1
|
Zhu J, Liu L, Lin R, Guo X, Yin J, Xie H, Lu Y, Zhang Z, Zhang H, Yao Z, Zhang H, Wang X, Zeng C, Cai D. RPL35 downregulated by mechanical overloading promotes chondrocyte senescence and osteoarthritis development via Hedgehog-Gli1 signaling. J Orthop Translat 2024; 45:226-235. [PMID: 38596341 PMCID: PMC11001632 DOI: 10.1016/j.jot.2024.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 10/01/2023] [Accepted: 01/13/2024] [Indexed: 04/11/2024] Open
Abstract
Objectives To investigate the potential role of Ribosomal protein L35 (RPL35) in regulating chondrocyte catabolic metabolism and to examine whether osteoarthritis (OA) progression can be delayed by overexpressing RPL35 in a mouse compression loading model. Methods RNA sequencing analysis was performed on chondrocytes treated with or without 20 % elongation strain loading for 24 h. Experimental OA in mice was induced by destabilization of the medial meniscus and compression loading. Mice were randomly assigned to a sham group, an intra-articular adenovirus-mediated overexpression of the negative group, and an intra-articular adenovirus-mediated overexpression of the RPL35 operated group. The Osteoarthritis Research Society International score was used to evaluate cartilage degeneration. Immunostaining and western blot analyses were conducted to detect relative protein levels. Primary mouse chondrocytes were treated with 20 % elongation strain loading for 24 h to investigate the role of RPL35 in modulating chondrocyte catabolic metabolism and regulating cellular senescence in chondrocytes. Results The protein expression of RPL35 in mouse chondrocytes was significantly reduced when excessive mechanical loading was applied, while elevated protein levels of RPL35 protected articular chondrocytes from degeneration. In addition, the RPL35 knockdown alone induced chondrocyte senescence, decreased the expression of anabolic markers, and increased the expression of catabolic markers in vitro in part through the hedgehog (Hh) pathway. Conclusions These findings demonstrated a functional pathway important for OA development and identified intra-articular injection of RPL35 as a potential therapy for OA prevention and treatment. The translational potential of this article It is necessary to develop new targeted drugs for OA due to the limitations of conventional pharmacotherapy. Our study explores and demonstrates the protective effect of RPL35 against excessive mechanical stress in OA models in vivo and in vitro in animals. These findings might provide novel insights into OA pathogenesis and show its translational potential for OA therapy.
Collapse
Affiliation(s)
- Jinjian Zhu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Liangliang Liu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Rengui Lin
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiongtian Guo
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Jianbin Yin
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haoyu Xie
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Yuheng Lu
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zhicheng Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Hongbo Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Zihao Yao
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Haiyan Zhang
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Xiangjiang Wang
- Orthopedics department, Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, 511518, Guangdong, China
| | - Chun Zeng
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| | - Daozhang Cai
- Department of Orthopedics, Orthopedic Hospital of Guangdong Province, Academy of Orthopedics·Guangdong Province, Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Disease, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510280, China
- The Third School of Clinical Medicine, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Guangzhou, China
| |
Collapse
|
2
|
Gregorczyk M, Pastore G, Muñoz I, Carroll T, Streubel J, Munro M, Lis P, Lange S, Lamoliatte F, Macartney T, Toth R, Brown F, Hastie J, Pereira G, Durocher D, Rouse J. Functional characterization of C21ORF2 association with the NEK1 kinase mutated in human in diseases. Life Sci Alliance 2023; 6:e202201740. [PMID: 37188479 PMCID: PMC10185812 DOI: 10.26508/lsa.202201740] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 05/17/2023] Open
Abstract
The NEK1 kinase controls ciliogenesis, mitosis, and DNA repair, and NEK1 mutations cause human diseases including axial spondylometaphyseal dysplasia and amyotrophic lateral sclerosis. C21ORF2 mutations cause a similar pattern of human diseases, suggesting close functional links with NEK1 Here, we report that endogenous NEK1 and C21ORF2 form a tight complex in human cells. A C21ORF2 interaction domain "CID" at the C-terminus of NEK1 is necessary for its association with C21ORF2 in cells, and pathogenic mutations in this region disrupt the complex. AlphaFold modelling predicts an extended binding interface between a leucine-rich repeat domain in C21ORF2 and the NEK1-CID, and our model may explain why pathogenic mutations perturb the complex. We show that NEK1 mutations that inhibit kinase activity or weaken its association with C21ORF2 severely compromise ciliogenesis, and that C21ORF2, like NEK1 is required for homologous recombination. These data enhance our understanding of how the NEK1 kinase is regulated, and they shed light on NEK1-C21ORF2-associated diseases.
Collapse
Affiliation(s)
- Mateusz Gregorczyk
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Graziana Pastore
- The Lunenfeld-Tannenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Ivan Muñoz
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Thomas Carroll
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Johanna Streubel
- German Cancer Research Centre (DKFZ), Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Meagan Munro
- The Lunenfeld-Tannenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Pawel Lis
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Sven Lange
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Frederic Lamoliatte
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Rachel Toth
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Fiona Brown
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - James Hastie
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| | - Gislene Pereira
- German Cancer Research Centre (DKFZ), Centre for Organismal Studies, University of Heidelberg, Heidelberg, Germany
- DKFZ-ZMBH Alliance, Heidelberg, Germany
| | - Daniel Durocher
- The Lunenfeld-Tannenbaum Research Institute, Mount Sinai Hospital, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, Wellcome Trust Biocentre, University of Dundee, Dundee, UK
| |
Collapse
|
3
|
Ma Z, Zheng H, Li X, Yu B, Peng H. Knockdown of Csnk1a1 results in preimplantation developmental arrest in mice. Theriogenology 2023; 198:30-35. [PMID: 36542875 DOI: 10.1016/j.theriogenology.2022.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 12/05/2022] [Accepted: 12/08/2022] [Indexed: 12/16/2022]
Abstract
Casein kinase 1, alpha 1 (CSNK1A1), is a member of the highly conserved serine/threonine protein kinase family. This study was established to analyze the expression and localization of CSNK1A1 and its function in early embryonic development in mice. Csnk1a1 mRNA and protein are expressed in multiple mouse tissues including the ovary. After ovulation and fertilization, Csnk1a1 mRNA and protein were detected in preimplantation embryos and their expression was highest in two-cell-stage embryos. CSNK1A1 protein was also mainly localized in the cytoplasm of preimplantation embryos. Moreover, knockdown of Csnk1a1 in zygotes led to a significant decrease in the rate of blastocyst formation. Furthermore, treatment of zygotes with the CSNK1A1-specific inhibitor D4476 also resulted in embryonic developmental arrest. These results provide the first evidence for a novel function of CSNK1A1 in early embryonic development in mice.
Collapse
Affiliation(s)
- Zengyou Ma
- College of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China; State Key Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, College of Life Sciences, Inner Mongolia University, Hohhot, 010021, PR China; College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, PR China
| | - Haoyi Zheng
- College of Animal Science, Fujian Agriculture and Forestry University, Fujian, Fuzhou, 350002, PR China
| | - Xiaoping Li
- College of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China
| | - Beibei Yu
- College of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China
| | - Hui Peng
- College of Animal Science and Technology, Hainan University, Hainan, Haikou, 570228, PR China.
| |
Collapse
|
4
|
Jiang J. Hedgehog signaling mechanism and role in cancer. Semin Cancer Biol 2022; 85:107-122. [PMID: 33836254 PMCID: PMC8492792 DOI: 10.1016/j.semcancer.2021.04.003] [Citation(s) in RCA: 116] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/25/2021] [Accepted: 04/02/2021] [Indexed: 12/12/2022]
Abstract
Cell-cell communication through evolutionarily conserved signaling pathways governs embryonic development and adult tissue homeostasis. Deregulation of these signaling pathways has been implicated in a wide range of human diseases including cancer. One such pathway is the Hedgehog (Hh) pathway, which was originally discovered in Drosophila and later found to play a fundamental role in human development and diseases. Abnormal Hh pathway activation is a major driver of basal cell carcinomas (BCC) and medulloblastoma. Hh exerts it biological influence through a largely conserved signal transduction pathway from the activation of the GPCR family transmembrane protein Smoothened (Smo) to the conversion of latent Zn-finger transcription factors Gli/Ci proteins from their repressor (GliR/CiR) to activator (GliA/CiA) forms. Studies from model organisms and human patients have provided deep insight into the Hh signal transduction mechanisms, revealed roles of Hh signaling in a wide range of human cancers, and suggested multiple strategies for targeting this pathway in cancer treatment.
Collapse
Affiliation(s)
- Jin Jiang
- Department of Molecular Biology and Department of Pharmacology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, 75390, USA.
| |
Collapse
|
5
|
Liu M, Su Y, Peng J, Zhu AJ. Protein modifications in Hedgehog signaling: Cross talk and feedback regulation confer divergent Hedgehog signaling activity. Bioessays 2021; 43:e2100153. [PMID: 34738654 DOI: 10.1002/bies.202100153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/06/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
The complexity of the Hedgehog (Hh) signaling cascade has increased over the course of evolution; however, it does not suffice to accommodate the dynamic yet robust requirements of differential Hh signaling activity needed for embryonic development and adult homeostatic maintenance. One solution to solve this dilemma is to apply multiple forms of post-translational modifications (PTMs) to the core Hh signaling components, modulating their abundance, localization, and signaling activity. This review summarizes various forms of protein modifications utilized to regulate Hh signaling, with a special emphasis on crosstalk between different forms of PTMs and their feedback regulation by Hh signaling.
Collapse
Affiliation(s)
- Min Liu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Ying Su
- Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Jingyu Peng
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China
| | - Alan Jian Zhu
- Ministry of Education Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| |
Collapse
|
6
|
Abraham SP, Nita A, Krejci P, Bosakova M. Cilia kinases in skeletal development and homeostasis. Dev Dyn 2021; 251:577-608. [PMID: 34582081 DOI: 10.1002/dvdy.426] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/22/2021] [Accepted: 09/22/2021] [Indexed: 11/08/2022] Open
Abstract
Primary cilia are dynamic compartments that regulate multiple aspects of cellular signaling. The production, maintenance, and function of cilia involve more than 1000 genes in mammals, and their mutations disrupt the ciliary signaling which manifests in a plethora of pathological conditions-the ciliopathies. Skeletal ciliopathies are genetic disorders affecting the development and homeostasis of the skeleton, and encompass a broad spectrum of pathologies ranging from isolated polydactyly to lethal syndromic dysplasias. The recent advances in forward genetics allowed for the identification of novel regulators of skeletogenesis, and revealed a growing list of ciliary proteins that are critical for signaling pathways implicated in bone physiology. Among these, a group of protein kinases involved in cilia assembly, maintenance, signaling, and disassembly has emerged. In this review, we summarize the functions of cilia kinases in skeletal development and disease, and discuss the available and upcoming treatment options.
Collapse
Affiliation(s)
- Sara P Abraham
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Alexandru Nita
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic
| | - Pavel Krejci
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| | - Michaela Bosakova
- Department of Biology, Faculty of Medicine, Masaryk University, Brno, Czech Republic.,Institute of Animal Physiology and Genetics of the CAS, Brno, Czech Republic.,International Clinical Research Center, St. Anne's University Hospital, Brno, Czech Republic
| |
Collapse
|
7
|
Feng Y, Liao Y, Zhang J, Shen J, Shao Z, Hornicek F, Duan Z. Transcriptional activation of CBFβ by CDK11 p110 is necessary to promote osteosarcoma cell proliferation. Cell Commun Signal 2019; 17:125. [PMID: 31610798 PMCID: PMC6792216 DOI: 10.1186/s12964-019-0440-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/10/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Aberrant expression of cyclin-dependent protein kinases (CDK) is a hallmark of cancer. CDK11 plays a crucial role in cancer cell growth and proliferation. However, the molecular mechanisms of CDK11 and CDK11 transcriptionally regulated genes are largely unknown. METHODS In this study, we performed a global transcriptional analysis using gene array technology to investigate the transcriptional role of CDK11 in osteosarcoma. The promoter luciferase assay, chromatin immunoprecipitation assay, and Gel Shift assay were used to identify direct transcriptional targets of CDK11. Clinical relevance and function of core-binding factor subunit beta (CBFβ) were further accessed in osteosarcoma. RESULTS We identified a transcriptional role of protein-DNA interaction for CDK11p110, but not CDK11p58, in the regulation of CBFβ expression in osteosarcoma cells. The CBFβ promoter luciferase assay, chromatin immunoprecipitation assay, and Gel Shift assay confirmed that CBFβ is a direct transcriptional target of CDK11. High expression of CBFβ is associated with poor outcome in osteosarcoma patients. Expression of CBFβ contributes to the proliferation and metastatic behavior of osteosarcoma cells. CONCLUSIONS These data establish CBFβ as a mediator of CDK11p110 dependent oncogenesis and suggest that targeting the CDK11- CBFβ pathway may be a promising therapeutic strategy for osteosarcoma treatment.
Collapse
Affiliation(s)
- Yong Feng
- Department of Orthopaedic Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, 430022 China
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S, Los Angeles, CA 90095 USA
| | - Yunfei Liao
- Department of Orthopaedic Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, 430022 China
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S, Los Angeles, CA 90095 USA
| | - Jianming Zhang
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S, Los Angeles, CA 90095 USA
| | - Jacson Shen
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S, Los Angeles, CA 90095 USA
| | - Zengwu Shao
- Department of Orthopaedic Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jie Fang Avenue, Wuhan, 430022 China
| | - Francis Hornicek
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S, Los Angeles, CA 90095 USA
| | - Zhenfeng Duan
- Sarcoma Biology Laboratory, Department of Orthopaedic Surgery, Department of Orthopaedic Surgery, David Geffen School of Medicine at UCLA, 615 Charles E. Young Dr. S, Los Angeles, CA 90095 USA
| |
Collapse
|
8
|
Pak E, MacKenzie EL, Zhao X, Pazyra-Murphy MF, Park PMC, Wu L, Shaw DL, Addleson EC, Cayer SS, Lopez BGC, Agar NYR, Rubin LL, Qi J, Merk DJ, Segal RA. A large-scale drug screen identifies selective inhibitors of class I HDACs as a potential therapeutic option for SHH medulloblastoma. Neuro Oncol 2019; 21:1150-1163. [PMID: 31111916 PMCID: PMC7594547 DOI: 10.1093/neuonc/noz089] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Medulloblastoma (MB) is one of the most frequent malignant brain tumors of children, and a large set of these tumors is characterized by aberrant activation of the sonic hedgehog (SHH) pathway. While some tumors initially respond to inhibition of the SHH pathway component Smoothened (SMO), tumors ultimately recur due to downstream resistance mechanisms, indicating a need for novel therapeutic options. METHODS Here we performed a targeted small-molecule screen on a stable, SHH-dependent murine MB cell line (SMB21). Comprehensive isotype profiling of histone deacetylase (HDAC) inhibitors was performed, and effects of HDAC inhibition were evaluated in cell lines both sensitive and resistant to SMO inhibition. Lastly, distinct mouse models of SHH MB were used to demonstrate pharmacologic efficacy in vivo. RESULTS A subset of the HDAC inhibitors tested significantly inhibit tumor growth of SMB21 cells by preventing SHH pathway activation. Isotype profiling of HDAC inhibitors, together with genetic approaches suggested that concerted inhibition of multiple class I HDACs is necessary to achieve pathway inhibition. Of note, class I HDAC inhibitors were also efficacious in suppressing growth of diverse SMO inhibitor‒resistant clones of SMB21 cells. Finally, we show that the novel HDAC inhibitor quisinostat targets multiple class I HDACs, is well tolerated in mouse models, and robustly inhibits growth of SHH MB cells in vivo as well as in vitro. CONCLUSIONS Our data provide strong evidence that quisinostat or other class I HDAC inhibitors might be therapeutically useful for patients with SHH MB, including those resistant to SMO inhibition.
Collapse
Affiliation(s)
- Ekaterina Pak
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Ethan L MacKenzie
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Xuesong Zhao
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Maria F Pazyra-Murphy
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Paul M C Park
- Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Lei Wu
- Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel L Shaw
- Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Emily C Addleson
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Suzanne S Cayer
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Begoña G-C Lopez
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Nathalie Y R Agar
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
| | - Lee L Rubin
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Cambridge, Massachusetts, USA
| | - Jun Qi
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Cancer Biology and Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Daniel J Merk
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
- Hertie-Institute for Clinical Brain Research, Eberhard Karls University, Tübingen, Germany
| | - Rosalind A Segal
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Zhang T, Xin G, Jia M, Zhuang T, Zhu S, Zhang B, Wang G, Jiang Q, Zhang C. The Plk1 kinase negatively regulates the Hedgehog signaling pathway by phosphorylating Gli1. J Cell Sci 2019; 132:jcs220384. [PMID: 30578313 DOI: 10.1242/jcs.220384] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 12/17/2018] [Indexed: 12/12/2022] Open
Abstract
Hedgehog (Hh) signaling is a highly conserved cell signaling pathway important for cell life, development and tumorigenesis. Increasing evidence suggests that the Hh signaling pathway functions in certain phases of the cell cycle. However, the coordination between Hh signaling and cell cycle control remains poorly understood. Here, we show that polo-like kinase-1 (Plk1), a critical protein kinase regulating many processes during the cell cycle, also regulates Hh signaling by phosphorylating and inhibiting Gli1, a downstream transcription factor of the Hh signaling pathway. Gli1 expression increases along with Hh signaling activation, leading to upregulation of Hh target genes, including cyclin E, during the G1 and S phases. Gli1 is phosphorylated at S481 by Plk1, and this phosphorylation facilitates the nuclear export and binding of Gli1 with its negative regulator Sufu, leading to a reduction in Hh signaling activity. Inhibition of Plk1 kinase activity led to Gli1 maintaining is role in promoting downstream gene expression. Collectively, our data reveal a novel mechanism regarding the crosstalk between Hh signaling and cell cycle control.
Collapse
Affiliation(s)
- Tingting Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Guangwei Xin
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Mingkang Jia
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Tenghan Zhuang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Shicong Zhu
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Boyan Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Gang Wang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Qing Jiang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| | - Chuanmao Zhang
- The Ministry of Education Key Laboratory of Cell Proliferation and Differentiation and the State Key Laboratory of Membrane Biology, College of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
10
|
Jiang S, Zhang M, Sun J, Yang X. Casein kinase 1α: biological mechanisms and theranostic potential. Cell Commun Signal 2018; 16:23. [PMID: 29793495 PMCID: PMC5968562 DOI: 10.1186/s12964-018-0236-z] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 05/16/2018] [Indexed: 02/07/2023] Open
Abstract
Casein kinase 1α (CK1α) is a multifunctional protein belonging to the CK1 protein family that is conserved in eukaryotes from yeast to humans. It regulates signaling pathways related to membrane trafficking, cell cycle progression, chromosome segregation, apoptosis, autophagy, cell metabolism, and differentiation in development, circadian rhythm, and the immune response as well as neurodegeneration and cancer. Given its involvement in diverse cellular, physiological, and pathological processes, CK1α is a promising therapeutic target. In this review, we summarize what is known of the biological functions of CK1α, and provide an overview of existing challenges and potential opportunities for advancing theranostics.
Collapse
Affiliation(s)
- Shaojie Jiang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Miaofeng Zhang
- Department of Orthopaedics, Second Affiliated Hospital, School of Medicine, Zhejiang University, Zhejiang, 310009, Hangzhou, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China
| | - Xiaoming Yang
- Department of Radiology, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Zhejiang, 310016, Hangzhou, China. .,Image-Guided Bio-Molecular Intervention Research, Department of Radiology, University of Washington School of Medicine, Seattle, WA, 98109, USA.
| |
Collapse
|
11
|
Billot K, Coquil C, Villiers B, Josselin-Foll B, Desban N, Delehouzé C, Oumata N, Le Meur Y, Boletta A, Weimbs T, Grosch M, Witzgall R, Saunier S, Fischer E, Pontoglio M, Fautrel A, Mrug M, Wallace D, Tran PV, Trudel M, Bukanov N, Ibraghimov-Beskrovnaya O, Meijer L. Casein kinase 1ε and 1α as novel players in polycystic kidney disease and mechanistic targets for (R)-roscovitine and (S)-CR8. Am J Physiol Renal Physiol 2018. [PMID: 29537311 DOI: 10.1152/ajprenal.00489.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Following the discovery of (R)-roscovitine's beneficial effects in three polycystic kidney disease (PKD) mouse models, cyclin-dependent kinases (CDKs) inhibitors have been investigated as potential treatments. We have used various affinity chromatography approaches to identify the molecular targets of roscovitine and its more potent analog (S)-CR8 in human and murine polycystic kidneys. These methods revealed casein kinases 1 (CK1) as additional targets of the two drugs. CK1ε expression at the mRNA and protein levels is enhanced in polycystic kidneys of 11 different PKD mouse models as well as in human polycystic kidneys. A shift in the pattern of CK1α isoforms is observed in all PKD mouse models. Furthermore, the catalytic activities of both CK1ε and CK1α are increased in mouse polycystic kidneys. Inhibition of CK1ε and CK1α may thus contribute to the long-lasting attenuating effects of roscovitine and (S)-CR8 on cyst development. CDKs and CK1s may constitute a dual therapeutic target to develop kinase inhibitory PKD drug candidates.
Collapse
Affiliation(s)
- Katy Billot
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| | | | | | - Béatrice Josselin-Foll
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Nathalie Desban
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Claire Delehouzé
- CNRS "Protein Phosphorylation and Human Disease Group, Station Biologique, Roscoff Cedex, Bretagne , France
| | - Nassima Oumata
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| | - Yannick Le Meur
- Service de Néphrologie, Centre Hospitalier Universitaire La Cavale Blanche, Rue Tanguy Prigent, Brest Cedex, France
| | - Alessandra Boletta
- Division of Genetics and Cell Biology, DIBIT San Raffaele Scientific Institute , Milan , Italy
| | - Thomas Weimbs
- Department of Molecular, Cellular, and Developmental Biology, Neuroscience Research Institute, University of California Santa Barbara , Santa Barbara, California
| | - Melanie Grosch
- University of Regensburg, Institute for Molecular and Cellular Anatomy, Universitätsstr 31, Regensburg , Germany
| | - Ralph Witzgall
- University of Regensburg, Institute for Molecular and Cellular Anatomy, Universitätsstr 31, Regensburg , Germany
| | | | - Evelyne Fischer
- "Expression Génique, Développement et Maladies", Equipe 26/INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Institut Cochin, Département Génétique & Développement, Paris , France
| | - Marco Pontoglio
- "Expression Génique, Développement et Maladies", Equipe 26/INSERM U1016/CNRS UMR 8104/Université Paris-Descartes, Institut Cochin, Département Génétique & Développement, Paris , France
| | - Alain Fautrel
- Université de Rennes 1, H2P2 Histopathology Core Facility, Rennes Cedex, France
| | - Michal Mrug
- Division of Nephrology, University of Alabama at Birmingham , Birmingham, Alabama.,Department of Veterans Affairs Medical Center , Birmingham, Alabama
| | - Darren Wallace
- University of Kansas Medical Center, The Jared Grantham Kidney Institute , Kansas City, Kansas
| | - Pamela V Tran
- University of Kansas Medical Center, The Jared Grantham Kidney Institute , Kansas City, Kansas.,University of Kansas Medical Center, Department of Anatomy and Cell Biology , Kansas City, Kansas
| | - Marie Trudel
- Institut de Recherches Cliniques de Montréal, Molecular Genetics and Development, Montreal, Quebec , Canada
| | - Nikolay Bukanov
- Sanofi Genzyme, Rare Renal and Bone Diseases, Framingham, Massachusetts
| | | | - Laurent Meijer
- ManRos Therapeutics, Centre de Perharidy , Roscoff , France
| |
Collapse
|
12
|
Dang TT, Westcott JM, Maine EA, Kanchwala M, Xing C, Pearson GW. ΔNp63α induces the expression of FAT2 and Slug to promote tumor invasion. Oncotarget 2017; 7:28592-611. [PMID: 27081041 PMCID: PMC5053748 DOI: 10.18632/oncotarget.8696] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Accepted: 03/28/2016] [Indexed: 01/29/2023] Open
Abstract
Tumor invasion can be induced by changes in gene expression that alter cell phenotype. The transcription factor ΔNp63α promotes basal-like breast cancer (BLBC) migration by inducing the expression of the mesenchymal genes Slug and Axl, which confers cells with a hybrid epithelial/mesenchymal state. However, the extent of the ΔNp63α regulated genes that support invasive behavior is not known. Here, using gene expression analysis, ChIP-seq, and functional testing, we find that ΔNp63α promotes BLBC motility by inducing the expression of the atypical cadherin FAT2, the vesicular binding protein SNCA, the carbonic anhydrase CA12, the lipid binding protein CPNE8 and the kinase NEK1, along with Slug and Axl. Notably, lung squamous cell carcinoma migration also required ΔNp63α dependent FAT2 and Slug expression, demonstrating that ΔNp63α promotes migration in multiple tumor types by inducing mesenchymal and non-mesenchymal genes. ΔNp63α activation of FAT2 and Slug influenced E-cadherin localization to cell-cell contacts, which can restrict spontaneous cell movement. Moreover, live-imaging of spheroids in organotypic culture demonstrated that ΔNp63α, FAT2 and Slug were essential for the extension of cellular protrusions that initiate collective invasion. Importantly, ΔNp63α is co-expressed with FAT2 and Slug in patient tumors and the elevated expression of ΔNp63α, FAT2 and Slug correlated with poor patient outcome. Together, these results reveal how ΔNp63α promotes cell migration by directly inducing the expression of a cohort of genes with distinct cellular functions and suggest that FAT2 is a new regulator of collective invasion that may influence patient outcome.
Collapse
Affiliation(s)
- Tuyen T Dang
- Harold C. Simmons Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Jill M Westcott
- Harold C. Simmons Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Erin A Maine
- Harold C. Simmons Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Mohammed Kanchwala
- McDermott Center for Human Growth and Disease, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Chao Xing
- McDermott Center for Human Growth and Disease, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| | - Gray W Pearson
- Harold C. Simmons Cancer Center, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA.,Department of Pharmacology, University of Texas, Southwestern Medical Center, Dallas, TX 75390-8807, USA
| |
Collapse
|
13
|
Cullati SN, Kabeche L, Kettenbach AN, Gerber SA. A bifurcated signaling cascade of NIMA-related kinases controls distinct kinesins in anaphase. J Cell Biol 2017. [PMID: 28630147 PMCID: PMC5551695 DOI: 10.1083/jcb.201512055] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
A signaling module of NIMA-related kinases (Neks) regulates two kinesins, Mklp2 and Kif14, to spatiotemporally coordinate their subcellular localizations and activities. This is important for faithful completion of cytokinesis and reveals novel mechanisms by which Neks regulate late mitosis. In mitosis, cells undergo a precisely orchestrated series of spatiotemporal changes in cytoskeletal structure to divide their genetic material. These changes are coordinated by a sophisticated network of protein–protein interactions and posttranslational modifications. In this study, we report a bifurcation in a signaling cascade of the NIMA-related kinases (Neks) Nek6, Nek7, and Nek9 that is required for the localization and function of two kinesins essential for cytokinesis, Mklp2 and Kif14. We demonstrate that a Nek9, Nek6, and Mklp2 signaling module controls the timely localization and bundling activity of Mklp2 at the anaphase central spindle. We further show that a separate Nek9, Nek7, and Kif14 signaling module is required for the recruitment of the Rho-interacting kinase citron to the anaphase midzone. Our findings uncover an anaphase-specific function for these effector kinesins that is controlled by specific Nek kinase signaling modules to properly coordinate cytokinesis.
Collapse
Affiliation(s)
- Sierra N Cullati
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Lilian Kabeche
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH
| | - Arminja N Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| | - Scott A Gerber
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH .,Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth, Lebanon, NH.,Norris Cotton Cancer Center, Dartmouth-Hitchcock Medical Center, Lebanon, NH
| |
Collapse
|
14
|
Abstract
The casein kinase 1 (CK1) family of serine (Ser)/threonine (Thr) protein kinases participates in a myriad of cellular processes including developmental signaling. Hedgehog (Hh) and Wnt pathways are two major and evolutionarily conserved signaling pathways that control embryonic development and adult tissue homeostasis. Deregulation of these pathways leads to many human disorders including birth defects and cancer. Here, I review the role of CK1 in the regulation of Hh and Wnt signal transduction cascades from the membrane reception systems to the transcriptional effectors. In both Hh and Wnt pathways, multiple CK1 family members regulate signal transduction at several levels of the pathways and play either positive or negative roles depending on the signaling status, individual CK1 isoforms involved, and the specific substrates they phosphorylate. A common mechanism underlying the control of CK1-mediated phosphorylation of Hh and Wnt pathway components is the regulation of CK1/substrate interaction within large protein complexes. I will highlight this feature in the context of Hh signaling and draw interesting parallels between the Hh and Wnt pathways.
Collapse
Affiliation(s)
- Jin Jiang
- University of Texas Southwestern Medical Center at Dallas, Dallas, TX, United States.
| |
Collapse
|
15
|
Zhou Y, Shen JK, Hornicek FJ, Kan Q, Duan Z. The emerging roles and therapeutic potential of cyclin-dependent kinase 11 (CDK11) in human cancer. Oncotarget 2016; 7:40846-40859. [PMID: 27049727 PMCID: PMC5130049 DOI: 10.18632/oncotarget.8519] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 03/28/2016] [Indexed: 12/17/2022] Open
Abstract
Overexpression and/or hyperactivation of cyclin-dependent kinases (CDKs) are common features of most cancer types. CDKs have been shown to play important roles in tumor cell proliferation and growth by controlling cell cycle, transcription, and RNA splicing. CDK4/6 inhibitor palbociclib has been recently approved by the FDA for the treatment of breast cancer. CDK11 is a serine/threonine protein kinase in the CDK family and recent studies have shown that CDK11 also plays critical roles in cancer cell growth and proliferation. A variety of genetic and epigenetic events may cause universal overexpression of CDK11 in human cancers. Inhibition of CDK11 has been shown to lead to cancer cell death and apoptosis. Significant evidence has suggested that CDK11 may be a novel and promising therapeutic target for the treatment of cancers. This review will focus on the emerging roles of CDK11 in human cancers, and provide a proof-of-principle for continued efforts toward targeting CDK11 for effective cancer treatment.
Collapse
Affiliation(s)
- Yubing Zhou
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Jacson K. Shen
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Francis J. Hornicek
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| | - Quancheng Kan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
| | - Zhenfeng Duan
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, People's Republic of China
- Sarcoma Biology Laboratory, Center for Sarcoma and Connective Tissue Oncology, Massachusetts General Hospital, Boston, MA, United States of America
| |
Collapse
|
16
|
Roosing S, Hofree M, Kim S, Scott E, Copeland B, Romani M, Silhavy JL, Rosti RO, Schroth J, Mazza T, Miccinilli E, Zaki MS, Swoboda KJ, Milisa-Drautz J, Dobyns WB, Mikati MA, İncecik F, Azam M, Borgatti R, Romaniello R, Boustany RM, Clericuzio CL, D'Arrigo S, Strømme P, Boltshauser E, Stanzial F, Mirabelli-Badenier M, Moroni I, Bertini E, Emma F, Steinlin M, Hildebrandt F, Johnson CA, Freilinger M, Vaux KK, Gabriel SB, Aza-Blanc P, Heynen-Genel S, Ideker T, Dynlacht BD, Lee JE, Valente EM, Kim J, Gleeson JG. Functional genome-wide siRNA screen identifies KIAA0586 as mutated in Joubert syndrome. eLife 2015; 4:e06602. [PMID: 26026149 PMCID: PMC4477441 DOI: 10.7554/elife.06602] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 05/28/2015] [Indexed: 12/14/2022] Open
Abstract
Defective primary ciliogenesis or cilium stability forms the basis of human ciliopathies, including Joubert syndrome (JS), with defective cerebellar vermis development. We performed a high-content genome-wide small interfering RNA (siRNA) screen to identify genes regulating ciliogenesis as candidates for JS. We analyzed results with a supervised-learning approach, using SYSCILIA gold standard, Cildb3.0, a centriole siRNA screen and the GTex project, identifying 591 likely candidates. Intersection of this data with whole exome results from 145 individuals with unexplained JS identified six families with predominantly compound heterozygous mutations in KIAA0586. A c.428del base deletion in 0.1% of the general population was found in trans with a second mutation in an additional set of 9 of 163 unexplained JS patients. KIAA0586 is an orthologue of chick Talpid3, required for ciliogenesis and Sonic hedgehog signaling. Our results uncover a relatively high frequency cause for JS and contribute a list of candidates for future gene discoveries in ciliopathies. DOI:http://dx.doi.org/10.7554/eLife.06602.001 Joubert syndrome is a rare disorder that affects the brain and causes physical, mental, and sometimes visual impairments. In individuals with this condition, two parts of the brain called the cerebellar vermis and the brainstem do not develop properly. This is thought to be due to defects in the development and maintenance of tiny hair-like structures called cilia, which are found on the surface of cells. Currently, mutations in 25 different genes are known to be able to cause Joubert syndrome. However, these mutations only account for around 50% of the cases that have been studied, and the ‘unexplained’ cases suggest that mutations in other genes may also cause the disease. Here, Roosing et al. used a technique called a ‘genome-wide siRNA screen’ to identify other genes regulating the formation of cilia that might also be connected with Joubert syndrome. This approach identified almost 600 candidate genes. The data from the screen were combined with gene sequence data from 145 individuals with unexplained Joubert syndrome. Roosing et al. found that individuals with Joubert syndrome from 15 different families had mutations in a gene called KIAA0586. In chickens and mice, this gene—known as Talpid3—is required for the formation of cilia. Roosing et al.'s findings reveal a new gene that is involved in Joubert syndrome and also provides a list of candidate genes for future studies of other conditions caused by defects in the formation of cilia. The next challenges are to find out what causes the remaining unexplained cases of the disease and to understand what roles the genes identified in this study play in cilia. DOI:http://dx.doi.org/10.7554/eLife.06602.002
Collapse
Affiliation(s)
- Susanne Roosing
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Matan Hofree
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, United States
| | - Sehyun Kim
- Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, New York, United States
| | - Eric Scott
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Brett Copeland
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Marta Romani
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, San Giovanni Rotondo, Italy
| | - Jennifer L Silhavy
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Rasim O Rosti
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Jana Schroth
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Tommaso Mazza
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, San Giovanni Rotondo, Italy
| | - Elide Miccinilli
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, San Giovanni Rotondo, Italy
| | - Maha S Zaki
- Clinical Genetics Department, Human Genetics and Genome Research Division, National Research Center, Cairo, Egypt
| | - Kathryn J Swoboda
- Departments of Neurology and Pediatrics, University of Utah School of Medicine, Salt Lake City, United States
| | - Joanne Milisa-Drautz
- Department of Pediatric Genetics, University of New Mexico, Albuquerque, United States
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Hospital, Seattle, United States
| | - Mohamed A Mikati
- Division of Pediatric Neurology, Department of Pediatrics, Duke Institute for Brain Sciences, Duke University Medical Center, Durham, United States
| | - Faruk İncecik
- Department of Pediatric Neurology, Cukurova University Medical Faculty, Balcali, Turkey
| | - Matloob Azam
- Department of Pediatrics and Child Neurology, Wah Medical College, Wah Cantt, Pakistan
| | - Renato Borgatti
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Romina Romaniello
- Neuropsychiatry and Neurorehabilitation Unit, Scientific Institute IRCCS Eugenio Medea, Bosisio Parini, Italy
| | - Rose-Mary Boustany
- Departments of Pediatrics, Adolescent Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Carol L Clericuzio
- Division of Genetics/Dysmorphology, Department Pediatrics, University of New Mexico, Albuquerque, United States
| | - Stefano D'Arrigo
- Developmental Neurology Division, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Petter Strømme
- Women and Children's Division, Oslo University Hospital, Oslo, Norway
| | - Eugen Boltshauser
- Department of Pediatric Neurology, University Children's Hospital, Zurich, Switzerland
| | - Franco Stanzial
- Department of Pediatrics, Genetic Counselling Service, Regional Hospital of Bolzano, Bolzano, Italy
| | - Marisol Mirabelli-Badenier
- Child Neuropsychiatry Unit, Department of Neurosciences and Rehabilitation, Istituto G. Gaslini, Genoa, Italy
| | - Isabella Moroni
- Unit of Child Neurology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Enrico Bertini
- Unit of Neuromuscular and Neurodegenerative Disorders, Laboratory of Molecular Medicine, Bambino Gesù Children's Research Hospital, IRCCS, Rome, Italy
| | - Francesco Emma
- Division of Nephrology and Dialysis, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Friedhelm Hildebrandt
- Division of Nephrology, Department of Medicine, Boston Children's Hospital, Howard Hughes Medical Institute, Harvard Medical School, Boston, United States
| | - Colin A Johnson
- Section of Ophthalmology and Neurosciences, Wellcome Trust Brenner Building, Leeds Institute of Molecular Medicine, University of Leeds, St. James's University Hospital, Leeds, United Kingdom
| | - Michael Freilinger
- Neuropediatric group, Department of Paediatrics and Adolescent Medicine, Medical University Vienna, Vienna, Austria
| | - Keith K Vaux
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| | - Stacey B Gabriel
- Broad Institute of Harvard and Massachusetts Institute of Technology, Cambridge, United States
| | - Pedro Aza-Blanc
- High Content Screening Systems, Sanford-Burnham Institute, La Jolla, United States
| | - Susanne Heynen-Genel
- High Content Screening Systems, Sanford-Burnham Institute, La Jolla, United States
| | - Trey Ideker
- Department of Computer Science and Engineering, University of California, San Diego, San Diego, United States
| | - Brian D Dynlacht
- Department of Pathology and Cancer Institute, Smilow Research Center, New York University School of Medicine, New York, United States
| | - Ji Eun Lee
- Samsung Genome Institute, Department of Health Sciences and Technology, Samsung Advanced Institute of Health Sciences and Technology, Sungkyunkwan University, Seoul, Republic of Korea
| | - Enza Maria Valente
- IRCCS Casa Sollievo della Sofferenza, Mendel Institute, San Giovanni Rotondo, Italy
| | - Joon Kim
- Korea Advanced Institute of Science and Technology, School of Medical Science and Engineering, Daejeon, Republic of Korea
| | - Joseph G Gleeson
- Laboratory for Pediatric Brain Disease, New York Genome Center, Howard Hughes Medical Institute, The Rockefeller University, New York, United States
| |
Collapse
|
17
|
Kim J, Jo H, Hong H, Kim MH, Kim JM, Lee JK, Heo WD, Kim J. Actin remodelling factors control ciliogenesis by regulating YAP/TAZ activity and vesicle trafficking. Nat Commun 2015; 6:6781. [PMID: 25849865 DOI: 10.1038/ncomms7781] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2014] [Accepted: 02/26/2015] [Indexed: 12/11/2022] Open
Abstract
Primary cilia exert a profound impact on cell signalling and cell cycle progression. Recently, actin cytoskeleton destabilization has been recognized as a dominant inducer of ciliogenesis, but the exact mechanisms regulating ciliogenesis remain poorly understood. Here we show that the actin cytoskeleton remodelling controls ciliogenesis by regulating transcriptional coactivator YAP/TAZ as well as ciliary vesicle trafficking. Cytoplasmic retention of YAP/TAZ correlates with active ciliogenesis either in spatially confined cells or in cells treated with an actin filament destabilizer. Moreover, knockdown of YAP/TAZ is sufficient to induce ciliogenesis, whereas YAP/TAZ hyperactivation suppresses serum starvation-mediated ciliogenesis. We also identify actin remodelling factors LIMK2 and TESK1 as key players in the ciliogenesis control network in which YAP/TAZ and directional vesicle trafficking are integral components. Our work provides new insights for understanding the link between actin dynamics and ciliogenesis.
Collapse
Affiliation(s)
- Jongshin Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Haiin Jo
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Hyowon Hong
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Min Hwan Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Jin Man Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - June-Koo Lee
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| | - Won Do Heo
- 1] Department of Biological Sciences, KAIST, Daejeon 305-701, Korea [2] Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 305-701, Korea
| | - Joon Kim
- Graduate School of Medical Science and Engineering, KAIST, Daejeon 305-701, Korea
| |
Collapse
|
18
|
Eisner A, Pazyra-Murphy MF, Durresi E, Zhou P, Zhao X, Chadwick EC, Xu PX, Hillman RT, Scott MP, Greenberg ME, Segal RA. The Eya1 phosphatase promotes Shh signaling during hindbrain development and oncogenesis. Dev Cell 2015; 33:22-35. [PMID: 25816987 DOI: 10.1016/j.devcel.2015.01.033] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Revised: 12/16/2014] [Accepted: 01/26/2015] [Indexed: 12/12/2022]
Abstract
Sonic hedgehog (Shh) signaling is critical in development and oncogenesis, but the mechanisms regulating this pathway remain unclear. Although protein phosphorylation clearly affects Shh signaling, little is known about phosphatases governing the pathway. Here, we conducted a small hairpin RNA (shRNA) screen of the phosphatome and identified Eya1 as a positive regulator of Shh signaling. We find that the catalytically active phosphatase Eya1 cooperates with the DNA-binding protein Six1 to promote gene induction in response to Shh and that Eya1/Six1 together regulate Gli transcriptional activators. We show that Eya1, which is mutated in a human deafness disorder, branchio-oto-renal syndrome, is critical for Shh-dependent hindbrain growth and development. Moreover, Eya1 drives the growth of medulloblastoma, a Shh-dependent hindbrain tumor. Together, these results identify Eya1 and Six1 as key components of the Shh transcriptional network in normal development and in oncogenesis.
Collapse
Affiliation(s)
- Adriana Eisner
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Maria F Pazyra-Murphy
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Ershela Durresi
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pengcheng Zhou
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xuesong Zhao
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Emily C Chadwick
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pin-Xian Xu
- Department of Genetics and Genomic Sciences, Developmental and Regenerative Biology, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574, USA
| | - R Tyler Hillman
- Departments of Developmental Biology, Genetics, and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305-5439, USA
| | - Matthew P Scott
- Departments of Developmental Biology, Genetics, and Bioengineering, Stanford University School of Medicine, Stanford, CA 94305-5439, USA
| | | | - Rosalind A Segal
- Departments of Cancer Biology and Pediatric Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115, USA; Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
19
|
Chong YC, Mann RK, Zhao C, Kato M, Beachy PA. Bifurcating action of Smoothened in Hedgehog signaling is mediated by Dlg5. Genes Dev 2015; 29:262-76. [PMID: 25644602 PMCID: PMC4318143 DOI: 10.1101/gad.252676.114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Accepted: 12/29/2014] [Indexed: 12/19/2022]
Abstract
Binding of the Hedgehog (Hh) protein signal to its receptor, Patched, induces accumulation of the seven-pass transmembrane protein Smoothened (Smo) within the primary cilium and of the zinc finger transcription factor Gli2 at the ciliary tip, resulting ultimately in Gli-mediated changes in nuclear gene expression. However, the mechanism by which pathway activation is communicated from Smo to Gli2 is not known. In an effort to elucidate this mechanism, we identified Dlg5 (Discs large, homolog 5) in a biochemical screen for proteins that preferentially interact with activated Smo. We found that disruption of Smo-Dlg5 interactions or depletion of endogenous Dlg5 leads to diminished Hh pathway response without a significant impact on Smo ciliary accumulation. We also found that Dlg5 is localized at the basal body, where it associates with another pathway component, Kif7. We show that Dlg5 is required for Hh-induced enrichment of Kif7 and Gli2 at the tip of the cilium but is dispensable for Gpr161 exit from the cilium and the consequent suppression of Gli3 processing into its repressor form. Our findings suggest a bifurcation of Smo activity in Hh response, with a Dlg5-independent arm for suppression of Gli repressor formation and a second arm involving Smo interaction with Dlg5 for Gli activation.
Collapse
Affiliation(s)
- Yong Chun Chong
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA; Department of Developmental Biology, Stanford University, Stanford, California 94305, USA; Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Randall K Mann
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA; Department of Developmental Biology, Stanford University, Stanford, California 94305, USA; Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Chen Zhao
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA; Department of Developmental Biology, Stanford University, Stanford, California 94305, USA; Department of Biochemistry, Stanford University, Stanford, California 94305, USA
| | - Masaki Kato
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA; Department of Developmental Biology, Stanford University, Stanford, California 94305, USA
| | - Philip A Beachy
- Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, California 94305, USA; Department of Developmental Biology, Stanford University, Stanford, California 94305, USA; Department of Biochemistry, Stanford University, Stanford, California 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
20
|
Hayano T, Yokota Y, Hosomichi K, Nakaoka H, Yoshihara K, Adachi S, Kashima K, Tsuda H, Moriya T, Tanaka K, Enomoto T, Inoue I. Molecular characterization of an intact p53 pathway subtype in high-grade serous ovarian cancer. PLoS One 2014; 9:e114491. [PMID: 25460179 PMCID: PMC4252108 DOI: 10.1371/journal.pone.0114491] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Accepted: 11/10/2014] [Indexed: 12/30/2022] Open
Abstract
High-grade serous ovarian cancer (HGSOC) is the most aggressive histological type of epithelial ovarian cancer, which is characterized by a high frequency of somatic TP53 mutations. We performed exome analyses of tumors and matched normal tissues of 34 Japanese patients with HGSOC and observed a substantial number of patients without TP53 mutation (24%, 8/34). Combined with the results of copy number variation analyses, we subdivided the 34 patients with HGSOC into subtypes designated ST1 and ST2. ST1 showed intact p53 pathway and was characterized by fewer somatic mutations and copy number alterations. In contrast, the p53 pathway was impaired in ST2, which is characterized by abundant somatic mutations and copy number alterations. Gene expression profiles combined with analyses using the Gene Ontology resource indicate the involvement of specific biological processes (mitosis and DNA helicase) that are relevant to genomic stability and cancer etiology. In particular we demonstrate the presence of a novel subtype of patients with HGSOC that is characterized by an intact p53 pathway, with limited genomic alterations and specific gene expression profiles.
Collapse
Affiliation(s)
- Takahide Hayano
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Yuki Yokota
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | | | - Hirofumi Nakaoka
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| | - Kosuke Yoshihara
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Sosuke Adachi
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Katsunori Kashima
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Hitoshi Tsuda
- Department of Basic Pathology, National Defense Medical College, Tokorozawa, Japan
| | - Takuya Moriya
- Department of Pathology, Kawasaki Medical School, Kurashiki, Japan
| | - Kenichi Tanaka
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan; Niigata Medical Center Hospital, Niigata, Japan
| | - Takayuki Enomoto
- Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Ituro Inoue
- Division of Human Genetics, National Institute of Genetics, Mishima, Japan
| |
Collapse
|
21
|
Lin C, Yao E, Wang K, Nozawa Y, Shimizu H, Johnson JR, Chen JN, Krogan NJ, Chuang PT. Regulation of Sufu activity by p66β and Mycbp provides new insight into vertebrate Hedgehog signaling. Genes Dev 2014; 28:2547-2563. [PMID: 25403183 PMCID: PMC4233246 DOI: 10.1101/gad.249425.114] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 10/16/2014] [Indexed: 01/20/2023]
Abstract
Control of Gli function by Suppressor of Fused (Sufu), a major negative regulator, is a key step in mammalian Hedgehog (Hh) signaling, but how this is achieved in the nucleus is unknown. We found that Hh signaling results in reduced Sufu protein levels and Sufu dissociation from Gli proteins in the nucleus, highlighting critical functions of Sufu in the nucleus. Through a proteomic approach, we identified several Sufu-interacting proteins, including p66β (a member of the NuRD [nucleosome remodeling and histone deacetylase] repressor complex) and Mycbp (a Myc-binding protein). p66β negatively and Mycbp positively regulate Hh signaling in cell-based assays and zebrafish. They function downstream from the membrane receptors, Patched and Smoothened, and the primary cilium. Sufu, p66β, Mycbp, and Gli are also detected on the promoters of Hh targets in a dynamic manner. Our results support a new model of Hh signaling in the nucleus. Sufu recruits p66β to block Gli-mediated Hh target gene expression. Meanwhile, Mycbp forms a complex with Gli and Sufu without Hh stimulation but remains inactive. Hh pathway activation leads to dissociation of Sufu/p66β from Gli, enabling Mycbp to promote Gli protein activity and Hh target gene expression. These studies provide novel insight into how Sufu controls Hh signaling in the nucleus.
Collapse
Affiliation(s)
- Chuwen Lin
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Erica Yao
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Kevin Wang
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Yoko Nozawa
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA
| | - Hirohito Shimizu
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Jeffrey R Johnson
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158
| | - Jau-Nian Chen
- Department of Molecular, Cell, and Developmental Biology, University of California at Los Angeles, Los Angeles, California 90095, USA
| | - Nevan J Krogan
- Department of Cellular and Molecular Pharmacology, University of California at San Francisco, San Francisco, California 94158
| | - Pao-Tien Chuang
- Cardiovascular Research Institute, University of California at San Francisco, San Francisco, California 94158, USA;
| |
Collapse
|
22
|
Athar M, Li C, Kim AL, Spiegelman VS, Bickers DR. Sonic hedgehog signaling in Basal cell nevus syndrome. Cancer Res 2014; 74:4967-75. [PMID: 25172843 DOI: 10.1158/0008-5472.can-14-1666] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The hedgehog (Hh) signaling pathway is considered to be a major signal transduction pathway during embryonic development, but it usually shuts down after birth. Aberrant Sonic hedgehog (Shh) activation during adulthood leads to neoplastic growth. Basal cell carcinoma (BCC) of the skin is driven by this pathway. Here, we summarize information related to the pathogenesis of this neoplasm, discuss pathways that crosstalk with Shh signaling, and the importance of the primary cilium in this neoplastic process. The identification of the basic/translational components of Shh signaling has led to the discovery of potential mechanism-driven druggable targets and subsequent clinical trials have confirmed their remarkable efficacy in treating BCCs, particularly in patients with nevoid BCC syndrome (NBCCS), an autosomal dominant disorder in which patients inherit a germline mutation in the tumor-suppressor gene Patched (Ptch). Patients with NBCCS develop dozens to hundreds of BCCs due to derepression of the downstream G-protein-coupled receptor Smoothened (SMO). Ptch mutations permit transposition of SMO to the primary cilium followed by enhanced expression of transcription factors Glis that drive cell proliferation and tumor growth. Clinical trials with the SMO inhibitor, vismodegib, showed remarkable efficacy in patients with NBCCS, which finally led to its FDA approval in 2012.
Collapse
Affiliation(s)
- Mohammad Athar
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama.
| | - Changzhao Li
- Department of Dermatology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Arianna L Kim
- Columbia University Medical Center, Irving Cancer Research Center, New York, New York
| | | | - David R Bickers
- Columbia University Medical Center, Irving Cancer Research Center, New York, New York
| |
Collapse
|
23
|
Zhao Y, Ji S, Wang J, Huang J, Zheng P. mRNA-Seq and microRNA-Seq whole-transcriptome analyses of rhesus monkey embryonic stem cell neural differentiation revealed the potential regulators of rosette neural stem cells. DNA Res 2014; 21:541-54. [PMID: 24939742 PMCID: PMC4195499 DOI: 10.1093/dnares/dsu019] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Rosette neural stem cells (R-NSCs) represent early stage of neural development and possess full neural differentiation and regionalization capacities. R-NSCs are considered as stem cells of neural lineage and have important implications in the study of neurogenesis and cell replacement therapy. However, the molecules regulating their functional properties remain largely unknown. Rhesus monkey is an ideal model to study human neural degenerative diseases and plays intermediate translational roles as therapeutic strategies evolved from rodent systems to human clinical applications. In this study, we derived R-NSCs from rhesus monkey embryonic stem cells (ESCs) and systematically investigated the unique expressions of mRNAs, microRNAs (miRNAs), and signalling pathways by genome-wide comparison of the mRNA and miRNA profilings of ESCs, R-NSCs at early (R-NSCP1) and late (R-NSCP6) passages, and neural progenitor cells. Apart from the R-NSCP1-specific protein-coding genes and miRNAs, we identified several pathways including Hedgehog and Wnt highly activated in R-NSCP1. The possible regulatory interactions among the miRNAs, protein-coding genes, and signalling pathways were proposed. Besides, many genes with alternative splicing switch were identified at R-NSCP1. These data provided valuable resource to understand the regulation of early neurogenesis and to better manipulate the R-NSCs for cell replacement therapy.
Collapse
Affiliation(s)
- Yuqi Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223, China
| | - Shuang Ji
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223, China Yunnan Key Laboratory of Animal Reproductive Biology, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223, China University of Chinese Academy of Sciences, Beijing, China
| | - Jinkai Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jingfei Huang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223, China Kunming Institute of Zoology, Chinese University of Hongkong Joint Research Center for Bio-resources and Human Disease Mechanisms, Kunming, Yunnan 650223, China
| | - Ping Zheng
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223, China Yunnan Key Laboratory of Animal Reproductive Biology, Kunming Institute of Zoology, Chinese Academy of Sciences, 32 East Jiaochang Road, Kunming, Yunnan 650223, China
| |
Collapse
|
24
|
Kuzhandaivel A, Schultz SW, Alkhori L, Alenius M. Cilia-mediated hedgehog signaling in Drosophila. Cell Rep 2014; 7:672-80. [PMID: 24768000 DOI: 10.1016/j.celrep.2014.03.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2013] [Revised: 12/20/2013] [Accepted: 03/20/2014] [Indexed: 12/20/2022] Open
Abstract
Cilia mediate Hedgehog (Hh) signaling in vertebrates and Hh deregulation results in several clinical manifestations, such as obesity, cognitive disabilities, developmental malformations, and various cancers. Drosophila cells are nonciliated during development, which has led to the assumption that cilia-mediated Hh signaling is restricted to vertebrates. Here, we identify and characterize a cilia-mediated Hh pathway in Drosophila olfactory sensory neurons. We demonstrate that several fundamental key aspects of the vertebrate cilia pathway, such as ciliary localization of Smoothened and the requirement of the intraflagellar transport system, are present in Drosophila. We show that Cos2 and Fused are required for the ciliary transport of Smoothened and that cilia mediate the expression of the Hh pathway target genes. Taken together, our data demonstrate that Hh signaling in Drosophila can be mediated by two pathways and that the ciliary Hh pathway is conserved from Drosophila to vertebrates.
Collapse
Affiliation(s)
- Anujaianthi Kuzhandaivel
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linköping, Sweden
| | - Sebastian W Schultz
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linköping, Sweden
| | - Liza Alkhori
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linköping, Sweden
| | - Mattias Alenius
- Department of Clinical and Experimental Medicine, Linkoping University, SE-581 85 Linköping, Sweden.
| |
Collapse
|
25
|
Bontems F, Fish RJ, Borlat I, Lembo F, Chocu S, Chalmel F, Borg JP, Pineau C, Neerman-Arbez M, Bairoch A, Lane L. C2orf62 and TTC17 are involved in actin organization and ciliogenesis in zebrafish and human. PLoS One 2014; 9:e86476. [PMID: 24475127 PMCID: PMC3903541 DOI: 10.1371/journal.pone.0086476] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Accepted: 12/09/2013] [Indexed: 11/18/2022] Open
Abstract
Vertebrate genomes contain around 20,000 protein-encoding genes, of which a large fraction is still not associated with specific functions. A major task in future genomics will thus be to assign physiological roles to all open reading frames revealed by genome sequencing. Here we show that C2orf62, a highly conserved protein with little homology to characterized proteins, is strongly expressed in testis in zebrafish and mammals, and in various types of ciliated cells during zebrafish development. By yeast two hybrid and GST pull-down, C2orf62 was shown to interact with TTC17, another uncharacterized protein. Depletion of either C2orf62 or TTC17 in human ciliated cells interferes with actin polymerization and reduces the number of primary cilia without changing their length. Zebrafish embryos injected with morpholinos against C2orf62 or TTC17, or with mRNA coding for the C2orf62 C-terminal part containing a RII dimerization/docking (R2D2) - like domain show morphological defects consistent with imperfect ciliogenesis. We provide here the first evidence for a C2orf62-TTC17 axis that would regulate actin polymerization and ciliogenesis.
Collapse
Affiliation(s)
- Franck Bontems
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Richard J. Fish
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Irene Borlat
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Frédérique Lembo
- CRCM - Inserm U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- CNRS UMR7258, Marseille, France
- Aix-Marseille University, Marseille, France
| | | | | | - Jean-Paul Borg
- CRCM - Inserm U1068, Marseille, France
- Institut Paoli-Calmettes, Marseille, France
- CNRS UMR7258, Marseille, France
- Aix-Marseille University, Marseille, France
| | | | - Marguerite Neerman-Arbez
- Department of Genetic Medicine and Development, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Amos Bairoch
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| | - Lydie Lane
- Department of Human Protein Sciences, Faculty of Medicine, University of Geneva, Geneva, Switzerland
- SIB-Swiss Institute of Bioinformatics, Geneva, Switzerland
| |
Collapse
|
26
|
Filbin MG, Dabral SK, Pazyra-Murphy MF, Ramkissoon S, Kung AL, Pak E, Chung J, Theisen MA, Sun Y, Franchetti Y, Sun Y, Shulman DS, Redjal N, Tabak B, Beroukhim R, Wang Q, Zhao J, Dorsch M, Buonamici S, Ligon KL, Kelleher JF, Segal RA. Coordinate activation of Shh and PI3K signaling in PTEN-deficient glioblastoma: new therapeutic opportunities. Nat Med 2013; 19:1518-23. [PMID: 24076665 DOI: 10.1038/nm.3328] [Citation(s) in RCA: 111] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2013] [Accepted: 08/06/2013] [Indexed: 01/17/2023]
Abstract
In glioblastoma, phosphatidylinositol 3-kinase (PI3K) signaling is frequently activated by loss of the tumor suppressor phosphatase and tensin homolog (PTEN). However, it is not known whether inhibiting PI3K represents a selective and effective approach for treatment. We interrogated large databases and found that sonic hedgehog (SHH) signaling is activated in PTEN-deficient glioblastoma. We demonstrate that the SHH and PI3K pathways synergize to promote tumor growth and viability in human PTEN-deficient glioblastomas. A combination of PI3K and SHH signaling inhibitors not only suppressed the activation of both pathways but also abrogated S6 kinase (S6K) signaling. Accordingly, targeting both pathways simultaneously resulted in mitotic catastrophe and tumor apoptosis and markedly reduced the growth of PTEN-deficient glioblastomas in vitro and in vivo. The drugs tested here appear to be safe in humans; therefore, this combination may provide a new targeted treatment for glioblastoma.
Collapse
Affiliation(s)
- Mariella Gruber Filbin
- 1] Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA. [2] Department of Pediatric Oncology, Dana-Farber Cancer Institute and Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA. [3] Department of Neurobiology, Harvard Medical School, Boston, Massachusetts, USA. [4] Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Briscoe J, Thérond PP. The mechanisms of Hedgehog signalling and its roles in development and disease. Nat Rev Mol Cell Biol 2013; 14:416-29. [DOI: 10.1038/nrm3598] [Citation(s) in RCA: 1212] [Impact Index Per Article: 101.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Jurisch-Yaksi N, Rose AJ, Lu H, Raemaekers T, Munck S, Baatsen P, Baert V, Vermeire W, Scales SJ, Verleyen D, Vandepoel R, Tylzanowski P, Yaksi E, de Ravel T, Yost HJ, Froyen G, Arrington CB, Annaert W. Rer1p maintains ciliary length and signaling by regulating γ-secretase activity and Foxj1a levels. ACTA ACUST UNITED AC 2013; 200:709-20. [PMID: 23479743 PMCID: PMC3601348 DOI: 10.1083/jcb.201208175] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Rer1p is an ER/cis-Golgi membrane protein that maintains ciliary length and function by reducing γ-secretase complex assembly and activity (thereby balancing Notch signaling) and increasing Foxj1a expression. Cilia project from the surface of most vertebrate cells and are important for several physiological and developmental processes. Ciliary defects are linked to a variety of human diseases, named ciliopathies, underscoring the importance of understanding signaling pathways involved in cilia formation and maintenance. In this paper, we identified Rer1p as the first endoplasmic reticulum/cis-Golgi–localized membrane protein involved in ciliogenesis. Rer1p, a protein quality control receptor, was highly expressed in zebrafish ciliated organs and regulated ciliary structure and function. Both in zebrafish and mammalian cells, loss of Rer1p resulted in the shortening of cilium and impairment of its motile or sensory function, which was reflected by hearing, vision, and left–right asymmetry defects as well as decreased Hedgehog signaling. We further demonstrate that Rer1p depletion reduced ciliary length and function by increasing γ-secretase complex assembly and activity and, consequently, enhancing Notch signaling as well as reducing Foxj1a expression.
Collapse
|
29
|
Abstract
Hedgehog (Hh) signaling plays pivotal roles in embryonic development and adult tissue homeostasis, and its deregulation leads to numerous human disorders including cancer. Binding of Hh to Patched (Ptc), a twelve-transmembrane protein, alleviates its inhibition of Smoothened (Smo), a seven-transmembrane protein related to G-protein-coupled receptors (GPCRs), leading to Smo phosphorylation and activation. Smo acts through intracellular signaling complexes to convert the latent transcription factor Cubitus interruptus (Ci)/Gli from a truncated repressor to a full-length activator, leading to derepression/activation of Hh target genes. Increasing evidence suggests that phosphorylation participates in almost every step in the signal relay from Smo to Ci/Gli, and that differential phosphorylation of several key pathway components may be crucial for translating the Hh morphogen gradient into graded pathway activities. In this review, we focus on the multifaceted roles that phosphorylation plays in Hh signal transduction, and discuss the conservation and difference between Drosophila and mammalian Hh signaling mechanisms.
Collapse
|
30
|
Goetz SC, Liem KF, Anderson KV. The spinocerebellar ataxia-associated gene Tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell 2013; 151:847-858. [PMID: 23141541 DOI: 10.1016/j.cell.2012.10.010] [Citation(s) in RCA: 189] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 08/01/2012] [Accepted: 08/30/2012] [Indexed: 12/15/2022]
Abstract
The primary cilium has critical roles in human development and disease, but the mechanisms that regulate ciliogenesis are not understood. Here, we show that Tau tubulin kinase 2 (TTBK2) is a dedicated regulator of the initiation of ciliogenesis in vivo. We identified a null allele of mouse Ttbk2 based on loss of Sonic hedgehog activity, a signaling pathway that requires the primary cilium. Despite a normal basal body template, Ttbk2 mutants lack cilia. TTBK2 acts at the distal end of the basal body, where it promotes the removal of CP110, which caps the mother centriole, and promotes recruitment of IFT proteins, which build the ciliary axoneme. Dominant truncating mutations in human TTBK2 cause spinocerebellar ataxia type 11 (SCA11); these mutant proteins do not promote ciliogenesis and inhibit ciliogenesis in wild-type cells. We propose that cell-cycle regulators target TTBK2 to the basal body, where it modifies specific targets to initiate ciliogenesis.
Collapse
Affiliation(s)
- Sarah C Goetz
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Karel F Liem
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA
| | - Kathryn V Anderson
- Developmental Biology Program, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA.
| |
Collapse
|
31
|
Tran PV, Lachke SA, Stottmann RW. Toward a systems-level understanding of the Hedgehog signaling pathway: defining the complex, robust, and fragile. WILEY INTERDISCIPLINARY REVIEWS-SYSTEMS BIOLOGY AND MEDICINE 2012; 5:83-100. [PMID: 23060005 DOI: 10.1002/wsbm.1193] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Hedgehog (Hh) signaling pathway plays a fundamental role in development and tissue homeostasis, governing cell proliferation and differentiation, as well as cell fate. Hh signaling is mediated by an intricate network of proteins that have positive and negative roles that work in concert to fine-tune signaling output. Using feedback loops, redundancy and subcellular compartmentalization, the temporal and spatial dynamics of Hh signaling have evolved to be complex and robust. Yet developmental defects and cancers that arise from perturbation of the Hh pathway reflect specific pathway fragilities. Importantly, these fragile nodes and edges present opportunities for the design of targeted therapies. Despite these significant advances, unconnected molecular links within the Hh pathway still remain, many of which revolve around the dependence of Hh signaling on the primary cilium, an antenna-like sensory organelle. A systems-level understanding of Hh signaling and of ciliary biology will comprehensively define all nodes and edges of the Hh signaling network and will help identify precise therapeutic targets.
Collapse
Affiliation(s)
- Pamela V Tran
- Department of Anatomy and Cell Biology, The Kidney Institute, University of Kansas Medical Center, Kansas City, KS, USA.
| | | | | |
Collapse
|
32
|
Duan Z, Zhang J, Choy E, Harmon D, Liu X, Nielsen P, Mankin H, Gray NS, Hornicek FJ. Systematic kinome shRNA screening identifies CDK11 (PITSLRE) kinase expression is critical for osteosarcoma cell growth and proliferation. Clin Cancer Res 2012; 18:4580-8. [PMID: 22791884 DOI: 10.1158/1078-0432.ccr-12-1157] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Identification of new targeted therapies is critical to improving the survival rate of patients with osteosarcoma. The goal of this study is to identify kinase based potential therapeutic target in osteosarcomas. EXPERIMENTAL DESIGN We used a lentiviral-based shRNA kinase library to screen for kinases which play a role in osteosarcoma cell survival. The cell proliferation assay was used to evaluate cell growth and survival. siRNA assays were applied to confirm the observed phenotypic changes resulting from the loss of kinase gene expression. CDK11 (PITSLRE) was identified as essential for the survival of osteosarcoma cells, and its expression was confirmed by Western blot analysis and immunohistochemistry. Overall patient survival was correlated with the CDK11 expression and its prognosis. The role of CDK11 expression in sustaining osteosarcoma growth was further evaluated in an osteosarcoma xenograft model in vivo. RESULTS Osteosarcoma cells display high levels of CDK11 expression. CDK11 expression knocked down by either lentiviral shRNA or siRNA inhibit cell growth and induce apoptosis in osteosarcoma cells. Immunohistochemical analysis showed that patients with osteosarcoma with high CDK11 tumor expression levels were associated with significantly shorter survival than patients with osteosarcoma with low level of tumor CDK11 expression. Systemic in vivo administration of in vivo ready siRNA of CDK11 reduced the tumor growth in an osteosarcoma subcutaneous xenograft model. CONCLUSIONS We show that CDK11 signaling is essential in osteosarcoma cell growth and survival, further elucidating the regulatory mechanisms controlling the expression of CDK11 and ultimately develop a CDK11 inhibitor that may provide therapeutic benefit against osteosarcoma.
Collapse
Affiliation(s)
- Zhenfeng Duan
- Center for Sarcoma and Connective Tissue Oncology and Department of Pathology, Massachusetts General Hospital, Boston, MA 02114, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Abstract
Hedgehog (Hh) signaling plays a central role in many developmental processes. Hh protein is a developmental morphogen that elicits a graded cellular response depending on the distance between the recipient cell and the ligand-secreting cell. Gli transcription factors are effectors that induce the expression of downstream target genes. The outline of this cascade from Hh to Gli has been elucidated, and many components have been identified. However, the interpretation of graded ligand stimulation remains to be resolved. Among the components, adenosine 3'5'-cyclic monophosphate-dependent protein kinase (PKA) functions as a negative regulator that phosphorylates a specific region of Gli, thereby inducing proteolytic cleavage to generate the repressor form. In addition, recent studies have identified different mechanisms that are followed by PKA phosphorylation of Gli. In this review, we examine Hh signaling and PKA phosphorylation and propose a possible interaction between the multiple mechanisms regulated by PKA and the gradient-dependent response.
Collapse
Affiliation(s)
- Yoshinari Asaoka
- Department of Gastroenterology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
34
|
Maloverjan A, Piirsoo M. Mammalian homologues of Drosophila fused kinase. VITAMINS AND HORMONES 2012; 88:91-113. [PMID: 22391301 DOI: 10.1016/b978-0-12-394622-5.00005-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
Sonic Hedgehog (Shh) signaling pathway is implicated in various developmental and postnatal processes. Much of the current knowledge about the mechanisms of Shh signal transduction in vertebrates comes from the investigations of the respective pathway in fruit fly Drosophila melanogaster. In Drosophila, serine/threonine kinase fused is involved in all aspects of regulation of the Hh-dependent transcription factor cubitus interruptus possessing both catalytic and regulatory functions. Two proteins, Stk36 and Ulk3, share similarity with fu and have been suggested as mammalian fu homologues. However, in vivo data clarify that Stk36 is not required for embryonic development in mice and participates in Shh-independent genesis of motile cilia. Even if Stk36 is associated with any pathological or physiological aspect of postnatal Shh signaling in mammals, it has perhaps only regulatory functions since its catalytic activity seems to be lost during evolution. In contrast to Stk36, Ulk3 is an active kinase. In non-stimulated cells, Ulk3 catalytic activity is blocked, and it is involved in negative control of Gli proteins, mediators of Shh signaling. In response to Shh, Ulk3 positively regulates Gli proteins by directly phosphorylating them. Thus, Ulk3 is able to recapitulate both positive and negative roles of fu in vitro. However, Ulk3 functioning in vivo remains to be investigated.
Collapse
|
35
|
A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol 2011; 14:61-72. [PMID: 22179047 DOI: 10.1038/ncb2410] [Citation(s) in RCA: 268] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2011] [Accepted: 11/23/2011] [Indexed: 12/21/2022]
Abstract
Using RNAi screening, proteomics, cell biological and mouse genetics approaches, we have identified a complex of nine proteins, seven of which are disrupted in human ciliopathies. A transmembrane component, TMEM231, localizes to the basal body before and independently of intraflagellar transport in a Septin 2 (Sept2)-regulated fashion. The localizations of TMEM231, B9D1 (B9 domain-containing protein 1) and CC2D2A (coiled-coil and C2 domain-containing protein 2A) at the transition zone are dependent on one another and on Sept2. Disruption of the complex in vitro causes a reduction in cilia formation and a loss of signalling receptors from the remaining cilia. Mouse knockouts of B9D1 and TMEM231 have identical defects in Sonic hedgehog (Shh) signalling and ciliogenesis. Strikingly, disruption of the complex increases the rate of diffusion into the ciliary membrane and the amount of plasma-membrane protein in the cilia. The complex that we have described is essential for normal cilia function and acts as a diffusion barrier to maintain the cilia membrane as a compartmentalized signalling organelle.
Collapse
|
36
|
Friedman AA, Tucker G, Singh R, Yan D, Vinayagam A, Hu Y, Binari R, Hong P, Sun X, Porto M, Pacifico S, Murali T, Finley RL, Asara JM, Berger B, Perrimon N. Proteomic and functional genomic landscape of receptor tyrosine kinase and ras to extracellular signal-regulated kinase signaling. Sci Signal 2011; 4:rs10. [PMID: 22028469 DOI: 10.1126/scisignal.2002029] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Characterizing the extent and logic of signaling networks is essential to understanding specificity in such physiological and pathophysiological contexts as cell fate decisions and mechanisms of oncogenesis and resistance to chemotherapy. Cell-based RNA interference (RNAi) screens enable the inference of large numbers of genes that regulate signaling pathways, but these screens cannot provide network structure directly. We describe an integrated network around the canonical receptor tyrosine kinase (RTK)-Ras-extracellular signal-regulated kinase (ERK) signaling pathway, generated by combining parallel genome-wide RNAi screens with protein-protein interaction (PPI) mapping by tandem affinity purification-mass spectrometry. We found that only a small fraction of the total number of PPI or RNAi screen hits was isolated under all conditions tested and that most of these represented the known canonical pathway components, suggesting that much of the core canonical ERK pathway is known. Because most of the newly identified regulators are likely cell type- and RTK-specific, our analysis provides a resource for understanding how output through this clinically relevant pathway is regulated in different contexts. We report in vivo roles for several of the previously unknown regulators, including CG10289 and PpV, the Drosophila orthologs of two components of the serine/threonine-protein phosphatase 6 complex; the Drosophila ortholog of TepIV, a glycophosphatidylinositol-linked protein mutated in human cancers; CG6453, a noncatalytic subunit of glucosidase II; and Rtf1, a histone methyltransferase.
Collapse
Affiliation(s)
- Adam A Friedman
- Department of Genetics, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Abstract
'Ciliopathies' are an emerging class of genetic multisystemic human disorders that are caused by a multitude of largely unrelated genes that affect ciliary structure/function. They are unified by shared clinical features, such as mental retardation, cystic kidney, retinal defects and polydactyly, and by the common localization of the protein products of these genes at or near the primary cilium of cells. With the realization that many previously disparate conditions are a part of this spectrum of disorders, there has been tremendous interest in the function of cilia in developmental signaling and homeostasis. Ciliopathies are mostly inherited as simple recessive traits, but phenotypic expressivity is under the control of numerous genetic modifiers, putting these conditions at the interface of simple and complex genetics. In this review, we discuss the ever-expanding ciliopathy field, which has three interrelated goals: developing a comprehensive understanding of genes mutated in the ciliopathies and required for ciliogenesis; understanding how the encoded proteins work together in complexes and networks to modulate activity and structure-function relationships; and uncovering signaling pathways and modifier relationships.
Collapse
Affiliation(s)
- Ji Eun Lee
- Neurogenetics Laboratory, Howard Hughes Medical Institute, Department of Neuroscience and Pediatrics, University of California, San Diego 92093-0691, USA.
| | | |
Collapse
|
38
|
Zhou Q, Kalderon D. Hedgehog activates fused through phosphorylation to elicit a full spectrum of pathway responses. Dev Cell 2011; 20:802-14. [PMID: 21664578 DOI: 10.1016/j.devcel.2011.04.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Revised: 01/10/2011] [Accepted: 04/20/2011] [Indexed: 11/29/2022]
Abstract
In flies and mammals, extracellular Hedgehog (Hh) molecules alter cell fates and proliferation by regulating the levels and activities of Ci/Gli family transcription factors. How Hh-induced activation of transmembrane Smoothened (Smo) proteins reverses Ci/Gli inhibition by Suppressor of Fused (SuFu) and kinesin family protein (Cos2/Kif7) binding partners is a major unanswered question. Here we show that the Fused (Fu) protein kinase is activated by Smo and Cos2 via Fu- and CK1-dependent phosphorylation. Activated Fu can recapitulate a full Hh response, stabilizing full-length Ci via Cos2 phosphorylation and activating full-length Ci by antagonizing Su(fu) and by other mechanisms. We propose that Smo/Cos2 interactions stimulate Fu autoactivation by concentrating Fu at the membrane. Autoactivation primes Fu for additional CK1-dependent phosphorylation, which further enhances kinase activity. In this model, Smo acts like many transmembrane receptors associated with cytoplasmic kinases, such that pathway activation is mediated by kinase oligomerization and trans-phosphorylation.
Collapse
Affiliation(s)
- Qianhe Zhou
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | |
Collapse
|
39
|
Abstract
An increasing progress on the role of Hedgehog (Hh) signaling for carcinogenesis has been achieved since the link of Hh pathway to human cancer was firstly established. In particular, the critical role of Hh signaling in the development of Basal cell carcinoma (BCC) has been convincingly demonstrated by genetic mutation analyses, mouse models of BCCs, and successful clinical trials of BCCs using Hh signaling inhibitors. In addition, the Hh pathway activity is also reported to be involved in the pathogenesis of Squamous Cell Carcinoma (SCC), melanoma and Merkel Cell Carcinoma. These findings have significant new paradigm on Hh signaling transduction, its mechanisms in skin cancer and even therapeutic approaches for BCC. In this review, we will summarize the major advances in the understanding of Hh signaling transduction, the roles of Hh signaling in skin cancer development, and the current implications of "mechanism-based" therapeutic strategies.
Collapse
Affiliation(s)
- Chengxin Li
- Department of Dermatology, Xijing hospital, Fourth Military Medical University, Xi’an 710032, China
| | - Sumin Chi
- Department of Physiology, Fourth Military Medical University, Xi’an 710032, China
| | - Jingwu Xie
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
| |
Collapse
|
40
|
Sang L, Miller JJ, Corbit KC, Giles RH, Brauer MJ, Otto EA, Baye LM, Wen X, Scales SJ, Kwong M, Huntzicker EG, Sfakianos MK, Sandoval W, Bazan JF, Kulkarni P, Garcia-Gonzalo FR, Seol AD, O'Toole JF, Held S, Reutter HM, Lane WS, Rafiq MA, Noor A, Ansar M, Devi ARR, Sheffield VC, Slusarski DC, Vincent JB, Doherty DA, Hildebrandt F, Reiter JF, Jackson PK. Mapping the NPHP-JBTS-MKS protein network reveals ciliopathy disease genes and pathways. Cell 2011; 145:513-28. [PMID: 21565611 DOI: 10.1016/j.cell.2011.04.019] [Citation(s) in RCA: 460] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2010] [Revised: 03/16/2011] [Accepted: 04/27/2011] [Indexed: 12/18/2022]
Abstract
Nephronophthisis (NPHP), Joubert (JBTS), and Meckel-Gruber (MKS) syndromes are autosomal-recessive ciliopathies presenting with cystic kidneys, retinal degeneration, and cerebellar/neural tube malformation. Whether defects in kidney, retinal, or neural disease primarily involve ciliary, Hedgehog, or cell polarity pathways remains unclear. Using high-confidence proteomics, we identified 850 interactors copurifying with nine NPHP/JBTS/MKS proteins and discovered three connected modules: "NPHP1-4-8" functioning at the apical surface, "NPHP5-6" at centrosomes, and "MKS" linked to Hedgehog signaling. Assays for ciliogenesis and epithelial morphogenesis in 3D renal cultures link renal cystic disease to apical organization defects, whereas ciliary and Hedgehog pathway defects lead to retinal or neural deficits. Using 38 interactors as candidates, linkage and sequencing analysis of 250 patients identified ATXN10 and TCTN2 as new NPHP-JBTS genes, and our Tctn2 mouse knockout shows neural tube and Hedgehog signaling defects. Our study further illustrates the power of linking proteomic networks and human genetics to uncover critical disease pathways.
Collapse
Affiliation(s)
- Liyun Sang
- Genentech Inc., South San Francisco, CA 94080, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Gli zinc-finger proteins are transcription factors involved in the intracellular signal transduction controlled by the Hedgehog family of secreted molecules. They are frequently mutated in human congenital malformations, and their abnormal regulation leads to tumorigenesis. Genetic studies in several model systems indicate that their activity is tightly regulated by Hedgehog signaling through various posttranslational modifications, including phosphorylation, ubiquitin-mediated degradation, and proteolytic processing, as well as through nucleocytoplasmic shuttling. In vertebrate cells, primary cilia are required for the sensing of Hedgehog pathway activity and involved in the processing and activation of Gli proteins. Two evolutionarily conserved Hedgehog pathway components, Suppressor of fused and Kif7, are core intracellular regulators of mammalian Gli proteins. Recent studies revealed that Gli proteins are also regulated transcriptionally and posttranslationally through noncanonical mechanisms independent of Hedgehog signaling. In this review, we describe the regulation of Gli proteins during development and discuss possible mechanisms for their abnormal activation during tumorigenesis.
Collapse
Affiliation(s)
- Chi-Chung Hui
- Program in Developmental and Stem Cell Biology, Hospital for Sick Children, Toronto, Ontario M5G 1X8, Canada.
| | | |
Collapse
|
42
|
Boehm JS, Hahn WC. Towards systematic functional characterization of cancer genomes. Nat Rev Genet 2011; 12:487-98. [PMID: 21681210 DOI: 10.1038/nrg3013] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Whole-genome approaches to identify genetic and epigenetic alterations in cancer genomes have begun to provide new insights into the range of molecular events that occurs in human tumours. Although in some cases this knowledge immediately illuminates a path towards diagnostic or therapeutic implementation, the bewildering lists of mutations in each tumour make it clear that systematic functional approaches are also necessary to obtain a comprehensive molecular understanding of cancer. Here we review the current range of methods, assays and approaches for genome-scale interrogation of gene function in cancer. We also discuss the integration of functional-genomics approaches with the outputs from cancer genome sequencing efforts.
Collapse
Affiliation(s)
- Jesse S Boehm
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, Massachusetts 02142, USA
| | | |
Collapse
|
43
|
Chen Y, Sasai N, Ma G, Yue T, Jia J, Briscoe J, Jiang J. Sonic Hedgehog dependent phosphorylation by CK1α and GRK2 is required for ciliary accumulation and activation of smoothened. PLoS Biol 2011; 9:e1001083. [PMID: 21695114 PMCID: PMC3114773 DOI: 10.1371/journal.pbio.1001083] [Citation(s) in RCA: 164] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 05/05/2011] [Indexed: 12/11/2022] Open
Abstract
Hedgehog (Hh) signaling regulates embryonic development and adult tissue homeostasis through the GPCR-like protein Smoothened (Smo), but how vertebrate Smo is activated remains poorly understood. In Drosophila, Hh dependent phosphorylation activates Smo. Whether this is also the case in vertebrates is unclear, owing to the marked sequence divergence between vertebrate and Drosophila Smo (dSmo) and the involvement of primary cilia in vertebrate Hh signaling. Here we demonstrate that mammalian Smo (mSmo) is activated through multi-site phosphorylation of its carboxyl-terminal tail by CK1α and GRK2. Phosphorylation of mSmo induces its active conformation and simultaneously promotes its ciliary accumulation. We demonstrate that graded Hh signals induce increasing levels of mSmo phosphorylation that fine-tune its ciliary localization, conformation, and activity. We show that mSmo phosphorylation is induced by its agonists and oncogenic mutations but is blocked by its antagonist cyclopamine, and efficient mSmo phosphorylation depends on the kinesin-II ciliary motor. Furthermore, we provide evidence that Hh signaling recruits CK1α to initiate mSmo phosphorylation, and phosphorylation further increases the binding of CK1α and GRK2 to mSmo, forming a positive feedback loop that amplifies and/or sustains mSmo phosphorylation. Hence, despite divergence in their primary sequences and their subcellular trafficking, mSmo and dSmo employ analogous mechanisms for their activation.
Collapse
Affiliation(s)
- Yongbin Chen
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Noriaki Sasai
- MRC-National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Guoqiang Ma
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Tao Yue
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| | - Jianhang Jia
- Markey Cancer Center and Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, Kentucky, United States of America
| | - James Briscoe
- MRC-National Institute for Medical Research, Mill Hill, London, United Kingdom
| | - Jin Jiang
- Department of Developmental Biology, University of Texas Southwestern Medical Center at Dallas, Dallas, Texas, United States of America
| |
Collapse
|
44
|
Sakata T, Chen JK. Chemical 'Jekyll and Hyde's: small-molecule inhibitors of developmental signaling pathways. Chem Soc Rev 2011; 40:4318-31. [PMID: 21505654 DOI: 10.1039/c1cs15019g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small molecules that perturb developmental signaling pathways can have devastating effects on embryonic patterning, as evidenced by the chemically induced onset of cyclopic lambs and children with severely shortened limbs during the 1950s. Recent studies, however, have revealed critical roles for these pathways in human disorders and diseases, spurring the re-examination of these compounds as new targeted therapies. In this tutorial review, we describe four case studies of teratogenic compounds, including inhibitors of the Hedgehog (Hh), Wnt, and bone morphogenetic protein (BMP) pathways. We discuss how these teratogens were discovered, their mechanisms of action, their utility as molecular probes, and their potential as therapeutic agents. We also consider current challenges in the field and possible directions for future research.
Collapse
Affiliation(s)
- Tomoyo Sakata
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | | |
Collapse
|
45
|
Ingham PW, Nakano Y, Seger C. Mechanisms and functions of Hedgehog signalling across the metazoa. Nat Rev Genet 2011; 12:393-406. [PMID: 21502959 DOI: 10.1038/nrg2984] [Citation(s) in RCA: 446] [Impact Index Per Article: 31.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hedgehog proteins constitute one of a small number of families of secreted signals that have a central role in the development of metazoans. Genetic analyses in flies, fish and mice have uncovered the major components of the pathway that transduces Hedgehog signals, and recent genome sequence projects have provided clues about its evolutionary origins. In this Review we provide an updated overview of the mechanisms and functions of this signalling pathway, highlighting the conserved and divergent features of the pathway, as well as some of the common themes in its deployment that have emerged from recent studies.
Collapse
Affiliation(s)
- Philip W Ingham
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Singapore.
| | | | | |
Collapse
|
46
|
Lai CK, Gupta N, Wen X, Rangell L, Chih B, Peterson AS, Bazan J, Li L, Scales SJ. Functional characterization of putative cilia genes by high-content analysis. Mol Biol Cell 2011; 22:1104-19. [PMID: 21289087 PMCID: PMC3069013 DOI: 10.1091/mbc.e10-07-0596] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Revised: 12/15/2011] [Accepted: 01/21/2011] [Indexed: 01/30/2023] Open
Abstract
Cilia are microtubule-based protrusions from the cell surface that are involved in a number of essential signaling pathways, yet little is known about many of the proteins that regulate their structure and function. A number of putative cilia genes have been identified by proteomics and comparative sequence analyses, but functional data are lacking for the vast majority. We therefore monitored the effects in three cell lines of small interfering RNA (siRNA) knockdown of 40 of these genes by high-content analysis. We assayed cilia number, length, and transport of two different cargoes (membranous serotonin receptor 6-green fluorescent protein [HTR6-GFP] and the endogenous Hedgehog [Hh] pathway transcription factor Gli3) by immunofluorescence microscopy; and cilia function using a Gli-luciferase Hh signaling assay. Hh signaling was most sensitive to perturbations, with or without visible structural cilia defects. Validated hits include Ssa2 and mC21orf2 with ciliation defects; Ift46 with short cilia; Ptpdc1 and Iqub with elongated cilia; and Arl3, Nme7, and Ssna1 with distinct ciliary transport but not length defects. Our data confirm various ciliary roles for several ciliome proteins and show it is possible to uncouple ciliary cargo transport from cilia formation in vertebrates.
Collapse
Affiliation(s)
- Cary K. Lai
- Department of Molecular Biology, Genetech, South San Francisco, CA 94080
| | - Nidhi Gupta
- Department of Molecular Biology, Genetech, South San Francisco, CA 94080
| | - Xiaohui Wen
- Department of Molecular Biology, Genetech, South San Francisco, CA 94080
| | | | - Ben Chih
- Department of Molecular Biology, Genetech, South San Francisco, CA 94080
| | - Andrew S. Peterson
- Department of Molecular Biology, Genetech, South San Francisco, CA 94080
| | - J. Fernando Bazan
- Protein Engineering and Structural Biology, Genetech, South San Francisco, CA 94080
| | - Li Li
- Bioinformatics, Genentech, South San Francisco, CA 94080
| | - Suzie J. Scales
- Department of Molecular Biology, Genetech, South San Francisco, CA 94080
| |
Collapse
|
47
|
Jacob LS, Wu X, Dodge ME, Fan CW, Kulak O, Chen B, Tang W, Wang B, Amatruda JF, Lum L. Genome-wide RNAi screen reveals disease-associated genes that are common to Hedgehog and Wnt signaling. Sci Signal 2011; 4:ra4. [PMID: 21266715 DOI: 10.1126/scisignal.2001225] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The Hedgehog (Hh) and Wnt signal transduction pathways are master regulators of embryogenesis and tissue renewal and represent anticancer therapeutic targets. Using genome-wide RNA interference screening in murine cultured cells, we established previously unknown associations between these signaling pathways and genes linked to developmental malformations, diseases of premature tissue degeneration, and cancer. We identified functions in both pathways for the multitasking kinase Stk11 (also known as Lkb1), a tumor suppressor implicated in lung and cervical cancers. We found that Stk11 loss resulted in disassembly of the primary cilium, a cellular organizing center for Hh pathway components, thus dampening Hh signaling. Loss of Stk11 also induced aberrant signaling through the Wnt pathway. Chemicals that targeted the Wnt acyltransferase Porcupine or that restored primary cilia length by inhibiting the tubulin deacetylase HDAC6 (histone deacetylase 6) countered deviant pathway activities driven by Stk11 loss. Our study demonstrates that Stk11 is a critical mediator in both the Hh and the Wnt pathways, and our approach provides a platform to support the development of targeted therapeutic strategies.
Collapse
Affiliation(s)
- Leni S Jacob
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Liu H, Gu D, Xie J. Clinical implications of hedgehog signaling pathway inhibitors. CHINESE JOURNAL OF CANCER 2011; 30:13-26. [PMID: 21192841 PMCID: PMC3137255 DOI: 10.5732/cjc.010.10540] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 11/25/2010] [Accepted: 11/25/2010] [Indexed: 12/21/2022]
Abstract
Hedgehog was first described in Drosophila melanogaster by the Nobel laureates Eric Wieschaus and Christiane Nüsslein-Volhard. The hedgehog (Hh) pathway is a major regulator of cell differentiation, proliferation, tissue polarity, stem cell maintenance, and carcinogenesis. The first link of Hh signaling to cancer was established through studies of a rare familial disease, Gorlin syndrome, in 1996. Follow-up studies revealed activation of this pathway in basal cell carcinoma, medulloblastoma and, leukemia as well as in gastrointestinal, lung, ovarian, breast, and prostate cancer. Targeted inhibition of Hh signaling is now believed to be effective in the treatment and prevention of human cancer. The discovery and synthesis of specific inhibitors for this pathway are even more exciting. In this review, we summarize major advances in the understanding of Hh signaling pathway activation in human cancer, mouse models for studying Hh-mediated carcinogenesis, the roles of Hh signaling in tumor development and metastasis, antagonists for Hh signaling and their clinical implications.
Collapse
Affiliation(s)
- Hailan Liu
- Wells Center for Pediatric Research, Division of Hematology and Oncology, Department of Pediatrics, Indiana University Simon Cancer Center, Indiana University, Indianapolis, Indiana 46202, USA
| | | | | |
Collapse
|
49
|
Loyer P, Busson A, Trembley JH, Hyle J, Grenet J, Zhao W, Ribault C, Montier T, Kidd VJ, Lahti JM. The RNA binding motif protein 15B (RBM15B/OTT3) is a functional competitor of serine-arginine (SR) proteins and antagonizes the positive effect of the CDK11p110-cyclin L2α complex on splicing. J Biol Chem 2010; 286:147-59. [PMID: 21044963 DOI: 10.1074/jbc.m110.192518] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Here, we report the identification of the RNA binding motif protein RBM15B/OTT3 as a new CDK11(p110) binding partner that alters the effects of CDK11 on splicing. RBM15B was initially identified as a binding partner of the Epstein-Barr virus mRNA export factor and, more recently, as a cofactor of the nuclear export receptor NXF1. In this study, we found that RBM15B co-elutes with CDK11(p110), cyclin L2α, and serine-arginine (SR) proteins, including SF2/ASF, in a large nuclear complex of ∼1-MDa molecular mass following size exclusion chromatography. Using co-immunoprecipitation experiments and in vitro pulldown assays, we mapped two distinct domains of RBM15B that are essential for its direct interaction with the N-terminal extension of CDK11(p110), cyclin L2α, and SR proteins such as 9G8 and SF2/ASF. Finally, we established that RBM15B is a functional competitor of the SR proteins SF2/ASF and 9G8, inhibits formation of the functional spliceosomal E complex, and antagonizes the positive effect of the CDK11(p110)-cyclin L2α complex on splicing both in vitro and in vivo.
Collapse
Affiliation(s)
- Pascal Loyer
- INSERM UMR 991 Foie, Métabolismes et Cancer, IFR140, Université de Rennes 1, Hôpital Pontchaillou, 35033 Rennes, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Murdoch JN, Copp AJ. The relationship between sonic Hedgehog signaling, cilia, and neural tube defects. BIRTH DEFECTS RESEARCH. PART A, CLINICAL AND MOLECULAR TERATOLOGY 2010; 88:633-52. [PMID: 20544799 PMCID: PMC3635124 DOI: 10.1002/bdra.20686] [Citation(s) in RCA: 154] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The Hedgehog signaling pathway is essential for many aspects of normal embryonic development, including formation and patterning of the neural tube. Absence of the sonic hedgehog (shh) ligand is associated with the midline defect holoprosencephaly, whereas increased Shh signaling is associated with exencephaly and spina bifida. To complicate this apparently simple relationship, mutation of proteins required for function of cilia often leads to impaired Shh signaling and to disruption of neural tube closure. In this article, we review the literature on Shh pathway mutants and discuss the relationship between Shh signaling, cilia, and neural tube defects.
Collapse
Affiliation(s)
- Jennifer N Murdoch
- Centre for Biomedical Sciences, School of Biological Sciences, Royal Holloway University of London, Egham, Surrey, UK.
| | | |
Collapse
|