1
|
Liang J, Shi J, Song A, Lu M, Zhang K, Xu M, Huang G, Lu P, Wu X, Ma D. Structures and mechanism of the human mitochondrial pyruvate carrier. Nature 2025; 641:258-265. [PMID: 40101766 DOI: 10.1038/s41586-025-08873-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 03/06/2025] [Indexed: 03/20/2025]
Abstract
The mitochondrial pyruvate carrier (MPC) is a mitochondrial inner membrane protein complex that is essential for the uptake of pyruvate into the mitochondrial matrix as the primary carbon source for the tricarboxylic acid cycle1,2. Here we present six cryo-electron microscopy structures of human MPC in three states: three structures in the intermembrane space (IMS)-open state, obtained in different conditions; a structure of pyruvate-treated MPC in the occluded state; and two structures in the matrix-facing state, bound with the inhibitor UK5099 or with an inhibitory nanobody on the matrix side. MPC is a heterodimer consisting of MPC1 and MPC2, with the transmembrane domain adopting pseudo-C2 symmetry. Approximate rigid-body movements occur between the IMS-open state and the occluded state, whereas structural changes, mainly on the matrix side, facilitate the transition between the occluded state and the matrix-facing state, revealing an alternating access mechanism during pyruvate transport. In the UK5099-bound structure, the inhibitor fits well and interacts extensively with a pocket that opens to the matrix side. Our findings provide key insights into the mechanisms that underlie MPC-mediated substrate transport, and shed light on the recognition and inhibition of MPC by UK5099, which will facilitate the future development of drugs that target MPC.
Collapse
Affiliation(s)
- Jiaming Liang
- Fudan University, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Junhui Shi
- Fudan University, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Ailong Song
- Fudan University, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Meihua Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Kairan Zhang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Meng Xu
- Fudan University, Shanghai, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China
| | - Xudong Wu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| | - Dan Ma
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, China.
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China.
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, China.
| |
Collapse
|
2
|
Lika J, Votava JA, Datta R, Mellado Fritz CA, Kralovec AM, Smith FM, Huttenlocher A, Skala MC, Fan J. Mitochondrial metabolism is rapidly re-activated in mature neutrophils to support stimulation-induced response. Front Immunol 2025; 16:1572927. [PMID: 40356902 PMCID: PMC12066771 DOI: 10.3389/fimmu.2025.1572927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/31/2025] [Indexed: 05/15/2025] Open
Abstract
Introduction Neutrophils are highly abundant innate immune cells that are constantly produced from myeloid progenitors in the bone marrow. Differentiated neutrophils can perform an arsenal of effector functions critical for host defense. This study aims to quantitatively understand neutrophil mitochondrial metabolism throughout differentiation and activation, and to elucidate the impact of mitochondrial metabolism on neutrophil functions. Methods To study metabolic remodeling throughout neutrophil differentiation, murine ER-Hoxb8 myeloid progenitor-derived neutrophils and human induced pluripotent stem cell-derived neutrophils were assessed as models. To study the metabolic remodeling upon neutrophil activation, differentiated ER-Hoxb8 neutrophils and primary human neutrophils were activated with various stimuli, including ionomycin, monosodium urate crystals, and phorbol 12-myristate 13-acetate. Characterization of cellular metabolism by isotopic tracing, extracellular flux analysis, metabolomics, and fluorescence-lifetime imaging microscopy revealed dynamic changes in mitochondrial metabolism. Results As neutrophils mature, mitochondrial metabolism decreases drastically, energy production is offloaded from oxidative phosphorylation, and glucose oxidation through the TCA cycle is substantially reduced. Nonetheless, mature neutrophils retain the capacity for mitochondrial metabolism. Upon stimulation with certain stimuli, TCA cycle is rapidly activated. Mitochondrial pyruvate carrier inhibitors reduce this re-activation of the TCA cycle and inhibit the release of neutrophil extracellular traps. Treatment with these inhibitors also impacts neutrophil redox status, migration, and apoptosis without significantly changing overall bioenergetics. Conclusions Together, these results demonstrate that mitochondrial metabolism is dynamically remodeled and plays a significant role in neutrophils. Furthermore, these findings point to the therapeutic potential of mitochondrial pyruvate carrier inhibitors in a range of conditions where dysregulated neutrophil response drives inflammation and contributes to pathology.
Collapse
Affiliation(s)
- Jorgo Lika
- Morgridge Institute for Research, Madison, WI, United States
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, United States
| | - James A. Votava
- Morgridge Institute for Research, Madison, WI, United States
| | - Rupsa Datta
- Morgridge Institute for Research, Madison, WI, United States
| | - Carlos A. Mellado Fritz
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
| | - Aleksandr M. Kralovec
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Frances M. Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, United States
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, WI, United States
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, WI, United States
| | - Jing Fan
- Morgridge Institute for Research, Madison, WI, United States
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, United States
- Department of Biochemistry, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
3
|
Woods PS, Cetin-Atalay R, Meliton AY, Sun KA, Shamaa OR, Shin KWD, Tian Y, Haugen B, Hamanaka RB, Mutlu GM. HIF-1 regulates mitochondrial function in bone marrow-derived macrophages but not in tissue-resident alveolar macrophages. Sci Rep 2025; 15:11574. [PMID: 40185846 PMCID: PMC11971270 DOI: 10.1038/s41598-025-95962-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 03/25/2025] [Indexed: 04/07/2025] Open
Abstract
HIF-1α plays a critical role in shaping macrophage phenotype and effector function. We have previously shown that tissue-resident alveolar macrophages (TR-AMs) have extremely low glycolytic capacity at steady-state but can shift toward glycolysis under hypoxic conditions. Here, we generated mice with tamoxifen-inducible myeloid lineage cell specific deletion of Hif1a (Hif1afl/fl:LysM-CreERT2+/-) and from these mice, we isolated TR-AMs and bone marrow-derived macrophages (BMDMs) in which Hif1a is deleted. We show that TR-AM HIF-1α is required for the glycolytic shift under prolyl hydroxylase inhibition but is dispensable at steady-state for inflammatory effector function. In contrast, HIF-1α deletion in BMDMs led to diminished glycolytic capacity at steady-state and reduced inflammatory capacity, but higher mitochondrial function. Gene set enrichment analysis revealed enhanced c-Myc transcriptional activity in Hif1a-/- BMDMs, and upregulation of gene pathways related to ribosomal biogenesis and cellular proliferation. We conclude that HIF-1α regulates mitochondrial function in BMDMs but not in TR-AMs. The findings highlight the heterogeneity of HIF-1α function in distinct macrophage populations and provide new insight into how HIF-1α regulates gene expression, inflammation, and metabolism in different types of macrophages.
Collapse
Affiliation(s)
- Parker S Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Angelo Y Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Kaitlyn A Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Obada R Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Kun Woo D Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Benjamin Haugen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Robert B Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA
| | - Gökhan M Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, 5841 S. Maryland Avenue MC6026, Chicago, IL, 60637, USA.
| |
Collapse
|
4
|
Wei X, Qian W, Narasimhan H, Chan T, Liu X, Arish M, Young S, Li C, Cheon IS, Yu Q, Almeida-Santos G, Zhao XY, Yeatts EV, Spear OJ, Yi M, Parimon T, Fang Y, Hahn YS, Bullock TNJ, Somerville LA, Kaplan MH, Sperling AI, Shim YM, Vassallo R, Chen P, Ewald SE, Roden AC, Que J, Jiang D, Sun J. Macrophage peroxisomes guide alveolar regeneration and limit SARS-CoV-2 tissue sequelae. Science 2025; 387:eadq2509. [PMID: 40048515 DOI: 10.1126/science.adq2509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 10/20/2024] [Accepted: 12/19/2024] [Indexed: 04/23/2025]
Abstract
Peroxisomes are vital but often overlooked metabolic organelles. We found that excessive interferon signaling remodeled macrophage peroxisomes. This loss of peroxisomes impaired inflammation resolution and lung repair during severe respiratory viral infections. Peroxisomes were found to modulate lipid metabolism and mitochondrial health in a macrophage type-specific manner and enhanced alveolar macrophage-mediated tissue repair and alveolar regeneration after viral infection. Peroxisomes also prevented excessive macrophage inflammasome activation and IL-1β release, limiting accumulation of KRT8high dysplastic epithelial progenitors following viral injury. Pharmacologically enhancing peroxisome biogenesis mitigated both acute symptoms and post-acute sequelae of COVID-19 (PASC) in animal models. Thus, macrophage peroxisome dysfunction contributes to chronic lung pathology and fibrosis after severe acute respiratory syndrome coronavirus 2 infection.
Collapse
Affiliation(s)
- Xiaoqin Wei
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Wei Qian
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Harish Narasimhan
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Ting Chan
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xue Liu
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Mohd Arish
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Samuel Young
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Chaofan Li
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - In Su Cheon
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Qing Yu
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Gislane Almeida-Santos
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Xiao-Yu Zhao
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Eric V Yeatts
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Olivia J Spear
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Megan Yi
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Tanyalak Parimon
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Yinshan Fang
- Columbia Center for Human Development, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Young S Hahn
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Timothy N J Bullock
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Department of Pathology, University of Virginia, Charlottesville, VA, USA
| | - Lindsay A Somerville
- Division of Pulmonary Medicine and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Mark H Kaplan
- Department of Microbiology and Immunology, Indiana University of School of Medicine, Indianapolis, IN, USA
| | - Anne I Sperling
- Division of Pulmonary Medicine and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Yun Michael Shim
- Division of Pulmonary Medicine and Critical Care Medicine, Department of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Robert Vassallo
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Peter Chen
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Sarah E Ewald
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| | - Anja C Roden
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Jianwen Que
- Columbia Center for Human Development, Department of Medicine, Columbia University Medical Center, New York, NY, USA
| | - Dianhua Jiang
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Jie Sun
- Beirne B. Carter Center for Immunology Research, University of Virginia, Charlottesville, VA, USA
- Division of Infectious Disease and International Health, Department of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Microbiology, Immunology and Cancer Biology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
5
|
Jiang Y, Xu L, Zheng X, Shi H. Recent advances in nutritional metabolism studies on SARS-CoV-2 infection. INFECTIOUS MEDICINE 2025; 4:100162. [PMID: 39936106 PMCID: PMC11810712 DOI: 10.1016/j.imj.2025.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/19/2024] [Accepted: 11/27/2024] [Indexed: 02/13/2025]
Abstract
In the context of the coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), metabolic research has become crucial for in-depth exploration of viral infection mechanisms and in searching for therapeutic strategies. This paper summarizes the interrelationships between carbohydrate, lipid, and amino acid metabolism and COVID-19 infection, discussing their roles in infection progression. SARS-CoV-2 infection leads to insulin resistance and increased glycolysis, reducing glucose utilization and shifting metabolism to use fat as an energy source. Fat is crucial for viral replication, and imbalances in amino acid metabolism may interfere with immune regulation. Consequently, metabolic changes such as hyperglycemia, hypolipidemia, and deficiency of certain amino acids following SARS-CoV-2 infection can contribute to progression toward severe conditions. These metabolic pathways not only have potential value in prediction and diagnosis but also provide new perspectives for the development of therapeutic strategies. By monitoring metabolic changes, infection severity can be predicted early, and modulating these metabolic pathways may help reduce inflammatory responses, improve immune responses, and reduce the risk of thrombosis. Research on the relationship between metabolism and SARS-CoV-2 infection provides an important scientific basis for addressing the global challenge posed by COVID-19, however, further studies are needed to validate these findings and provide more effective strategies for disease control.
Collapse
Affiliation(s)
- Yufen Jiang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Linle Xu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Xuexing Zheng
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, Shandong Province, China
| | - Hongbo Shi
- Beijing Municipal Key Laboratory of Liver Failure and Artificial Liver Treatment Research, Fourth Department of Liver Disease, Beijing Youan Hospital, Capital Medical University, Beijing 100069, China
| |
Collapse
|
6
|
Woods PS, Mutlu GM. Differences in glycolytic metabolism between tissue-resident alveolar macrophages and recruited lung macrophages. Front Immunol 2025; 16:1535796. [PMID: 40092977 PMCID: PMC11906440 DOI: 10.3389/fimmu.2025.1535796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/13/2025] [Indexed: 03/19/2025] Open
Abstract
Immunometabolism has emerged as a key area of focus in immunology and has the potential to lead to new treatments for immune-related diseases. It is well-established that glycolytic metabolism is essential for adaptation to hypoxia and for macrophage inflammatory function. Macrophages have been shown to upregulate their glycolytic metabolism in response to pathogens and pathogen-associated molecular patterns such as LPS. As a direct link to the external environment, the lungs' distinctive nutrient composition and multiple macrophage subtypes provide a unique opportunity to study macrophage metabolism. This review aims to highlight how the steady-state airway and severely inflamed airway offer divergent environments for macrophage glycolytic metabolism. We describe the differences in glycolytic metabolism between tissue-resident alveolar macrophages, and other lung macrophages at steady-state and during inflammation/injury. We also provide an overview of experimental guidelines on how to assess metabolism at the cellular level using Seahorse-based bioenergetic analysis including a review of pharmacologic agents used to inhibit or activate glycolysis.
Collapse
Affiliation(s)
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University
of Chicago, Chicago, IL, United States
| |
Collapse
|
7
|
Lika J, Votava JA, Datta R, Kralovec AM, Smith FM, Huttenlocher A, Skala MC, Fan J. Mitochondrial metabolism is rapidly re-activated in mature neutrophils to support stimulation-induced response. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.03.636312. [PMID: 39975244 PMCID: PMC11838513 DOI: 10.1101/2025.02.03.636312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Neutrophils are highly abundant innate immune cells that are constantly produced from myeloid progenitors in the bone marrow. Differentiated neutrophils can perform an arsenal of effector functions critical for host defense. This study aims to quantitatively understand neutrophil mitochondrial metabolism throughout differentiation and activation, and to elucidate the impact of mitochondrial metabolism on neutrophil functions. To study metabolic remodeling throughout neutrophil differentiation, murine ER-Hoxb8 myeloid progenitor-derived neutrophils and human induced pluripotent stem cell-derived neutrophils were assessed as models. To study the metabolic remodeling upon neutrophil activation, differentiated ER-Hoxb8 neutrophils and primary human neutrophils were activated with various stimuli, including ionomycin, MSU crystals, and PMA. Characterization of cellular metabolism by isotopic tracing, extracellular flux analysis, metabolomics, and fluorescence-lifetime imaging microscopy revealed dynamic changes in mitochondrial metabolism. As neutrophils mature, mitochondrial metabolism decreases drastically, energy production is fully offloaded from oxidative phosphorylation, and glucose oxidation through TCA cycle is substantially reduced. Nonetheless, mature neutrophils retain the capacity for mitochondrial metabolism. Upon stimulation with certain stimuli, TCA cycle is rapidly activated. Mitochondrial pyruvate carrier inhibitors reduce this re-activation of the TCA cycle and inhibit the release of neutrophil extracellular traps. Mitochondrial metabolism also impacts neutrophil redox status, migration, and apoptosis without significantly changing overall bioenergetics. Together, these results demonstrate that mitochondrial metabolism is dynamically remodeled and plays a significant role in neutrophil function and fate. Furthermore, these findings point to the therapeutic potential of mitochondrial pyruvate carrier inhibitors in a range of conditions where dysregulated neutrophil response drives inflammation and contributes to pathology.
Collapse
Affiliation(s)
- Jorgo Lika
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | | | - Rupsa Datta
- Morgridge Institute for Research, Madison, Wisconsin, USA
| | - Aleksandr M. Kralovec
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Frances M. Smith
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Anna Huttenlocher
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Melissa C. Skala
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Biomedical Engineering, University of Wisconsin–Madison, Madison, Wisconsin, USA
| | - Jing Fan
- Morgridge Institute for Research, Madison, Wisconsin, USA
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, Wisconsin, USA
| |
Collapse
|
8
|
Colca JR, McCommis KS. Metabolic dysfunction and insulin sensitizers in acute and chronic disease. Expert Opin Investig Drugs 2025; 34:17-26. [PMID: 39912680 DOI: 10.1080/13543784.2025.2463086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 01/09/2025] [Accepted: 02/02/2025] [Indexed: 02/07/2025]
Abstract
INTRODUCTION The concept of insulin resistance has been a major topic for more than 5 decades. While there are several treatments that may impact insulin resistance, this pathology is uniquely addressed by mitochondrially directed thiazolidinedione (TZD) insulin sensitizers. Understanding of this mechanism of action and consideration of 'insulin resistance' as a consequence of metabolic inflammation allows a new paradigm for approaching chronic diseases. AREAS COVERED We review evolving understanding of the mitochondrial pyruvate carrier (MPC) as a mitochondrial mechanism of action of the TZD insulin sensitizers and discuss how reprogramming of mitochondrial metabolism impacts pleotropic pharmacology in multiple tissues. Additional lines of investigation are proposed. EXPERT OPINION A change in paradigm can facilitate rethinking of insulin sensitizers in clinical trials, specifically beyond the treatment of frank type 2 diabetes. There should be broader clinical evaluation of insulin sensitizers in combination with weight loss and lifestyle approaches across diseases/syndromes associated with insulin resistance. Finally, 'connecting all the dots' to unwind the interconnectedness of cell biology involved in the syndromes impacted by metabolic dysfunction and the efficacy of TZD insulin sensitizers may also uncover new molecular targets. New studies should facilitate the discovery and development of novel pharmacologic agents.
Collapse
Affiliation(s)
- Jerry R Colca
- Research and Development, Cirius Therapeutics, Kalamazoo, MI, USA
| | - Kyle S McCommis
- Biochemistry and Molecular Biology, St. Louis University, St. Louis, MO, USA
| |
Collapse
|
9
|
Trimarco V, Izzo R, Pacella D, Virginia Manzi M, Trama U, Lembo M, Piccinocchi R, Gallo P, Esposito G, Morisco C, Rozza F, Mone P, Jankauskas SS, Piccinocchi G, Santulli G, Trimarco B. Increased prevalence of cardiovascular-kidney-metabolic syndrome during COVID-19: A propensity score-matched study. Diabetes Res Clin Pract 2024; 218:111926. [PMID: 39536978 DOI: 10.1016/j.diabres.2024.111926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/28/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
A recent presidential advisory from the American Heart Association (AHA) has introduced the term cardiovascular-kidney-metabolic (CKM) syndrome to describe the complex interplay among health conditions linking heart, kidney, and metabolism. The aim of our study was to compare the prevalence of concurrent CKM syndrome components before and during the COVID-19 pandemic and identify associated risk factors. We conducted a study utilizing data from a real-world population obtained from a primary care database. The study cohort comprised a closed group followed over a 6-year period (2017-2022). A total of 81,051 individuals were included: 32,650 in the pre-pandemic period and 48,401 in the 2020-2022 triennium. After propensity-score matching for sex, age, and BMI, the study included 30,511 participants for each period. 3554 individuals were diagnosed with type 2 diabetes in the pre-pandemic period, compared to 7430 during the pandemic. Hypertension, dyslipidemia, and obesity displayed significant increases in prevalence during the pandemic, and prediabetes had a particularly sharp rise of 170%. Age-stratified analyses revealed a higher burden of CKM conditions with advancing age. Our findings indicate a substantial increase in the prevalence of CKM syndrome during the COVID-19 pandemic, with nearly half of the patients exhibiting one or more CKM syndrome components.
Collapse
Affiliation(s)
- Valentina Trimarco
- Department of Neuroscience, Reproductive Sciences, and Dentistry, "Federico II" University, Naples, Italy
| | - Raffaele Izzo
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Daniela Pacella
- Department of Public Health, "Federico II" University, Naples, Italy
| | - Maria Virginia Manzi
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Ugo Trama
- Pharmaceutical Department of Campania Region, Naples, Italy
| | - Maria Lembo
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | | | - Paola Gallo
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Giovanni Esposito
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Carmine Morisco
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy; International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples, Italy; Italian Society for Cardiovascular Prevention (SIPREC), Rome, Italy
| | - Francesco Rozza
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy
| | - Pasquale Mone
- Department of Medicine and Health Sciences "Vincenzo Tiberio", Molise University, Campobasso, Italy; Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York City, NY, USA; Casa di Cura "Montevergine", Mercogliano (Avellino), Italy
| | - Stanislovas S Jankauskas
- Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York City, NY, USA
| | - Gaetano Piccinocchi
- COMEGEN Primary Care Physicians Cooperative, Italian Society of General Medicine (SIMG), Naples, Italy
| | - Gaetano Santulli
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy; International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples, Italy; Department of Medicine, Division of Cardiology, Wilf Family Cardiovascular Research Institute, Einstein Institute for Aging Research, The Fleischer Institute for Diabetes and Metabolism (FIDAM), Albert Einstein College of Medicine, New York City, NY, USA; Department of Molecular Pharmacology, Einstein-Mount Sinai Diabetes Research Center (ES-DRC), Einstein Institute for Neuroimmunology and Inflammation, Albert Einstein College of Medicine, New York City, NY, USA.
| | - Bruno Trimarco
- Department of Advanced Biomedical Sciences, "Federico II" University, Naples, Italy; International Translational Research and Medical Education (ITME) Consortium, Academic Research Unit, Naples, Italy; Italian Society for Cardiovascular Prevention (SIPREC), Rome, Italy
| |
Collapse
|
10
|
Nuyttens L, Vandewalle J, Libert C. Sepsis-induced changes in pyruvate metabolism: insights and potential therapeutic approaches. EMBO Mol Med 2024; 16:2678-2698. [PMID: 39468303 PMCID: PMC11554794 DOI: 10.1038/s44321-024-00155-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 09/24/2024] [Accepted: 09/26/2024] [Indexed: 10/30/2024] Open
Abstract
Sepsis is a heterogeneous syndrome resulting from a dysregulated host response to infection. It is considered as a global major health priority. Sepsis is characterized by significant metabolic perturbations, leading to increased circulating metabolites such as lactate. In mammals, pyruvate is the primary substrate for lactate production. It plays a critical role in metabolism by linking glycolysis, where it is produced, with the mitochondrial oxidative phosphorylation pathway, where it is oxidized. Here, we provide an overview of all cytosolic and mitochondrial enzymes involved in pyruvate metabolism and how their activities are disrupted in sepsis. Based on the available data, we also discuss potential therapeutic strategies targeting these pyruvate-related enzymes leading to enhanced survival.
Collapse
Affiliation(s)
- Louise Nuyttens
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Jolien Vandewalle
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
| | - Claude Libert
- Center for Inflammation Research, Vlaams Instituut voor Biotechnologie (VIB), Ghent, Belgium.
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
| |
Collapse
|
11
|
Zhang T, Li Y, Pan L, Sha J, Bailey M, Faure-Kumar E, Williams CK, Wohlschlegel J, Magaki S, Niu C, Lee Y, Su YC, Li X, Vinters HV, Geschwind DH. Brain-wide alterations revealed by spatial transcriptomics and proteomics in COVID-19 infection. NATURE AGING 2024; 4:1598-1618. [PMID: 39543407 PMCID: PMC11867587 DOI: 10.1038/s43587-024-00730-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 09/25/2024] [Indexed: 11/17/2024]
Abstract
Understanding the pathophysiology of neurological symptoms observed after severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) infection is essential to optimizing outcomes and therapeutics. To date, small sample sizes and narrow molecular profiling have limited the generalizability of findings. In this study, we profiled multiple cortical and subcortical regions in postmortem brains of patients with coronavirus disease 2019 (COVID-19) and controls with matched pulmonary pathology (total n = 42) using spatial transcriptomics, bulk gene expression and proteomics. We observed a multi-regional antiviral response without direct active SARS-CoV2 infection. We identified dysregulation of mitochondrial and synaptic pathways in deep-layer excitatory neurons and upregulation of neuroinflammation in glia, consistent across both mRNA and protein. Remarkably, these alterations overlapped substantially with changes in age-related neurodegenerative diseases, including Parkinson's disease and Alzheimer's disease. Our work, combining multiple experimental and analytical methods, demonstrates the brain-wide impact of severe acute/subacute COVID-19, involving both cortical and subcortical regions, shedding light on potential therapeutic targets within pathways typically associated with pathological aging and neurodegeneration.
Collapse
Affiliation(s)
- Ting Zhang
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yunfeng Li
- Translational Pathology Core Laboratory, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Liuliu Pan
- Technology Access Program, Bruker Spatial Technology, Seattle, WA, USA
- Duality Biologics, Shanghai, China
| | - Jihui Sha
- Proteome Research Center, University of California, Los Angeles, Los Angeles, CA, USA
| | - Michael Bailey
- Proof of Principle Team, Translational Science, Bruker Spatial Technology, Seattle, WA, USA
| | - Emmanuelle Faure-Kumar
- Center for Systems Biomedicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher Kazu Williams
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - James Wohlschlegel
- Proteome Research Center, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Biological Chemistry, University of California, Los Angeles, Los Angeles, CA, USA
| | - Shino Magaki
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Chao Niu
- Technology Center for Genomics & Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yoojin Lee
- Technology Center for Genomics & Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu-Chyuan Su
- Technology Center for Genomics & Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Xinmin Li
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Technology Center for Genomics & Bioinformatics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harry V Vinters
- Section of Neuropathology, Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Daniel H Geschwind
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Woods PS, Cetin-Atalay R, Meliton AY, Sun KA, Shamaa OR, Shin KWD, Tian Y, Haugen B, Hamanaka RB, Mutlu GM. HIF-1α regulates mitochondrial function in bone marrow-derived macrophages, but not in tissue-resident alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.14.618294. [PMID: 39464148 PMCID: PMC11507697 DOI: 10.1101/2024.10.14.618294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
HIF-1α plays a critical role in shaping macrophage phenotype and effector function. We have previously shown that tissue-resident alveolar macrophages (TR-AMs) have extremely low glycolytic capacity at steady-state, but can shift toward glycolysis under hypoxic conditions. Here, using inducible HIF-1α knockout (Hif1a -/- ) TR-AMs and bone marrow-derived macrophages (BMDMs) and show that TR-AM HIF-1α is required for the glycolytic shift under prolyl hydroxylase inhibition, but is dispensable at steady-state for inflammatory effector function. In contrast, HIF-1α deletion in BMDMs led to diminished glycolytic capacity at steady-state and reduced inflammatory capacity, but higher mitochondrial function. Gene set enrichment analysis revealed enhanced c-Myc transcriptional activity in Hif1a -/- BMDMs, and upregulation of gene pathways related to ribosomal biogenesis and cellular proliferation. The findings highlight the heterogeneity of HIF-1α function in distinct macrophage populations and provide new insight into how HIF-1α regulates gene expression, inflammation, and metabolism in macrophages.
Collapse
Affiliation(s)
- Parker S. Woods
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Rengül Cetin-Atalay
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Angelo Y. Meliton
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Kaitlyn A. Sun
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Obada R. Shamaa
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Kun Woo D. Shin
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Yufeng Tian
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Benjamin Haugen
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Robert B. Hamanaka
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
| | - Gökhan M. Mutlu
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, The University of Chicago, Chicago, IL 60637 USA
- Lead contact
| |
Collapse
|
13
|
Guarnieri JW, Lie T, Albrecht YES, Hewin P, Jurado KA, Widjaja GA, Zhu Y, McManus MJ, Kilbaugh TJ, Keith K, Potluri P, Taylor D, Angelin A, Murdock DG, Wallace DC. Mitochondrial antioxidants abate SARS-COV-2 pathology in mice. Proc Natl Acad Sci U S A 2024; 121:e2321972121. [PMID: 39008677 PMCID: PMC11287122 DOI: 10.1073/pnas.2321972121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 06/07/2024] [Indexed: 07/17/2024] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection inhibits mitochondrial oxidative phosphorylation (OXPHOS) and elevates mitochondrial reactive oxygen species (ROS, mROS) which activates hypoxia-inducible factor-1alpha (HIF-1α), shifting metabolism toward glycolysis to drive viral biogenesis but also causing the release of mitochondrial DNA (mtDNA) and activation of innate immunity. To determine whether mitochondrially targeted antioxidants could mitigate these viral effects, we challenged mice expressing human angiotensin-converting enzyme 2 (ACE2) with SARS-CoV-2 and intervened using transgenic and pharmacological mitochondrially targeted catalytic antioxidants. Transgenic expression of mitochondrially targeted catalase (mCAT) or systemic treatment with EUK8 decreased weight loss, clinical severity, and circulating levels of mtDNA; as well as reduced lung levels of HIF-1α, viral proteins, and inflammatory cytokines. RNA-sequencing of infected lungs revealed that mCAT and Eukarion 8 (EUK8) up-regulated OXPHOS gene expression and down-regulated HIF-1α and its target genes as well as innate immune gene expression. These data demonstrate that SARS-CoV-2 pathology can be mitigated by catalytically reducing mROS, potentially providing a unique host-directed pharmacological therapy for COVID-19 which is not subject to viral mutational resistance.
Collapse
Affiliation(s)
- Joseph W. Guarnieri
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Timothy Lie
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- University of Pennsylvania, Philadelphia, PA19104
| | - Yentli E. Soto Albrecht
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Peter Hewin
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Kellie A. Jurado
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Gabrielle A. Widjaja
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Yi Zhu
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Meagan J. McManus
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Todd J. Kilbaugh
- Department of Anesthesiology and Critical Care, Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Kelsey Keith
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Prasanth Potluri
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Deanne Taylor
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Department of Biomedical and Health Informatics, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Alessia Angelin
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
| | - Deborah G. Murdock
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| | - Douglas C. Wallace
- The Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA19104
- Division of Human Genetics, Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA19104
| |
Collapse
|
14
|
Qi Z, Zhu J, Cai W, Lou C, Li Z. The role and intervention of mitochondrial metabolism in osteoarthritis. Mol Cell Biochem 2024; 479:1513-1524. [PMID: 37486450 PMCID: PMC11224101 DOI: 10.1007/s11010-023-04818-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 07/15/2023] [Indexed: 07/25/2023]
Abstract
Osteoarthritis (OA), a prevalent degenerative joint disease, affects a substantial global population. Despite the elusive etiology of OA, recent investigations have implicated mitochondrial dysfunction as a significant factor in disease pathogenesis. Mitochondria, pivotal cellular organelles accountable for energy production, exert essential roles in cellular metabolism. Hence, mitochondrial dysfunction can exert broad-ranging effects on various cellular processes implicated in OA development. This comprehensive review aims to provide an overview of the metabolic alterations occurring in OA and elucidate the diverse mechanisms through which mitochondrial dysfunction can contribute to OA pathogenesis. These mechanisms encompass heightened oxidative stress and inflammation, perturbed chondrocyte metabolism, and compromised autophagy. Furthermore, this review will explore potential interventions targeting mitochondrial metabolism as means to impede or decelerate the progression of OA. In summary, this review offers a comprehensive understanding of the involvement of mitochondrial metabolism in OA and underscores prospective intervention strategies.
Collapse
Affiliation(s)
- Zhanhai Qi
- Department of Orthopedics, The 960th hospital of the Joint Logistics Support Force of the People's Liberation Army, Jinan, Shandong, China
| | - Jiaping Zhu
- Department of Orthopedics, Jinan City People's Hospital, Jinan, Shandong, China
| | - Wusheng Cai
- Department of Orthopedics, Heze Third People's Hospital, Heze, Shandong, China
| | - Chunbiao Lou
- Department of Orthopedics, Heze Third People's Hospital, Heze, Shandong, China
| | - Zongyu Li
- Department of Orthopedics, The 960th hospital of the Joint Logistics Support Force of the People's Liberation Army, Jinan, Shandong, China.
| |
Collapse
|
15
|
Guarnieri JW, Haltom JA, Albrecht YES, Lie T, Olali AZ, Widjaja GA, Ranshing SS, Angelin A, Murdock D, Wallace DC. SARS-CoV-2 mitochondrial metabolic and epigenomic reprogramming in COVID-19. Pharmacol Res 2024; 204:107170. [PMID: 38614374 DOI: 10.1016/j.phrs.2024.107170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
To determine the effects of SARS-CoV-2 infection on cellular metabolism, we conducted an exhaustive survey of the cellular metabolic pathways modulated by SARS-CoV-2 infection and confirmed their importance for SARS-CoV-2 propagation by cataloging the effects of specific pathway inhibitors. This revealed that SARS-CoV-2 strongly inhibits mitochondrial oxidative phosphorylation (OXPHOS) resulting in increased mitochondrial reactive oxygen species (mROS) production. The elevated mROS stabilizes HIF-1α which redirects carbon molecules from mitochondrial oxidation through glycolysis and the pentose phosphate pathway (PPP) to provide substrates for viral biogenesis. mROS also induces the release of mitochondrial DNA (mtDNA) which activates innate immunity. The restructuring of cellular energy metabolism is mediated in part by SARS-CoV-2 Orf8 and Orf10 whose expression restructures nuclear DNA (nDNA) and mtDNA OXPHOS gene expression. These viral proteins likely alter the epigenome, either by directly altering histone modifications or by modulating mitochondrial metabolite substrates of epigenome modification enzymes, potentially silencing OXPHOS gene expression and contributing to long-COVID.
Collapse
Affiliation(s)
- Joseph W Guarnieri
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Jeffrey A Haltom
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Yentli E Soto Albrecht
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Timothy Lie
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Biology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Arnold Z Olali
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Gabrielle A Widjaja
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Sujata S Ranshing
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Alessia Angelin
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Deborah Murdock
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Douglas C Wallace
- Center for Mitochondrial and Epigenomic Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA; Department of Pediatrics, Division of Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
16
|
Ye L, Gao Y, Mok SWF, Liao W, Wang Y, Chen C, Yang L, Zhang J, Shi L. Modulation of alveolar macrophage and mitochondrial fitness by medicinal plant-derived nanovesicles to mitigate acute lung injury and viral pneumonia. J Nanobiotechnology 2024; 22:190. [PMID: 38637808 PMCID: PMC11025283 DOI: 10.1186/s12951-024-02473-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 04/08/2024] [Indexed: 04/20/2024] Open
Abstract
Acute lung injury (ALI) is generally caused by severe respiratory infection and characterized by overexuberant inflammatory responses and inefficient pathogens-containing, the two major processes wherein alveolar macrophages (AMs) play a central role. Dysfunctional mitochondria have been linked with distorted macrophages and hence lung disorders, but few treatments are currently available to correct these defects. Plant-derive nanovesicles have gained significant attention because of their therapeutic potential, but the targeting cells and the underlying mechanism remain elusive. We herein prepared the nanovesicles from Artemisia annua, a well-known medicinal plant with multiple attributes involving anti-inflammatory, anti-infection, and metabolism-regulating properties. By applying three mice models of acute lung injury caused by bacterial endotoxin, influenza A virus (IAV) and SARS-CoV-2 pseudovirus respectively, we showed that Artemisia-derived nanovesicles (ADNVs) substantially alleviated lung immunopathology and raised the survival rate of challenged mice. Macrophage depletion and adoptive transfer studies confirmed the requirement of AMs for ADNVs effects. We identified that gamma-aminobutyric acid (GABA) enclosed in the vesicles is a major molecular effector mediating the regulatory roles of ADNVs. Specifically, GABA acts on macrophages through GABA receptors, promoting mitochondrial gene programming and bioenergy generation, reducing oxidative stress and inflammatory signals, thereby enhancing the adaptability of AMs to inflammation resolution. Collectively, this study identifies a promising nanotherapeutics for alleviating lung pathology, and elucidates a mechanism whereby the canonical neurotransmitter modifies AMs and mitochondria to resume tissue homeostasis, which may have broader implications for treating critical pulmonary diseases such as COVID-19.
Collapse
Affiliation(s)
- Lusha Ye
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yanan Gao
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Simon Wing Fai Mok
- Department of Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Wucan Liao
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yazhou Wang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Changjiang Chen
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Lijun Yang
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China
| | - Junfeng Zhang
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Liyun Shi
- Institute of Translational Medicine, Zhejiang Shuren University, Hangzhou, 310015, Zhejiang, China.
- Department of Immunology and Medical Microbiology, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| |
Collapse
|
17
|
Conte C, Cipponeri E, Roden M. Diabetes Mellitus, Energy Metabolism, and COVID-19. Endocr Rev 2024; 45:281-308. [PMID: 37934800 PMCID: PMC10911957 DOI: 10.1210/endrev/bnad032] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 08/30/2023] [Accepted: 11/01/2023] [Indexed: 11/09/2023]
Abstract
Obesity, diabetes mellitus (mostly type 2), and COVID-19 show mutual interactions because they are not only risk factors for both acute and chronic COVID-19 manifestations, but also because COVID-19 alters energy metabolism. Such metabolic alterations can lead to dysglycemia and long-lasting effects. Thus, the COVID-19 pandemic has the potential for a further rise of the diabetes pandemic. This review outlines how preexisting metabolic alterations spanning from excess visceral adipose tissue to hyperglycemia and overt diabetes may exacerbate COVID-19 severity. We also summarize the different effects of SARS-CoV-2 infection on the key organs and tissues orchestrating energy metabolism, including adipose tissue, liver, skeletal muscle, and pancreas. Last, we provide an integrative view of the metabolic derangements that occur during COVID-19. Altogether, this review allows for better understanding of the metabolic derangements occurring when a fire starts from a small flame, and thereby help reducing the impact of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Caterina Conte
- Department of Human Sciences and Promotion of the Quality of Life, San Raffaele Roma Open University, Rome 00166, Italy
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Elisa Cipponeri
- Department of Endocrinology, Nutrition and Metabolic Diseases, IRCCS MultiMedica, Milan 20099, Italy
| | - Michael Roden
- Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich-Heine-University Düsseldorf, Düsseldorf 40225, Germany
- German Center for Diabetes Research, Partner Düsseldorf, Neuherberg 85764, Germany
| |
Collapse
|
18
|
Colca JR, Tanis SP, Kletzien RF, Finck BN. Insulin sensitizers in 2023: lessons learned and new avenues for investigation. Expert Opin Investig Drugs 2023; 32:803-811. [PMID: 37755339 DOI: 10.1080/13543784.2023.2263369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/22/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION 'Insulin sensitizers' derived discoveries of the Takeda Company in 1970s. Pioglitazone remains the best in class with beneficial pleiotropic pharmacology, although use is limited by tolerability issues. Various attempts to expand out of this class assumed the primary molecular target was the transcription factor, PPARγ. Findings over the last 10 years have identified new targets of thiazolidinediones (TZDs) that should alter the drug discovery paradigm. AREAS COVERED We review structural classes of experimental insulin sensitizer drugs, some of which have attained limited approval in some markets. The TZD pioglitazone, originally approved in 1999 as a secondary treatment for type 2 diabetes, has demonstrated benefit in apparently diverse spectrums of disease from cardiovascular to neurological issues. New TZDs modulate a newly identified mitochondrial target (the mitochondrial pyruvate carrier) to reprogram metabolism and produce insulin sensitizing pharmacology devoid of tolerability issues. EXPERT OPINION Greater understanding of the mechanism of action of insulin sensitizing drugs can expand the rationale for the fields of treatment and potential for treatment combinations. This understanding can facilitate the registration and broader use of agents with that impact the pathophysiology that underlies chronic metabolic diseases as well as host responses to environmental insults including pathogens, insulin sensitizer, MPC, mitochondrial target, metabolic reprogramming, chronic and infectious disease.
Collapse
Affiliation(s)
| | | | | | - Brian N Finck
- Department of Medicine, Center for Human Nutrition, Washington University in St Louis, Euclid Ave, MO, USA
| |
Collapse
|
19
|
Yvan-Charvet L, Thorp EB. Inflamed macrophages sans mitochondrial pyruvate carrier? Nat Metab 2023; 5:724-726. [PMID: 37188820 PMCID: PMC10410471 DOI: 10.1038/s42255-023-00789-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Glycolysis provides building blocks for the proinflammatory activation of macrophages and simultaneously generates pyruvate. In this issue of Nature Metabolism , Ran et al. provide evidence that the transport of pyruvate to fuel the Krebs cycle in the mitochondria is not required in the inflammatory response.
Collapse
Affiliation(s)
- Laurent Yvan-Charvet
- Institut National de la Santé et de la Recherche Médicale (Inserm) U1065, Université Côte d'Azur, Centre Méditerranéen de Médecine Moléculaire (C3M), Atip-Avenir, Fédération Hospitalo-Universitaire (FHU) Oncoage, Nice, France.
| | - Edward Benjamin Thorp
- Department of Pathology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|
20
|
Bordon Y. Repurposing metabolic drugs for COVID-19. Nat Rev Immunol 2023; 23:203. [PMID: 36918668 PMCID: PMC10013283 DOI: 10.1038/s41577-023-00862-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|