1
|
Mei W, Faraj Tabrizi S, Godina C, Lovisa AF, Isaksson K, Jernström H, Tavazoie SF. A commonly inherited human PCSK9 germline variant drives breast cancer metastasis via LRP1 receptor. Cell 2025; 188:371-389.e28. [PMID: 39657676 PMCID: PMC11770377 DOI: 10.1016/j.cell.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 08/12/2024] [Accepted: 11/10/2024] [Indexed: 12/12/2024]
Abstract
Identifying patients at risk for metastatic relapse is a critical medical need. We identified a common missense germline variant in proprotein convertase subtilisin/kexin type 9 (PCSK9) (rs562556, V474I) that is associated with reduced survival in multiple breast cancer patient cohorts. Genetic modeling of this gain-of-function single-nucleotide variant in mice revealed that it causally promotes breast cancer metastasis. Conversely, host PCSK9 deletion reduced metastatic colonization in multiple breast cancer models. Host PCSK9 promoted metastatic initiation events in lung and enhanced metastatic proliferative competence by targeting tumoral low-density lipoprotein receptor related protein 1 (LRP1) receptors, which repressed metastasis-promoting genes XAF1 and USP18. Antibody-mediated therapeutic inhibition of PCSK9 suppressed breast cancer metastasis in multiple models. In a large Swedish early-stage breast cancer cohort, rs562556 homozygotes had a 22% risk of distant metastatic relapse at 15 years, whereas non-homozygotes had a 2% risk. Our findings reveal that a commonly inherited genetic alteration governs breast cancer metastasis and predicts survival-uncovering a hereditary basis underlying breast cancer metastasis.
Collapse
Affiliation(s)
- Wenbin Mei
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | | | - Christopher Godina
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund, Sweden
| | - Anthea F Lovisa
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA
| | - Karolin Isaksson
- Division of Surgery, Department of Clinical Sciences in Lund, Lund University and Department of Surgery Kristianstad Hospital, Lund, Sweden
| | - Helena Jernström
- Division of Oncology, Department of Clinical Sciences in Lund, Lund University Cancer Center/Kamprad, Lund, Sweden
| | - Sohail F Tavazoie
- Laboratory of Systems Cancer Biology, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Yao D, Li M, Zeng W, Wang K, Liao Z, Chen E, Xing T, Liang Y, Tang J, Wen G, Ning Q, Li Y, Huang L. LRP1 mitigates intervertebral disc degeneration by inhibiting endoplasmic reticulum stress through stabilizing the PPARγ. J Orthop Translat 2025; 50:196-210. [PMID: 39895867 PMCID: PMC11786795 DOI: 10.1016/j.jot.2024.12.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 10/26/2024] [Accepted: 12/24/2024] [Indexed: 02/04/2025] Open
Abstract
Background Intervertebral disc degeneration (IDD) is a significant cause of lower back pain, characterized by inflammation-mediated extracellular matrix (ECM) degradation, apoptosis, and aging of nucleus pulposus (NP) cells. Identifying key regulatory targets for these processes is crucial for IDD treatment. Previous research has highlighted the role of low-density lipoprotein receptor-related protein 1 (LRP1) in regulating ECM levels and cell fate, but its role in IDD remains under-explored. This study aims to elucidate the function and mechanism of LRP1 in the progression of IDD. Methods LRP1 expression was assessed in clinical tissue samples from patients diagnosed with IDD and in a rat IDD model established using needle puncture injuries. The effects of LRP1 knockdown and treatment with the LRP1 activator SP16 on apoptosis and ECM metabolism in NP cells were analyzed, with a focus on their relationship with endoplasmic reticulum (ER) stress. The interaction and regulatory mechanism between LRP1 and peroxisome proliferator-activated receptor gamma (PPARγ) were further explored to clarify how LRP1 regulates ER stress. Finally, the in vivo therapeutic effect of SP16 was investigated using a rat tail IDD model. Results We found that LRP1 expression was significantly downregulated in IDD. In NP cells with LRP1 knockdown, there was a marked increase in apoptosis and detrimental ECM remodeling, which were associated with the activation of ER stress. Our research further revealed that LRP1 interacts with PPARγ, stabilizing the PPARγ protein and preventing its lysosomal degradation, thereby mitigating ER stress. Activation of LRP1 in our models significantly reduced ER stress, matrix degradation, and apoptosis, thereby attenuating IDD both in vitro and in vivo. Conclusion This study systematically investigated the role and mechanisms of the LRP1/PPARγ/ER stress signaling axis in IDD. Our findings suggest that targeting LRP1 to modulate this signaling pathway could provide a promising therapeutic approach for the treatment of IDD. The Translational potential of this Article Our study demonstrated that LRP1 can reduce apoptosis and ECM degradation by inhibiting ER stress through stabilizing PPARγ, indicating that targeting LRP1 may be a novel therapeutic strategy for IDD.
Collapse
Affiliation(s)
- Dengbo Yao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
- Department of Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ming Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Kun Wang
- Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Zhuangyao Liao
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Enming Chen
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Tong Xing
- Department of Orthopedics, Shanghai Key Laboratory of Orthopedics Implant, The Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Yuwei Liang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Jun Tang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Guoming Wen
- Department of Orthopedics Surgery, The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Qing Ning
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Yuxi Li
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| | - Lin Huang
- Department of Orthopedics Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China
| |
Collapse
|
3
|
Guo X, Pu J, Tang Z, Jia C, Yang F, Liu T, Ding Y. LRP1 facilitates hepatic glycogenesis by improving the insulin signaling pathway in HFD-fed mice. Animal Model Exp Med 2024; 7:696-706. [PMID: 38567757 PMCID: PMC11528380 DOI: 10.1002/ame2.12408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 03/18/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND LDL receptor-related protein-1 (LRP1) is a cell-surface receptor that functions in diverse physiological pathways. We previously demonstrated that hepatocyte-specific LRP1 deficiency (hLRP1KO) promotes diet-induced insulin resistance and increases hepatic gluconeogenesis in mice. However, it remains unclear whether LRP1 regulates hepatic glycogenesis. METHODS Insulin signaling, glycogenic gene expression, and glycogen content were assessed in mice and HepG2 cells. The pcDNA 3.1 plasmid and adeno-associated virus serotype 8 vector (AAV8) were used to overexpress the truncated β-chain (β∆) of LRP1 both in vitro and in vivo. RESULTS On a normal chow diet, hLRP1KO mice exhibited impaired insulin signaling and decreased glycogen content. Moreover, LRP1 expression in HepG2 cells was significantly repressed by palmitate in a dose- and time-dependent manner. Both LRP1 knockdown and palmitate treatment led to reduced phosphorylation of Akt and GSK3β, increased levels of phosphorylated glycogen synthase (GYS), and diminished glycogen synthesis in insulin-stimulated HepG2 cells, which was restored by exogenous expression of the β∆-chain. By contrast, AAV8-mediated hepatic β∆-chain overexpression significantly improved the insulin signaling pathway, thus activating glycogenesis and enhancing glycogen storage in the livers of high-fat diet (HFD)-fed mice. CONCLUSION Our data revealed that LRP1, especially its β-chain, facilitates hepatic glycogenesis by improving the insulin signaling pathway, suggesting a new therapeutic strategy for hepatic insulin resistance-related diseases.
Collapse
Affiliation(s)
- Xingxian Guo
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Jiangxia Pu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Ziqi Tang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Can Jia
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Fan Yang
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Tianyi Liu
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| | - Yinyuan Ding
- Centre for Lipid Research & Chongqing Key Laboratory of Metabolism on Lipid and Glucose, Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Department of Infectious Diseases, Institute for Viral Hepatitis, The Second Affiliated HospitalChongqing Medical UniversityChongqingChina
| |
Collapse
|
4
|
Yamamoto K, Scilabra SD, Bonelli S, Jensen A, Scavenius C, Enghild JJ, Strickland DK. Novel insights into the multifaceted and tissue-specific roles of the endocytic receptor LRP1. J Biol Chem 2024; 300:107521. [PMID: 38950861 PMCID: PMC11325810 DOI: 10.1016/j.jbc.2024.107521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/03/2024] Open
Abstract
Receptor-mediated endocytosis provides a mechanism for the selective uptake of specific molecules thereby controlling the composition of the extracellular environment and biological processes. The low-density lipoprotein receptor-related protein 1 (LRP1) is a widely expressed endocytic receptor that regulates cellular events by modulating the levels of numerous extracellular molecules via rapid endocytic removal. LRP1 also participates in signalling pathways through this modulation as well as in the interaction with membrane receptors and cytoplasmic adaptor proteins. LRP1 SNPs are associated with several diseases and conditions such as migraines, aortic aneurysms, cardiopulmonary dysfunction, corneal clouding, and bone dysmorphology and mineral density. Studies using Lrp1 KO mice revealed a critical, nonredundant and tissue-specific role of LRP1 in regulating various physiological events. However, exactly how LRP1 functions to regulate so many distinct and specific processes is still not fully clear. Our recent proteomics studies have identified more than 300 secreted proteins that either directly interact with LRP1 or are modulated by LRP1 in various tissues. This review will highlight the remarkable ability of this receptor to regulate secreted molecules in a tissue-specific manner and discuss potential mechanisms underpinning such specificity. Uncovering the depth of these "hidden" specific interactions modulated by LRP1 will provide novel insights into a dynamic and complex extracellular environment that is involved in diverse biological and pathological processes.
Collapse
Affiliation(s)
- Kazuhiro Yamamoto
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom.
| | - Simone D Scilabra
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy
| | - Simone Bonelli
- Proteomics Group of Ri.MED Foundation, Research Department IRCCS ISMETT, Palermo, Italy; Department of Biological, Chemical and Pharmaceutical Sciences and Technologies, University of Palermo, Palermo, Italy
| | - Anders Jensen
- Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Carsten Scavenius
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Jan J Enghild
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Dudley K Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Zhang JB, Zhang QR, Jin Q, Yang J, Lin SZ, Fan JG. Sestrin2 maintains hepatic immune homeostasis and redox balance partially via inhibiting RIPK3-mediated necroptosis in metabolic dysfunction-associated steatohepatitis. Mol Metab 2024; 80:101865. [PMID: 38163459 PMCID: PMC10825057 DOI: 10.1016/j.molmet.2023.101865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/22/2023] [Accepted: 12/23/2023] [Indexed: 01/03/2024] Open
Abstract
BACKGROUND & AIMS Necroptosis, a novel type of programmed cell death, is intricately associated with inflammatory response. Currently, most studies focus on the activation of necroptosis, while the mechanisms underlying the negative regulation of necroptosis remain poorly understood. METHODS The effects of sestrin2 (SESN2) overexpression or knockdown on the regulation of necroptosis were assessed in the TNFα/Smac-mimetic/Z-VAD-FMK (T/S/Z)-induced necroptosis model and palmitic acid (PA)-induced lipotoxicity model. Western-blot, co-Immunoprecipitation, Glutathione S-transferase pull-down, and confocal assays were employed to explore the regulatory mechanisms including protein-protein interactions and post-translational modification. Furthermore, we used GSK'872, a specific inhibitor of receptor-interacting serine/threonine-protein kinase (RIPK) 3, to evaluate the relationship between SESN2-related alterations and RIPK3-mediated necroptosis in T/S/Z-induced necroptosis model, PA-induced lipotoxicity model, and high-fat high-cholesterol diet (HFHCD)-induced non-alcoholic steatohepatitis model. RESULTS Our findings revealed that SESN2 was upregulated under conditions that induce necroptosis and functioned as a negative regulator of necroptosis. High levels of SESN2 could equipped hepatocytes with the ability to defend against necroptotic inflammation and oxidative stress. Mechanistically, SESN2 interacted with RIPK3 and tuned down necroptosis by inhibiting the phosphorylation of RIPK3, promoting the ubiquitination of RIPK3, and preventing the formation of the RIPK1/RIPK3 necrosome. The depletion of SESN2 resulted in excessive necroptosis, accompanied by increased fat accumulation, inflammation, and oxidative stress in the experimental steatohepatitis model. Blocking necroptosis by GSK'872 reduced the liberation of pro-inflammatory cytokines and reactive oxygen species generation, but not hepatocyte fat deposition, in both PA-treated SESN2 knockout cells and HFHCD-fed SESN2 knockout mice, suggesting that the activation of RIPK3-mediated necroptosis may partially account for the hyperinflammation and excessive oxidative stress induced by SESN2 deficiency. CONCLUSION Our results suggested that SESN2 inhibited RIPK3-mediated necroptosis; this regulation is an important for the immune homeostasis and the redox balance in the liver.
Collapse
Affiliation(s)
- Jian-Bin Zhang
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qian-Ren Zhang
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Qian Jin
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jing Yang
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Shuang-Zhe Lin
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China
| | - Jian-Gao Fan
- Department of Gastroenterology, Xin Hua Hospital affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| |
Collapse
|
6
|
Hou P, Zielonka M, Serneels L, Martinez-Muriana A, Fattorelli N, Wolfs L, Poovathingal S, T'Syen D, Balusu S, Theys T, Fiers M, Mancuso R, Howden AJM, De Strooper B. The γ-secretase substrate proteome and its role in cell signaling regulation. Mol Cell 2023; 83:4106-4122.e10. [PMID: 37977120 DOI: 10.1016/j.molcel.2023.10.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/22/2023] [Accepted: 10/20/2023] [Indexed: 11/19/2023]
Abstract
γ-Secretases mediate the regulated intramembrane proteolysis (RIP) of more than 150 integral membrane proteins. We developed an unbiased γ-secretase substrate identification (G-SECSI) method to study to what extent these proteins are processed in parallel. We demonstrate here parallel processing of at least 85 membrane proteins in human microglia in steady-state cell culture conditions. Pharmacological inhibition of γ-secretase caused substantial changes of human microglial transcriptomes, including the expression of genes related to the disease-associated microglia (DAM) response described in Alzheimer disease (AD). While the overall effects of γ-secretase deficiency on transcriptomic cell states remained limited in control conditions, exposure of mouse microglia to AD-inducing amyloid plaques strongly blocked their capacity to mount this putatively protective DAM cell state. We conclude that γ-secretase serves as a critical signaling hub integrating the effects of multiple extracellular stimuli into the overall transcriptome of the cell.
Collapse
Affiliation(s)
- Pengfei Hou
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Magdalena Zielonka
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Lutgarde Serneels
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Anna Martinez-Muriana
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Nicola Fattorelli
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Leen Wolfs
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Suresh Poovathingal
- Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Single Cell & Microfluidics Expertise Unit, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium
| | - Dries T'Syen
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Sriram Balusu
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium
| | - Tom Theys
- Department of Neurosciences, Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven 3000, Belgium
| | - Mark Fiers
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Center for Human Genetics, KU Leuven, Leuven 3000, Belgium; Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK
| | - Renzo Mancuso
- Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB Center for Molecular Neurology, VIB, Antwerp 2610, Belgium; Department of Biomedical Sciences, University of Antwerp, Antwerp 2610, Belgium
| | - Andrew J M Howden
- Division of Cell Signaling and Immunology, School of Life Sciences, University of Dundee, Dundee DD1 4HN, UK
| | - Bart De Strooper
- Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain & Disease Research, VIB, Leuven 3000, Belgium; Department of Neurosciences and Leuven Brain Institute, KU Leuven, Leuven 3000, Belgium; Center for Human Genetics, KU Leuven, Leuven 3000, Belgium; Dementia Research Institute, Institute of Neurology, University College London, London WC1E 6BT, UK.
| |
Collapse
|
7
|
Essayan-Perez S, Südhof TC. Neuronal γ-secretase regulates lipid metabolism, linking cholesterol to synaptic dysfunction in Alzheimer's disease. Neuron 2023; 111:3176-3194.e7. [PMID: 37543038 PMCID: PMC10592349 DOI: 10.1016/j.neuron.2023.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/16/2023] [Accepted: 07/10/2023] [Indexed: 08/07/2023]
Abstract
Presenilin mutations that alter γ-secretase activity cause familial Alzheimer's disease (AD), whereas ApoE4, an apolipoprotein for cholesterol transport, predisposes to sporadic AD. Both sporadic and familial AD feature synaptic dysfunction. Whether γ-secretase is involved in cholesterol metabolism and whether such involvement impacts synaptic function remains unknown. Here, we show that in human neurons, chronic pharmacological or genetic suppression of γ-secretase increases synapse numbers but decreases synaptic transmission by lowering the presynaptic release probability without altering dendritic or axonal arborizations. In search of a mechanism underlying these synaptic impairments, we discovered that chronic γ-secretase suppression robustly decreases cholesterol levels in neurons but not in glia, which in turn stimulates neuron-specific cholesterol-synthesis gene expression. Suppression of cholesterol levels by HMG-CoA reductase inhibitors (statins) impaired synaptic function similar to γ-secretase inhibition. Thus, γ-secretase enables synaptic function by maintaining cholesterol levels, whereas the chronic suppression of γ-secretase impairs synapses by lowering cholesterol levels.
Collapse
Affiliation(s)
- Sofia Essayan-Perez
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
8
|
Liu C, Nikain C, Li YM. γ-Secretase fanning the fire of innate immunity. Biochem Soc Trans 2023; 51:1597-1610. [PMID: 37449907 PMCID: PMC11212119 DOI: 10.1042/bst20221445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/29/2023] [Accepted: 07/03/2023] [Indexed: 07/18/2023]
Abstract
Innate immunity is the first line of defense against pathogens, alerting the individual cell and surrounding area to respond to this potential invasion. γ-secretase is a transmembrane protease complex that plays an intricate role in nearly every stage of this innate immune response. Through regulation of pattern recognition receptors (PRR) such as TREM2 and RAGE γ-secretase can modulate pathogen recognition. γ-secretase can act on cytokine receptors such as IFNαR2 and CSF1R to dampen their signaling capacity. While γ-secretase-mediated regulated intramembrane proteolysis (RIP) can further moderate innate immune responses through downstream signaling pathways. Furthermore, γ-secretase has also been shown to be regulated by the innate immune system through cytokine signaling and γ-secretase modulatory proteins such as IFITM3 and Hif-1α. This review article gives an overview of how γ-secretase is implicated in innate immunity and the maintenance of its responses through potentially positive and negative feedback loops.
Collapse
Affiliation(s)
- Chenge Liu
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| | - Cyrus Nikain
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| | - Yue-Ming Li
- Chemical Biology Program, Memorial Sloan Kettering Cancer Center
- Programs of Pharmacology, Weill Graduate School of Medical Sciences of Cornell University
| |
Collapse
|
9
|
Wasser C, Werthmann GC, Hall EM, Kuhbandner K, Wong CH, Durakoglugil MS, Herz J. Apoer2-ICD-dependent regulation of hippocampal ribosome mRNA loading. RESEARCH SQUARE 2023:rs.3.rs-3040567. [PMID: 37461529 PMCID: PMC10350194 DOI: 10.21203/rs.3.rs-3040567/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
Background ApoE4, the most significant genetic risk factor for late-onset Alzheimer's disease (AD), sequesters a pro-synaptogenic Reelin receptor, Apoer2, in the endosomal compartment and prevents its normal recycling. In the adult brain, Reelin potentiates excitatory synapses and thereby protects against amyloid-β toxicity. Recently, a gain-of-function mutation in Reelin that is protective against early-onset AD has been described. Alternative splicing of the Apoer2 intracellular domain (Apoer2-ICD) regulates Apoer2 signaling. Splicing of juxtamembraneous exon 16 alters the g-secretase mediated release of the Apoer2-ICD as well as synapse number and LTP, and inclusion of exon 19 ameliorates behavioral deficits in an AD mouse model. The Apoer2-ICD has also been shown to alter transcription of synaptic genes. However, the role of Apoer2 splicing for transcriptional regulation and its role in AD pathogenesis is unknown. Methods To assess in vivo mRNA-primed ribosomes specifically in hippocampi transduced with Apoer2-ICD splice variants, we crossed wild-type, cKO, and Apoer2 cleavage-resistant mice to a Cre-inducible translating ribosome affinity purification (TRAP) model. This allowed us to perform RNA-Seq on ribosome-loaded mRNA harvested specifically from hippocampal cells transduced with Apoer2-ICDs. Results Across all conditions, we observed ~ 4,700 altered ribosome-associated transcripts, several of which comprise key synaptic components such as extracellular matrix and focal adhesions with concomitant perturbation of critical signaling cascades, energy metabolism, translation, and apoptosis. We further demonstrated the ability of the Apoer2-ICD to rescue many of these altered transcripts, underscoring the importance of Apoer2 splicing in synaptic homeostasis. A variety of these altered genes have been implicated in AD, demonstrating how dysregulated Apoer2 splicing may contribute to neurodegeneration. Conclusions Our findings demonstrate how alternative splicing of the APOE and Reelin receptor Apoer2 and release of the Apoer2-ICD regulates numerous ribosome-associated transcripts in mouse hippocampi in vivo . These transcripts comprise a wide range of functions, and alterations in these transcripts suggest a mechanistic basis for the synaptic deficits seen in Apoer2 mutant mice and AD patients. Our findings, together with the recently reported AD-protective effects of a Reelin gain-of-function mutation in the presence of an early-onset AD mutation in Presenilin-1, implicate the Reelin/Apoer2 pathway as a target for AD therapeutics.
Collapse
Affiliation(s)
- Catherine Wasser
- UT Southwestern: The University of Texas Southwestern Medical Center
| | | | - Eric M Hall
- UT Southwestern: The University of Texas Southwestern Medical Center
| | | | - Connie H Wong
- UT Southwestern: The University of Texas Southwestern Medical Center
| | | | - Joachim Herz
- UT Southwestern: The University of Texas Southwestern Medical Center
| |
Collapse
|
10
|
Faissner A. Low-density lipoprotein receptor-related protein-1 (LRP1) in the glial lineage modulates neuronal excitability. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1190240. [PMID: 37383546 PMCID: PMC10293750 DOI: 10.3389/fnetp.2023.1190240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023]
Abstract
The low-density lipoprotein related protein receptor 1 (LRP1), also known as CD91 or α-Macroglobulin-receptor, is a transmembrane receptor that interacts with more than 40 known ligands. It plays an important biological role as receptor of morphogens, extracellular matrix molecules, cytokines, proteases, protease inhibitors and pathogens. In the CNS, it has primarily been studied as a receptor and clearance agent of pathogenic factors such as Aβ-peptide and, lately, Tau protein that is relevant for tissue homeostasis and protection against neurodegenerative processes. Recently, it was found that LRP1 expresses the Lewis-X (Lex) carbohydrate motif and is expressed in the neural stem cell compartment. The removal of Lrp1 from the cortical radial glia compartment generates a strong phenotype with severe motor deficits, seizures and a reduced life span. The present review discusses approaches that have been taken to address the neurodevelopmental significance of LRP1 by creating novel, lineage-specific constitutive or conditional knockout mouse lines. Deficits in the stem cell compartment may be at the root of severe CNS pathologies.
Collapse
|
11
|
Mazura AD, Pietrzik CU. Endocrine Regulation of Microvascular Receptor-Mediated Transcytosis and Its Therapeutic Opportunities: Insights by PCSK9-Mediated Regulation. Pharmaceutics 2023; 15:pharmaceutics15041268. [PMID: 37111752 PMCID: PMC10144601 DOI: 10.3390/pharmaceutics15041268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
Currently, many neurological disorders lack effective treatment options due to biological barriers that effectively separate the central nervous system (CNS) from the periphery. CNS homeostasis is maintained by a highly selective exchange of molecules, with tightly controlled ligand-specific transport systems at the blood-brain barrier (BBB) playing a key role. Exploiting or modifying these endogenous transport systems could provide a valuable tool for targeting insufficient drug delivery into the CNS or pathological changes in the microvasculature. However, little is known about how BBB transcytosis is continuously regulated to respond to temporal or chronic changes in the environment. The aim of this mini-review is to draw attention to the sensitivity of the BBB to circulating molecules derived from peripheral tissues, which may indicate a fundamental endocrine-operating regulatory system of receptor-mediated transcytosis at the BBB. We present our thoughts in the context of the recent observation that low-density lipoprotein receptor-related protein 1 (LRP1)-mediated clearance of brain amyloid-β (Aβ) across the BBB is negatively regulated by peripheral proprotein convertase subtilisin/kexin type 9 (PCSK9). We hope that our conclusions will inspire future investigations of the BBB as dynamic communication interface between the CNS and periphery, whose peripheral regulatory mechanisms could be easily exploited for therapeutic purposes.
Collapse
Affiliation(s)
- Alexander D Mazura
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| | - Claus U Pietrzik
- Institute of Pathobiochemistry, University Medical Center of the Johannes Gutenberg, University Mainz, Duesbergweg 6, 55128 Mainz, Germany
| |
Collapse
|
12
|
Sizova O, John LS, Ma Q, Molldrem JJ. Multi-faceted role of LRP1 in the immune system. Front Immunol 2023; 14:1166189. [PMID: 37020553 PMCID: PMC10069629 DOI: 10.3389/fimmu.2023.1166189] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/06/2023] [Indexed: 04/07/2023] Open
Abstract
Graft versus host disease (GVHD) represents the major complication after allogeneic hematopoietic stem cell transplantation (Allo-SCT). GVHD-prone patients rely on GVHD prophylaxis (e.g. methotrexate) and generalized anti-GVHD medical regimen (glucocorticoids). New anti-GVHD therapy strategies are being constantly explored, however there is an urgent need to improve current treatment, since GVHD-related mortality reaches 22% within 5 years in patients with chronic GVHD. This review is an attempt to describe a very well-known receptor in lipoprotein studies - the low-density lipoprotein receptor related protein 1 (LRP1) - in a new light, as a potential therapeutic target for GVHD prevention and treatment. Our preliminary studies demonstrated that LRP1 deletion in donor murine T cells results in significantly lower GVHD-related mortality in recipient mice with MHC (major histocompatibility complex) -mismatched HSCT. Given the importance of T cells in the development of GVHD, there is a significant gap in scientific literature regarding LRP1's role in T cell biology. Furthermore, there is limited research interest and publications on this classical receptor molecule in other immune cell types. Herein, we endeavor to summarize existing knowledge about LRP1's role in various immune cells to demonstrate the possibility of this receptor to serve as a novel target for anti-GVHD treatment.
Collapse
Affiliation(s)
- Olga Sizova
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Lisa St. John
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qing Ma
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Jeffrey J. Molldrem
- Department of Hematopoietic Biology and Malignancy, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- ECLIPSE, Therapeutic Discovery Division, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
- *Correspondence: Jeffrey J. Molldrem,
| |
Collapse
|
13
|
Schoellkopf J, Mueller T, Hippchen L, Mueller T, Reuten R, Backofen R, Orth J, Schmidt G. Genome wide CRISPR screen for Pasteurella multocida toxin (PMT) binding proteins reveals LDL Receptor Related Protein 1 (LRP1) as crucial cellular receptor. PLoS Pathog 2022; 18:e1010781. [PMID: 36516199 PMCID: PMC9797058 DOI: 10.1371/journal.ppat.1010781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/28/2022] [Accepted: 11/15/2022] [Indexed: 12/15/2022] Open
Abstract
PMT is a protein toxin produced by Pasteurella multocida serotypes A and D. As causative agent of atrophic rhinitis in swine, it leads to rapid degradation of the nasal turbinate bone. The toxin acts as a deamidase to modify a crucial glutamine in heterotrimeric G proteins, which results in constitutive activation of the G proteins and permanent stimulation of numerous downstream signaling pathways. Using a lentiviral based genome wide CRISPR knockout screen in combination with a lethal toxin chimera, consisting of full length inactive PMT and the catalytic domain of diphtheria toxin, we identified the LRP1 gene encoding the Low-Density Lipoprotein Receptor-related protein 1 as a critical host factor for PMT function. Loss of LRP1 reduced PMT binding and abolished the cellular response and deamidation of heterotrimeric G proteins, confirming LRP1 to be crucial for PMT uptake. Expression of LRP1 or cluster 4 of LRP1 restored intoxication of the knockout cells. In summary our data demonstrate LRP1 as crucial host entry factor for PMT intoxication by acting as its primary cell surface receptor.
Collapse
Affiliation(s)
- Julian Schoellkopf
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Thomas Mueller
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Lena Hippchen
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Teresa Mueller
- Bioinformatics—Department of Computer Science, Albert-Ludwigs-University, Freiburg, Germany
| | - Raphael Reuten
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics—Department of Computer Science, Albert-Ludwigs-University, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, Albert-Ludwigs-University, Freiburg, Germany
| | - Joachim Orth
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
| | - Gudula Schmidt
- Institute for Experimental and Clinical Pharmacology and Toxicology, Faculty of Medicine, Albert-Ludwigs-University, Freiburg, Germany
- * E-mail:
| |
Collapse
|
14
|
Zhang Y, Gao X, Bai X, Yao S, Chang YZ, Gao G. The emerging role of furin in neurodegenerative and neuropsychiatric diseases. Transl Neurodegener 2022; 11:39. [PMID: 35996194 PMCID: PMC9395820 DOI: 10.1186/s40035-022-00313-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 08/10/2022] [Indexed: 12/02/2022] Open
Abstract
Furin is an important mammalian proprotein convertase that catalyzes the proteolytic maturation of a variety of prohormones and proproteins in the secretory pathway. In the brain, the substrates of furin include the proproteins of growth factors, receptors and enzymes. Emerging evidence, such as reduced FURIN mRNA expression in the brains of Alzheimer's disease patients or schizophrenia patients, has implicated a crucial role of furin in the pathophysiology of neurodegenerative and neuropsychiatric diseases. Currently, compared to cancer and infectious diseases, the aberrant expression of furin and its pharmaceutical potentials in neurological diseases remain poorly understood. In this article, we provide an overview on the physiological roles of furin and its substrates in the brain, summarize the deregulation of furin expression and its effects in neurodegenerative and neuropsychiatric disorders, and discuss the implications and current approaches that target furin for therapeutic interventions. This review may expedite future studies to clarify the molecular mechanisms of furin deregulation and involvement in the pathogenesis of neurodegenerative and neuropsychiatric diseases, and to develop new diagnosis and treatment strategies for these diseases.
Collapse
Affiliation(s)
- Yi Zhang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Xiaoqin Gao
- Shijiazhuang People's Hospital, Hebei Medical University, Shijiazhuang, 050027, China
| | - Xue Bai
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Shanshan Yao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China
| | - Yan-Zhong Chang
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| | - Guofen Gao
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Laboratory of Molecular Iron Metabolism, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, China.
| |
Collapse
|
15
|
He Y, Zheng Z, Liu C, Li W, Zhao L, Nie G, Li H. Inhibiting DNA methylation alleviates cisplatin-induced hearing loss by decreasing oxidative stress-induced mitochondria-dependent apoptosis via the LRP1-PI3K/AKT pathway. Acta Pharm Sin B 2022; 12:1305-1321. [PMID: 35530135 PMCID: PMC9069410 DOI: 10.1016/j.apsb.2021.11.002] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 12/15/2022] Open
Abstract
Cisplatin-related ototoxicity is a critical side effect of chemotherapy and can lead to irreversible hearing loss. This study aimed to assess the potential effect of the DNA methyltransferase (DNMT) inhibitor RG108 on cisplatin-induced ototoxicity. Immunohistochemistry, apoptosis assay, and auditory brainstem response (ABR) were employed to determine the impacts of RG108 on cisplatin-induced injury in murine hair cells (HCs) and spiral ganglion neurons (SGNs). Rhodamine 123 and TMRM were utilized for mitochondrial membrane potential (MMP) assessment. Reactive oxygen species (ROS) amounts were evaluated by Cellrox green and Mitosox-red probes. Mitochondrial respiratory function evaluation was performed by determining oxygen consumption rates (OCRs). The results showed that RG108 can markedly reduce cisplatin induced damage in HCs and SGNs, and alleviate apoptotic rate by protecting mitochondrial function through preventing ROS accumulation. Furthermore, RG108 upregulated BCL-2 and downregulated APAF1, BAX, and BAD in HEI-OC1 cells, and triggered the PI3K/AKT pathway. Decreased expression of low-density lipoprotein receptor-related protein 1 (LRP1) and high methylation of the LRP1 promoter were observed after cisplatin treatment. RG108 treatment can increase LRP1 expression and decrease LRP1 promoter methylation. In conclusion, RG108 might represent a new potential agent for preventing hearing loss induced by cisplatin via activating the LRP1-PI3K/AKT pathway.
Collapse
Key Words
- 5-mC, 5-methylcytosine
- ABR, auditory brainstem response
- Apoptosis
- Cisplatin
- DNMT
- DNMT, DNA methyltransferase
- EdU, 5-ethynyl-2′-deoxyuridine
- HCs, hair cells
- Hair cell
- IHCs, inner hair cells
- LRP1, low-density lipoprotein receptor-related protein 1
- MMP, mitochondrial membrane potential
- Mitochondrial dysfunction
- OCRs, oxygen consumption rates
- OHCs, outer hair cells
- PI, propidium iodide
- RG108
- ROS
- ROS, reactive oxygen species
- SGNs, spiral ganglion neurons
- Spiral ganglion neurons
- TUNEL, terminal deoxynucleotidyl transferase-mediated dUTP nick-end-labeling
Collapse
|
16
|
Abstract
PURPOSE OF REVIEW LDL receptor-related protein 1 (LRP1) is a multifunctional protein with endocytic and signal transduction properties due to its interaction with numerous extracellular ligands and intracellular proteins. This brief review highlights key developments in identifying novel functions of LRP1 in liver, lung, and the central nervous system in disease pathogenesis. RECENT FINDINGS In hepatocytes, LRP1 complexes with phosphatidylinositol 4-phosphate 5-kinase-1 and its related protein to maintain intracellular levels of phosphatidylinositol (4,5) bisphosphate and preserve lysosome and mitochondria integrity. In contrast, in smooth muscle cells, macrophages, and endothelial cells, LRP1 interacts with various different extracellular ligands and intracellular proteins in a tissue-dependent and microenvironment-dependent manner to either enhance or suppress inflammation, disease progression or resolution. Similarly, LRP1 expression in astrocytes and oligodendrocyte progenitor cells regulates cell differentiation and maturation in a developmental-dependent manner to modulate neurogenesis, gliogenesis, and white matter repair after injury. SUMMARY LRP1 modulates metabolic disease manifestation, inflammation, and differentiation in a cell-dependent, time-dependent, and tissue-dependent manner. Whether LRP1 expression is protective or pathogenic is dependent on its interaction with specific ligands and intracellular proteins, which in turn is dependent on the cell type and the microenvironment where these cells reside.
Collapse
Affiliation(s)
- Anja Jaeschke
- Department of Pathology and Laboratory Medicine, Metabolic Diseases Research Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | | |
Collapse
|
17
|
Mao H, Li L, Fan Q, Angelini A, Saha PK, Coarfa C, Rajapakshe K, Perera D, Cheng J, Wu H, Ballantyne CM, Sun Z, Xie L, Pi X. Endothelium-specific depletion of LRP1 improves glucose homeostasis through inducing osteocalcin. Nat Commun 2021; 12:5296. [PMID: 34489478 PMCID: PMC8421392 DOI: 10.1038/s41467-021-25673-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 08/12/2021] [Indexed: 12/16/2022] Open
Abstract
The vascular endothelium is present within metabolic organs and actively regulates energy metabolism. Here we show osteocalcin, recognized as a bone-secreted metabolic hormone, is expressed in mouse primary endothelial cells isolated from heart, lung and liver. In human osteocalcin promoter-driven green fluorescent protein transgenic mice, green fluorescent protein signals are enriched in endothelial cells lining aorta, small vessels and capillaries and abundant in aorta, skeletal muscle and eye of adult mice. The depletion of lipoprotein receptor-related protein 1 induces osteocalcin through a Forkhead box O -dependent pathway in endothelial cells. Whereas depletion of osteocalcin abolishes the glucose-lowering effect of low-density lipoprotein receptor-related protein 1 depletion, osteocalcin treatment normalizes hyperglycemia in multiple mouse models. Mechanistically, osteocalcin receptor-G protein-coupled receptor family C group 6 member A and insulin-like-growth-factor-1 receptor are in the same complex with osteocalcin and required for osteocalcin-promoted insulin signaling pathway. Therefore, our results reveal an endocrine/paracrine role of endothelial cells in regulating insulin sensitivity, which may have therapeutic implications in treating diabetes and insulin resistance through manipulating vascular endothelium.
Collapse
Affiliation(s)
- Hua Mao
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Luge Li
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Qiying Fan
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Aude Angelini
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Pradip K Saha
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Kimal Rajapakshe
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Dimuthu Perera
- Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.,Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX, USA
| | - Jizhong Cheng
- Department of Medicine, Section of Nephrology, Selzman Institute for Kidney Health, Baylor College of Medicine, Houston, TX, USA
| | - Huaizhu Wu
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Christie M Ballantyne
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Zheng Sun
- Department of Medicine, Division of Diabetes, Endocrinology & Metabolism, Diabetes Research Center, Baylor College of Medicine, Houston, TX, USA.,Departments of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Liang Xie
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA.,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xinchun Pi
- Department of Medicine, Section of Athero & Lipo, Baylor College of Medicine, Houston, TX, USA. .,Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Lee EJ, Zheng M, Craft CM, Jeong S. Matrix metalloproteinase-9 (MMP-9) and tissue inhibitor of metalloproteinases 1 (TIMP-1) are localized in the nucleus of retinal Müller glial cells and modulated by cytokines and oxidative stress. PLoS One 2021; 16:e0253915. [PMID: 34270579 PMCID: PMC8284794 DOI: 10.1371/journal.pone.0253915] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Accepted: 06/15/2021] [Indexed: 11/19/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are involved in the pathology of numerous inflammatory retinal degenerations, including retinitis pigmentosa (RP). Our previous work revealed that intravitreal injections with tissue inhibitor of metalloproteinases 1 (TIMP-1) reduce the progression of rod cell death and inhibit cone cell remodeling that involves reactive gliosis in retinal Müller glial cells (MGCs) in rodent models. The underlying cellular and molecular mechanisms of how TIMP-1 functions in the retina remain to be resolved; however, MGCs are involved in structural homeostasis, neuronal cell survival and death. In the present study, MMP-9 and TIMP-1 expression patterns were investigated in a human MGC line (MIO-M1) under inflammatory cytokine (IL-1β and TNF-α) and oxidative stress (H2O2) conditions. First, both IL-1β and TNF-α, but not H2O2, have a mild in vitro pro-survival effect on MIO-M1 cells. Treatment with either cytokine results in the imbalanced secretion of MMP-9 and TIMP-1. H2O2 treatment has little effect on their secretion. The investigation of their intracellular expression led to interesting observations. MMP-9 and TIMP-1 are both expressed, not only in the cytoplasm, but also inside the nucleus. None of the treatments alters the MMP-9 intracellular distribution pattern. In contrast to MMP-9, TIMP-1 is detected as speckles. Intracellular TIMP-1 aggregation forms in the cytoplasmic area with IL-1β treatment. With H2O2 treatments, the cell morphology changes from cobbles to spindle shapes and the nuclei become larger with increases in TIMP-1 speckles in an H2O2 dose-dependent manner. Two TIMP-1 cell surface receptors, low density lipoprotein receptor-related protein-1 (LRP-1) and cluster of differentiation 82 (CD82), are expressed within the nucleus of MIO-M1 cells. Overall, these observations suggest that intracellular TIMP-1 is a target of proinflammatory and oxidative insults in the MGCs. Given the importance of the roles for MGCs in the retina, the functional implication of nuclear TIMP-1 and MMP-9 in MGCs is discussed.
Collapse
Affiliation(s)
- Eun-Jin Lee
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Ophthalmology, Stanford University, Palo Alto, CA, United States of America
| | - Mengmei Zheng
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Cheryl Mae Craft
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- Department of Integrative Anatomical Sciences, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
| | - Shinwu Jeong
- Mary D. Allen Vision Research Laboratory, USC Roski Eye Institute, Department of Ophthalmology, Keck School of Medicine of the University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
19
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
From the low-density lipoprotein receptor-related protein 1 to neuropathic pain: a potentially novel target. Pain Rep 2021; 6:e898. [PMID: 33981930 PMCID: PMC8108589 DOI: 10.1097/pr9.0000000000000898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/12/2022] Open
Abstract
The low-density lipoprotein receptor–related protein 1 plays a major role in the regulation of neuroinflammation, neurodegeneration, neuroregeneration, neuropathic pain, and deficient cognitive functions. This review describes the roles of the low-density lipoprotein receptor–related protein 1 (LRP-1) in inflammatory pathways, nerve nerve degeneration and -regeneration and in neuropathic pain. Induction of LRP-1 is able to reduce the activation of the proinflammatory NFκB-mediated pathway and the mitogen-activated protein kinase (MAPK) c-Jun N-terminal kinase and p38 signaling pathways, in turn decreasing the production of inflammatory mediators. Low-density lipoprotein receptor-related protein 1 activation also decreases reactive astrogliosis and polarizes microglial cells and macrophages from a proinflammatory phenotype (M1) to an anti-inflammatory phenotype (M2), attenuating the neuroinflammatory environment. Low-density lipoprotein receptor-related protein 1 can also modulate the permeability of the blood–brain barrier and the blood–nerve barrier, thus regulating the infiltration of systemic insults and cells into the central and the peripheral nervous system, respectively. Furthermore, LRP-1 is involved in the maturation of oligodendrocytes and in the activation, migration, and repair phenotype of Schwann cells, therefore suggesting a major role in restoring the myelin sheaths upon injury. Low-density lipoprotein receptor-related protein 1 activation can indirectly decrease neurodegeneration and neuropathic pain by attenuation of the inflammatory environment. Moreover, LRP-1 agonists can directly promote neural cell survival and neurite sprouting, decrease cell death, and attenuate pain and neurological disorders by the inhibition of MAPK c-Jun N-terminal kinase and p38-pathway and activation of MAPK extracellular signal–regulated kinase pathway. In addition, activation of LRP-1 resulted in better outcomes for neuropathies such as Alzheimer disease, nerve injury, or diabetic peripheral neuropathy, attenuating neuropathic pain and improving cognitive functions. To summarize, LRP-1 plays an important role in the development of different experimental diseases of the nervous system, and it is emerging as a very interesting therapeutic target.
Collapse
|
21
|
Mineo C. Lipoprotein receptor signalling in atherosclerosis. Cardiovasc Res 2021; 116:1254-1274. [PMID: 31834409 DOI: 10.1093/cvr/cvz338] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/01/2019] [Accepted: 12/10/2019] [Indexed: 12/11/2022] Open
Abstract
The founding member of the lipoprotein receptor family, low-density lipoprotein receptor (LDLR) plays a major role in the atherogenesis through the receptor-mediated endocytosis of LDL particles and regulation of cholesterol homeostasis. Since the discovery of the LDLR, many other structurally and functionally related receptors have been identified, which include low-density lipoprotein receptor-related protein (LRP)1, LRP5, LRP6, very low-density lipoprotein receptor, and apolipoprotein E receptor 2. The scavenger receptor family members, on the other hand, constitute a family of pattern recognition proteins that are structurally diverse and recognize a wide array of ligands, including oxidized LDL. Among these are cluster of differentiation 36, scavenger receptor class B type I and lectin-like oxidized low-density lipoprotein receptor-1. In addition to the initially assigned role as a mediator of the uptake of macromolecules into the cell, a large number of studies in cultured cells and in in vivo animal models have revealed that these lipoprotein receptors participate in signal transduction to modulate cellular functions. This review highlights the signalling pathways by which these receptors influence the process of atherosclerosis development, focusing on their roles in the vascular cells, such as macrophages, endothelial cells, smooth muscle cells, and platelets. Human genetics of the receptors is also discussed to further provide the relevance to cardiovascular disease risks in humans. Further knowledge of the vascular biology of the lipoprotein receptors and their ligands will potentially enhance our ability to harness the mechanism to develop novel prophylactic and therapeutic strategies against cardiovascular diseases.
Collapse
Affiliation(s)
- Chieko Mineo
- Department of Pediatrics and Cell Biology, Center for Pulmonary and Vascular Biology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9063, USA
| |
Collapse
|
22
|
Heissig B, Salama Y, Takahashi S, Osada T, Hattori K. The multifaceted role of plasminogen in inflammation. Cell Signal 2020; 75:109761. [PMID: 32861744 PMCID: PMC7452830 DOI: 10.1016/j.cellsig.2020.109761] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 01/01/2023]
Abstract
A fine-tuned activation and deactivation of proteases and their inhibitors are involved in the execution of the inflammatory response. The zymogen/proenzyme plasminogen is converted to the serine protease plasmin, a key fibrinolytic factor by plasminogen activators including tissue-type plasminogen activator (tPA). Plasmin is part of an intricate protease network controlling proteins of initial hemostasis/coagulation, fibrinolytic and complement system. Activation of these protease cascades is required to mount a proper inflammatory response. Although best known for its ability to dissolve clots and cleave fibrin, recent studies point to the importance of fibrin-independent functions of plasmin during acute inflammation and inflammation resolution. In this review, we provide an up-to-date overview of the current knowledge of the enzymatic and cytokine-like effects of tPA and describe the role of tPA and plasminogen receptors in the regulation of the inflammatory response with emphasis on the cytokine storm syndrome such as observed during coronavirus disease 2019 or macrophage activation syndrome. We discuss tPA as a modulator of Toll like receptor signaling, plasmin as an activator of NFkB signaling, and summarize recent studies on the role of plasminogen receptors as controllers of the macrophage conversion into the M2 type and as mediators of efferocytosis during inflammation resolution.
Collapse
Affiliation(s)
- Beate Heissig
- Department of Immunological Diagnosis, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan.
| | - Yousef Salama
- An-Najah Center for Cancer and Stem Cell Research, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, Palestine.
| | - Satoshi Takahashi
- Department of Hematology, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108-8639, Japan.
| | - Taro Osada
- Department of Gastroenterology, Juntendo University Urayasu Hospital, 2-1-1 Tomioka, Urayasu-shi, 279-0021 Chiba, Japan.
| | - Koichi Hattori
- Center for Genomic & Regenerative Medicine, Juntendo University, School of Medicine, 2-1-1 Hongo, Bunkyo-Ku, Tokyo 113-8421, Japan.
| |
Collapse
|
23
|
Schöttelndreier D, Langejürgen A, Lindner R, Genth H. Low Density Lipoprotein Receptor-Related Protein-1 (LRP1) Is Involved in the Uptake of Clostridioides difficile Toxin A and Serves as an Internalizing Receptor. Front Cell Infect Microbiol 2020; 10:565465. [PMID: 33194803 PMCID: PMC7604483 DOI: 10.3389/fcimb.2020.565465] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/28/2020] [Indexed: 01/24/2023] Open
Abstract
Toxin producing Clostridioides difficile strains cause gastrointestinal infections with the large glucosylating protein toxins A (TcdA) and B (TcdB) being major virulence factors responsible for the onset of symptoms. TcdA and TcdB enter their target cells via receptor-mediated endocytosis. Inside the cell, the toxins glucosylate and thereby inactivate small GTPases of the Rho-/Ras subfamilies resulting in actin reorganization and cell death. The receptors of TcdA are still elusive, glycoprotein 96 (gp96), the low density lipoprotein receptor family (LDLR) and sulfated glycosaminoglycans (sGAGs) have most recently been suggested as receptors for TcdA. In this study, we provide evidence on rapid endocytosis of Low density lipoprotein Receptor-related Protein-1 (LRP1) into fibroblasts and Caco-2 cells by exploiting biotinylation of cell surface proteins. In contrast, gp96 was not endocytosed either in the presence or absence of TcdA. The kinetics of internalization of TfR and LRP1 were comparable in the presence and the absence of TcdA, excluding that TcdA facilitates its internalization by triggering internalization of its receptors. Exploiting fibroblasts with a genetic deletion of LRP1, TcdA was about one order of magnitude less potent in LRP1-deficient cells as compared to the corresponding control cells. In contrast, TcdB exhibited a comparable potency in LRP1-proficient and -deficient fibroblasts. These findings suggested a role of LRP1 in the cellular uptake of TcdA but not of TcdB. Correspondingly, binding of TcdA to the cell surface of LRP1-deficient fibroblasts was reduced as compared with LRP1-proficient fibroblasts. Finally, TcdA bound to LRP1 ligand binding type repeat cluster II (amino acid 786–1,165) and cluster IV (amino acid 3332-3779). In conclusion, LRP1 appears to serve as an endocytic receptor and gp96 as a non-endocytic receptor for TcdA.
Collapse
Affiliation(s)
| | - Anna Langejürgen
- Institutes for Toxicology, Hannover Medical School, Hannover, Germany
| | - Robert Lindner
- Neuroanatomy and Cell Biology, Hannover Medical School, Hannover, Germany
| | - Harald Genth
- Institutes for Toxicology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
24
|
Rezaei E, Newkirk MM, Li Z, Gordon JR, Oen KG, Benseler SM, Boire G, Cabral DA, Campillo S, Chédeville G, Chetaille AL, Dancey P, Duffy C, Duffy KW, Houghton K, Huber AM, Jurencak R, Lang B, Morishita KA, Petty RE, Ramsey SE, Roth J, Schneider R, Scuccimarri R, Spiegel L, Stringer E, Tse SML, Tucker LB, Turvey SE, Yeung RSM, Rosenberg AM. Soluble Low-density Lipoprotein Receptor-related Protein 1 in Juvenile Idiopathic Arthritis. J Rheumatol 2020; 48:760-766. [PMID: 33060303 DOI: 10.3899/jrheum.200391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/02/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVES This study aimed to expand knowledge about soluble low-density lipoprotein receptor-related protein 1 (sLRP1) in juvenile idiopathic arthritis (JIA) by determining associations of sLRP1 levels in nonsystemic JIA patients with clinical and inflammatory biomarker indicators of disease activity. METHODS Plasma sLRP1 and 44 inflammation-related biomarkers were measured at enrollment and 6 months later in a cohort of 96 newly diagnosed Canadian patients with nonsystemic JIA. Relationships between sLRP1 levels and indicators of disease activity and biomarker levels were analyzed at both visits. RESULTS At enrollment, sLRP1 levels correlated negatively with age and active joint counts. Children showed significantly higher levels of sLRP1 than adolescents (mean ranks: 55.4 and 41.9, respectively; P = 0.02). Participants with 4 or fewer active joints, compared to those with 5 or more active joints, had significantly higher sLRP1 levels (mean ranks: 56.2 and 40.7, respectively; P = 0.006). At enrollment, considering the entire cohort, sLRP1 correlated negatively with the number of active joints (r = -0.235, P = 0.017). In the entire cohort, sLRP1 levels at enrollment and 6 months later correlated with 13 and 6 pro- and antiinflammatory biomarkers, respectively. In JIA categories, sLRP1 correlations with inflammatory markers were significant in rheumatoid factor-negative polyarticular JIA, oligoarticular JIA, enthesitis-related arthritis, and psoriatic arthritis at enrollment. Higher sLRP1 levels at enrollment increased the likelihood of absence of active joints 6 months later. CONCLUSION Plasma sLRP1 levels correlate with clinical and biomarker indicators of short-term improvement in JIA disease activity, supporting sLRP1 as an upstream biomarker of potential utility for assessing JIA disease activity and outcome prediction.
Collapse
Affiliation(s)
- Elham Rezaei
- E. Rezaei, MD, PhD, A.M. Rosenberg, MD, Departments of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan
| | - Marianna M Newkirk
- M.M. Newkirk, PhD, Department of Medicine, McGill University Health Center, Montreal, Quebec
| | - Zhenhong Li
- Z. Li, MSc, RC-CHUM, University of Montreal, Montreal, Quebec
| | - John R Gordon
- J.R. Gordon, PhD, Department of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan
| | - Kiem G Oen
- K.G. Oen, MD, Department of Pediatrics and Child Health, University of Manitoba, Winnipeg, Manitoba
| | - Susanne M Benseler
- S.M. Benseler, MD, PhD, Department of Pediatrics, Alberta Children's Hospital, University of Calgary, Calgary, Alberta
| | - Gilles Boire
- G. Boire, MD, Département de Médecine, Université de Sherbrooke, Sherbrooke, Quebec
| | - David A Cabral
- D.A. Cabral, MD, K. Houghton, MD, K.A. Morishita, MD, R.E. Petty, MD, PhD, L.B. Tucker, MD, S.E. Turvey, MD, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia
| | - Sarah Campillo
- S. Campillo, MD, G. Chédeville, MD, R. Scuccimarri, MD, Department of Pediatrics, McGill University Health Center, Montreal, Quebec
| | - Gaëlle Chédeville
- S. Campillo, MD, G. Chédeville, MD, R. Scuccimarri, MD, Department of Pediatrics, McGill University Health Center, Montreal, Quebec
| | - Anne-Laure Chetaille
- A.L. Chetaille, MD, Département de Médecine le Centre Hospitalier Universitaire de Quebec, Quebec City, Quebec
| | - Paul Dancey
- P. Dancey, MD, Department of Pediatrics, Janeway Children's Health and Rehabilitation Centre, St. John's, Newfoundland
| | - Ciaran Duffy
- C. Duffy, MD, R. Jurencak, MD, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario
| | - Karen Watanabe Duffy
- K. Watanabe Duffy, MD, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario
| | - Kristin Houghton
- D.A. Cabral, MD, K. Houghton, MD, K.A. Morishita, MD, R.E. Petty, MD, PhD, L.B. Tucker, MD, S.E. Turvey, MD, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia
| | - Adam M Huber
- A.M. Huber, MD, B. Lang, MD, S.E. Ramsey, MD, E. Stringer, MD, Department of Pediatrics, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia
| | - Roman Jurencak
- C. Duffy, MD, R. Jurencak, MD, Department of Pediatrics, Children's Hospital of Eastern Ontario, Ottawa, Ontario
| | - Bianca Lang
- A.M. Huber, MD, B. Lang, MD, S.E. Ramsey, MD, E. Stringer, MD, Department of Pediatrics, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia
| | - Kimberly A Morishita
- D.A. Cabral, MD, K. Houghton, MD, K.A. Morishita, MD, R.E. Petty, MD, PhD, L.B. Tucker, MD, S.E. Turvey, MD, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia
| | - Ross E Petty
- D.A. Cabral, MD, K. Houghton, MD, K.A. Morishita, MD, R.E. Petty, MD, PhD, L.B. Tucker, MD, S.E. Turvey, MD, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia
| | - Suzanne E Ramsey
- A.M. Huber, MD, B. Lang, MD, S.E. Ramsey, MD, E. Stringer, MD, Department of Pediatrics, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia
| | - Johannes Roth
- J. Roth, MD, Department of Pediatrics, Children's Hospital of Eastern Ontario Research Institute, University of Ottawa, Ottawa, Ontario
| | - Rayfel Schneider
- R. Schneider, MD, L. Spiegel, MD, S.M. Tse, MD, R.S. Yeung, MD, PhD, Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Rosie Scuccimarri
- S. Campillo, MD, G. Chédeville, MD, R. Scuccimarri, MD, Department of Pediatrics, McGill University Health Center, Montreal, Quebec
| | - Lynn Spiegel
- R. Schneider, MD, L. Spiegel, MD, S.M. Tse, MD, R.S. Yeung, MD, PhD, Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Elizabeth Stringer
- A.M. Huber, MD, B. Lang, MD, S.E. Ramsey, MD, E. Stringer, MD, Department of Pediatrics, IWK Health Centre and Dalhousie University, Halifax, Nova Scotia
| | - Shirley M L Tse
- R. Schneider, MD, L. Spiegel, MD, S.M. Tse, MD, R.S. Yeung, MD, PhD, Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Lori B Tucker
- D.A. Cabral, MD, K. Houghton, MD, K.A. Morishita, MD, R.E. Petty, MD, PhD, L.B. Tucker, MD, S.E. Turvey, MD, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia
| | - Stuart E Turvey
- D.A. Cabral, MD, K. Houghton, MD, K.A. Morishita, MD, R.E. Petty, MD, PhD, L.B. Tucker, MD, S.E. Turvey, MD, Department of Pediatrics, British Columbia Children's Hospital, Vancouver, British Columbia
| | - Rae S M Yeung
- R. Schneider, MD, L. Spiegel, MD, S.M. Tse, MD, R.S. Yeung, MD, PhD, Department of Paediatrics, University of Toronto and the Hospital for Sick Children, Toronto, Ontario, Canada
| | - Alan M Rosenberg
- E. Rezaei, MD, PhD, A.M. Rosenberg, MD, Departments of Pediatrics, University of Saskatchewan, Saskatoon, Saskatchewan;
| | | |
Collapse
|
25
|
Gomes JR, Lobo A, Nogueira R, Terceiro AF, Costelha S, Lopes IM, Magalhães A, Summavielle T, Saraiva MJ. Neuronal megalin mediates synaptic plasticity-a novel mechanism underlying intellectual disabilities in megalin gene pathologies. Brain Commun 2020; 2:fcaa135. [PMID: 33225275 PMCID: PMC7667529 DOI: 10.1093/braincomms/fcaa135] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/15/2022] Open
Abstract
Donnai-Barrow syndrome, a genetic disorder associated to LRP2 (low-density lipoprotein receptor 2/megalin) mutations, is characterized by unexplained neurological symptoms and intellectual deficits. Megalin is a multifunctional endocytic clearance cell-surface receptor, mostly described in epithelial cells. This receptor is also expressed in the CNS, mainly in neurons, being involved in neurite outgrowth and neuroprotective mechanisms. Yet, the mechanisms involved in the regulation of megalin in the CNS are poorly understood. Using transthyretin knockout mice, a megalin ligand, we found that transthyretin positively regulates neuronal megalin levels in different CNS areas, particularly in the hippocampus. Transthyretin is even able to rescue megalin downregulation in transthyretin knockout hippocampal neuronal cultures, in a positive feedback mechanism via megalin. Importantly, transthyretin activates a regulated intracellular proteolysis mechanism of neuronal megalin, producing an intracellular domain, which is translocated to the nucleus, unveiling megalin C-terminal as a potential transcription factor, able to regulate gene expression. We unveil that neuronal megalin reduction affects physiological neuronal activity, leading to decreased neurite number, length and branching, and increasing neuronal susceptibility to a toxic insult. Finally, we unravel a new unexpected role of megalin in synaptic plasticity, by promoting the formation and maturation of dendritic spines, and contributing for the establishment of active synapses, both in in vitro and in vivo hippocampal neurons. Moreover, these structural and synaptic roles of megalin impact on learning and memory mechanisms, since megalin heterozygous mice show hippocampal-related memory and learning deficits in several behaviour tests. Altogether, we unveil a complete novel role of megalin in the physiological neuronal activity, mainly in synaptic plasticity with impact in learning and memory. Importantly, we contribute to disclose the molecular mechanisms underlying the cognitive and intellectual disabilities related to megalin gene pathologies.
Collapse
Affiliation(s)
- João R Gomes
- Molecular Neurobiology Unit, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Andrea Lobo
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Addiction Biology Group, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Renata Nogueira
- Molecular Neurobiology Unit, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana F Terceiro
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Addiction Biology Group, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Susete Costelha
- Molecular Neurobiology Unit, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - Igor M Lopes
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Addiction Biology Group, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Ana Magalhães
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Addiction Biology Group, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Teresa Summavielle
- I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.,Addiction Biology Group, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal
| | - Maria J Saraiva
- Molecular Neurobiology Unit, IBMC- Instituto de Biologia Molecular e Celular, 4200-135 Porto, Portugal.,I3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
26
|
Therapeutic Potential of Direct Clearance of the Amyloid-β in Alzheimer's Disease. Brain Sci 2020; 10:brainsci10020093. [PMID: 32050618 PMCID: PMC7071829 DOI: 10.3390/brainsci10020093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/05/2020] [Accepted: 02/05/2020] [Indexed: 12/19/2022] Open
Abstract
Alzheimer’s disease (AD) is characterized by deposition and accumulation of amyloid-β (Aβ) and its corresponding plaques within the brain. Although much debate exists whether these plaques are the cause or the effect of AD, the accumulation of Aβ is linked with the imbalance between the production and clearance of Aβ. The receptor for advanced glycation endproducts (RAGE) facilitates entry of free Aβ from the peripheral stream. Conversely, lipoprotein receptor-related protein 1 (LRP1), located in the abluminal side at the blood–brain barrier mediates the efflux of Aβ. Research on altering the rates of clearance of Aβ by targeting these two pathways has been extensively study. Additionally, a cerebrospinal fluid (CSF) circulation assistant device has also been evaluated as an approach to increase solute concentration in the CSF via mechanical drainage, to allow for removal of Aβ from the brain. Herein, we provide a brief review of these approaches that are designed to re-establish a homeostatic Aβ balance in the brain.
Collapse
|
27
|
TLR Crosstalk Activates LRP1 to Recruit Rab8a and PI3Kγ for Suppression of Inflammatory Responses. Cell Rep 2019; 24:3033-3044. [PMID: 30208326 DOI: 10.1016/j.celrep.2018.08.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/28/2018] [Accepted: 08/10/2018] [Indexed: 02/06/2023] Open
Abstract
The multi-ligand endocytic receptor, low-density lipoprotein-receptor-related protein 1 (LRP1), has anti-inflammatory roles in disease. Here, we reveal that pathogen-activated Toll-like receptors (TLRs) activate LRP1 in human and mouse primary macrophages, resulting in phosphorylation of LRP1 at Y4507. In turn, this allows LRP1 to activate and recruit the guanosine triphosphatase (GTPase), Rab8a, with p110γ/p101 as its phosphatidylinositol 3-kinase (PI3K) effector complex. PI3Kγ is a known regulator of TLR signaling and macrophage reprogramming. LRP1 coincides with Rab8a at signaling sites on macropinosomal membranes. In LRP1-deficient cells, TLR-induced Rab8 activation is abolished. CRISPR-mediated knockout of LRP1 in macrophages alters Akt/mTOR signaling and produces a pro-inflammatory bias in cytokine outputs, mimicking the Rab8a knockout and PI3Kγ-null phenotype. Thus, TLR-LRP1 crosstalk activates the Rab8a/PI3Kγ complex for reprogramming macrophages, revealing this as a key mechanism through which LRP1 helps to suppress inflammation.
Collapse
|
28
|
A human antithrombin isoform dampens inflammatory responses and protects from organ damage during bacterial infection. Nat Microbiol 2019; 4:2442-2455. [PMID: 31548687 DOI: 10.1038/s41564-019-0559-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/08/2019] [Indexed: 11/09/2022]
Abstract
Severe infectious diseases are often characterized by an overwhelming and unbalanced systemic immune response to microbial infections. Human antithrombin (hAT) is a crucial coagulation inhibitor with anti-inflammatory activities. Here we identify three hAT-binding proteins (CD13, CD300f and LRP-1) on human monocytes that are involved in blocking the activity of nuclear factor-κB. We found that the modulating effect is primarily restricted to the less abundant β-isoform (hβAT) of hAT that lacks N-glycosylation at position 135. Individuals with a mutation at this position have increased production of hβAT and analysis of their blood, which was stimulated ex vivo with lipopolysaccharide, showed a decreased inflammatory response. Similar findings were recorded when heterozygotic mice expressing hAT or hβAT were challenged with lipopolysaccharide or infected with Escherichia coli bacteria. Our results finally demonstrate that in a lethal E. coli infection model, survival rates increased when mice were treated with hβAT one hour and five hours after infection. The treatment also resulted in a reduction of the inflammatory response and less severe organ damage.
Collapse
|
29
|
Büttner C, Heer M, Traichel J, Schwemmle M, Heimrich B. Zika Virus-Mediated Death of Hippocampal Neurons Is Independent From Maturation State. Front Cell Neurosci 2019; 13:389. [PMID: 31551711 PMCID: PMC6736629 DOI: 10.3389/fncel.2019.00389] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/06/2019] [Indexed: 01/09/2023] Open
Abstract
Zika virus (ZIKV) infection of pregnant women and diaplazental transmission to the fetus is linked to the congenital syndrome of microcephaly in newborns. This neuropathology is believed to result from significant death of neuronal progenitor cells (NPC). Here, we examined the fate of neurons in the developing hippocampus, a brain structure which houses neuronal populations of different maturation states. For this purpose, we infected hippocampal slice cultures from immunocompetent newborn mice with ZIKV and monitored changes in hippocampal architecture. In neurons of all hippocampal subfields ZIKV was detected by immunofluorescence labeling and electron microscopy. This includes pyramidal neurons that maturate during the embryonic phase. In the dentate gyrus, ZIKV could be found in the Cajal-Retzius (CR) cells which belong to the earliest born cortical neurons, but also in granule cells that are predominantly generated postnatally. Intriguingly, virus particles were also present in the correctly outgrowing mossy fiber axons of juvenile granule cells, suggesting that viral infection does not impair region- and layer-specific formation of this projection. ZIKV infection of hippocampal tissue was accompanied by both a profound astrocyte reaction indicating tissue injury and a microglia response suggesting phagocytotic activity. Furthermore, depending on the viral load and incubation time, we observed extensive overall neuronal loss in the cultured hippocampal slice cultures. Thus, we conclude ZIKV can replicate in various neuronal populations and trigger neuronal death independent of the maturation state of infected cells.
Collapse
Affiliation(s)
- Caroline Büttner
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maxi Heer
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jasmin Traichel
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Martin Schwemmle
- Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Virology, Medical Center University of Freiburg, Freiburg, Germany
| | - Bernd Heimrich
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Center for Basics in NeuroModulation, University of Freiburg, Freiburg, Germany.,Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
30
|
Yamada M, Hayashi H, Suzuki K, Sato S, Inoue D, Iwatani Y, Ohata M, Yuan B, Takagi N. Furin-mediated cleavage of LRP1 and increase in ICD of LRP1 after cerebral ischemia and after exposure of cultured neurons to NMDA. Sci Rep 2019; 9:11782. [PMID: 31409872 PMCID: PMC6692408 DOI: 10.1038/s41598-019-48279-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 08/01/2019] [Indexed: 12/15/2022] Open
Abstract
The N-methyl-D-aspartate (NMDA) receptor has been implicated in several neurodegenerative diseases, including stroke. Low-density lipoprotein receptor-related protein 1 (LRP1) plays pivotal roles in endocytosis and signaling in the cell. Immature LRP1 is processed by furin in the trans-Golgi network (TGN) and transported to the cell surface as its mature form. Activation of mature LRP1 exerts a protective effect against glutamate-induced degeneration of the rat retinal ganglion cells, as was shown in our previous study. However, the roles of LRP1 in the pathogenesis of excitotoxic neuronal injuries remain to be determined. The aim of this present study was to achieve further insight into the pathophysiologic roles of LRP1 after excitotoxic neuronal injuries. Our findings are the first to demonstrate that LRP1 was significantly cleaved by furin after cerebral ischemia in rats as well as after exposure of cultured cortical neurons to NMDA. It was noteworthy that the intracellular domain (ICD) of LRP1 was co-localized with TGN and furin. Furthermore, a furin inhibitor inhibited the cleavage of LRP1 and co-localization of LRP1-ICD with TGN or furin. Our findings suggest that furin-mediated cleavage of LRP1 and changes in the localization of LRP1-ICD were involved in the excitotoxic neuronal injury.
Collapse
Affiliation(s)
- Mariko Yamada
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Hideki Hayashi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Kaori Suzuki
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Shoko Sato
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Daisuke Inoue
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Yui Iwatani
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Meiko Ohata
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan
| | - Bo Yuan
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.,Laboratory of Pharmacology, School of Pharmacy, Faculty of Pharmacy and Pharmaceutical Sciences, Josai University, 1-1 Keyakidai, Sakado, Saitama, 350-0295, Japan
| | - Norio Takagi
- Department of Applied Biochemistry, Tokyo University of Pharmacy and Life Sciences, 1432-1 Horinouchi, Hachioji, Tokyo, 192-0392, Japan.
| |
Collapse
|
31
|
Potere N, Del Buono MG, Mauro AG, Abbate A, Toldo S. Low Density Lipoprotein Receptor-Related Protein-1 in Cardiac Inflammation and Infarct Healing. Front Cardiovasc Med 2019; 6:51. [PMID: 31080804 PMCID: PMC6497734 DOI: 10.3389/fcvm.2019.00051] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 04/09/2019] [Indexed: 01/07/2023] Open
Abstract
Acute myocardial infarction (AMI) leads to myocardial cell death and ensuing sterile inflammatory response, which represents an attempt to clear cellular debris and promote cardiac repair. However, an overwhelming, unopposed or unresolved inflammatory response following AMI leads to further injury, worse remodeling and heart failure (HF). Additional therapies are therefore warranted to blunt the inflammatory response associated with ischemia and reperfusion and prevent long-term adverse events. Low-density lipoprotein receptor-related protein 1 (LRP1) is a ubiquitous endocytic cell surface receptor with the ability to recognize a wide range of structurally and functionally diverse ligands. LRP1 transduces multiple intracellular signal pathways regulating the inflammatory reaction, tissue remodeling and cell survival after organ injury. In preclinical studies, activation of LRP1-mediated signaling in the heart with non-selective and selective LRP1 agonists is linked with a powerful cardioprotective effect, reducing infarct size and cardiac dysfunction after AMI. The data from early phase clinical studies with plasma-derived α1-antitrypsin (AAT), an endogenous LRP1 agonist, and SP16 peptide, a synthetic LRP1 agonist, support the translational value of LRP1 as a novel therapeutic target in AMI. In this review, we will summarize the cellular and molecular bases of LRP1 functions in modulating the inflammatory reaction and the reparative process after injury in various peripheral tissues, and discuss recent evidences implicating LRP1 in myocardial inflammation and infarct healing.
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
- Department of Cardiovascular and Thoracic Sciences, Catholic University of the Sacred Heart, Rome, Italy
| | - Adolfo Gabriele Mauro
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA, United States
| |
Collapse
|
32
|
Bres EE, Faissner A. Low Density Receptor-Related Protein 1 Interactions With the Extracellular Matrix: More Than Meets the Eye. Front Cell Dev Biol 2019; 7:31. [PMID: 30931303 PMCID: PMC6428713 DOI: 10.3389/fcell.2019.00031] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 02/25/2019] [Indexed: 12/12/2022] Open
Abstract
The extracellular matrix (ECM) is a biological substrate composed of collagens, proteoglycans and glycoproteins that ensures proper cell migration and adhesion and keeps the cell architecture intact. The regulation of the ECM composition is a vital process strictly controlled by, among others, proteases, growth factors and adhesion receptors. As it appears, ECM remodeling is also essential for proper neuronal and glial development and the establishment of adequate synaptic signaling. Hence, disturbances in ECM functioning are often present in neurodegenerative diseases like Alzheimer’s disease. Moreover, mutations in ECM molecules are found in some forms of epilepsy and malfunctioning of ECM-related genes and pathways can be seen in, for example, cancer or ischemic injury. Low density lipoprotein receptor-related protein 1 (Lrp1) is a member of the low density lipoprotein receptor family. Lrp1 is involved not only in ligand uptake, receptor mediated endocytosis and lipoprotein transport—functions shared by low density lipoprotein receptor family members—but also regulates cell surface protease activity, controls cellular entry and binding of toxins and viruses, protects against atherosclerosis and acts on many cell signaling pathways. Given the plethora of functions, it is not surprising that Lrp1 also impacts the ECM and is involved in its remodeling. This review focuses on the role of Lrp1 and some of its major ligands on ECM function. Specifically, interactions with two Lrp1 ligands, integrins and tissue plasminogen activator are described in more detail.
Collapse
Affiliation(s)
- Ewa E Bres
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| | - Andreas Faissner
- Department of Cell Morphology and Molecular Neurobiology, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
33
|
Tsugawa H, Mori H, Matsuzaki J, Sato A, Saito Y, Imoto M, Suematsu M, Suzuki H. CAPZA1 determines the risk of gastric carcinogenesis by inhibiting Helicobacter pylori CagA-degraded autophagy. Autophagy 2019; 15:242-258. [PMID: 30176157 PMCID: PMC6333452 DOI: 10.1080/15548627.2018.1515530] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 06/18/2018] [Accepted: 08/21/2018] [Indexed: 01/04/2023] Open
Abstract
Helicobacter pylori-derived CagA, a type IV secretion system effector, plays a role as an oncogenic driver in gastric epithelial cells. However, upon delivery into gastric epithelial cells, CagA is usually degraded by macroautophagy/autophagy. Hence, the induction of autophagy in H. pylori-infected epithelial cells is an important host-protective ability against gastric carcinogenesis. However, the mechanisms by which autophagosome-lysosome fusion is regulated, are unknown. Here, we report that enhancement of LAMP1 (lysosomal associated membrane protein 1) expression is necessary for autolysosome formation. LAMP1 expression is induced by nuclear translocated LRP1 (LDL receptor related protein 1) intracellular domain (LRP1-ICD) binding to the proximal LAMP1 promoter region. Nuclear translocation of LRP1-ICD is enhanced by H. pylori infection. In contrast, CAPZA1 (capping actin protein of muscle Z-line alpha subunit 1) inhibits LAMP1 expression via binding to LRP1-ICD in the nuclei. The binding of CAPZA1 to LRP1-ICD prevents LRP1-ICD binding to the LAMP1 proximal promoter. Thus, in CAPZA1-overexpressing gastric epithelial cells infected with H. pylori, autolysosome formation is inhibited and CagA escapes autophagic degradation. These findings identify CAPZA1 as a novel negative regulator of autolysosome formation and suggest that deregulation of CAPZA1 expression leads to increased risk of gastric carcinogenesis. Abbreviations: CagA: cytotoxin-associated gene A; CAPZA1: capping actin protein of muscle Z-line alpha subunit 1; ChIP: chromatin immunoprecipitation; GTF2I: general transcription factor IIi; HDAC: histone deacetylase; LAMP1: lysosomal associated membrane protein 1; LRP1: LDL receptor related protein 1; LRP1-ICD: CagA intracellular domain; qPCR: quantitative polymerase chain reaction; VacA: vacuolating cytotoxin.
Collapse
Affiliation(s)
- Hitoshi Tsugawa
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Hideki Mori
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Juntaro Matsuzaki
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Akira Sato
- Department of Biochemistry, Faculty of Pharmaceutical Sciences, Tokyo University of Science, Chiba, Japan
| | - Yoshimasa Saito
- Division of Pharmacotherapeutics, Keio University Faculty of Pharmacy, Tokyo, Japan
| | - Masaya Imoto
- Department of Biosciences and Informatics, Faculty of Science and Technology, Keio University, Kohoku-ku, Yokohama, Japan
| | - Makoto Suematsu
- Department of Biochemistry, Keio University School of Medicine, Tokyo, Japan
| | - Hidekazu Suzuki
- Fellowship Training Center and Medical Education Center, Keio University School of Medicine, Tokyo, Japan
| |
Collapse
|
34
|
Potere N, Del Buono MG, Niccoli G, Crea F, Toldo S, Abbate A. Developing LRP1 Agonists into a Therapeutic Strategy in Acute Myocardial Infarction. Int J Mol Sci 2019; 20:E544. [PMID: 30696029 PMCID: PMC6387161 DOI: 10.3390/ijms20030544] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 01/25/2019] [Indexed: 12/16/2022] Open
Abstract
Cardioprotection refers to a strategy aimed at enhancing survival pathways in the injured yet salvageable myocardium following ischemia-reperfusion. Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional receptor that can be targeted following reperfusion, to induce a cardioprotective signaling through the activation of the reperfusion injury salvage kinase (RISK) pathway. The data from preclinical studies with non-selective and selective LRP1 agonists are promising, showing a large therapeutic window for intervention to reduce infarct size after ischemia-reperfusion. A pilot clinical trial with plasma derived α1-antitrypsin (AAT), a naturally occurring LRP1 agonist, supports the translational value of LRP1 as a novel therapeutic target for cardioprotection. A phase I study with a selective LRP1 agonist has been completed showing no toxicity. These findings may open the way to early phase clinical studies with pharmacologic LRP1 activation in patients with acute myocardial infarction (AMI).
Collapse
Affiliation(s)
- Nicola Potere
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Unit of Cardiovascular Sciences, Department of Medicine, Campus Bio-Medico University of Rome, 00128 Rome, Italy.
| | - Marco Giuseppe Del Buono
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Giampaolo Niccoli
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Filippo Crea
- Department of Cardiovascular and Thoracic Sciences, Fondazione Policlinico Universitario A. Gemelli, IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy.
| | - Stefano Toldo
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| | - Antonio Abbate
- VCU Pauley Heart Center, Virginia Commonwealth University, Richmond, VA 23298, USA.
| |
Collapse
|
35
|
Schubert K, Collins LE, Green P, Nagase H, Troeberg L. LRP1 Controls TNF Release via the TIMP-3/ADAM17 Axis in Endotoxin-Activated Macrophages. THE JOURNAL OF IMMUNOLOGY 2019; 202:1501-1509. [PMID: 30659107 DOI: 10.4049/jimmunol.1800834] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 12/16/2018] [Indexed: 11/19/2022]
Abstract
The metalloproteinase ADAM17 plays a pivotal role in initiating inflammation by releasing TNF from its precursor. Prolonged TNF release causes many chronic inflammatory diseases, indicating that tight regulation of ADAM17 activity is essential for resolution of inflammation. In this study, we report that the endogenous ADAM17 inhibitor TIMP-3 inhibits ADAM17 activity only when it is bound to the cell surface and that cell surface levels of TIMP-3 in endotoxin-activated human macrophages are dynamically controlled by the endocytic receptor LRP1. Pharmacological blockade of LRP1 inhibited endocytic clearance of TIMP-3, leading to an increase in cell surface levels of the inhibitor that blocked TNF release. Following LPS stimulation, TIMP-3 levels on the surface of macrophages increased 4-fold within 4 h and continued to accumulate at 6 h, before a return to baseline levels at 8 h. This dynamic regulation of cell surface TIMP-3 levels was independent of changes in TIMP-3 mRNA levels, but correlated with shedding of LRP1. These results shed light on the basic mechanisms that maintain a regulated inflammatory response and ensure its timely resolution.
Collapse
Affiliation(s)
- Kristin Schubert
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Laura E Collins
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Patricia Green
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Hideaki Nagase
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| | - Linda Troeberg
- Arthritis Research UK Centre for Osteoarthritis Pathogenesis, Kennedy Institute of Rheumatology, University of Oxford, Oxford OX3 7FY, United Kingdom
| |
Collapse
|
36
|
Au DT, Migliorini M, Strickland DK, Muratoglu SC. Macrophage LRP1 Promotes Diet-Induced Hepatic Inflammation and Metabolic Dysfunction by Modulating Wnt Signaling. Mediators Inflamm 2018; 2018:7902841. [PMID: 30524198 PMCID: PMC6247401 DOI: 10.1155/2018/7902841] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 08/22/2018] [Accepted: 09/03/2018] [Indexed: 12/20/2022] Open
Abstract
Hepatic inflammation is associated with the development of insulin resistance, which can perpetuate the disease state and may increase the risk of metabolic syndrome and diabetes. Despite recent advances, mechanisms linking hepatic inflammation and insulin resistance are still unclear. The low-density lipoprotein receptor-related protein 1 (LRP1) is a large endocytic and signaling receptor that is highly expressed in macrophages, adipocytes, hepatocytes, and vascular smooth muscle cells. To investigate the potential role of macrophage LRP1 in hepatic inflammation and insulin resistance, we conducted experiments using macrophage-specific LRP1-deficient mice (macLRP1-/- ) generated on a low-density lipoprotein receptor knockout (LDLR-/- ) background and fed a Western diet. LDLR-/-; macLRP1-/- mice gained less body weight and had improved glucose tolerance compared to LDLR-/- mice. Livers from LDLR-/-; macLRP1-/- mice displayed lower levels of gene expression for several inflammatory cytokines, including Ccl3, Ccl4, Ccl8, Ccr1, Ccr2, Cxcl9, and Tnf, and reduced phosphorylation of GSK3α and p38 MAPK proteins. Furthermore, LRP1-deficient peritoneal macrophages displayed altered cholesterol metabolism. Finally, circulating levels of sFRP-5, a potent anti-inflammatory adipokine that functions as a decoy receptor for Wnt5a, were elevated in LDLR-/-; macLRP1-/- mice. Surface plasmon resonance experiments revealed that sFRP-5 is a novel high affinity ligand for LRP1, revealing that LRP1 regulates levels of this inhibitor of Wnt5a-mediated signaling. Collectively, our results suggest that LRP1 expression in macrophages promotes hepatic inflammation and the development of glucose intolerance and insulin resistance by modulating Wnt signaling.
Collapse
Affiliation(s)
- Dianaly T. Au
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mary Migliorini
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Dudley K. Strickland
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Selen C. Muratoglu
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
37
|
Fischer AW, Albers K, Krott LM, Hoffzimmer B, Heine M, Schmale H, Scheja L, Gordts PLSM, Heeren J. The adaptor protein PID1 regulates receptor-dependent endocytosis of postprandial triglyceride-rich lipoproteins. Mol Metab 2018; 16:88-99. [PMID: 30100244 PMCID: PMC6158030 DOI: 10.1016/j.molmet.2018.07.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/20/2018] [Accepted: 07/25/2018] [Indexed: 01/19/2023] Open
Abstract
Objective Insulin resistance is associated with impaired receptor dependent hepatic uptake of triglyceride-rich lipoproteins (TRL), promoting hypertriglyceridemia and atherosclerosis. Next to low-density lipoprotein (LDL) receptor (LDLR) and syndecan-1, the LDLR-related protein 1 (LRP1) stimulated by insulin action contributes to the rapid clearance of TRL in the postprandial state. Here, we investigated the hypothesis that the adaptor protein phosphotyrosine interacting domain-containing protein 1 (PID1) regulates LRP1 function, thereby controlling hepatic endocytosis of postprandial lipoproteins. Methods Localization and interaction of PID1 and LRP1 in cultured hepatocytes was studied by confocal microscopy of fluorescent tagged proteins, by indirect immunohistochemistry of endogenous proteins, by GST-based pull down and by immunoprecipitation experiments. The in vivo relevance of PID1 was assessed using whole body as well as liver-specific Pid1-deficient mice on a wild type or Ldlr-deficient (Ldlr−/−) background. Intravital microscopy was used to study LRP1 translocation in the liver. Lipoprotein metabolism was investigated by lipoprotein profiling, gene and protein expression as well as organ-specific uptake of radiolabelled TRL. Results PID1 co-localized in perinuclear endosomes and was found associated with LRP1 under fasting conditions. We identified the distal NPxY motif of the intracellular C-terminal domain (ICD) of LRP1 as the site critical for the interaction with PID1. Insulin-mediated NPxY-phosphorylation caused the dissociation of PID1 from the ICD, causing LRP1 translocation to the plasma membrane. PID1 deletion resulted in higher LRP1 abundance at the cell surface, higher LDLR protein levels and, paradoxically, reduced total LRP1. The latter can be explained by higher receptor shedding, which we observed in cultured Pid1-deficient hepatocytes. Consistently, PID1 deficiency alone led to increased LDLR-dependent endocytosis of postprandial lipoproteins and lower plasma triglycerides. In contrast, hepatic PID1 deletion on an Ldlr−/− background reduced lipoprotein uptake into liver and caused plasma TRL accumulation. Conclusions By acting as an insulin-dependent retention adaptor, PID1 serves as a regulator of LRP1 function controlling the disposal of postprandial lipoproteins. PID1 inhibition provides a novel approach to lower plasma levels of pro-atherogenic TRL remnants by stimulating endocytic function of both LRP1 and LDLR in the liver. PID1 is a retention adaptor protein that regulates activity of the endocytic receptor LDL receptor-related protein 1 (LRP1). PID1 regulates the insulin-dependent LRP1-mediated endocytosis of lipoproteins in vivo. PID1 deficiency in liver reduces LRP1 levels via cell surface shedding, and paradoxically increases LDL receptor activity. PID1 antagonism has therapeutic potential to reduce pro-atherogenic lipoproteins in hyperlipidemic and diabetic patients.
Collapse
Affiliation(s)
- Alexander W Fischer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Kirstin Albers
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Lucia M Krott
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Britta Hoffzimmer
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Markus Heine
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Hartwig Schmale
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Ludger Scheja
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany
| | - Philip L S M Gordts
- Department of Medicine, University of California, La Jolla, San Diego, CA, 92093, USA
| | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246, Hamburg, Germany.
| |
Collapse
|
38
|
Fava M, Barallobre-Barreiro J, Mayr U, Lu R, Didangelos A, Baig F, Lynch M, Catibog N, Joshi A, Barwari T, Yin X, Jahangiri M, Mayr M. Role of ADAMTS-5 in Aortic Dilatation and Extracellular Matrix Remodeling. Arterioscler Thromb Vasc Biol 2018; 38:1537-1548. [PMID: 29622560 PMCID: PMC6026471 DOI: 10.1161/atvbaha.117.310562] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2017] [Accepted: 03/19/2018] [Indexed: 11/16/2022]
Abstract
Supplemental Digital Content is available in the text. Objective— Thoracic aortic aneurysm (TAA), a degenerative disease of the aortic wall, is accompanied by changes in the structure and composition of the aortic ECM (extracellular matrix). The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family of proteases has recently been implicated in TAA formation. This study aimed to investigate the contribution of ADAMTS-5 to TAA development. Approach and Results— A model of aortic dilatation by AngII (angiotensin II) infusion was adopted in mice lacking the catalytic domain of ADAMTS-5 (Adamts5Δcat). Adamts5Δcat mice showed an attenuated rise in blood pressure while displaying increased dilatation of the ascending aorta (AsAo). Interestingly, a proteomic comparison of the aortic ECM from AngII-treated wild-type and Adamts5Δcat mice revealed versican as the most upregulated ECM protein in Adamts5Δcat mice. This was accompanied by a marked reduction of ADAMTS-specific versican cleavage products (versikine) and a decrease of LRP1 (low-density lipoprotein-related protein 1). Silencing LRP1 expression in human aortic smooth muscle cells reduced the expression of ADAMTS5, attenuated the generation of versikine, but increased soluble ADAMTS-1. A similar increase in ADAMTS-1 was observed in aortas of AngII-treated Adamts5Δcat mice but was not sufficient to maintain versican processing and prevent aortic dilatation. Conclusions— Our results support the emerging role of ADAMTS proteases in TAA. ADAMTS-5 rather than ADAMTS-1 is the key protease for versican regulation in murine aortas. Further studies are needed to define the ECM substrates of the different ADAMTS proteases and their contribution to TAA formation.
Collapse
MESH Headings
- ADAMTS1 Protein/metabolism
- ADAMTS5 Protein/deficiency
- ADAMTS5 Protein/genetics
- ADAMTS5 Protein/metabolism
- Angiotensin II
- Animals
- Aorta, Thoracic/enzymology
- Aorta, Thoracic/pathology
- Aortic Aneurysm, Thoracic/chemically induced
- Aortic Aneurysm, Thoracic/enzymology
- Aortic Aneurysm, Thoracic/genetics
- Aortic Aneurysm, Thoracic/pathology
- Cells, Cultured
- Dilatation, Pathologic
- Disease Models, Animal
- Extracellular Matrix/enzymology
- Extracellular Matrix/pathology
- Humans
- Low Density Lipoprotein Receptor-Related Protein-1/genetics
- Low Density Lipoprotein Receptor-Related Protein-1/metabolism
- Male
- Mice, Knockout
- Muscle, Smooth, Vascular/enzymology
- Myocytes, Smooth Muscle
- Receptors, LDL/metabolism
- Tumor Suppressor Proteins/metabolism
- Vascular Remodeling
- Versicans/metabolism
Collapse
Affiliation(s)
- Marika Fava
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
- St George's University of London, NHS Trust, United Kingdom (M.F., M.J.)
- Cardiovascular Institute, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (M.F., M.M.)
| | - Javier Barallobre-Barreiro
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Ursula Mayr
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Ruifang Lu
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Athanasios Didangelos
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Ferheen Baig
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Marc Lynch
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Norman Catibog
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Abhishek Joshi
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Temo Barwari
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Xiaoke Yin
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
| | - Marjan Jahangiri
- St George's University of London, NHS Trust, United Kingdom (M.F., M.J.)
| | - Manuel Mayr
- From the King's British Heart Foundation Centre, King's College London, United Kingdom (M.F., J.B.-B., U.M., R.L., A.D., F.B., M.L., N.C., A.J., T.B., X.Y., M.M.)
- Cardiovascular Institute, Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York (M.F., M.M.)
| |
Collapse
|
39
|
Wujak L, Schnieder J, Schaefer L, Wygrecka M. LRP1: A chameleon receptor of lung inflammation and repair. Matrix Biol 2017; 68-69:366-381. [PMID: 29262309 DOI: 10.1016/j.matbio.2017.12.007] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 12/17/2022]
Abstract
The lung displays a remarkable capability to regenerate following injury. Considerable effort has been made thus far to understand the cardinal processes underpinning inflammation and reconstruction of lung tissue. However, the factors determining the resolution or persistence of inflammation and efficient wound healing or aberrant remodeling remain largely unknown. Low density lipoprotein receptor-related protein 1 (LRP1) is an endocytic/signaling cell surface receptor which controls cellular and molecular mechanisms driving the physiological and pathological inflammatory reactions and tissue remodeling in several organs. In this review, we will discuss the impact of LRP1 on the consecutive steps of the inflammatory response and its role in the balanced tissue repair and aberrant remodeling in the lung.
Collapse
Affiliation(s)
- Lukasz Wujak
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Jennifer Schnieder
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany
| | - Liliana Schaefer
- Goethe University School of Medicine, University Hospital, Theodor-Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Malgorzata Wygrecka
- Department of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392 Giessen, Germany; Member of the German Center for Lung Research (DZL), Germany.
| |
Collapse
|
40
|
Xian X, Ding Y, Dieckmann M, Zhou L, Plattner F, Liu M, Parks JS, Hammer RE, Boucher P, Tsai S, Herz J. LRP1 integrates murine macrophage cholesterol homeostasis and inflammatory responses in atherosclerosis. eLife 2017; 6:e29292. [PMID: 29144234 PMCID: PMC5690284 DOI: 10.7554/elife.29292] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Accepted: 10/22/2017] [Indexed: 12/11/2022] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) is a multifunctional cell surface receptor with diverse physiological roles, ranging from cellular uptake of lipoproteins and other cargo by endocytosis to sensor of the extracellular environment and integrator of a wide range of signaling mechanisms. As a chylomicron remnant receptor, LRP1 controls systemic lipid metabolism in concert with the LDL receptor in the liver, whereas in smooth muscle cells (SMC) LRP1 functions as a co-receptor for TGFβ and PDGFRβ in reverse cholesterol transport and the maintenance of vascular wall integrity. Here we used a knockin mouse model to uncover a novel atheroprotective role for LRP1 in macrophages where tyrosine phosphorylation of an NPxY motif in its intracellular domain initiates a signaling cascade along an LRP1/SHC1/PI3K/AKT/PPARγ/LXR axis to regulate and integrate cellular cholesterol homeostasis through the expression of the major cholesterol exporter ABCA1 with apoptotic cell removal and inflammatory responses.
Collapse
Affiliation(s)
- Xunde Xian
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
| | - Yinyuan Ding
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
- Key Laboratory of Medical Electrophysiology, Ministry of Education of ChinaInstitute of Cardiovascular Research, Southwest Medical UniversityLuzhouChina
| | - Marco Dieckmann
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
| | - Li Zhou
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
| | - Florian Plattner
- Department of PsychiatryUniversity of Texas Southwestern Medical CenterDallasUnited States
- Center for Translational Neurodegeneration ResearchUniversity of Texas Southwestern Medical CenterDallasUnited States
| | - Mingxia Liu
- Section on Molecular Medicine, Department of Internal MedicineWake Forest School of MedicineWinston-SalemNorth Carolina
| | - John S Parks
- Section on Molecular Medicine, Department of Internal MedicineWake Forest School of MedicineWinston-SalemNorth Carolina
| | - Robert E Hammer
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasUnited States
| | | | - Shirling Tsai
- Department of SurgeryUT Southwestern Medical CenterDallasUnited States
- Dallas VA Medical CenterDallasUnited States
| | - Joachim Herz
- Departments of Molecular GeneticsUT Southwestern Medical CenterDallasUnited States
- Center for Translational Neurodegeneration ResearchUniversity of Texas Southwestern Medical CenterDallasUnited States
- Department of NeuroscienceUT SouthwesternDallasUnited States
- Department of Neurology and NeurotherapeuticsUT SouthwesternDallasUnited States
| |
Collapse
|
41
|
Brifault C, Gilder AS, Laudati E, Banki M, Gonias SL. Shedding of membrane-associated LDL receptor-related protein-1 from microglia amplifies and sustains neuroinflammation. J Biol Chem 2017; 292:18699-18712. [PMID: 28972143 DOI: 10.1074/jbc.m117.798413] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/22/2017] [Indexed: 12/25/2022] Open
Abstract
In the CNS, microglia are activated in response to injury or infection and in neurodegenerative diseases. The endocytic and cell signaling receptor, LDL receptor-related protein-1 (LRP1), is reported to suppress innate immunity in macrophages and oppose microglial activation. The goal of this study was to identify novel mechanisms by which LRP1 may regulate microglial activation. Using primary cultures of microglia isolated from mouse brains, we demonstrated that LRP1 gene silencing increases expression of proinflammatory mediators; however, the observed response was modest. By contrast, the LRP1 ligand, receptor-associated protein (RAP), robustly activated microglia, and its activity was attenuated in LRP1-deficient cells. An important element of the mechanism by which RAP activated microglia was its ability to cause LRP1 shedding from the plasma membrane. This process eliminated cellular LRP1, which is anti-inflammatory, and generated a soluble product, shed LRP1 (sLRP1), which is potently proinflammatory. Purified sLRP1 induced expression of multiple proinflammatory cytokines and the mRNA encoding inducible nitric-oxide synthase in both LRP1-expressing and -deficient microglia. LPS also stimulated LRP1 shedding, as did the heat-shock protein and LRP1 ligand, calreticulin. Other LRP1 ligands, including α2-macroglobulin and tissue-type plasminogen activator, failed to cause LRP1 shedding. Treatment of microglia with a metalloproteinase inhibitor inhibited LRP1 shedding and significantly attenuated RAP-induced cytokine expression. RAP and sLRP1 both caused neuroinflammation in vivo when administered by stereotaxic injection into mouse spinal cords. Collectively, these results suggest that LRP1 shedding from microglia may amplify and sustain neuroinflammation in response to proinflammatory stimuli.
Collapse
Affiliation(s)
- Coralie Brifault
- From the Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Andrew S Gilder
- From the Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Emilia Laudati
- From the Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Michael Banki
- From the Department of Pathology, University of California San Diego, La Jolla, California 92093
| | - Steven L Gonias
- From the Department of Pathology, University of California San Diego, La Jolla, California 92093
| |
Collapse
|
42
|
Storck SE, Pietrzik CU. Endothelial LRP1 - A Potential Target for the Treatment of Alzheimer's Disease : Theme: Drug Discovery, Development and Delivery in Alzheimer's Disease Guest Editor: Davide Brambilla. Pharm Res 2017; 34:2637-2651. [PMID: 28948494 DOI: 10.1007/s11095-017-2267-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/15/2017] [Indexed: 12/19/2022]
Abstract
The accumulation of the neurotoxin beta-amyloid (Aβ) is a major hallmark in Alzheimer's disease (AD). Aβ homeostasis in the brain is governed by its production and various clearance mechanisms. Both pathways are influenced by the ubiquitously expressed low-density lipoprotein receptor-related protein 1 (LRP1). In cerebral blood vessels, LRP1 is an important mediator for the rapid removal of Aβ from brain via transport across the blood-brain barrier (BBB). Here, we summarize recent findings on LRP1 function and discuss the targeting of LRP1 as a modulator for AD pathology and drug delivery into the brain.
Collapse
Affiliation(s)
- Steffen E Storck
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany
| | - Claus U Pietrzik
- Molecular Neurodegeneration, Institute for Pathobiochemistry, University Medical Center of the Johannes Gutenberg-University, Duesbergweg 6, 55099, Mainz, Germany.
| |
Collapse
|
43
|
Frew J, Vekic D, Woods J, Cains G. A systematic review and critical evaluation of reported pathogenic sequence variants in hidradenitis suppurativa. Br J Dermatol 2017; 177:987-998. [DOI: 10.1111/bjd.15441] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2017] [Indexed: 12/13/2022]
Affiliation(s)
- J.W. Frew
- Department of Dermatology; Liverpool Hospital; Sydney New South Wales Australia
- University of New South Wales; Sydney New South Wales Australia
- Ingham Institute of Applied Medical Research; Liverpool New South Wales Australia
| | - D.A. Vekic
- Department of Dermatology; Liverpool Hospital; Sydney New South Wales Australia
- University of New South Wales; Sydney New South Wales Australia
- Ingham Institute of Applied Medical Research; Liverpool New South Wales Australia
| | - J. Woods
- Department of Dermatology; Liverpool Hospital; Sydney New South Wales Australia
- University of New South Wales; Sydney New South Wales Australia
- Ingham Institute of Applied Medical Research; Liverpool New South Wales Australia
| | - G.D. Cains
- Department of Dermatology; Liverpool Hospital; Sydney New South Wales Australia
- University of New South Wales; Sydney New South Wales Australia
- Ingham Institute of Applied Medical Research; Liverpool New South Wales Australia
| |
Collapse
|
44
|
Astaxanthin acts via LRP-1 to inhibit inflammation and reverse lipopolysaccharide-induced M1/M2 polarization of microglial cells. Oncotarget 2017; 8:69370-69385. [PMID: 29050210 PMCID: PMC5642485 DOI: 10.18632/oncotarget.20628] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 08/17/2017] [Indexed: 12/17/2022] Open
Abstract
Microglia become activated during neuroinflammation and produce neurotoxic and neurotrophic factors, depending on whether they acquire M1 proinflammatory or M2 anti-inflammatory phenotypes. Astaxanthin (ATX), a natural carotenoid, has anti-inflammatory and neuroprotective effects. We investigated whether ATX could reverse M1/M2 polarization and suppress neuroinflammation via low-density lipoprotein receptor-related protein-1 (LRP-1). We observed increased expression of M1 (TNF-α, IL-1β, and CD86) and decreased expression of M2 (Arg-1, IL-10, and CD206) markers in BV2 microglial cells stimulated with lipopolysaccharide (LPS). These alterations were reversed by pretreating the cells with ATX. Activation of the NF-κB and JNK pathways was observed upon LPS stimulation, which was reversed by ATX. ATX-induced M2 polarization was attenuated by inhibition of NF-κB and JNK. Pretreatment of LPS-stimulated BV2 cells with ATX resulted in increased LRP-1 expression. The addition of receptor-associated protein, an LRP-1 antagonist, ameliorated ATX-induced inactivation of NF-κB and JNK signaling, and M2 polarization. ATX promotes M2 polarization to suppress neuroinflammation via LRP-1 by inhibiting NF-κB and JNK signaling. This novel mechanism may suppress neuroinflammation in diseases such as Alzheimer’s disease.
Collapse
|
45
|
Yu Q, Wang B, Chen Z, Urabe G, Glover MS, Shi X, Guo LW, Kent KC, Li L. Electron-Transfer/Higher-Energy Collision Dissociation (EThcD)-Enabled Intact Glycopeptide/Glycoproteome Characterization. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2017; 28:1751-1764. [PMID: 28695533 PMCID: PMC5711575 DOI: 10.1007/s13361-017-1701-4] [Citation(s) in RCA: 160] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2016] [Revised: 03/28/2017] [Accepted: 04/29/2017] [Indexed: 05/04/2023]
Abstract
Protein glycosylation, one of the most heterogeneous post-translational modifications, can play a major role in cellular signal transduction and disease progression. Traditional mass spectrometry (MS)-based large-scale glycoprotein sequencing studies heavily rely on identifying enzymatically released glycans and their original peptide backbone separately, as there is no efficient fragmentation method to produce unbiased glycan and peptide product ions simultaneously in a single spectrum, and that can be conveniently applied to high throughput glycoproteome characterization, especially for N-glycopeptides, which can have much more branched glycan side chains than relatively less complex O-linked glycans. In this study, a redefined electron-transfer/higher-energy collision dissociation (EThcD) fragmentation scheme is applied to incorporate both glycan and peptide fragments in one single spectrum, enabling complete information to be gathered and great microheterogeneity details to be revealed. Fetuin was first utilized to prove the applicability with 19 glycopeptides and corresponding five glycosylation sites identified. Subsequent experiments tested its utility for human plasma N-glycoproteins. Large-scale studies explored N-glycoproteomics in rat carotid arteries over the course of restenosis progression to investigate the potential role of glycosylation. The integrated fragmentation scheme provides a powerful tool for the analysis of intact N-glycopeptides and N-glycoproteomics. We also anticipate this approach can be readily applied to large-scale O-glycoproteome characterization. Graphical Abstract ᅟ.
Collapse
Affiliation(s)
- Qing Yu
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705, USA
| | - Bowen Wang
- Department of Surgery, Wisconsin Institutes for Medical Research, Madison, WI, 53705, USA
| | - Zhengwei Chen
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA
| | - Go Urabe
- Department of Surgery, Wisconsin Institutes for Medical Research, Madison, WI, 53705, USA
| | - Matthew S Glover
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705, USA
- Cardiovascular Research Center Training Program in Translational Cardiovascular Science, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Xudong Shi
- Department of Surgery, Wisconsin Institutes for Medical Research, Madison, WI, 53705, USA
| | - Lian-Wang Guo
- Department of Surgery, Wisconsin Institutes for Medical Research, Madison, WI, 53705, USA
| | - K Craig Kent
- The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA
| | - Lingjun Li
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705, USA.
- Department of Chemistry, University of Wisconsin, Madison, WI, 53706, USA.
- Cardiovascular Research Center Training Program in Translational Cardiovascular Science, University of Wisconsin-Madison, Madison, WI, 53705, USA.
| |
Collapse
|
46
|
Yang T, Williams BO. Low-Density Lipoprotein Receptor-Related Proteins in Skeletal Development and Disease. Physiol Rev 2017; 97:1211-1228. [PMID: 28615463 DOI: 10.1152/physrev.00013.2016] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 03/07/2017] [Accepted: 03/15/2017] [Indexed: 02/06/2023] Open
Abstract
The identification of the low-density lipoprotein receptor (LDLR) provided a foundation for subsequent studies in lipoprotein metabolism, receptor-mediated endocytosis, and many other fundamental biological functions. The importance of the LDLR led to numerous studies that identified homologous molecules and ultimately resulted in the description of the LDL-receptor superfamily, a group of proteins that contain domains also found in the LDLR. Subsequent studies have revealed that members of the LDLR-related protein family play roles in regulating many aspects of signal transduction. This review is focused on the roles of selected members of this protein family in skeletal development and disease. We present background on the identification of this subgroup of receptors, discuss the phenotypes associated with alterations in their function in human patients and mouse models, and describe the current efforts to therapeutically target these proteins to treat human skeletal disease.
Collapse
Affiliation(s)
- Tao Yang
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| | - Bart O Williams
- Program in Skeletal Disease and Tumor Microenvironment, Center for Cancer and Cell Biology, Van Andel Research Institute, Grand Rapids, Michigan
| |
Collapse
|
47
|
Mao H, Xie L, Pi X. Low-Density Lipoprotein Receptor-Related Protein-1 Signaling in Angiogenesis. Front Cardiovasc Med 2017; 4:34. [PMID: 28589128 PMCID: PMC5438976 DOI: 10.3389/fcvm.2017.00034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 05/01/2017] [Indexed: 11/13/2022] Open
Abstract
Low-density lipoprotein receptor-related protein-1 (LRP1) plays multifunctional roles in lipid homeostasis, signaling transduction, and endocytosis. It has been recognized as an endocytic receptor for many ligands and is involved in the signaling pathways of many growth factors or cytokines. Dysregulation of LRP1-dependent signaling events contributes to the development of pathophysiologic processes such as Alzheimer’s disease, atherosclerosis, inflammation, and coagulation. Interestingly, recent studies have linked LRP1 with endothelial function and angiogenesis, which has been underappreciated for a long time. During zebrafish embryonic development, LRP1 is required for the formation of vascular network, especially for the venous development. LRP1 depletion in the mouse embryo proper leads to angiogenic defects and disruption of endothelial integrity. Moreover, in a mouse oxygen-induced retinopathy model, specific depletion of LRP1 in endothelial cells results in abnormal development of neovessels. These loss-of-function studies suggest that LRP1 plays a pivotal role in angiogenesis. The review addresses the recent advances in the roles of LRP1-dependent signaling during angiogenesis.
Collapse
Affiliation(s)
- Hua Mao
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Liang Xie
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| | - Xinchun Pi
- Department of Medicine, Cardiovascular Research Institute, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
48
|
Endothelial LRP1 regulates metabolic responses by acting as a co-activator of PPARγ. Nat Commun 2017; 8:14960. [PMID: 28393867 PMCID: PMC5394236 DOI: 10.1038/ncomms14960] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Accepted: 02/16/2017] [Indexed: 01/04/2023] Open
Abstract
Low-density lipoprotein receptor-related protein 1 (LRP1) regulates lipid and glucose metabolism in liver and adipose tissue. It is also involved in central nervous system regulation of food intake and leptin signalling. Here we demonstrate that endothelial Lrp1 regulates systemic energy homeostasis. Mice with endothelial-specific Lrp1 deletion display improved glucose sensitivity and lipid profiles combined with increased oxygen consumption during high-fat-diet-induced obesity. We show that the intracellular domain of Lrp1 interacts with the nuclear receptor Pparγ, a central regulator of lipid and glucose metabolism, acting as its transcriptional co-activator in endothelial cells. Therefore, Lrp1 not only acts as an endocytic receptor but also directly participates in gene transcription. Our findings indicate an underappreciated functional role of endothelium in maintaining systemic energy homeostasis.
Collapse
|
49
|
Shinohara M, Tachibana M, Kanekiyo T, Bu G. Role of LRP1 in the pathogenesis of Alzheimer's disease: evidence from clinical and preclinical studies. J Lipid Res 2017; 58:1267-1281. [PMID: 28381441 DOI: 10.1194/jlr.r075796] [Citation(s) in RCA: 197] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/02/2017] [Indexed: 12/16/2022] Open
Abstract
Among the LDL receptor (LDLR) family members, the roles of LDLR-related protein (LRP)1 in the pathogenesis of Alzheimer's disease (AD), especially late-onset AD, have been the most studied by genetic, neuropathological, and biomarker analyses (clinical studies) or cellular and animal model systems (preclinical studies) over the last 25 years. Although there are some conflicting reports, accumulating evidence from preclinical studies indicates that LRP1 not only regulates the metabolism of amyloid-β peptides (Aβs) in the brain and periphery, but also maintains brain homeostasis, impairment of which likely contributes to AD development in Aβ-independent manners. Several preclinical studies have also demonstrated an involvement of LRP1 in regulating the pathogenic role of apoE, whose gene is the strongest genetic risk factor for AD. Nonetheless, evidence from clinical studies is not sufficient to conclude how LRP1 contributes to AD development. Thus, despite very promising results from preclinical studies, the role of LRP1 in AD pathogenesis remains to be further clarified. In this review, we discuss the potential mechanisms underlying how LRP1 affects AD pathogenesis through Aβ-dependent and -independent pathways by reviewing both clinical and preclinical studies. We also discuss potential therapeutic strategies for AD by targeting LRP1.
Collapse
Affiliation(s)
| | | | | | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL
| |
Collapse
|
50
|
Pohlkamp T, Wasser CR, Herz J. Functional Roles of the Interaction of APP and Lipoprotein Receptors. Front Mol Neurosci 2017; 10:54. [PMID: 28298885 PMCID: PMC5331069 DOI: 10.3389/fnmol.2017.00054] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 02/16/2017] [Indexed: 11/24/2022] Open
Abstract
The biological fates of the key initiator of Alzheimer’s disease (AD), the amyloid precursor protein (APP), and a family of lipoprotein receptors, the low-density lipoprotein (LDL) receptor-related proteins (LRPs) and their molecular roles in the neurodegenerative disease process are inseparably interwoven. Not only does APP bind tightly to the extracellular domains (ECDs) of several members of the LRP group, their intracellular portions are also connected through scaffolds like the one established by FE65 proteins and through interactions with adaptor proteins such as X11/Mint and Dab1. Moreover, the ECDs of APP and LRPs share common ligands, most notably Reelin, a regulator of neuronal migration during embryonic development and modulator of synaptic transmission in the adult brain, and Agrin, another signaling protein which is essential for the formation and maintenance of the neuromuscular junction (NMJ) and which likely also has critical, though at this time less well defined, roles for the regulation of central synapses. Furthermore, the major independent risk factors for AD, Apolipoprotein (Apo) E and ApoJ/Clusterin, are lipoprotein ligands for LRPs. Receptors and ligands mutually influence their intracellular trafficking and thereby the functions and abilities of neurons and the blood-brain-barrier to turn over and remove the pathological product of APP, the amyloid-β peptide. This article will review and summarize the molecular mechanisms that are shared by APP and LRPs and discuss their relative contributions to AD.
Collapse
Affiliation(s)
- Theresa Pohlkamp
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Catherine R Wasser
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA
| | - Joachim Herz
- Department of Molecular Genetics, UT Southwestern Medical CenterDallas, TX, USA; Center for Translational Neurodegeneration Research, UT Southwestern Medical CenterDallas, TX, USA; Department of Neuroscience, UT Southwestern Medical CenterDallas, TX, USA; Department of Neurology and Neurotherapeutics, UT Southwestern Medical CenterDallas, TX, USA
| |
Collapse
|