1
|
Edwards CT, Karunakaran KA, Garcia E, Beutler N, Gagne M, Golden N, Aoued H, Pellegrini KL, Burnett MR, Honeycutt CC, Lapp SA, Ton T, Lin MC, Metz A, Bombin A, Goff K, Scheuermann SE, Wilkes A, Wood JS, Ehnert S, Weissman S, Curran EH, Roy M, Dessasau E, Paiardini M, Upadhyay AA, Moore IN, Maness NJ, Douek DC, Piantadosi A, Andrabi R, Rogers TR, Burton DR, Bosinger SE. Passive infusion of an S2-Stem broadly neutralizing antibody protects against SARS-CoV-2 infection and lower airway inflammation in rhesus macaques. PLoS Pathog 2025; 21:e1012456. [PMID: 39847599 PMCID: PMC11793774 DOI: 10.1371/journal.ppat.1012456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 02/04/2025] [Accepted: 12/27/2024] [Indexed: 01/25/2025] Open
Abstract
The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather than the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines. One of these S2-directed mAbs, CC40.8, has demonstrated protective efficacy in small animal models against SARS-CoV-2 challenge. As the next step in the pre-clinical testing of S2-directed antibodies as a strategy to protect from SARS-CoV-2 infection, we evaluated the in vivo efficacy of CC40.8 in a clinically relevant non-human primate model by conducting passive antibody transfer to rhesus macaques (RM) followed by SARS-CoV-2 challenge. CC40.8 mAb was intravenously infused at 10mg/kg, 1mg/kg, or 0.1 mg/kg into groups (n = 6) of RM, alongside one group that received a control antibody (PGT121). Viral loads in the lower airway were significantly reduced in animals receiving higher doses of CC40.8. We observed a significant reduction in inflammatory cytokines and macrophages within the lower airway of animals infused with 10mg/kg and 1mg/kg doses of CC40.8. Viral genome sequencing demonstrated a lack of escape mutations in the CC40.8 epitope. Collectively, these data demonstrate the protective efficiency of broadly neutralizing S2-targeting antibodies against SARS-CoV-2 infection within the lower airway while providing critical preclinical work necessary for the development of pan-β-CoV vaccines.
Collapse
Affiliation(s)
- Christopher T. Edwards
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kirti A. Karunakaran
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, Tennessee, United States of America
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, United States of America
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
| | - Matthew Gagne
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Hadj Aoued
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Kathryn L. Pellegrini
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Matthew R. Burnett
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Christopher Cole Honeycutt
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Stacey A. Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Thang Ton
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mark C. Lin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Amanda Metz
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Andrei Bombin
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Sarah E. Scheuermann
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Amelia Wilkes
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Jennifer S. Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Stephanie Ehnert
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Stacey Weissman
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Elizabeth H. Curran
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Melissa Roy
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Evan Dessasau
- Division of Histology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Amit A. Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
| | - Ian N. Moore
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Nicholas J. Maness
- Tulane National Primate Research Center, Covington, Los Angeles, United States of America
| | - Daniel C. Douek
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Anne Piantadosi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
| | - Thomas R. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, California, United States of America
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, California, United States of America
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, California, United States of America
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, California, United States of America
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, Massachusetts, United States of America
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, United States of America
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, United States of America
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, Georgia, United States of America
| |
Collapse
|
2
|
Kim JK, Sapkota A, Roh T, Jo EK. The intricate interactions between inflammasomes and bacterial pathogens: Roles, mechanisms, and therapeutic potentials. Pharmacol Ther 2025; 265:108756. [PMID: 39581503 DOI: 10.1016/j.pharmthera.2024.108756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 10/06/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
Inflammasomes are intracellular multiprotein complexes that consist of a sensor, an adaptor, and a caspase enzyme to cleave interleukin (IL)-1β and IL-18 into their mature forms. In addition, caspase-1 and -11 activation results in the cleavage of gasdermin D to form pores, thereby inducing pyroptosis. Activation of the inflammasome and pyroptosis promotes host defense against pathogens, whereas dysregulation of the inflammasome can result in various pathologies. Inflammasomes exhibit versatile microbial signal detection, directly or indirectly, through cellular processes, such as ion fluctuations, reactive oxygen species generation, and the disruption of intracellular organelle function; however, bacteria have adaptive strategies to manipulate the inflammasome by altering microbe-associated molecular patterns, intercepting innate pathways with secreted effectors, and attenuating inflammatory and cell death responses. In this review, we summarize recent advances in the diverse roles of the inflammasome during bacterial infections and discuss how bacteria exploit inflammasome pathways to establish infections or persistence. In addition, we highlight the therapeutic potential of harnessing bacterial immune subversion strategies against acute and chronic bacterial infections. A more comprehensive understanding of the significance of inflammasomes in immunity and their intricate roles in the battle between bacterial pathogens and hosts will lead to the development of innovative strategies to address emerging threats posed by the expansion of drug-resistant bacterial infections.
Collapse
Affiliation(s)
- Jin Kyung Kim
- Department of Microbiology, Keimyung University School of Medicine, Daegu, Republic of Korea
| | - Asmita Sapkota
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Taylor Roh
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea
| | - Eun-Kyeong Jo
- Department of Microbiology, Chungnam National University College of Medicine, Daejeon, Republic of Korea; Department of Medical Science, Chungnam National University College of Medicine, Daejeon, Republic of Korea.
| |
Collapse
|
3
|
Babcock BR, Kosters A, Eddins DJ, Donaire MSB, Sarvadhavabhatla S, Pae V, Beltran F, Murray VW, Gill G, Xie G, Dobosh BS, Giacalone VD, Tirouvanziam RM, Ramonell RP, Jenks SA, Sanz I, Lee FEH, Roan NR, Lee SA, Ghosn EEB. Transient anti-interferon autoantibodies in the airways are associated with recovery from COVID-19. Sci Transl Med 2024; 16:eadq1789. [PMID: 39504354 PMCID: PMC11924959 DOI: 10.1126/scitranslmed.adq1789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 10/07/2024] [Indexed: 11/08/2024]
Abstract
Preexisting anti-interferon-α (anti-IFN-α) autoantibodies in blood are associated with susceptibility to life-threatening COVID-19. However, it is unclear whether anti-IFN-α autoantibodies in the airways, the initial site of infection, can also determine disease outcomes. In this study, we developed a multiparameter technology, FlowBEAT, to quantify and profile the isotypes of anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and anti-IFN-α antibodies in longitudinal samples collected over 20 months from the airways and blood of 129 donors spanning mild to severe COVID-19. We found that nasal IgA1 anti-IFN-α autoantibodies were induced after infection onset in more than 70% of mild and moderate COVID-19 cases and were associated with robust anti-SARS-CoV-2 immunity, fewer symptoms, and efficient recovery. Nasal anti-IFN-α autoantibodies followed the peak of host IFN-α production and waned with disease recovery, revealing a regulated balance between IFN-α and anti-IFN-α response. In contrast, systemic IgG1 anti-IFN-α autoantibodies appeared later and were detected only in a subset of patients with elevated systemic inflammation and worsening symptoms. These data reveal a protective role for nasal anti-IFN-α in the immunopathology of COVID-19 and suggest that anti-IFN-α autoantibodies may serve a homeostatic function to regulate host IFN-α after viral infection in the respiratory mucosa.
Collapse
Affiliation(s)
- Benjamin R Babcock
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - Astrid Kosters
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - Devon J Eddins
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - Maria Sophia Baluyot Donaire
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Sannidhi Sarvadhavabhatla
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Vivian Pae
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Fiona Beltran
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Victoria W Murray
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Gurjot Gill
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Guorui Xie
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Brian S Dobosh
- Department of Pediatrics, Emory University, Atlanta, GA 30322, USA
| | | | | | - Richard P Ramonell
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - Scott A Jenks
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - Ignacio Sanz
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - F Eun-Hyung Lee
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
| | - Nadia R Roan
- Gladstone Institutes, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Sulggi A Lee
- Division of HIV, Infectious Diseases & Global Medicine, Department of Medicine, University of California, San Francisco, San Francisco, CA 94110, USA
| | - Eliver E B Ghosn
- Division of Immunology and Rheumatology, Department of Medicine, Lowance Center for Human Immunology, Emory University, Atlanta, GA 30322, USA
- Emory Vaccine Center, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| |
Collapse
|
4
|
Seethamraju H, Yang OO, Loftus R, Ogbuagu O, Sammartino D, Mansour A, Sacha JB, Ojha S, Hansen SG, Arman AC, Lalezari JP. A Randomized Placebo-Controlled Trial of Leronlimab in Mild-To-Moderate COVID-19. Clin Ther 2024; 46:891-899. [PMID: 39353749 DOI: 10.1016/j.clinthera.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/19/2024] [Accepted: 08/22/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE Early in the course of the SARS-CoV-2 pandemic it was hypothesised that host genetics played a role in the pathophysiology of COVID-19 including a suggestion that the CCR5-Δ32 mutation may be protective in SARS-CoV-2 infection. Leronlimab is an investigational CCR5-specific humanized IgG4 monoclonal antibody currently in development for HIV-1 infection. We aimed to explore the impact of leronlimab on the severity of disease symptoms among participants with mild-to-moderate COVID-19. METHODS The TEMPEST trial was a randomized, double-blind, placebo-controlled study in participants with mild-to-moderate COVID-19. Participants were randomly assigned in a 2:1 ratio to receive subcutaneous leronlimab (700 mg) or placebo on days 0 and 7. The primary efficacy endpoint was assessed by change in total symptom score based on fever, myalgia, dyspnea, and cough, at end of treatment (day 14). FINDINGS Overall, 84 participants were randomized and treated with leronlimab (n = 56) or placebo (n = 28). No difference was observed in change in total symptom score (P = 0.8184) or other pre-specified secondary endpoints between treatments. However, in a post hoc analysis, 50.0% of participants treated with leronlimab demonstrated improvements from baseline in National Early Warning Score 2 (NEWS2) at day 14, compared with 20·8% of participants in the placebo group (post hoc; p = 0.0223). Among participants in this trial with mild-to-moderate COVID-19 adverse events rates were numerically but not statistically significantly lower in leronlimab participants (33.9%) compared with placebo participants (50.0%). IMPLICATIONS At the time the TEMPEST trial was designed although CCR5 was known to be implicated in COVID-19 disease severity the exact pathophysiology of SARS-CoV-2 infection was poorly understood. Today it is well accepted that SARS-CoV-2 infection in asymptomatic-to-mild cases is primarily characterized by viral replication, with a heightened immune response, accompanied by diminished viral replication in moderate-to-severe disease and a peak in inflammatory responses with excessive production of pro-inflammatory cytokines in critical disease. It is therefore perhaps not surprising that no differences between treatments were observed in the primary endpoint or in pre-specified secondary endpoints among participants with mild-to-moderate COVID-19. However, the results of the exploratory post hoc analysis showing that participants in the leronlimab group had greater improvement in NEWS2 assessment compared to placebo provided a suggestion that leronlimab may be associated with a lower likelihood of people with mild-to-moderate COVID-19 progressing to more severe disease and needs to be confirmed in other appropriately designed clinical trials. CLINICALTRIALS gov number, NCT04343651 https://classic. CLINICALTRIALS gov/ct2/show/NCT04343651.
Collapse
Affiliation(s)
| | - Otto O Yang
- David Geffen School of Medicine at UCLA, Los Angeles, California
| | | | | | | | | | - Jonah B Sacha
- Oregon Health & Science University, Portland, Oregon
| | - Sohita Ojha
- Oregon Health & Science University, Portland, Oregon
| | | | | | | |
Collapse
|
5
|
Chakravarty S, Varghese M, Fan S, Taylor RT, Chakravarti R, Chattopadhyay S. IRF3 inhibits inflammatory signaling pathways in macrophages to prevent viral pathogenesis. SCIENCE ADVANCES 2024; 10:eadn2858. [PMID: 39121222 PMCID: PMC11313863 DOI: 10.1126/sciadv.adn2858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 07/05/2024] [Indexed: 08/11/2024]
Abstract
Viral inflammation contributes to pathogenesis and mortality during respiratory virus infections. IRF3, a critical component of innate antiviral immune responses, interacts with pro-inflammatory transcription factor NF-κB, and inhibits its activity. This mechanism helps suppress inflammatory gene expression in virus-infected cells and mice. We evaluated the cells responsible for IRF3-mediated suppression of viral inflammation using newly engineered conditional Irf3Δ/Δ mice. Irf3Δ/Δ mice, upon respiratory virus infection, showed increased susceptibility and mortality. Irf3 deficiency caused enhanced inflammatory gene expression, lung inflammation, immunopathology, and damage, accompanied by increased infiltration of pro-inflammatory macrophages. Deletion of Irf3 in macrophages (Irf3MKO) displayed, similar to Irf3Δ/Δ mice, increased inflammatory responses, macrophage infiltration, lung damage, and lethality, indicating that IRF3 in these cells suppressed lung inflammation. RNA-seq analyses revealed enhanced NF-κB-dependent gene expression along with activation of inflammatory signaling pathways in infected Irf3MKO lungs. Targeted analyses revealed activated MAPK signaling in Irf3MKO lungs. Therefore, IRF3 inhibited inflammatory signaling pathways in macrophages to prevent viral inflammation and pathogenesis.
Collapse
Affiliation(s)
- Sukanya Chakravarty
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| | - Merina Varghese
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Shumin Fan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Roger Travis Taylor
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Ritu Chakravarti
- Department of Physiology and Pharmacology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
| | - Saurabh Chattopadhyay
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Science, Toledo, OH, USA
- Department of Microbiology, Immunology, and Molecular Genetics, University of Kentucky College of Medicine, Lexington, KY, USA
| |
Collapse
|
6
|
Saikh KU, Anam K, Sultana H, Ahmed R, Kumar S, Srinivasan S, Ahmed H. Targeting Myeloid Differentiation Primary Response Protein 88 (MyD88) and Galectin-3 to Develop Broad-Spectrum Host-Mediated Therapeutics against SARS-CoV-2. Int J Mol Sci 2024; 25:8421. [PMID: 39125989 PMCID: PMC11313481 DOI: 10.3390/ijms25158421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/16/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Nearly six million people worldwide have died from the coronavirus disease (COVID-19) outbreak caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Although COVID-19 vaccines are largely successful in reducing the severity of the disease and deaths, the decline in vaccine-induced immunity over time and the continuing emergence of new viral variants or mutations underscore the need for an alternative strategy for developing broad-spectrum host-mediated therapeutics against SARS-CoV-2. A key feature of severe COVID-19 is dysregulated innate immune signaling, culminating in a high expression of numerous pro-inflammatory cytokines and chemokines and a lack of antiviral interferons (IFNs), particularly type I (alpha and beta) and type III (lambda). As a natural host defense, the myeloid differentiation primary response protein, MyD88, plays pivotal roles in innate and acquired immune responses via the signal transduction pathways of Toll-like receptors (TLRs), a type of pathogen recognition receptors (PRRs). However, recent studies have highlighted that infection with viruses upregulates MyD88 expression and impairs the host antiviral response by negatively regulating type I IFN. Galectin-3 (Gal3), another key player in viral infections, has been shown to modulate the host immune response by regulating viral entry and activating TLRs, the NLRP3 inflammasome, and NF-κB, resulting in the release of pro-inflammatory cytokines and contributing to the overall inflammatory response, the so-called "cytokine storm". These studies suggest that the specific inhibition of MyD88 and Gal3 could be a promising therapy for COVID-19. This review presents future directions for MyD88- and Gal3-targeted antiviral drug discovery, highlighting the potential to restore host immunity in SARS-CoV-2 infections.
Collapse
Affiliation(s)
- Kamal U. Saikh
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| | | | | | | | | | | | - Hafiz Ahmed
- GlycoMantra Inc., bwtech South of the University of Maryland Baltimore County, 1450 South Rolling Road, Baltimore, MD 21227, USA; (K.A.); (H.S.); (R.A.); (S.K.); (S.S.)
| |
Collapse
|
7
|
Edwards CT, Karunakaran KA, Garcia E, Beutler N, Gagne M, Golden N, Aoued H, Pellegrini KL, Burnett MR, Honeycutt CC, Lapp SA, Ton T, Lin MC, Metz A, Bombin A, Goff K, Scheuermann SE, Wilkes A, Wood JS, Ehnert S, Weissman S, Curran EH, Roy M, Dessasau E, Paiardini M, Upadhyay AA, Moore I, Maness NJ, Douek DC, Piantadosi A, Andrabi R, Rogers TR, Burton DR, Bosinger SE. Passive infusion of an S2-Stem broadly neutralizing antibody protects against SARS-CoV-2 infection and lower airway inflammation in rhesus macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605768. [PMID: 39109178 PMCID: PMC11302620 DOI: 10.1101/2024.07.30.605768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
The continued evolution of SARS-CoV-2 variants capable of subverting vaccine and infection-induced immunity suggests the advantage of a broadly protective vaccine against betacoronaviruses (β-CoVs). Recent studies have isolated monoclonal antibodies (mAbs) from SARS-CoV-2 recovered-vaccinated donors capable of neutralizing many variants of SARS-CoV-2 and other β-CoVs. Many of these mAbs target the conserved S2 stem region of the SARS-CoV-2 spike protein, rather the receptor binding domain contained within S1 primarily targeted by current SARS-CoV-2 vaccines. One of these S2-directed mAbs, CC40.8, has demonstrated protective efficacy in small animal models against SARS-CoV-2 challenge. As the next step in the pre-clinical testing of S2-directed antibodies as a strategy to protect from SARS-CoV-2 infection, we evaluated the in vivo efficacy of CC40.8 in a clinically relevant non-human primate model by conducting passive antibody transfer to rhesus macaques (RM) followed by SARS-CoV-2 challenge. CC40.8 mAb was intravenously infused at 10mg/kg, 1mg/kg, or 0.1 mg/kg into groups (n=6) of RM, alongside one group that received a control antibody (PGT121). Viral loads in the lower airway were significantly reduced in animals receiving higher doses of CC40.8. We observed a significant reduction in inflammatory cytokines and macrophages within the lower airway of animals infused with 10mg/kg and 1mg/kg doses of CC40.8. Viral genome sequencing demonstrated a lack of escape mutations in the CC40.8 epitope. Collectively, these data demonstrate the protective efficiency of broadly neutralizing S2-targeting antibodies against SARS-CoV-2 infection within the lower airway while providing critical preclinical work necessary for the development of pan-β-CoV vaccines.
Collapse
Affiliation(s)
- Christopher T. Edwards
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kirti A. Karunakaran
- Department of Pathology, Microbiology & Immunology, Vanderbilt University, Nashville, TN 37235, USA
| | - Elijah Garcia
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Mayo Clinic Medical Scientist Training Program, Mayo Clinic College of Medicine and Science, 200 First Street SW, Rochester, Minnesota 55356, USA
| | - Nathan Beutler
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Matthew Gagne
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nadia Golden
- Tulane National Primate Research Center, Covington, LA, USA
| | - Hadj Aoued
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Kathryn L. Pellegrini
- Emory National Primate Research Center Genomics Core, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Matthew R. Burnett
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christopher Cole Honeycutt
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Stacey A. Lapp
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Thang Ton
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Mark C. Lin
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Amanda Metz
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Andrei Bombin
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Kelly Goff
- Tulane National Primate Research Center, Covington, LA, USA
| | | | - Amelia Wilkes
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Jennifer S. Wood
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Stephanie Ehnert
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Stacey Weissman
- Division of Animal Resources, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Elizabeth H. Curran
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Melissa Roy
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Evan Dessasau
- Division of Histology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit A. Upadhyay
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
| | - Ian Moore
- Division of Pathology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | | | - Daniel C. Douek
- Vaccine Research Center; National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Anne Piantadosi
- Division of Infectious Diseases, Department of Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Raiees Andrabi
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Thomas R. Rogers
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- Division of Infectious Diseases, Department of Medicine, University of California, San Diego, La Jolla, CA 92037, USA
| | - Dennis R. Burton
- Department of Immunology and Microbiology, The Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, The Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), The Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, GA 30329, USA
- Emory Vaccine Center, Emory National Primate Research Center, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
8
|
Hoenigsperger H, Sivarajan R, Sparrer KM. Differences and similarities between innate immune evasion strategies of human coronaviruses. Curr Opin Microbiol 2024; 79:102466. [PMID: 38555743 DOI: 10.1016/j.mib.2024.102466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/20/2024] [Accepted: 03/12/2024] [Indexed: 04/02/2024]
Abstract
So far, seven coronaviruses have emerged in humans. Four recurring endemic coronaviruses cause mild respiratory symptoms. Infections with epidemic Middle East respiratory syndrome-related coronavirus or severe acute respiratory syndrome coronavirus (SARS-CoV)-1 are associated with high mortality rates. SARS-CoV-2 is the causative agent of the coronavirus disease 2019 pandemic. To establish an infection, coronaviruses evade restriction by human innate immune defenses, such as the interferon system, autophagy and the inflammasome. Here, we review similar and distinct innate immune manipulation strategies employed by the seven human coronaviruses. We further discuss the impact on pathogenesis, zoonotic emergence and adaptation. Understanding the nature of the interplay between endemic/epidemic/pandemic coronaviruses and host defenses may help to better assess the pandemic potential of emerging coronaviruses.
Collapse
Affiliation(s)
- Helene Hoenigsperger
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | - Rinu Sivarajan
- Institute of Molecular Virology, Ulm University Medical Center, 89081 Ulm, Germany
| | | |
Collapse
|
9
|
Viox EG, Bosinger SE, Douek DC, Schreiber G, Paiardini M. Harnessing the power of IFN for therapeutic approaches to COVID-19. J Virol 2024; 98:e0120423. [PMID: 38651899 PMCID: PMC11092331 DOI: 10.1128/jvi.01204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Interferons (IFNs) are essential for defense against viral infections but also drive recruitment of inflammatory cells to sites of infection, a key feature of severe COVID-19. Here, we explore the complexity of the IFN response in COVID-19, examine the effects of manipulating IFN on SARS-CoV-2 viral replication and pathogenesis, and highlight pre-clinical and clinical studies evaluating the therapeutic efficacy of IFN in limiting COVID-19 severity.
Collapse
Affiliation(s)
- Elise G. Viox
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
| | - Steven E. Bosinger
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Emory NPRC Genomics Core Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| | - Daniel C. Douek
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Gideon Schreiber
- Department of Biomolecular Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Mirko Paiardini
- Division of Microbiology and Immunology, Emory National Primate Research Center, Emory University, Atlanta, Georgia, USA
- Department of Pathology and Laboratory Medicine, School of Medicine, Emory University, Atlanta, Georgia, USA
| |
Collapse
|
10
|
Svensson Akusjärvi S, Zanoni I. Yin and yang of interferons: lessons from the coronavirus disease 2019 (COVID-19) pandemic. Curr Opin Immunol 2024; 87:102423. [PMID: 38776716 PMCID: PMC11162909 DOI: 10.1016/j.coi.2024.102423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The host immune response against severe acute respiratory syndrome coronavirus 2 includes the induction of a group of natural antiviral cytokines called interferons (IFNs). Although originally recognized for their ability to potently counteract infections, the mechanistic functions of IFNs in patients with varying severities of coronavirus disease 2019 (COVID-19) have highlighted a more complex scenario. Cellular and molecular analyses have revealed that timing, location, and subtypes of IFNs produced during severe acute respiratory syndrome coronavirus 2 infection play a major role in determining disease progression and severity. In this review, we summarize what the COVID-19 pandemic has taught us about the protective and detrimental roles of IFNs during the inflammatory response elicited against a new respiratory virus across different ages and its longitudinal consequences in driving the development of long COVID-19.
Collapse
Affiliation(s)
- Sara Svensson Akusjärvi
- Harvard Medical School, Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institutet, Stockholm, Sweden
| | - Ivan Zanoni
- Harvard Medical School, Division of Immunology, Boston Children's Hospital, Boston, MA, USA; Division of Gastroenterology, Boston Children's Hospital, Boston, MA, USA.
| |
Collapse
|
11
|
Tang J, Gu Y, Wang X, Luo Y, Zhang F, Zheng J, Wang Y, Shen X, Xu L. Salmonella T3SS-elicited inflammatory innate immune response inhibits type I IFN response in macrophages. Vet Microbiol 2024; 289:109970. [PMID: 38154394 DOI: 10.1016/j.vetmic.2023.109970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/30/2023]
Abstract
As a gram-negative intracellular bacterial pathogen, Salmonella enterica serovar Typhimurium (S. Typhimurium) invades different cell types including macrophages. Its infection in macrophages induces robust innate immune responses that are featured by proinflammatory and type I interferon (IFN) responses. The type III secretion systems (T3SSs) of S. Typhimurium play a crucial role in activating host inflammasome pathways. It has been recognized that the inflammasome pathways inhibit the type I IFN cascade. However, the potential role of T3SS in regulating the type I IFN response and the underlying mechanisms are largely unknown. In this study, we showed that S. Typhimurium infection activated strong proinflammatory, type I IFN and IFN-stimulated genes (ISGs) expression in macrophages. Furthermore, we showed that T3SS-defective S. Typhimurium mutant ΔinvC elicited attenuated inflammatory response but enhanced type I IFN and ISGs expression. Additionally, the inhibition of caspase-1 by a specific inhibitor VX-765 resulted in increased type I IFN response. Moreover, cell-permeable pan-caspase inhibitor Z-VAD-FMK also enhanced the type I IFN response upon S. Typhimurium infection. Intriguingly, compared with exponential phase S. Typhimurium infection, stationary phase bacteria triggered higher levels of type I IFN responses. Finally, the inhibition of caspase-1 by VX-765 substantially increased the intracellular S. Typhimurium burden. In conclusion, we demonstrated that the proinflammatory response induced by S. Typhimurium T3SS can inhibit the type I IFN response, which provides insight into the role of T3SS in orchestrating innate immunity during S. Typhimurium infection.
Collapse
Affiliation(s)
- Jingjing Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yanchao Gu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yi Luo
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fuhua Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jingcai Zheng
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xihui Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Lei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Agricultural and Environmental Microbiology, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
12
|
Franco A, Song J, Chambers C, Sette A, Grifoni A. SARS-CoV-2 spike-specific regulatory T cells (Treg) expand and develop memory in vaccine recipients suggesting a role for immune regulation in preventing severe symptoms in COVID-19. Autoimmunity 2023; 56:2259133. [PMID: 37724524 DOI: 10.1080/08916934.2023.2259133] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 09/10/2023] [Indexed: 09/21/2023]
Abstract
We enrolled healthy subjects that received 2 to 4 injections of mRNA-based vaccination to prevent COVID-19 months to a year from the last vaccine boost, and we found numerous SARS-CoV-2 spike-specific regulatory T cell (Treg) that developed T cell memory as effector memory T cells (TEM) and central memory T cells (TCM). CD4+ CD25high Treg expressed the chemokine receptor CCR6 in a considerable percentage, suggesting T cell homing to the vascular endothelium, lung and gut epithelial cells and brain. Treg phenotype was different than peripherally-induced Treg (pTreg) that revert from pro-inflammatory T cells under repeated stimulatory conditions, suggesting that SARS-CoV-2 spike-specific Treg differentiated from naïve T cells in tissues where the SARS-CoV-2 spike proteins were synthetized. Twenty two of 22 subjects studied responded to vaccination developing a spike-specific CD4+ T helper (Th)1 response, and 20 of 22 developing a spike-specific CD8+ cytotoxic T cells (CTL) response. However, in vaccine recipients the expansion of spike-specific pro-inflammatory T cells was less significant than the expansion of spike-specific Treg. Effector (TEM) and central memory (TCM) Treg were numerous as early as after two vaccine doses, with no significant differences following additional vaccine boosts. In co-culture experiments under stimulatory conditions, Treg regulated naïve T cell differentiation toward a pro-inflammatory phenotype and suppressed interferon (IFN)γ production by SARS-CoV-2-specific CD4 + Th1 cells.
Collapse
Affiliation(s)
- Alessandra Franco
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Jaeyoon Song
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Christina Chambers
- Department of Pediatrics, University of California San Diego, School of Medicine, La Jolla, CA, USA
| | - Alessandro Sette
- Center for Autoimmunity and Inflammation, Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| | - Alba Grifoni
- Center for Autoimmunity and Inflammation, Center for Infectious Disease and Vaccine Research, La Jolla Institute for Immunology, La Jolla, CA, USA
| |
Collapse
|
13
|
Chowdhury S, Latham KA, Tran AC, Carroll CJ, Stanton RJ, Weekes MP, Neil SJD, Swanson CM, Strang BL. Inhibition of human cytomegalovirus replication by interferon alpha can involve multiple anti-viral factors. J Gen Virol 2023; 104:001929. [PMID: 38063292 PMCID: PMC10770924 DOI: 10.1099/jgv.0.001929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
The shortcomings of current direct-acting anti-viral therapy against human cytomegalovirus (HCMV) has led to interest in host-directed therapy. Here we re-examine the use of interferon proteins to inhibit HCMV replication utilizing both high and low passage strains of HCMV. Pre-treatment of cells with interferon alpha (IFNα) was required for robust and prolonged inhibition of both low and high passage HCMV strains, with no obvious toxicity, and was associated with an increased anti-viral state in HCMV-infected cells. Pre-treatment of cells with IFNα led to poor expression of HCMV immediate-early proteins from both high and low passage strains, which was associated with the presence of the anti-viral factor SUMO-PML. Inhibition of HCMV replication in the presence of IFNα involving ZAP proteins was HCMV strain-dependent, wherein a high passage HCMV strain was obviously restricted by ZAP and a low passage strain was not. This suggested that strain-specific combinations of anti-viral factors were involved in inhibition of HCMV replication in the presence of IFNα. Overall, this work further supports the development of strategies involving IFNα that may be useful to inhibit HCMV replication and highlights the complexity of the anti-viral response to HCMV in the presence of IFNα.
Collapse
Affiliation(s)
- Shabab Chowdhury
- Institute of Infection & Immunity, St George’s, University of London, London, UK
| | - Katie A. Latham
- Institute of Infection & Immunity, St George’s, University of London, London, UK
| | - Andy C. Tran
- Institute of Infection & Immunity, St George’s, University of London, London, UK
| | - Christopher J. Carroll
- Institute of Molecular & Cellular Sciences, St George’s, University of London, London, UK
| | - Richard J. Stanton
- Division of Infection and Immunity, Cardiff University School of Medicine, Cardiff, UK
| | - Michael P. Weekes
- Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Stuart J. D. Neil
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Chad M. Swanson
- Department of Infectious Diseases, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Blair L. Strang
- Institute of Infection & Immunity, St George’s, University of London, London, UK
| |
Collapse
|