IgG4 (PVA)S228P show lower affinity to CD32B inhibitory receptor which can be therapeutically favourable. Importantly, DL-IgG1 (LALAPG) also shows enhanced binding to FcRn, a key determinant of serum half-life of IgGs.
Collapse
Affiliation(s)
- Shiva Izadi
- Department of Applied Genetics and Cell BiologyInstitute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life SciencesViennaAustria
| | - Simon Gumpelmair
- Division of Immune Receptors and T Cell ActivationInstitute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Pedro Coelho
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
| | - Henrique O. Duarte
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
| | - Joana Gomes
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
| | - Judith Leitner
- Division of Immune Receptors and T Cell ActivationInstitute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Vinny Kunnummel
- Department of Applied Genetics and Cell BiologyInstitute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life SciencesViennaAustria
| | - Lukas Mach
- Department of Applied Genetics and Cell BiologyInstitute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life SciencesViennaAustria
| | - Celso A. Reis
- i3S – Instituto de Investigação e Inovação em Saúde, Universidade do PortoPortoPortugal
- Institute of Molecular Pathology and Immunology of the University of Porto (IPATIMUP)PortoPortugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do PortoPortoPortugal
- Faculty of Medicine (FMUP)University of PortoPortoPortugal
| | - Peter Steinberger
- Division of Immune Receptors and T Cell ActivationInstitute of Immunology, Center for Pathophysiology, Infectiology and Immunology, Medical University of ViennaViennaAustria
| | - Alexandra Castilho
- Department of Applied Genetics and Cell BiologyInstitute for Plant Biotechnology and Cell Biology, University of Natural Resources and Life SciencesViennaAustria
| |
Collapse
|
16
|
Antony JS, Herranz AM, Mohammadian Gol T, Mailand S, Monnier P, Rottenberger J, Roig-Merino A, Keller B, Gowin C, Milla M, Beyer TA, Mezger M. Accelerated generation of gene-engineered monoclonal CHO cell lines using FluidFM nanoinjection and CRISPR/Cas9. Biotechnol J 2024; 19:e2300505. [PMID: 38651269 DOI: 10.1002/biot.202300505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/25/2024]
Abstract
Chinese hamster ovary (CHO) cells are the commonly used mammalian host system to manufacture recombinant proteins including monoclonal antibodies. However unfavorable non-human glycoprofile displayed on CHO-produced monoclonal antibodies have negative impacts on product quality, pharmacokinetics, and therapeutic efficiency. Glycoengineering such as genetic elimination of genes involved in glycosylation pathway in CHO cells is a viable solution but constrained due to longer timeline and laborious workflow. Here, in this proof-of-concept (PoC) study, we present a novel approach coined CellEDIT to engineer CHO cells by intranuclear delivery of the CRISPR components to single cells using the FluidFM technology. Co-injection of CRISPR system targeting BAX, DHFR, and FUT8 directly into the nucleus of single cells, enabled us to generate triple knockout CHO-K1 cell lines within a short time frame. The proposed technique assures the origin of monoclonality without the requirement of limiting dilution, cell sorting or positive selection. Furthermore, the approach is compatible to develop both single and multiple knockout clones (FUT8, BAX, and DHFR) in CHO cells. Further analyses on single and multiple knockout clones confirmed the targeted genetic disruption and altered protein expression. The knockout CHO-K1 clones showed the persistence of gene editing during the subsequent passages, compatible with serum free chemically defined media and showed equivalent transgene expression like parental clone.
Collapse
Affiliation(s)
- Justin S Antony
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | | | - Tahereh Mohammadian Gol
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | | | | | - Jennifer Rottenberger
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | - Markus Mezger
- University Children's Hospital, Department of Pediatrics I, Hematology and Oncology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
17
|
Kaiser FK, Hernandez MG, Krüger N, Englund E, Du W, Mykytyn AZ, Raadsen MP, Lamers MM, Rodrigues Ianiski F, Shamorkina TM, Snijder J, Armando F, Beythien G, Ciurkiewicz M, Schreiner T, Gruber-Dujardin E, Bleyer M, Batura O, Erffmeier L, Hinkel R, Rocha C, Mirolo M, Drabek D, Bosch BJ, Emalfarb M, Valbuena N, Tchelet R, Baumgärtner W, Saloheimo M, Pöhlmann S, Grosveld F, Haagmans BL, Osterhaus ADME. Filamentous fungus-produced human monoclonal antibody provides protection against SARS-CoV-2 in hamster and non-human primate models. Nat Commun 2024; 15:2319. [PMID: 38485931 PMCID: PMC10940701 DOI: 10.1038/s41467-024-46443-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 02/28/2024] [Indexed: 03/18/2024] Open
Abstract
Monoclonal antibodies are an increasingly important tool for prophylaxis and treatment of acute virus infections like SARS-CoV-2 infection. However, their use is often restricted due to the time required for development, variable yields and high production costs, as well as the need for adaptation to newly emerging virus variants. Here we use the genetically modified filamentous fungus expression system Thermothelomyces heterothallica (C1), which has a naturally high biosynthesis capacity for secretory enzymes and other proteins, to produce a human monoclonal IgG1 antibody (HuMab 87G7) that neutralises the SARS-CoV-2 variants of concern (VOCs) Alpha, Beta, Gamma, Delta, and Omicron. Both the mammalian cell and C1 produced HuMab 87G7 broadly neutralise SARS-CoV-2 VOCs in vitro and also provide protection against VOC Omicron in hamsters. The C1 produced HuMab 87G7 is also able to protect against the Delta VOC in non-human primates. In summary, these findings show that the C1 expression system is a promising technology platform for the development of HuMabs in preventive and therapeutic medicine.
Collapse
Affiliation(s)
- Franziska K Kaiser
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Mariana Gonzalez Hernandez
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Nadine Krüger
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Ellinor Englund
- VTT Technical Research Centre of Finland Ltd, 02150, Espoo, Finland
| | - Wenjuan Du
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | - Anna Z Mykytyn
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mathijs P Raadsen
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Mart M Lamers
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Francine Rodrigues Ianiski
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Tatiana M Shamorkina
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Joost Snijder
- Biomolecular Mass Spectrometry and Proteomics, Bijvoet Center for Biomolecular Research and Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Padualaan 8, 3584, CH, Utrecht, The Netherlands
| | - Federico Armando
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Georg Beythien
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Malgorzata Ciurkiewicz
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Tom Schreiner
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Eva Gruber-Dujardin
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Martina Bleyer
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Olga Batura
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Lena Erffmeier
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Rabea Hinkel
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Cheila Rocha
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Monica Mirolo
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Dubravka Drabek
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands and Harbour BioMed, Rotterdam, the Netherlands
| | - Berend-Jan Bosch
- Virology Section, Infectious Diseases and Immunology Division, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
| | | | | | | | - Wolfgang Baumgärtner
- Department of Pathology, University of Veterinary Medicine, Foundation, Hannover, Germany
| | - Markku Saloheimo
- VTT Technical Research Centre of Finland Ltd, 02150, Espoo, Finland
| | - Stefan Pöhlmann
- German Primate Center - Leibniz Institute for Primate Research, Göttingen, Germany
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Center, Rotterdam, the Netherlands and Harbour BioMed, Rotterdam, the Netherlands
| | - Bart L Haagmans
- Department of Viroscience, Erasmus Medical Center, Rotterdam, the Netherlands.
| | - Albert D M E Osterhaus
- Research Center for Emerging Infections and Zoonosis, University of Veterinary Medicine, Foundation, Hannover, Germany.
- Global Virus Network, Baltimore, MD, 21201, USA.
| |
Collapse
|
18
|
Knorr DA, Blanchard L, Leidner RS, Jensen SM, Meng R, Jones A, Ballesteros-Merino C, Bell RB, Baez M, Marino A, Sprott D, Bifulco CB, Piening B, Dahan R, Osorio JC, Fox BA, Ravetch JV. FcγRIIB Is an Immune Checkpoint Limiting the Activity of Treg-Targeting Antibodies in the Tumor Microenvironment. Cancer Immunol Res 2024; 12:322-333. [PMID: 38147316 PMCID: PMC10911703 DOI: 10.1158/2326-6066.cir-23-0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 10/10/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
Preclinical murine data indicate that fragment crystallizable (Fc)-dependent depletion of intratumoral regulatory T cells (Treg) is a major mechanism of action of anti-CTLA-4. However, the two main antibodies administered to patients (ipilimumab and tremelimumab) do not recapitulate these effects. Here, we investigate the underlying mechanisms responsible for the limited Treg depletion observed with these therapies. Using an immunocompetent murine model humanized for CTLA-4 and Fcγ receptors (FcγR), we show that ipilimumab and tremelimumab exhibit limited Treg depletion in tumors. Immune profiling of the tumor microenvironment (TME) in both humanized mice and humans revealed high expression of the inhibitory Fc receptor, FcγRIIB, which limits antibody-dependent cellular cytotoxicity/phagocytosis. Blocking FcγRIIB in humanized mice rescued the Treg-depleting capacity and antitumor activity of ipilimumab. Furthermore, Fc engineering of antibodies targeting Treg-associated targets (CTLA-4 or CCR8) to minimize FcγRIIB binding significantly enhanced Treg depletion, resulting in increased antitumor activity across various tumor models. Our results define the inhibitory FcγRIIB as an immune checkpoint limiting antibody-mediated Treg depletion in the TME, and demonstrate Fc engineering as an effective strategy to overcome this limitation and improve the efficacy of Treg-targeting antibodies.
Collapse
Affiliation(s)
- David A. Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Lucas Blanchard
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| | - Rom S. Leidner
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Shawn M. Jensen
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Ryan Meng
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Andrew Jones
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| | | | - Richard B. Bell
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Maria Baez
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| | - Alessandra Marino
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| | - David Sprott
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Carlo B. Bifulco
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Brian Piening
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Rony Dahan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Juan C. Osorio
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Bernard A. Fox
- Earle A. Chiles Research Institute (a division of Providence Cancer Institute), Portland, Oregon
| | - Jeffrey V. Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, New York
| |
Collapse
|
19
|
Galvez-Cancino F, Simpson AP, Costoya C, Matos I, Qian D, Peggs KS, Litchfield K, Quezada SA. Fcγ receptors and immunomodulatory antibodies in cancer. Nat Rev Cancer 2024; 24:51-71. [PMID: 38062252 DOI: 10.1038/s41568-023-00637-8] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/10/2023] [Indexed: 12/24/2023]
Abstract
The discovery of both cytotoxic T lymphocyte-associated antigen 4 (CTLA4) and programmed cell death protein 1 (PD1) as negative regulators of antitumour immunity led to the development of numerous immunomodulatory antibodies as cancer treatments. Preclinical studies have demonstrated that the efficacy of immunoglobulin G (IgG)-based therapies depends not only on their ability to block or engage their targets but also on the antibody's constant region (Fc) and its interactions with Fcγ receptors (FcγRs). Fc-FcγR interactions are essential for the activity of tumour-targeting antibodies, such as rituximab, trastuzumab and cetuximab, where the killing of tumour cells occurs at least in part due to these mechanisms. However, our understanding of these interactions in the context of immunomodulatory antibodies designed to boost antitumour immunity remains less explored. In this Review, we discuss our current understanding of the contribution of FcγRs to the in vivo activity of immunomodulatory antibodies and the challenges of translating results from preclinical models into the clinic. In addition, we review the impact of genetic variability of human FcγRs on the activity of therapeutic antibodies and how antibody engineering is being utilized to develop the next generation of cancer immunotherapies.
Collapse
Affiliation(s)
- Felipe Galvez-Cancino
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Alexander P Simpson
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
| | - Cristobal Costoya
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Ignacio Matos
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Danwen Qian
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Karl S Peggs
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK
| | - Kevin Litchfield
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Tumour Immunogenomics and Immunosurveillance Laboratory, University College London Cancer Institute, London, UK
| | - Sergio A Quezada
- Cancer Immunology Unit, Research Department of Haematology, University College London Cancer Institute, London, UK.
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
| |
Collapse
|
20
|
Kofsky JM, Babulic JL, Boddington ME, De León González FV, Capicciotti CJ. Glycosyltransferases as versatile tools to study the biology of glycans. Glycobiology 2023; 33:888-910. [PMID: 37956415 DOI: 10.1093/glycob/cwad092] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/15/2023] Open
Abstract
All cells are decorated with complex carbohydrate structures called glycans that serve as ligands for glycan-binding proteins (GBPs) to mediate a wide range of biological processes. Understanding the specific functions of glycans is key to advancing an understanding of human health and disease. However, the lack of convenient and accessible tools to study glycan-based interactions has been a defining challenge in glycobiology. Thus, the development of chemical and biochemical strategies to address these limitations has been a rapidly growing area of research. In this review, we describe the use of glycosyltransferases (GTs) as versatile tools to facilitate a greater understanding of the biological roles of glycans. We highlight key examples of how GTs have streamlined the preparation of well-defined complex glycan structures through chemoenzymatic synthesis, with an emphasis on synthetic strategies allowing for site- and branch-specific display of glyco-epitopes. We also describe how GTs have facilitated expansion of glyco-engineering strategies, on both glycoproteins and cell surfaces. Coupled with advancements in bioorthogonal chemistry, GTs have enabled selective glyco-epitope editing of glycoproteins and cells, selective glycan subclass labeling, and the introduction of novel biomolecule functionalities onto cells, including defined oligosaccharides, antibodies, and other proteins. Collectively, these approaches have contributed great insight into the fundamental biological roles of glycans and are enabling their application in drug development and cellular therapies, leaving the field poised for rapid expansion.
Collapse
Affiliation(s)
- Joshua M Kofsky
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
| | - Jonathan L Babulic
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | - Marie E Boddington
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
| | | | - Chantelle J Capicciotti
- Department of Chemistry, Queen's University, 90 Bader Lane, Kingston, ON K7L 3N6, Canada
- Department of Biomedical and Molecular Sciences, Queen's University, 18 Stuart Street, Kingston, ON K7L 2V7, Canada
- Department of Surgery, Queen's University, 76 Stuart Street, Kingston, ON K7L 2V7, Canada
| |
Collapse
|
21
|
Osorio JC, Smith P, Knorr DA, Ravetch JV. The antitumor activities of anti-CD47 antibodies require Fc-FcγR interactions. Cancer Cell 2023; 41:2051-2065.e6. [PMID: 37977147 PMCID: PMC10842210 DOI: 10.1016/j.ccell.2023.10.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 09/01/2023] [Accepted: 10/26/2023] [Indexed: 11/19/2023]
Abstract
While anti-CD47 antibodies hold promise for cancer immunotherapy, early-phase clinical trials have shown limited clinical benefit, suggesting that CD47 blockade alone might be insufficient for effective tumor control. Here, we investigate the contributions of the Fc domain of anti-CD47 antibodies required for optimal in vivo antitumor activity across multiple species-matched models, providing insights into the mechanisms behind the efficacy of this emerging class of therapeutic antibodies. Using a mouse model humanized for CD47, SIRPα, and FcγRs, we demonstrate that local administration of Fc-engineered anti-CD47 antibodies with enhanced binding to activating FcγRs promotes tumor infiltration of macrophages and antigen-specific T cells, while depleting regulatory T cells. These effects result in improved long-term systemic antitumor immunity and minimal on-target off-tumor toxicity. Our results highlight the importance of Fc optimization in the development of effective anti-CD47 therapies and provide an attractive strategy to enhance the activity of this promising immunotherapy.
Collapse
Affiliation(s)
- Juan C Osorio
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA.
| | - Patrick Smith
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA
| | - David A Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA; Regeneron, Inc., Tarrytown, NY, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
22
|
Hsu YP, Nourzaie O, Tocher AE, Nerella K, Ermakov G, Jung J, Fowler A, Wu P, Ayesa U, Willingham A, Beaumont M, Ingale S. Site-Specific Antibody Conjugation Using Modified Bisected N-Glycans: Method Development and Potential toward Tunable Effector Function. Bioconjug Chem 2023; 34:1633-1644. [PMID: 37620302 PMCID: PMC10516122 DOI: 10.1021/acs.bioconjchem.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Antibody-drug conjugates (ADCs) have garnered worldwide attention for disease treatment, as they possess high target specificity, a long half-life, and outstanding potency to kill or modulate the functions of targets. FDA approval of multiple ADCs for cancer therapy has generated a strong desire for novel conjugation strategies with high biocompatibility and controllable bioproperties. Herein, we present a bisecting glycan-bridged conjugation strategy that enables site-specific conjugation without the need for the oligosaccharide synthesis and genetic engineering of antibodies. Application of this method is demonstrated by conjugation of anti-HER2 human and mouse IgGs with a cytotoxic drug, monomethyl auristatin E. The glycan bridge showed outstanding stability, and the resulting ADCs eliminated HER2-expressing cancer cells effectively. Moreover, our strategy preserves the feasibility of glycan structure remodeling to fine-tune the immunogenicity and pharmacokinetic properties of ADCs through glycoengineering.
Collapse
Affiliation(s)
- Yen-Pang Hsu
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Omar Nourzaie
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Ariel E. Tocher
- MRL,
Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115, United States
| | - Kavitha Nerella
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Grigori Ermakov
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Jiwon Jung
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Alexandra Fowler
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Peidong Wu
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| | - Umme Ayesa
- MRL, Merck
& Co., Inc., 90 E.
Scott Ave., Rahway, New Jersey 07065, United States
| | - Aarron Willingham
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Maribel Beaumont
- MRL,
Merck & Co., Inc., 213 E. Grand Ave., South San Francisco, California 94080, United States
| | - Sampat Ingale
- MRL,
Merck & Co., Inc., 320 Bent St., Cambridge, Massachusetts 02141, United States
| |
Collapse
|
23
|
Osorio JC, Smith P, Knorr DA, Ravetch JV. The Antitumor Activities of Anti-CD47 Antibodies Require Fc-FcγR interactions. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.29.547082. [PMID: 37455857 PMCID: PMC10347539 DOI: 10.1101/2023.06.29.547082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
While anti-CD47 antibodies hold promise for cancer immunotherapy, early phase clinical trials have shown limited signs of clinical benefit, suggesting that blockade of CD47 alone may not be sufficient for effective tumor control. Here, we investigate the contributions of the Fc domain of anti-CD47 antibodies required for optimal in vivo antitumor activity across multiple species-matched models, providing new insights into the mechanisms underlying the efficacy of this emerging class of therapeutic antibodies. Using a novel mouse model humanized for CD47, SIRPα and FcγRs, we demonstrate that local administration of an Fc-engineered anti-CD47 antibody with enhanced binding to activating FcγRs modulates myeloid and T-cell subsets in the tumor microenvironment, resulting in improved long-term systemic antitumor immunity and minimal on-target off-tumor toxicity. Our results highlight the importance of Fc optimization in the development of effective anti-CD47 therapies and provide a novel approach for enhancing the antitumor activity of this promising immunotherapy.
Collapse
Affiliation(s)
- Juan C Osorio
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Patrick Smith
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
| | - David A Knorr
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Jeffrey V Ravetch
- Laboratory of Molecular Genetics and Immunology, Rockefeller University, New York, NY, 10065, USA
| |
Collapse
|
24
|
Purcell RA, Theisen RM, Arnold KB, Chung AW, Selva KJ. Polyfunctional antibodies: a path towards precision vaccines for vulnerable populations. Front Immunol 2023; 14:1183727. [PMID: 37600816 PMCID: PMC10433199 DOI: 10.3389/fimmu.2023.1183727] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/30/2023] [Indexed: 08/22/2023] Open
Abstract
Vaccine efficacy determined within the controlled environment of a clinical trial is usually substantially greater than real-world vaccine effectiveness. Typically, this results from reduced protection of immunologically vulnerable populations, such as children, elderly individuals and people with chronic comorbidities. Consequently, these high-risk groups are frequently recommended tailored immunisation schedules to boost responses. In addition, diverse groups of healthy adults may also be variably protected by the same vaccine regimen. Current population-based vaccination strategies that consider basic clinical parameters offer a glimpse into what may be achievable if more nuanced aspects of the immune response are considered in vaccine design. To date, vaccine development has been largely empirical. However, next-generation approaches require more rational strategies. We foresee a generation of precision vaccines that consider the mechanistic basis of vaccine response variations associated with both immunogenetic and baseline health differences. Recent efforts have highlighted the importance of balanced and diverse extra-neutralising antibody functions for vaccine-induced protection. However, in immunologically vulnerable populations, significant modulation of polyfunctional antibody responses that mediate both neutralisation and effector functions has been observed. Here, we review the current understanding of key genetic and inflammatory modulators of antibody polyfunctionality that affect vaccination outcomes and consider how this knowledge may be harnessed to tailor vaccine design for improved public health.
Collapse
Affiliation(s)
- Ruth A. Purcell
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Robert M. Theisen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Kelly B. Arnold
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Amy W. Chung
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| | - Kevin J. Selva
- Department of Microbiology and Immunology, Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
25
|
Zhao G, Wang S, Li N. Adenovirotherapy delivering cross-hybrid IgGA Fc engineering PD-L1 inhibitors for enhanced cancer immunotherapy. Mol Ther Oncolytics 2023; 29:125-126. [PMID: 37250972 PMCID: PMC10213180 DOI: 10.1016/j.omto.2023.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023] Open
Affiliation(s)
- Guo Zhao
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Li
- Clinical Trial Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|