1
|
Pathak T, Benson JC, Tang PW, Trebak M, Hempel N. Crosstalk between calcium and reactive oxygen species signaling in cancer revisited. Cell Calcium 2025; 127:103014. [PMID: 40139005 DOI: 10.1016/j.ceca.2025.103014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/10/2025] [Accepted: 03/17/2025] [Indexed: 03/29/2025]
Abstract
The homeostasis of cellular reactive oxygen species (ROS) and calcium (Ca2+) are intricately linked. ROS signaling and Ca2+ signaling are reciprocally regulated within cellular microdomains and are crucial for transcription, metabolism and cell function. Tumor cells often highjack ROS and Ca2+ signaling mechanisms to ensure optimal cell survival and tumor progression. Expression and regulation of Ca2+ channels and transporters at the plasma membrane, endoplasmic reticulum, mitochondria and other endomembranes are often altered in tumor cells, and this includes their regulation by ROS and reactive nitrogen species (RNS). Likewise, alterations in cellular Ca2+ levels influence the generation and scavenging of oxidants and thus can alter the redox homeostasis of the cell. This interplay can be either beneficial or detrimental to the cell depending on the localization, duration and levels of ROS and Ca2+ signals. At one end of the spectrum, Ca2+ and ROS/RNS can function as signaling modules while at the other end, lethal surges in these species are associated with cell death. Here, we highlight the interplay between Ca2+ and ROS in cancer progression, emphasize the impact of redox regulation on Ca2+ transport mechanisms, and describe how Ca2+ signaling pathways, in turn, can regulate the cellular redox environment.
Collapse
Affiliation(s)
- Trayambak Pathak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Priscilla W Tang
- UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, Division of Malignant Hematology & Medical Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| | - Nadine Hempel
- Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA; Department of Medicine, Division of Malignant Hematology & Medical Oncology, UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
2
|
Hamashima K, Fan L, Miyagawa R, Hara N, Nishida K, Saitoh H. Examining interactions of animal cells with chloroplasts and their light-induced responses in in vitro cell culture systems. Biochem Biophys Res Commun 2025; 758:151622. [PMID: 40117974 DOI: 10.1016/j.bbrc.2025.151622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2025] [Accepted: 03/10/2025] [Indexed: 03/23/2025]
Abstract
Chloroplasts are organelles that convert light energy into chemical energy in plants. The potential to integrate chloroplasts into animal cells presents an exciting frontier in synthetic biology, allowing for photo-controllable biochemical processes within these cells. However, the lack of well-established in vitro experimental systems to study chloroplast-animal cell interactions remains a significant challenge. This study investigates the behavior of human cervical cancer HeLa cells and mouse macrophage-like J774.1 cells, along with the light-induced responses of these cells, when introduced into culture media containing spinach-derived chloroplasts. Additionally, we examine isolated cells from Elysia marginata, a sacoglossan sea slug known for its unique ability to acquire and retain functional chloroplasts through a process known as kleptoplasty. Our results show that HeLa cells primarily adhere to chloroplasts with minimal intracellular uptake, while J774.1 cells actively engulf them. Co-incubation with chloroplasts increases the rate of cell death upon light irradiation. In contrast, naturally chloroplast-containing cells from E. marginata exhibit minimal light-induced damage. Excessive reactive oxygen species (ROS) production is observed in HeLa and J774.1 cells co-incubated with chloroplasts under light exposure, suggesting that photoinduced ROS generation contributes to cytotoxicity. These findings highlight three different patterns of interactions between animal cells and chloroplasts and underscore the importance of considering ROS generation induced by light exposure when analyzing chloroplast-animal cell interactions in vitro experimental systems.
Collapse
Affiliation(s)
- Kyota Hamashima
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Lilingman Fan
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Reika Miyagawa
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | - Natsuki Hara
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | | | - Hisato Saitoh
- Department of Biological Science, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan; Faculty of Advanced Science and Technology (FAST), Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
3
|
Loureiro FJA, Balbinot KM, da Silva Kataoka MS, Fuzii HT, de Melo Alves Júnior S, Júnior JAPD, de Castro Franco FT, de Jesus Viana Pinheiro J. Invadopodia Related-Proteins Expression in Mucoepidermoid Carcinoma. Oral Dis 2025. [PMID: 40087818 DOI: 10.1111/odi.15312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 01/20/2025] [Accepted: 03/06/2025] [Indexed: 03/17/2025]
Abstract
OBJECTIVE This study aimed to assess the expression of invadopodia-related proteins in mucoepidermoid carcinoma and their influence on this tumor's invasiveness. MATERIAL AND METHODS Twenty-seven mucoepidermoid carcinoma grading samples were evaluated for the expression of Tks4, Tks5, cortactin, and MT1-MMP and compared to 10 control samples of normal-looking salivary glands by immunohistochemistry. For in vitro analysis, immunofluorescence identified the expression of invadopodia-related proteins in the mucoepidermoid carcinoma cell line. Invadopodia formation and invasion assays were performed after silencing of Tks4 and Tks5 to evaluate invasiveness. RESULTS The invadopodia-related proteins were expressed significantly higher in mucoepidermoid carcinoma samples when compared to the control group. Positive expression of these proteins was identified in the mucoepidermoid carcinoma cell line. Knockdown of Tks4 and Tks5 reduced both gelatin degradation and invadopodia activity in mucoepidermoid carcinoma cell lines. CONCLUSION Our results suggest that mucoepidermoid carcinoma behavior can be mediated by the expression of invadopodia-related proteins. Tks4 and Tks5 play a role in the invasiveness of mucoepidermoid carcinoma, mediated by invadopodia.
Collapse
Affiliation(s)
- Felippe José Almeida Loureiro
- Department of Oral Pathology, School of Dentistry, Federal University of Pará, Belém, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas, Campinas, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Ransdell-Green EC, Baranowska-Kortylewicz J, Wang D. Advances in Fluorescence Techniques for the Detection of Hydroxyl Radicals near DNA and Within Organelles and Membranes. Antioxidants (Basel) 2025; 14:79. [PMID: 39857413 PMCID: PMC11762621 DOI: 10.3390/antiox14010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 12/29/2024] [Accepted: 01/07/2025] [Indexed: 01/27/2025] Open
Abstract
Hydroxyl radicals (•OH), the most potent oxidants among reactive oxygen species (ROS), are a major contributor to oxidative damage of biomacromolecules, including DNA, lipids, and proteins. The overproduction of •OH is implicated in the pathogenesis of numerous diseases such as cancer, neurodegenerative disorders, and some cardiovascular pathologies. Given the localized nature of •OH-induced damage, detecting •OH, specifically near DNA and within organelles, is crucial for understanding their pathological roles. The major challenge of •OH detection results from their short half-life, high reactivity, and low concentrations within biological systems. As a result, there is a growing need for the development of highly sensitive and selective probes that can detect •OH in specific cellular regions. This review focuses on the advances in fluorescence probes designed to detect •OH near DNA and within cellular organelles and membranes. The key designs of the probes are highlighted, with emphasis on their strengths, applications, and limitations. Recommendations for future research directions are given to further enhance probe development and characterization.
Collapse
Affiliation(s)
| | - Janina Baranowska-Kortylewicz
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| |
Collapse
|
5
|
Meng W, Huang Q, Zhang R, Shen J, Xie D, Xu C, Liu L. Protocol for analyzing invadopodia formation and gelatin degradation. STAR Protoc 2024; 5:103399. [PMID: 39425935 PMCID: PMC11513534 DOI: 10.1016/j.xpro.2024.103399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/25/2024] [Accepted: 09/25/2024] [Indexed: 10/21/2024] Open
Abstract
Invadopodia are actin-rich protrusions on the tumor cell membrane that degrade the extracellular matrix and play a crucial role in tumor cell invasion and metastasis. Here, we present a protocol to examine invadopodia's ability to form and degrade the extracellular matrix during tumor invasion and metastasis. We detail the procedure for using immunofluorescence staining to indirectly detect invadopodia formation and assess their extracellular matrix degradation capability via the gelatin degradation assay. For complete details on the use and execution of this protocol, please refer to Huang et al.1.
Collapse
Affiliation(s)
- Weijian Meng
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China; Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Qingwen Huang
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China; Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Rui Zhang
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China; Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Jie Shen
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China; Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Daxing Xie
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China; Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China
| | - Cong Xu
- Department of Gerontology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China.
| | - Liang Liu
- Molecular Medicine Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China; Department of GI Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, P.R. China.
| |
Collapse
|
6
|
Quilaqueo-Millaqueo N, Brown-Brown DA, Vidal-Vidal JA, Niechi I. NOX proteins and ROS generation: role in invadopodia formation and cancer cell invasion. Biol Res 2024; 57:98. [PMID: 39696702 DOI: 10.1186/s40659-024-00577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 12/04/2024] [Indexed: 12/20/2024] Open
Abstract
NADPH oxidases (NOX) are membrane-bound proteins involved in the localized generation of reactive oxygen species (ROS) at the cellular surface. In cancer, these highly reactive molecules primarily originate in mitochondria and via NOX, playing a crucial role in regulating fundamental cellular processes such as cell survival, angiogenesis, migration, invasion, and metastasis. The NOX protein family comprises seven members (NOX1-5 and DUOX1-2), each sharing a catalytic domain and an intracellular dehydrogenase site. NOX-derived ROS promote invadopodia formation, aberrant tyrosine kinase activation, and upregulation of matrix metalloproteinases (MMPs). Specifically, NOX5 modulates adhesion, motility, and proteolytic activation, while NOX1 likely contributes to invadopodia formation and adhesive capacity. NOX2 and NOX4 are implicated in regulating the invasive phenotype, expression of MMPs and EMT markers. DUOX1-2 participate in epithelial-mesenchymal transition (EMT), crucial for invasive phenotype development. Soluble molecules such as TGF-β and EGF modulate NOX protein activation, enhancing cell invasion through localized ROS production. This review focuses on elucidating the specific role of NOX proteins in regulating signaling pathways promoting cancer cell spread, particularly EMT, invadopodia formation and invasive capacity.
Collapse
Affiliation(s)
- Nelson Quilaqueo-Millaqueo
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - David A Brown-Brown
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Jetzabel A Vidal-Vidal
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile
| | - Ignacio Niechi
- Instituto de Bioquímica y Microbiología, Facultad de Ciencias, Universidad Austral de Chile, 5090000, Valdivia, Chile.
| |
Collapse
|
7
|
Co HKC, Wu CC, Lee YC, Chen SH. Emergence of large-scale cell death through ferroptotic trigger waves. Nature 2024; 631:654-662. [PMID: 38987590 PMCID: PMC11639682 DOI: 10.1038/s41586-024-07623-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 05/29/2024] [Indexed: 07/12/2024]
Abstract
Large-scale cell death is commonly observed during organismal development and in human pathologies1-5. These cell death events extend over great distances to eliminate large populations of cells, raising the question of how cell death can be coordinated in space and time. One mechanism that enables long-range signal transmission is trigger waves6, but how this mechanism might be used for death events in cell populations remains unclear. Here we demonstrate that ferroptosis, an iron- and lipid-peroxidation-dependent form of cell death, can propagate across human cells over long distances (≥5 mm) at constant speeds (around 5.5 μm min-1) through trigger waves of reactive oxygen species (ROS). Chemical and genetic perturbations indicate a primary role of ROS feedback loops (Fenton reaction, NADPH oxidase signalling and glutathione synthesis) in controlling the progression of ferroptotic trigger waves. We show that introducing ferroptotic stress through suppression of cystine uptake activates these ROS feedback loops, converting cellular redox systems from being monostable to being bistable and thereby priming cell populations to become bistable media over which ROS propagate. Furthermore, we demonstrate that ferroptosis and its propagation accompany the massive, yet spatially restricted, cell death events during muscle remodelling of the embryonic avian limb, substantiating its use as a tissue-sculpting strategy during embryogenesis. Our findings highlight the role of ferroptosis in coordinating global cell death events, providing a paradigm for investigating large-scale cell death in embryonic development and human pathologies.
Collapse
Affiliation(s)
- Hannah K C Co
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- Laboratory for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Chia-Chou Wu
- Laboratory for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
- National Center for Theoretical Sciences, Physics Division, Taipei, Taiwan
| | - Yi-Chen Lee
- Laboratory for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan
| | - Sheng-Hong Chen
- Molecular and Cell Biology, Taiwan International Graduate Program, Academia Sinica and Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan.
- Laboratory for Cell Dynamics, Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan.
- National Center for Theoretical Sciences, Physics Division, Taipei, Taiwan.
- Genome and Systems Biology Degree Program, Academia Sinica and National Taiwan University, Taipei, Taiwan.
| |
Collapse
|
8
|
Mohamad EA, Ali AA, Sharaky M, El-Gebaly RH. Niosomes loading N-acetyl-L-cysteine for cancer treatment in vivo study. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:4339-4353. [PMID: 38091079 DOI: 10.1007/s00210-023-02893-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/05/2023] [Indexed: 05/23/2024]
Abstract
Scientists are seeking to find an effective treatment for tumors that has no side effects. N-Acetyl-l-cysteine (NAC) is a thiol compound extracted from garlic. Current study explores the potential of NAC-loaded niosomes (NAC-NIO) for tumor treatment in mice. NAC-loaded niosomes' efficiency, morphology, UV absorption, size distribution, zeta potential, release, and FTIR analysis were evaluated. For vivo study, 25 male BALB/c mice were divided to five groups: gp1 negative control (receive saline), gp2 positive control (tumor group), gp3 treated with NAC, gp4 treated with NAC-NIO at the same time of tumor injection, and gp5 treated with NAC-NIO after tumor growth (day 14). The impact of NAC-NIO on the tumor treatment was evaluated by measuring tumor size progress, comet assay, oxidative stress parameters (GSH, nitric oxide, MDA), western blot analysis, and histopathological investigation of tissues. NAC-NIO showed 72 ± 3% encapsulation efficiency and zeta potential - 5.95 mV with spherical shape. It was found that oral administration of NAC-NIO in a dose of 50 mg/kg provided significant protection against tumor cells. Our formulation decreases DNA injury significantly (P < 0.05). It was noticed that NAC-NIO can increase oxidative stress levels in tumor tissue. On the other hand, the caspase 3 and caspase 9 gene expression were upregulated significantly (P < 0.001) in mice administrated NAC-NIO compared with all other groups. Histological studies confirmed the protective effect of NAC-NIO against tumor especially for treatment during tumor growth protocol. The results suggested that oral delivery of NAC-NIO formulation improved antioxidant effect.
Collapse
Affiliation(s)
- Ebtesam A Mohamad
- Department of Biophysics, Faculty of Science, Cairo University, 12613, Giza, Egypt
- College of Applied Medical Sciences, Prince Sattam Bin Abdul-Aziz University, Al-Kharj, 11942, Kingdom of Saudi Arabia
| | - Abeer A Ali
- Department of Biophysics, Faculty of Science, Cairo University, 12613, Giza, Egypt.
| | - Marwa Sharaky
- Department of Cancer Biology, Pharmacology Unit, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Reem H El-Gebaly
- Department of Biophysics, Faculty of Science, Cairo University, 12613, Giza, Egypt
| |
Collapse
|
9
|
Wenzel EM, Pedersen NM, Elfmark LA, Wang L, Kjos I, Stang E, Malerød L, Brech A, Stenmark H, Raiborg C. Intercellular transfer of cancer cell invasiveness via endosome-mediated protease shedding. Nat Commun 2024; 15:1277. [PMID: 38341434 PMCID: PMC10858897 DOI: 10.1038/s41467-024-45558-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Overexpression of the transmembrane matrix metalloproteinase MT1-MMP/MMP14 promotes cancer cell invasion. Here we show that MT1-MMP-positive cancer cells turn MT1-MMP-negative cells invasive by transferring a soluble catalytic ectodomain of MT1-MMP. Surprisingly, this effect depends on the presence of TKS4 and TKS5 in the donor cell, adaptor proteins previously implicated in invadopodia formation. In endosomes of the donor cell, TKS4/5 promote ADAM-mediated cleavage of MT1-MMP by bridging the two proteases, and cleavage is stimulated by the low intraluminal pH of endosomes. The bridging depends on the PX domains of TKS4/5, which coincidently interact with the cytosolic tail of MT1-MMP and endosomal phosphatidylinositol 3-phosphate. MT1-MMP recruits TKS4/5 into multivesicular endosomes for their subsequent co-secretion in extracellular vesicles, together with the enzymatically active ectodomain. The shed ectodomain converts non-invasive recipient cells into an invasive phenotype. Thus, TKS4/5 promote intercellular transfer of cancer cell invasiveness by facilitating ADAM-mediated shedding of MT1-MMP in acidic endosomes.
Collapse
Affiliation(s)
- Eva Maria Wenzel
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Nina Marie Pedersen
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Liv Anker Elfmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ling Wang
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ingrid Kjos
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Espen Stang
- Laboratory for Molecular and Cellular Cancer Research, Department of Pathology, Oslo University Hospital, Oslo, Norway
| | - Lene Malerød
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Andreas Brech
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Section for Physiology and Cell Biology, Dept. of Biosciences, Faculty of Mathematics and Natural Sciences, University of Oslo, Oslo, Norway
| | - Harald Stenmark
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Camilla Raiborg
- Centre for Cancer Cell Reprogramming, Faculty of Medicine, University of Oslo, Oslo, Norway.
- Department of Molecular Cell Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
10
|
Herb M. NADPH Oxidase 3: Beyond the Inner Ear. Antioxidants (Basel) 2024; 13:219. [PMID: 38397817 PMCID: PMC10886416 DOI: 10.3390/antiox13020219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/02/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Reactive oxygen species (ROS) were formerly known as mere byproducts of metabolism with damaging effects on cellular structures. The discovery and description of NADPH oxidases (Nox) as a whole enzyme family that only produce this harmful group of molecules was surprising. After intensive research, seven Nox isoforms were discovered, described and extensively studied. Among them, the NADPH oxidase 3 is the perhaps most underrated Nox isoform, since it was firstly discovered in the inner ear. This stigma of Nox3 as "being only expressed in the inner ear" was also used by me several times. Therefore, the question arose whether this sentence is still valid or even usable. To this end, this review solely focuses on Nox3 and summarizes its discovery, the structural components, the activating and regulating factors, the expression in cells, tissues and organs, as well as the beneficial and detrimental effects of Nox3-mediated ROS production on body functions. Furthermore, the involvement of Nox3-derived ROS in diseases progression and, accordingly, as a potential target for disease treatment, will be discussed.
Collapse
Affiliation(s)
- Marc Herb
- Institute for Medical Microbiology, Immunology and Hygiene, Faculty of Medicine, University Hospital Cologne, University of Cologne, 50935 Cologne, Germany;
- German Centre for Infection Research, Partner Site Bonn-Cologne, 50931 Cologne, Germany
- Cologne Cluster of Excellence on Cellular Stress Responses in Aging-Associated Diseases (CECAD), 50931 Cologne, Germany
| |
Collapse
|
11
|
Wang Q, Lin B, Wei H, Wang X, Nie X, Shi Y. AQP3 Promotes the Invasion and Metastasis in Cervical Cancer by Regulating NOX4-derived H 2O 2 Activation of Syk/PI3K/Akt Signaling Axis. J Cancer 2024; 15:1124-1137. [PMID: 38230207 PMCID: PMC10788729 DOI: 10.7150/jca.91360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Unrestrained chronic inflammation leads to the abnormal activity of NOX4 and the subsequent production of excessive hydrogen peroxide (H2O2). Excessive H2O2 signaling triggered by prolonged inflammation is thought to be one of the important reasons for the progression of some types of cancer including cervical cancer. Aquaporin 3 (AQP3) is a member of the water channel protein family, and it remains unknown whether AQP3 can regulate the transmembrane transport of nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4 (NOX4)-derived H2O2 induced by the stimulation of inflammatory factors to facilitate the malignant progression in cervical cancer. In this study, cervical cancer HeLa cell line was respectively treated with diphenyleneiodonium (DPI), N-Acetylcysteine (NAC) or lentivirus-shRNA- AQP3. Plate cloning, cell migration or transwell invasion assays, etc. were performed to detect the invasive and migration ability of the cells. Western blot and CO-IP were used to analyze the mechanism of AQP3 regulating H2O2 conduction. Finally, in vivo assays were performed for validation in nude mice. AQP3 Knockdown, DPI or NAC treatments all reduced intracellular H2O2 influx, and the activation of Syk/PI3K/Akt signal axis was inhibited, the migration and invasive ability of the cells was attenuated. In vivo assays confirmed that the excessive H2O2 transport through AQP3 enhanced the infiltration and metastasis of cervical cancer. These results suggest that AQP3 activates H2O2/Syk/PI3K/Akt signaling axis through regulating NOX4-derived H2O2 transport to contribute to the progression of cervical cancer, and AQP3 may be a potential target for the clinical treatment of advanced cervical cancer.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| | - Bingjie Lin
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| | - Hongjian Wei
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| | - Xin Wang
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| | - Xiaojing Nie
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| | - Yonghua Shi
- Department of Pathology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
- Xinjiang Key Laboratory of Molecular Biology for Endemic Diseases, Xinjiang Medical University, Urumqi, Xinjiang 830017, China
| |
Collapse
|
12
|
Liu W, Wang B, Zhou M, Liu D, Chen F, Zhao X, Lu Y. Redox Dysregulation in the Tumor Microenvironment Contributes to Cancer Metastasis. Antioxid Redox Signal 2023; 39:472-490. [PMID: 37002890 DOI: 10.1089/ars.2023.0272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Significance: Redox dysregulation under pathological conditions results in excessive reactive oxygen species (ROS) accumulation, leading to oxidative stress and cellular oxidative damage. ROS function as a double-edged sword to modulate various types of cancer development and survival. Recent Advances: Emerging evidence has underlined that ROS impact the behavior of both cancer cells and tumor-associated stromal cells in the tumor microenvironment (TME), and these cells have developed complex systems to adapt to high ROS environments during cancer progression. Critical Issues: In this review, we integrated current progress regarding the impact of ROS on cancer cells and tumor-associated stromal cells in the TME and summarized how ROS production influences cancer cell behaviors. Then, we summarized the distinct effects of ROS during different stages of tumor metastasis. Finally, we discussed potential therapeutic strategies for modulating ROS for the treatment of cancer metastasis. Future Directions: Targeting the ROS regulation during cancer metastasis will provide important insights into the design of effective single or combinatorial cancer therapeutic strategies. Well-designed preclinical studies and clinical trials are urgently needed to understand the complex regulatory systems of ROS in the TME. Antioxid. Redox Signal. 39, 472-490.
Collapse
Affiliation(s)
- Wanning Liu
- College of Life Sciences, Northwest University, Xi'an, China
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Boda Wang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Mingzhen Zhou
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Dan Liu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Fulin Chen
- College of Life Sciences, Northwest University, Xi'an, China
| | - Xiaodi Zhao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| | - Yuanyuan Lu
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
13
|
Wang D, Li J, Luo G, Zhou J, Wang N, Wang S, Zhao R, Cao X, Ma Y, Liu G, Hao L. Nox4 as a novel therapeutic target for diabetic vascular complications. Redox Biol 2023; 64:102781. [PMID: 37321060 PMCID: PMC10363438 DOI: 10.1016/j.redox.2023.102781] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 06/03/2023] [Accepted: 06/08/2023] [Indexed: 06/17/2023] Open
Abstract
Diabetic vascular complications can affect both microvascular and macrovascular. Diabetic microvascular complications, such as diabetic nephropathy, diabetic retinopathy, diabetic neuropathy, and diabetic cardiomyopathy, are believed to be caused by oxidative stress. The Nox family of NADPH oxidases is a significant source of reactive oxygen species and plays a crucial role in regulating redox signaling, particularly in response to high glucose and diabetes mellitus. This review aims to provide an overview of the current knowledge about the role of Nox4 and its regulatory mechanisms in diabetic microangiopathies. Especially, the latest novel advances in the upregulation of Nox4 that aggravate various cell types within diabetic kidney disease will be highlighted. Interestingly, this review also presents the mechanisms by which Nox4 regulates diabetic microangiopathy from novel perspectives such as epigenetics. Besides, we emphasize Nox4 as a therapeutic target for treating microvascular complications of diabetes and summarize drugs, inhibitors, and dietary components targeting Nox4 as important therapeutic measures in preventing and treating diabetic microangiopathy. Additionally, this review also sums up the evidence related to Nox4 and diabetic macroangiopathy.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China; Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Jiaying Li
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Luo
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Juan Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Ning Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Shanshan Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Rui Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Xin Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Medical University, Hebei Key Laboratory of Environment and Human Health, Shijiazhuang, 050017, China
| | - Gang Liu
- Department of Cardiology, The First Hospital of Hebei Medical University, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, Shijiazhuang, 050000, China.
| | - Liping Hao
- Department of Nutrition and Food Hygiene, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Hubei Key Laboratory of Food Nutrition and Safety, Ministry of Education Key Laboratory of Environment, Wuhan, 430030, China.
| |
Collapse
|
14
|
Kunst C, Schmid S, Michalski M, Tümen D, Buttenschön J, Müller M, Gülow K. The Influence of Gut Microbiota on Oxidative Stress and the Immune System. Biomedicines 2023; 11:biomedicines11051388. [PMID: 37239059 DOI: 10.3390/biomedicines11051388] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/04/2023] [Accepted: 05/05/2023] [Indexed: 05/28/2023] Open
Abstract
The human gastrointestinal tract is home to a complex microbial community that plays an important role in the general well-being of the entire organism. The gut microbiota generates a variety of metabolites and thereby regulates many biological processes, such as the regulation of the immune system. In the gut, bacteria are in direct contact with the host. The major challenge here is to prevent unwanted inflammatory reactions on one hand and on the other hand to ensure that the immune system can be activated when pathogens invade. Here the REDOX equilibrium is of utmost importance. This REDOX equilibrium is controlled by the microbiota either directly or indirectly via bacterial-derived metabolites. A balanced microbiome sorts for a stable REDOX balance, whereas dysbiosis destabilizes this equilibrium. An imbalanced REDOX status directly affects the immune system by disrupting intracellular signaling and promoting inflammatory responses. Here we (i) focus on the most common reactive oxygen species (ROS) and (ii) define the transition from a balanced REDOX state to oxidative stress. Further, we (iii) describe the role of ROS in regulating the immune system and inflammatory responses. Thereafter, we (iv) examine the influence of microbiota on REDOX homeostasis and how shifts in pro- and anti-oxidative cellular conditions can suppress or promote immune responses or inflammation.
Collapse
Affiliation(s)
- Claudia Kunst
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Stephan Schmid
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Marlen Michalski
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Deniz Tümen
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Jonas Buttenschön
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Martina Müller
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| | - Karsten Gülow
- Department of Internal Medicine I, Gastroenterology, Hepatology, Endocrinology, Rheumatology and Infectious Diseases, University Hospital Regensburg, 93053 Regensburg, Bavaria, Germany
| |
Collapse
|
15
|
Puente-Cobacho B, Varela-López A, Quiles JL, Vera-Ramirez L. Involvement of redox signalling in tumour cell dormancy and metastasis. Cancer Metastasis Rev 2023; 42:49-85. [PMID: 36701089 PMCID: PMC10014738 DOI: 10.1007/s10555-022-10077-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/27/2022] [Indexed: 01/27/2023]
Abstract
Decades of research on oncogene-driven carcinogenesis and gene-expression regulatory networks only started to unveil the complexity of tumour cellular and molecular biology. This knowledge has been successfully implemented in the clinical practice to treat primary tumours. In contrast, much less progress has been made in the development of new therapies against metastasis, which are the main cause of cancer-related deaths. More recently, the role of epigenetic and microenviromental factors has been shown to play a key role in tumour progression. Free radicals are known to communicate the intracellular and extracellular compartments, acting as second messengers and exerting a decisive modulatory effect on tumour cell signalling. Depending on the cellular and molecular context, as well as the intracellular concentration of free radicals and the activation status of the antioxidant system of the cell, the signalling equilibrium can be tilted either towards tumour cell survival and progression or cell death. In this regard, recent advances in tumour cell biology and metastasis indicate that redox signalling is at the base of many cell-intrinsic and microenvironmental mechanisms that control disseminated tumour cell fate and metastasis. In this manuscript, we will review the current knowledge about redox signalling along the different phases of the metastatic cascade, including tumour cell dormancy, making emphasis on metabolism and the establishment of supportive microenvironmental connections, from a redox perspective.
Collapse
Affiliation(s)
- Beatriz Puente-Cobacho
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain
| | - Alfonso Varela-López
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - José L Quiles
- Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain
| | - Laura Vera-Ramirez
- Department of Genomic Medicine, GENYO, Centre for Genomics and Oncology, Pfizer-University of Granada and Andalusian Regional Government, PTS, Granada, Spain. .,Department of Physiology, Institute of Nutrition and Food Technology "José Mataix Verdú", Biomedical Research Center, University of Granada, Granada, Spain.
| |
Collapse
|
16
|
Liu H, Ren C, Sun R, Wang H, Zhan Y, Yang X, Jiang B, Chen H. Reactive oxygen species-responsive Pre-PROTAC for tumor-specific protein degradation. Chem Commun (Camb) 2022; 58:10072-10075. [PMID: 35993284 DOI: 10.1039/d2cc03367d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By introducing a reactive oxygen species (ROS) triggered leaving group (arylboronic acid) to the parent PROTACs, ROS-responsive Pre-PROTACs were designed and evaluated. Pre-PROTAC (7) efficiently degraded the target protein BRD3 according to ROS levels. Our research provides an effective approach to control PROTAC activation by the endogenous ROS-related microenvironment.
Collapse
Affiliation(s)
- Haixia Liu
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China. .,School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Chaowei Ren
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China. .,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Renhong Sun
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Huihui Wang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China. .,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China
| | - Yuexiong Zhan
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| | - Xiaobao Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China. .,Gluetacs Therapeutics (Shanghai) Co., Ltd., 99 Haike Road, Zhangjiang Hi-Tech Park, Shanghai, 201210, China
| | - Biao Jiang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China. .,School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.,School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.,CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Hongli Chen
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai, 201210, China.
| |
Collapse
|
17
|
YAP1 induces invadopodia formation by transcriptionally activating TIAM1 through enhancer in breast cancer. Oncogene 2022; 41:3830-3845. [PMID: 35773411 PMCID: PMC9337990 DOI: 10.1038/s41388-022-02344-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 04/26/2022] [Accepted: 05/03/2022] [Indexed: 11/12/2022]
Abstract
Yes-associated protein 1 (YAP1), a central component of the Hippo pathway, plays an important role in tumor metastasis; however, the underlying mechanism remains to be elucidated. Invadopodia are actin-rich protrusions containing multiple proteases and have been widely reported to promote cell invasiveness by degrading the extracellular matrix. In the present study, we report that YAP1 induces invadopodia formation and promotes tumor metastasis in breast cancer cells. We also identify TIAM1, a guanine nucleotide exchange factor, as a target of the YAP1–TEAD4 complex. Our results demonstrate that YAP1 could promote TEAD4 binding to the enhancer region of TIAM1, which activates TIAM1 expression, subsequently increasing RAC1 activity and inducing invadopodia formation. These findings reveal the functional role of Hippo signaling in the regulation of invadopodia and provide potential molecular targets for preventing tumor metastasis in breast cancer.
Collapse
|
18
|
Stieg DC, Wang Y, Liu LZ, Jiang BH. ROS and miRNA Dysregulation in Ovarian Cancer Development, Angiogenesis and Therapeutic Resistance. Int J Mol Sci 2022; 23:ijms23126702. [PMID: 35743145 PMCID: PMC9223852 DOI: 10.3390/ijms23126702] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/05/2022] [Accepted: 06/14/2022] [Indexed: 12/11/2022] Open
Abstract
The diverse repertoires of cellular mechanisms that progress certain cancer types are being uncovered by recent research and leading to more effective treatment options. Ovarian cancer (OC) is among the most difficult cancers to treat. OC has limited treatment options, especially for patients diagnosed with late-stage OC. The dysregulation of miRNAs in OC plays a significant role in tumorigenesis through the alteration of a multitude of molecular processes. The development of OC can also be due to the utilization of endogenously derived reactive oxygen species (ROS) by activating signaling pathways such as PI3K/AKT and MAPK. Both miRNAs and ROS are involved in regulating OC angiogenesis through mediating multiple angiogenic factors such as hypoxia-induced factor (HIF-1) and vascular endothelial growth factor (VEGF). The NAPDH oxidase subunit NOX4 plays an important role in inducing endogenous ROS production in OC. This review will discuss several important miRNAs, NOX4, and ROS, which contribute to therapeutic resistance in OC, highlighting the effective therapeutic potential of OC through these mechanisms.
Collapse
Affiliation(s)
- David C. Stieg
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (D.C.S.); (L.-Z.L.)
| | - Yifang Wang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
| | - Ling-Zhi Liu
- Department of Medical Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA; (D.C.S.); (L.-Z.L.)
| | - Bing-Hua Jiang
- Department of Pathology, Anatomy & Cell Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA 19107, USA;
- Correspondence:
| |
Collapse
|
19
|
Abstract
Eukaryotic cells have developed complex systems to regulate the production and response to reactive oxygen species (ROS). Different ROS control diverse aspects of cell behaviour from signalling to death, and deregulation of ROS production and ROS limitation pathways are common features of cancer cells. ROS also function to modulate the tumour environment, affecting the various stromal cells that provide metabolic support, a blood supply and immune responses to the tumour. Although it is clear that ROS play important roles during tumorigenesis, it has been difficult to reliably predict the effect of ROS modulating therapies. We now understand that the responses to ROS are highly complex and dependent on multiple factors, including the types, levels, localization and persistence of ROS, as well as the origin, environment and stage of the tumours themselves. This increasing understanding of the complexity of ROS in malignancies will be key to unlocking the potential of ROS-targeting therapies for cancer treatment.
Collapse
|
20
|
Salah M, Akasaka H, Shimizu Y, Morita K, Nishimura Y, Kubota H, Kawaguchi H, Sogawa T, Mukumoto N, Ogino C, Sasaki R. Reactive oxygen species-inducing titanium peroxide nanoparticles as promising radiosensitizers for eliminating pancreatic cancer stem cells. J Exp Clin Cancer Res 2022; 41:146. [PMID: 35428310 PMCID: PMC9013114 DOI: 10.1186/s13046-022-02358-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/05/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Despite recent advances in radiotherapy, radioresistance in patients with pancreatic cancer remains a crucial dilemma for clinical treatment. Cancer stem cells (CSCs) represent a major factor in radioresistance. Developing a potent radiosensitizer may be a novel candidate for the eradication of pancreatic CSCs. METHODS CSCs were isolated from MIA PaCa-2 and PANC1 human pancreatic cancer cell lines. Titanium peroxide nanoparticles (TiOxNPs) were synthesized from titanium dioxide nanoparticles (TiO2NPs) and utilized as radiosensitizers when added one hour prior to radiation exposure. The antitumor activity of this novel therapeutic strategy was evaluated against well-established pancreatic CSCs model both in vitro and in vivo. RESULTS It is shown that TiOxNPs combined with ionizing radiation exhibit anti-cancer effects on radioresistant CSCs both in vitro and in vivo. TiOxNPs exhibited a synergistic effect with radiation on pancreatic CSC-enriched spheres by downregulating self-renewal regulatory factors and CSC surface markers. Moreover, combined treatment suppressed epithelial-mesenchymal transition, migration, and invasion properties in primary and aggressive pancreatic cancer cells by reducing the expression of proteins relevant to these processes. Notably, radiosensitizing TiOxNPs suppressed the growth of pancreatic xenografts following primary or dissociating sphere MIA PaCa-2 cell implantation. It is inferred that synergy is formed by generating intolerable levels of reactive oxygen species (ROS) and inactivating the AKT signaling pathway. CONCLUSIONS Our data suggested the use of TiOxNPs in combination with radiation may be considered an attractive therapeutic strategy to eliminate pancreatic CSCs.
Collapse
Grants
- 21K07594, 20KK0192, 20K21576, 20K08108 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 19K08121 Ministry of Education, Culture, Sports, Science, and Technology of Japan
- 20K08134 Ministry of Education, Culture, Sports, Science, and Technology of Japan
Collapse
Affiliation(s)
- Mohammed Salah
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
- Department of Biochemistry, Faculty of Veterinary Medicine, South Valley University, Qena, 83522, Egypt.
| | - Hiroaki Akasaka
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Yasuyuki Shimizu
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Kenta Morita
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, 650-0017, Japan
| | - Yuya Nishimura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, 650-0017, Japan
| | - Hikaru Kubota
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Hiroki Kawaguchi
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Tomomi Sogawa
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Naritoshi Mukumoto
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, Kobe, Hyogo, 650-0017, Japan
| | - Ryohei Sasaki
- Division of Radiation Oncology, Kobe University Graduate School of Medicine, Kobe, Hyogo, 650-0017, Japan.
| |
Collapse
|
21
|
Szanto I. NADPH Oxidase 4 (NOX4) in Cancer: Linking Redox Signals to Oncogenic Metabolic Adaptation. Int J Mol Sci 2022; 23:ijms23052702. [PMID: 35269843 PMCID: PMC8910662 DOI: 10.3390/ijms23052702] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/21/2022] [Accepted: 02/22/2022] [Indexed: 02/04/2023] Open
Abstract
Cancer cells can survive and maintain their high proliferation rate in spite of their hypoxic environment by deploying a variety of adaptative mechanisms, one of them being the reorientation of cellular metabolism. A key aspect of this metabolic rewiring is the promotion of the synthesis of antioxidant molecules in order to counter-balance the hypoxia-related elevation of reactive oxygen species (ROS) production and thus combat the onset of cellular oxidative stress. However, opposite to their negative role in the inception of oxidative stress, ROS are also key modulatory components of physiological cellular metabolism. One of the major physiological cellular ROS sources is the NADPH oxidase enzymes (NOX-es). Indeed, NOX-es produce ROS in a tightly regulated manner and control a variety of cellular processes. By contrast, pathologically elevated and unbridled NOX-derived ROS production is linked to diverse cancerogenic processes. In this respect, NOX4, one of the members of the NOX family enzymes, is of particular interest. In fact, NOX4 is closely linked to hypoxia-related signaling and is a regulator of diverse metabolic processes. Furthermore, NOX4 expression and function are altered in a variety of malignancies. The aim of this review is to provide a synopsis of our current knowledge concerning NOX4-related processes in the oncogenic metabolic adaptation of cancer cells.
Collapse
Affiliation(s)
- Ildiko Szanto
- Service of Endocrinology, Diabetology, Nutrition and Patient Education, Department of Internal Medicine, Geneva University Hospitals, Diabetes Center of the Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland
| |
Collapse
|
22
|
Qin Y, Ma X, Guo C, Cai S, Ma H, Zhao L. MeCP2 confers 5-fluorouracil resistance in gastric cancer via upregulating the NOX4/PKM2 pathway. Cancer Cell Int 2022; 22:86. [PMID: 35180871 PMCID: PMC8857846 DOI: 10.1186/s12935-022-02489-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 01/26/2022] [Indexed: 11/25/2022] Open
Abstract
Background Increasing evidence suggests that aberrant methylation is involved in 5-fluorouracil (5-FU) resistance in gastric cancer (GC). Our previous work has identified that Methyl-CpG binding protein 2 (MeCP2) promotes GC progression by binding to the methylation sites of promoter regions of specific genes to affect the downstream signaling pathways. However, the function and molecular mechanisms of MeCP2 in GC 5-FU resistance remain unclear. Methods We detected the expression of MeCP2 in 5-FU-resistant GC cells and examined cell behaviors when MeCP2 was silenced. The molecular mechanisms were explored through chromatin immunoprecipitation (ChIP)-qRT-PCR, luciferase reporter assay, clinical tissue samples analysis, and in vivo tumorigenicity assay. Results MeCP2 was up-regulated in 5-FU-resistant GC cells. Knockdown of MeCP2 enhanced the sensitivity of the cells to 5-FU. Moreover, MeCP2 promoted NOX4 transcription in the cells by binding to the promoter of NOX4. Silencing NOX4 rescued the inductive effect of MeCP2 overexpression on 5-FU sensitivity of GC cells and reduced the expression of NOX4 and PKM2 in MeCP2 overexpressed 5-FU-resistant GC cells. In addition, our in vivo experiments demonstrated that MeCP2 knockdown enhanced 5-FU sensitivity in tumors. Conclusion MeCP2 confers 5-FU resistance in GC cells via upregulating the NOX4/PKM2 pathway, which may lead to a promising therapeutic strategy for GC. Supplementary Information The online version contains supplementary material available at 10.1186/s12935-022-02489-y.
Collapse
Affiliation(s)
- Yannan Qin
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Xiaoping Ma
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Chen Guo
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Shuang Cai
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China
| | - Hailin Ma
- Department of Radiation Oncology, The First Affiliated Hospital of Medical College, Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Lingyu Zhao
- Department of Cell Biology and Genetics/Key Laboratory of Environment and Genes Related To Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China. .,Institute of Genetics and Developmental Biology, Translational Medicine Institute, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, 710061, Shaanxi, China.
| |
Collapse
|
23
|
Azmanova M, Pitto-Barry A. Oxidative stress in cancer therapy: Friend or enemy? Chembiochem 2022; 23:e202100641. [PMID: 35015324 DOI: 10.1002/cbic.202100641] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 01/06/2022] [Indexed: 12/24/2022]
Abstract
Excessive cellular oxidative stress is widely perceived as a key factor in pathophysiological conditions and cancer development. Healthy cells use several mechanisms to maintain intracellular levels of reactive oxygen species (ROS) and overall redox homeostasis to avoid damage to DNA, proteins, and lipids. Cancer cells, in contrast, exhibit elevated ROS levels and upregulated protective antioxidant pathways. Counterintuitively, such elevated oxidative stress and enhanced antioxidant defence mechanisms in cancer cells provide a therapeutic opportunity for the development of drugs with different anticancer mechanisms of action (MoA). In this review, oxidative stress and the role of ROS in cells are described. The tumour-suppressive and tumour-promotive functions of ROS are discussed to compare these two different therapeutic strategies (increasing or decreasing ROS to fight cancer). Clinically approved drugs with demonstrated oxidative stress anticancer MoAs are highlighted before describing examples of metal-based anticancer drug candidates causing oxidative stress in cancer cells via novel MoAs.
Collapse
Affiliation(s)
- Maria Azmanova
- University of Bradford, School of Chemistry and Biosciences, Richmond Road, BD7 1DP, Bradford, UNITED KINGDOM
| | - Anaïs Pitto-Barry
- Université Paris-Saclay: Universite Paris-Saclay, Institut Galien Paris-Saclay, 5 rue J.-B. Clément, 92290, Châtenay-Malabry, FRANCE
| |
Collapse
|
24
|
von Knethen A, Heinicke U, Laux V, Parnham MJ, Steinbicker AU, Zacharowski K. Antioxidants as Therapeutic Agents in Acute Respiratory Distress Syndrome (ARDS) Treatment-From Mice to Men. Biomedicines 2022; 10:98. [PMID: 35052778 PMCID: PMC8773193 DOI: 10.3390/biomedicines10010098] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/26/2021] [Accepted: 12/31/2021] [Indexed: 12/16/2022] Open
Abstract
Acute respiratory distress syndrome (ARDS) is a major cause of patient mortality in intensive care units (ICUs) worldwide. Considering that no causative treatment but only symptomatic care is available, it is obvious that there is a high unmet medical need for a new therapeutic concept. One reason for a missing etiologic therapy strategy is the multifactorial origin of ARDS, which leads to a large heterogeneity of patients. This review summarizes the various kinds of ARDS onset with a special focus on the role of reactive oxygen species (ROS), which are generally linked to ARDS development and progression. Taking a closer look at the data which already have been established in mouse models, this review finally proposes the translation of these results on successful antioxidant use in a personalized approach to the ICU patient as a potential adjuvant to standard ARDS treatment.
Collapse
Affiliation(s)
- Andreas von Knethen
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Ulrike Heinicke
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Volker Laux
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596 Frankfurt, Germany
| | - Andrea U Steinbicker
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Kai Zacharowski
- Department of Anaesthesiology, Intensive Care Medicine and Pain Therapy, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| |
Collapse
|
25
|
Chung J, Huda MN, Shin Y, Han S, Akter S, Kang I, Ha J, Choe W, Choi TG, Kim SS. Correlation between Oxidative Stress and Transforming Growth Factor-Beta in Cancers. Int J Mol Sci 2021; 22:ijms222413181. [PMID: 34947978 PMCID: PMC8707703 DOI: 10.3390/ijms222413181] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 12/14/2022] Open
Abstract
The downregulation of reactive oxygen species (ROS) facilitates precancerous tumor development, even though increasing the level of ROS can promote metastasis. The transforming growth factor-beta (TGF-β) signaling pathway plays an anti-tumorigenic role in the initial stages of cancer development but a pro-tumorigenic role in later stages that fosters cancer metastasis. TGF-β can regulate the production of ROS unambiguously or downregulate antioxidant systems. ROS can influence TGF-β signaling by enhancing its expression and activation. Thus, TGF-β signaling and ROS might significantly coordinate cellular processes that cancer cells employ to expedite their malignancy. In cancer cells, interplay between oxidative stress and TGF-β is critical for tumorigenesis and cancer progression. Thus, both TGF-β and ROS can develop a robust relationship in cancer cells to augment their malignancy. This review focuses on the appropriate interpretation of this crosstalk between TGF-β and oxidative stress in cancer, exposing new potential approaches in cancer biology.
Collapse
Affiliation(s)
- Jinwook Chung
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
| | - Md Nazmul Huda
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biochemistry and Molecular Biology, UAMS Winthrop P. Rockefeller Cancer Institute, University of Arkansas for Medical Sciences UAMS, Little Rock, AR 72205, USA
| | - Yoonhwa Shin
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Sunhee Han
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Salima Akter
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
| | - Insug Kang
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Joohun Ha
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Wonchae Choe
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
| | - Tae Gyu Choi
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-2-961-0287 (T.G.C.); +82-2-961-0524 (S.S.K.)
| | - Sung Soo Kim
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Korea; (J.C.); (M.N.H.); (Y.S.); (S.H.); (I.K.); (J.H.); (W.C.)
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Korea;
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Korea
- Correspondence: (T.G.C.); (S.S.K.); Tel.: +82-2-961-0287 (T.G.C.); +82-2-961-0524 (S.S.K.)
| |
Collapse
|
26
|
A nexus of miR-1271, PAX4 and ALK/RYK influences the cytoskeletal architectures in Alzheimer's Disease and Type 2 Diabetes. Biochem J 2021; 478:3297-3317. [PMID: 34409981 PMCID: PMC8454712 DOI: 10.1042/bcj20210175] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 08/12/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Alzheimer's Disease (AD) and Type 2 Diabetes (T2D) share a common hallmark of insulin resistance. Reportedly, two non-canonical Receptor Tyrosine Kinases (RTKs), ALK and RYK, both targets of the same micro RNA miR-1271, exhibit significant and consistent functional down-regulation in post-mortem AD and T2D tissues. Incidentally, both have Grb2 as a common downstream adapter and NOX4 as a common ROS producing factor. Here we show that Grb2 and NOX4 play critical roles in reducing the severity of both the diseases. The study demonstrates that the abundance of Grb2 in degenerative conditions, in conjunction with NOX4, reverse cytoskeletal degradation by counterbalancing the network of small GTPases. PAX4, a transcription factor for both Grb2 and NOX4, emerges as the key link between the common pathways of AD and T2D. Down-regulation of both ALK and RYK through miR-1271, elevates the PAX4 level by reducing its suppressor ARX via Wnt/β-Catenin signaling. For the first time, this study brings together RTKs beyond Insulin Receptor (IR) family, transcription factor PAX4 and both AD and T2D pathologies on a common regulatory platform.
Collapse
|
27
|
Rivier P, Mubalama M, Destaing O. Small GTPases all over invadosomes. Small GTPases 2021; 12:429-439. [PMID: 33487105 PMCID: PMC8583085 DOI: 10.1080/21541248.2021.1877081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 12/30/2020] [Accepted: 01/10/2021] [Indexed: 12/19/2022] Open
Abstract
Cell invasion is associated with numerous patho-physiologic states including cell development and metastatic dissemination. This process couples the activation of cell motility with the capacity to degrade the extracellular matrix, thereby permitting cells to pass through basal membranes. Invasion is sustained by the actions of invadosomes, an ensemble of subcellular structures with high functional homology. Invadosomes are 3D acto-adhesive structures that can also mediate local extracellular matrix degradation through the controlled delivery of proteases. Intracellular RHO GTPases play a central role in the regulation of invadosomes where their complex interplay regulates multiple invadosome functions. This review aims to provide an overview of the synergistic activities of the small GTPases in invadosome biology. This broad-based review also reinforces the importance of the spatiotemporal regulation of small GTPases and the impact of this process on invadosome dynamics.
Collapse
Affiliation(s)
- Paul Rivier
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| | - Michel Mubalama
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| | - Olivier Destaing
- Team DYSAD, Dept2, Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Grenoble, France
| |
Collapse
|
28
|
Merő B, Koprivanacz K, Cserkaszky A, Radnai L, Vas V, Kudlik G, Gógl G, Sok P, Póti ÁL, Szeder B, Nyitray L, Reményi A, Geiszt M, Buday L. Characterization of the Intramolecular Interactions and Regulatory Mechanisms of the Scaffold Protein Tks4. Int J Mol Sci 2021; 22:ijms22158103. [PMID: 34360869 PMCID: PMC8348221 DOI: 10.3390/ijms22158103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/19/2021] [Accepted: 07/26/2021] [Indexed: 01/01/2023] Open
Abstract
The scaffold protein Tks4 is a member of the p47phox-related organizer superfamily. It plays a key role in cell motility by being essential for the formation of podosomes and invadopodia. In addition, Tks4 is involved in the epidermal growth factor (EGF) signaling pathway, in which EGF induces the translocation of Tks4 from the cytoplasm to the plasma membrane. The evolutionarily-related protein p47phox and Tks4 share many similarities in their N-terminal region: a phosphoinositide-binding PX domain is followed by two SH3 domains (so called “tandem SH3”) and a proline-rich region (PRR). In p47phox, the PRR is followed by a relatively short, disordered C-terminal tail region containing multiple phosphorylation sites. These play a key role in the regulation of the protein. In Tks4, the PRR is followed by a third and a fourth SH3 domain connected by a long (~420 residues) unstructured region. In p47phox, the tandem SH3 domain binds the PRR while the first SH3 domain interacts with the PX domain, thereby preventing its binding to the membrane. Based on the conserved structural features of p47phox and Tks4 and the fact that an intramolecular interaction between the third SH3 and the PX domains of Tks4 has already been reported, we hypothesized that Tks4 is similarly regulated by autoinhibition. In this study, we showed, via fluorescence-based titrations, MST, ITC, and SAXS measurements, that the tandem SH3 domain of Tks4 binds the PRR and that the PX domain interacts with the third SH3 domain. We also investigated a phosphomimicking Thr-to-Glu point mutation in the PRR as a possible regulator of intramolecular interactions. Phosphatidylinositol-3-phosphate (PtdIns(3)P) was identified as the main binding partner of the PX domain via lipid-binding assays. In truncated Tks4 fragments, the presence of the tandem SH3, together with the PRR, reduced PtdIns(3)P binding, while the presence of the third SH3 domain led to complete inhibition.
Collapse
Affiliation(s)
- Balázs Merő
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Kitti Koprivanacz
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Anna Cserkaszky
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - László Radnai
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Virag Vas
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Gyöngyi Kudlik
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - Gergő Gógl
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
| | - Péter Sok
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Ádám L. Póti
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Bálint Szeder
- Research Centre for Natural Sciences, Institute of Enzymology, 1117 Budapest, Hungary; (B.M.); (K.K.); (A.C.); (L.R.); (V.V.); (G.K.); (B.S.)
| | - László Nyitray
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
| | - Attila Reményi
- Research Centre for Natural Sciences, Institute of Organic Chemistry, 1117 Budapest, Hungary; (P.S.); (Á.L.P.); (A.R.)
| | - Miklós Geiszt
- Department of Physiology, Semmelweis University, 1094 Budapest, Hungary;
| | - László Buday
- Department of Biochemistry, Eötvös Loránd University, 1117 Budapest, Hungary; (G.G.); (L.N.)
- Department of Molecular Biology, Semmelweis University Medical School, 1094 Budapest, Hungary
- Correspondence:
| |
Collapse
|
29
|
Maraldi T, Angeloni C, Prata C, Hrelia S. NADPH Oxidases: Redox Regulators of Stem Cell Fate and Function. Antioxidants (Basel) 2021; 10:973. [PMID: 34204425 PMCID: PMC8234808 DOI: 10.3390/antiox10060973] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/15/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
One of the major sources of reactive oxygen species (ROS) generated within stem cells is the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase family of enzymes (NOXs), which are critical determinants of the redox state beside antioxidant defense mechanisms. This balance is involved in another one that regulates stem cell fate: indeed, self-renewal, proliferation, and differentiation are decisive steps for stem cells during embryo development, adult tissue renovation, and cell therapy application. Ex vivo culture-expanded stem cells are being investigated for tissue repair and immune modulation, but events such as aging, senescence, and oxidative stress reduce their ex vivo proliferation, which is crucial for their clinical applications. Here, we review the role of NOX-derived ROS in stem cell biology and functions, focusing on positive and negative effects triggered by the activity of different NOX isoforms. We report recent findings on downstream molecular targets of NOX-ROS signaling that can modulate stem cell homeostasis and lineage commitment and discuss the implications in ex vivo expansion and in vivo engraftment, function, and longevity. This review highlights the role of NOX as a pivotal regulator of several stem cell populations, and we conclude that these aspects have important implications in the clinical utility of stem cells, but further studies on the effects of pharmacological modulation of NOX in human stem cells are imperative.
Collapse
Affiliation(s)
- Tullia Maraldi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Via del Pozzo 71, 41124 Modena, Italy;
| | - Cristina Angeloni
- School of Pharmacy, University of Camerino, Via Gentile III da Varano, 62032 Camerino, Italy;
| | - Cecilia Prata
- Department of Pharmacy and Biotechnology, Alma Mater Studiorum—University of Bologna, Via Irnerio 48, 40126 Bologna, Italy
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum—University of Bologna, Corso d’Augusto 237, 47921 Rimini, Italy;
| |
Collapse
|
30
|
Vermot A, Petit-Härtlein I, Smith SME, Fieschi F. NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology. Antioxidants (Basel) 2021; 10:890. [PMID: 34205998 PMCID: PMC8228183 DOI: 10.3390/antiox10060890] [Citation(s) in RCA: 362] [Impact Index Per Article: 90.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 01/17/2023] Open
Abstract
The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91phox component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest.
Collapse
Affiliation(s)
- Annelise Vermot
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Isabelle Petit-Härtlein
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| | - Susan M. E. Smith
- Department of Molecular and Cellular Biology, Kennesaw State University, Kennesaw, GA 30144, USA;
| | - Franck Fieschi
- Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale, 38000 Grenoble, France; (A.V.); (I.P.-H.)
| |
Collapse
|
31
|
Fragoso-Morales LG, Correa-Basurto J, Rosales-Hernández MC. Implication of Nicotinamide Adenine Dinucleotide Phosphate (NADPH) Oxidase and Its Inhibitors in Alzheimer's Disease Murine Models. Antioxidants (Basel) 2021; 10:antiox10020218. [PMID: 33540840 PMCID: PMC7912941 DOI: 10.3390/antiox10020218] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/23/2021] [Indexed: 02/06/2023] Open
Abstract
Alzheimer’s disease (AD) is one of the main human dementias around the world which is constantly increasing every year due to several factors (age, genetics, environment, etc.) and there are no prevention or treatment options to cure it. AD is characterized by memory loss associated with oxidative stress (OS) in brain cells (neurons, astrocytes, microglia, etc.). OS can be produced by amyloid beta (Aβ) protein aggregation and its interaction with metals, mitochondrial damage and alterations between antioxidants and oxidant enzymes such as nicotinamide adenine dinucleotide phosphate (NADPH) oxidase. NADPH oxidase produces reactive oxygen species (ROS) and it is overexpressed in AD, producing large amounts of superoxide anions and hydrogen peroxide which damage brain cells and the vasculature. In addition, it has been reported that NADPH oxidase causes an imbalance of pH which could also influence in the amyloid beta (Aβ) production. Therefore, NADPH oxidase had been proposed as a therapeutic target in AD. However, there are no drugs for AD treatment such as an NADPH oxidase inhibitor despite great efforts made to stabilize the ROS production using antioxidant molecules. So, in this work, we will focus our attention on NADPH oxidase (NOX2 and NOX4) in AD as well as in AD models and later discuss the use of NADPH oxidase inhibitor compounds in AD.
Collapse
Affiliation(s)
- Leticia Guadalupe Fragoso-Morales
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Mexico City 11340, Mexico;
| | - José Correa-Basurto
- Laboratorio de Diseño y Desarrollo de Nuevos Fármacos e Innovación Biotecnológica, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Mexico City 11340, Mexico;
| | - Martha Cecilia Rosales-Hernández
- Laboratorio de Biofísica y Biocatálisis, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón s/n, Mexico City 11340, Mexico;
- Correspondence: ; Tel.: +(55)-572-960-00 (ext. 62767 & 62809)
| |
Collapse
|
32
|
Vellino S, Oddou C, Rivier P, Boyault C, Hiriart-Bryant E, Kraut A, Martin R, Coute Y, Knölker HJ, Valverde MA, Albigès-Rizo C, Destaing O. Cross-talk between the calcium channel TRPV4 and reactive oxygen species interlocks adhesive and degradative functions of invadosomes. J Cell Biol 2021; 220:211651. [PMID: 33399853 PMCID: PMC7788461 DOI: 10.1083/jcb.201910079] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 07/23/2020] [Accepted: 11/13/2020] [Indexed: 02/06/2023] Open
Abstract
Invadosomes support cell invasion by coupling both acto-adhesive and extracellular matrix degradative functions, which are apparently antagonistic. β1-integrin dynamics regulate this coupling, but the actual sensing mechanism and effectors involved have not yet been elucidated. Using genetic and reverse genetic approaches combined with biochemical and imaging techniques, we now show that the calcium channel TRPV4 colocalizes with β1-integrins at the invadosome periphery and regulates its activation and the coupling of acto-adhesive and degradative functions. TRPV4-mediated regulation of podosome function depends on its ability to sense reactive oxygen species (ROS) in invadosomes' microenvironment and involves activation of the ROS/calcium-sensitive kinase Ask1 and binding of the motor MYO1C. Furthermore, disease-associated TRPV4 gain-of-function mutations that modulate ECM degradation are also implicated in the ROS response, which provides new perspectives in our understanding of the pathophysiology of TRPV4 channelopathies.
Collapse
Affiliation(s)
- Sanela Vellino
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Christiane Oddou
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Paul Rivier
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Cyril Boyault
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Edwige Hiriart-Bryant
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Alexandra Kraut
- Laboratoire EDyP, Institute of Biosciences and Biotechnologies of Grenoble-Biologie à Grande Echelle, Commissariat à l'Énergie Atomique Grenoble, Grenoble, France
| | - René Martin
- Faculty of Chemistry, Technische Universität Dresden, Dresden, Germany
| | - Yohann Coute
- Laboratoire EDyP, Institute of Biosciences and Biotechnologies of Grenoble-Biologie à Grande Echelle, Commissariat à l'Énergie Atomique Grenoble, Grenoble, France
| | | | - Miguel A. Valverde
- Laboratory of Molecular Physiology, Department of Experimental and Health Sciences, Universitat Pompeu Fabra, Barcelona, Spain
| | - Corinne Albigès-Rizo
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France
| | - Olivier Destaing
- Dynamique des systèmes d'adhérence, Institut for Advanced Biosciences, Centre de Recherche University Grenoble Alpes/INSERM U1209/Centre National de la Recherche Scientifique Unité mixte de recherche 5309, La Tronche, France,Correspondence to Olivier Destaing:
| |
Collapse
|
33
|
Advances in Understanding TKS4 and TKS5: Molecular Scaffolds Regulating Cellular Processes from Podosome and Invadopodium Formation to Differentiation and Tissue Homeostasis. Int J Mol Sci 2020; 21:ijms21218117. [PMID: 33143131 PMCID: PMC7663256 DOI: 10.3390/ijms21218117] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 10/26/2020] [Accepted: 10/27/2020] [Indexed: 02/07/2023] Open
Abstract
Scaffold proteins are typically thought of as multi-domain "bridging molecules." They serve as crucial regulators of key signaling events by simultaneously binding multiple participants involved in specific signaling pathways. In the case of epidermal growth factor (EGF)-epidermal growth factor receptor (EGFR) binding, the activated EGFR contacts cytosolic SRC tyrosine-kinase, which then becomes activated. This process leads to the phosphorylation of SRC-substrates, including the tyrosine kinase substrates (TKS) scaffold proteins. The TKS proteins serve as a platform for the recruitment of key players in EGFR signal transduction, promoting cell spreading and migration. The TKS4 and the TKS5 scaffold proteins are tyrosine kinase substrates with four or five SH3 domains, respectively. Their structural features allow them to recruit and bind a variety of signaling proteins and to anchor them to the cytoplasmic surface of the cell membrane. Until recently, TKS4 and TKS5 had been recognized for their involvement in cellular motility, reactive oxygen species-dependent processes, and embryonic development, among others. However, a number of novel functions have been discovered for these molecules in recent years. In this review, we attempt to cover the diverse nature of the TKS molecules by discussing their structure, regulation by SRC kinase, relevant signaling pathways, and interaction partners, as well as their involvement in cellular processes, including migration, invasion, differentiation, and adipose tissue and bone homeostasis. We also describe related pathologies and the established mouse models.
Collapse
|
34
|
Iizuka S, Leon RP, Gribbin KP, Zhang Y, Navarro J, Smith R, Devlin K, Wang LG, Gibbs SL, Korkola J, Nan X, Courtneidge SA. Crosstalk between invadopodia and the extracellular matrix. Eur J Cell Biol 2020; 99:151122. [PMID: 33070041 DOI: 10.1016/j.ejcb.2020.151122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 07/24/2020] [Accepted: 08/12/2020] [Indexed: 12/27/2022] Open
Abstract
The scaffold protein Tks5α is required for invadopodia-mediated cancer invasion both in vitro and in vivo. We have previously also revealed a role for Tks5 in tumor cell growth using three-dimensional (3D) culture model systems and mouse transplantation experiments. Here we use both 3D and high-density fibrillar collagen (HDFC) culture to demonstrate that native collagen-I, but not a form lacking the telopeptides, stimulated Tks5-dependent growth, which was dependent on the DDR collagen receptors. We used microenvironmental microarray (MEMA) technology to determine that laminin, fibronectin and tropoelastin also stimulated invadopodia formation. A Tks5α-specific monoclonal antibody revealed its expression both on microtubules and at invadopodia. High- and super-resolution microscopy of cells in and on collagen was then used to place Tks5α at the base of invadopodia, separated from much of the actin and cortactin, but coincident with both matrix metalloprotease and cathepsin proteolytic activity. Inhibition of the Src family kinases, cathepsins or metalloproteases all reduced invadopodia length but each had distinct effects on Tks5α localization. These studies highlight the crosstalk between invadopodia and extracellular matrix components, and reveal the invadopodium to be a spatially complex structure.
Collapse
Affiliation(s)
- Shinji Iizuka
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA.
| | - Ronald P Leon
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Kyle P Gribbin
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Ying Zhang
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Jose Navarro
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA
| | - Rebecca Smith
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Kaylyn Devlin
- Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Lei G Wang
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA
| | - Summer L Gibbs
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - James Korkola
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Xiaolin Nan
- Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA
| | - Sara A Courtneidge
- Departments of Cell, Developmental and Cancer Biology, Oregon Health and Science University, Portland, Oregon, USA; Biomedical Engineering, Oregon Health and Science University, Portland, Oregon, USA; Knight Cancer Institute, Oregon Health and Science University, Portland, Oregon, USA.
| |
Collapse
|
35
|
Escoll M, Lastra D, Robledinos-Antón N, Wandosell F, Antón IM, Cuadrado A. WIP Modulates Oxidative Stress through NRF2/KEAP1 in Glioblastoma Cells. Antioxidants (Basel) 2020; 9:E773. [PMID: 32825452 PMCID: PMC7555221 DOI: 10.3390/antiox9090773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 08/17/2020] [Accepted: 08/17/2020] [Indexed: 12/20/2022] Open
Abstract
Due to their high metabolic rate, tumor cells produce exacerbated levels of reactive oxygen species that need to be under control. Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) is a scaffold protein with multiple yet poorly understood functions that participates in tumor progression and promotes cancer cell survival. However, its participation in the control of oxidative stress has not been addressed yet. We show that WIP depletion increases the levels of reactive oxygen species and reduces the levels of transcription factor NRF2, the master regulator of redox homeostasis. We found that WIP stabilizes NRF2 by restraining the activity of its main NRF2 repressor, the E3 ligase adapter KEAP1, because the overexpression of a NRF2ΔETGE mutant that is resistant to targeted proteasome degradation by KEAP1 or the knock-down of KEAP1 maintains NRF2 levels in the absence of WIP. Mechanistically, we show that the increased KEAP1 activity in WIP-depleted cells is not due to the protection of KEAP1 from autophagic degradation, but is dependent on the organization of the Actin cytoskeleton, probably through binding between KEAP1 and F-Actin. Our study provides a new role of WIP in maintaining the oxidant tolerance of cancer cells that may have therapeutic implications.
Collapse
Affiliation(s)
- Maribel Escoll
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| | - Diego Lastra
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| | - Natalia Robledinos-Antón
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| | - Francisco Wandosell
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
- Centro de Biología Molecular Severo Ochoa (CSIC-UAM), Universidad Autónoma Madrid, Nicolás Cabrera 1, 28049 Madrid, Spain
| | - Inés María Antón
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
- Centro Nacional de Biotecnología (CNB-CSIC), Department of Cellular and Molecular Biology, Darwin 3, 28049 Madrid, Spain
| | - Antonio Cuadrado
- Department of Biochemistry, Medical College, Autonomous University of Madrid (UAM), Arzobispo Morcillo 4, 28029 Madrid, Spain; (M.E.); (D.L.); (N.R.-A.)
- Instituto de Investigaciones Biomédicas Alberto Sols (CSIC-UAM), Arturo Duperier 4, 28029 Madrid, Spain
- Instituto de Investigación Sanitaria La Paz (IdiPaz), Pedro Rico 6, 28029 Madrid, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Valderrebollo 5, 28049 Madrid, Spain; (F.W.); (I.M.A.)
| |
Collapse
|
36
|
Augoff K, Hryniewicz-Jankowska A, Tabola R. Invadopodia: clearing the way for cancer cell invasion. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:902. [PMID: 32793746 DOI: 10.21037/atm.2020.02.157] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The invasive nature of many cancer cells involves the formation of F-actin-based, lipid-raft-enriched membrane protrusions known as invadopodia or, more broadly, invadosomes. Invadopodia are specialized adhesive structures arising from ventral cell surface within cell-extracellular matrix (ECM) contacts and concentrate high proteolytic activities that allow cells to overcome the dense scaffold of local microenvironment, comprising a natural barrier to cell spreading. This degradative activity distinguishes invadopodia from other adhesive structures like focal adhesions, lamellipodia or filopodia, and is believed to drive cancer progression.
Collapse
Affiliation(s)
- Katarzyna Augoff
- Department of Surgical Education, Wroclaw Medical University, Wroclaw, Poland
| | | | - Renata Tabola
- Second Department and Clinic of General and Oncological Surgery, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
37
|
Narayanan D, Ma S, Özcelik D. Targeting the Redox Landscape in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071706. [PMID: 32605023 PMCID: PMC7407119 DOI: 10.3390/cancers12071706] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are produced predominantly by the mitochondrial electron transport chain and by NADPH oxidases in peroxisomes and in the endoplasmic reticulum. The antioxidative defense counters overproduction of ROS with detoxifying enzymes and molecular scavengers, for instance, superoxide dismutase and glutathione, in order to restore redox homeostasis. Mutations in the redox landscape can induce carcinogenesis, whereas increased ROS production can perpetuate cancer development. Moreover, cancer cells can increase production of antioxidants, leading to resistance against chemo- or radiotherapy. Research has been developing pharmaceuticals to target the redox landscape in cancer. For instance, inhibition of key players in the redox landscape aims to modulate ROS production in order to prevent tumor development or to sensitize cancer cells in radiotherapy. Besides the redox landscape of a single cell, alternative strategies take aim at the multi-cellular level. Extracellular vesicles, such as exosomes, are crucial for the development of the hypoxic tumor microenvironment, and hence are explored as target and as drug delivery systems in cancer therapy. This review summarizes the current pharmaceutical and experimental interventions of the cancer redox landscape.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Sana Ma
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Dennis Özcelik
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
- current address: Chemistry | Biology | Pharmacy Information Center, ETH Zürich, Vladimir-Prelog-Weg 10, 8093 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
38
|
Du WW, Yang W, Li X, Fang L, Wu N, Li F, Chen Y, He Q, Liu E, Yang Z, Awan FM, Liu M, Yang BB. The Circular RNA circSKA3 Binds Integrin β1 to Induce Invadopodium Formation Enhancing Breast Cancer Invasion. Mol Ther 2020; 28:1287-1298. [PMID: 32229309 PMCID: PMC7210749 DOI: 10.1016/j.ymthe.2020.03.002] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/14/2020] [Accepted: 03/05/2020] [Indexed: 02/08/2023] Open
Abstract
Metastatic cancer cells invade surrounding tissues by forming dynamic actin-based invadopodia, which degrade the surrounding extracellular matrix and allow cancer cell invasion. Regulatory RNAs, including circular RNA, have been implicated in this process. By microarray, we found that the circular RNA circSKA3 was highly expressed in breast cancer cells and human breast cancer tissues. We further found that the invasive capacity of breast cancer cells was positively correlated with circSKA3 expression, through the formation of invadopodia. Mechanistically, we identified Tks5 and integrin β1 as circSKA3 binding partners in these tumor-derived invadopodia. Ectopic circSKA3 expression conferred increased tumor invasiveness in vitro and in vivo. We further identified the RNA-protein binding sites between circSKA3, Tks5 and integrin β1. In tumor formation assays, we found that circSKA3 expression promoted tumor progression and invadopodium formation. Mutation of the circSKA3 binding sites or transfection with blocking oligos abrogated the observed effects. Thus, we provide evidence that the circular RNA circSKA3 promotes tumor progression by complexing with Tks5 and integrin β1, inducing invadopodium formation.
Collapse
Affiliation(s)
- William W Du
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Weining Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Xiangmin Li
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Ling Fang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; China-Japan Union Hospital of Jilin University, Jilin, China
| | - Nan Wu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Feiya Li
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Yu Chen
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Qihan He
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Elizabeth Liu
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Zhenguo Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Faryal Mehwish Awan
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Institute of Molecular Biology and Biotechnology, The University of Lahore, Lahore, Pakistan
| | - Mingyao Liu
- Institutes of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Burton B Yang
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada; Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada; Institutes of Medical Science, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
39
|
Thuault S, Mamelonet C, Salameh J, Ostacolo K, Chanez B, Salaün D, Baudelet E, Audebert S, Camoin L, Badache A. A proximity-labeling proteomic approach to investigate invadopodia molecular landscape in breast cancer cells. Sci Rep 2020; 10:6787. [PMID: 32321993 PMCID: PMC7176661 DOI: 10.1038/s41598-020-63926-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 04/06/2020] [Indexed: 12/27/2022] Open
Abstract
Metastatic progression is the leading cause of mortality in breast cancer. Invasive tumor cells develop invadopodia to travel through basement membranes and the interstitial matrix. Substantial efforts have been made to characterize invadopodia molecular composition. However, their full molecular identity is still missing due to the difficulty in isolating them. To fill this gap, we developed a non-hypothesis driven proteomic approach based on the BioID proximity biotinylation technology, using the invadopodia-specific protein Tks5α fused to the promiscuous biotin ligase BirA* as bait. In invasive breast cancer cells, Tks5α fusion concentrated to invadopodia and selectively biotinylated invadopodia components, in contrast to a fusion which lacked the membrane-targeting PX domain (Tks5β). Biotinylated proteins were isolated by affinity capture and identified by mass spectrometry. We identified known invadopodia components, revealing the pertinence of our strategy. Furthermore, we observed that Tks5 newly identified close neighbors belonged to a biologically relevant network centered on actin cytoskeleton organization. Analysis of Tks5β interactome demonstrated that some partners bound Tks5 before its recruitment to invadopodia. Thus, the present strategy allowed us to identify novel Tks5 partners that were not identified by traditional approaches and could help get a more comprehensive picture of invadopodia molecular landscape.
Collapse
Affiliation(s)
- Sylvie Thuault
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France.
| | - Claire Mamelonet
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France
| | - Joëlle Salameh
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France.,INSERM UMR-S 1193, Univ. Paris-Sud, Université Paris-Saclay, Châtenay-Malabry, France
| | - Kevin Ostacolo
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France.,Department of Biochemistry and Molecular Biology, Biomedical Center, Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Brice Chanez
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France.,Institut Paoli-Calmettes, Department of Medical Oncology, Marseille, France
| | - Danièle Salaün
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France
| | - Emilie Baudelet
- CRCM, Marseille Proteomics, Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Stéphane Audebert
- CRCM, Marseille Proteomics, Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Luc Camoin
- CRCM, Marseille Proteomics, Aix-Marseille Univ, INSERM, CNRS, Institut Paoli-Calmettes, Marseille, France
| | - Ali Badache
- Centre de Recherche en Cancérologie de Marseille (CRCM), Aix-Marseille Univ, INSERM, Institut Paoli-Calmettes, CNRS, Marseille, France
| |
Collapse
|
40
|
Daly C, Logan B, Breeyear J, Whitaker K, Ahmed M, Seals DF. Tks5 SH3 domains exhibit differential effects on invadopodia development. PLoS One 2020; 15:e0227855. [PMID: 31999741 PMCID: PMC6991978 DOI: 10.1371/journal.pone.0227855] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 12/31/2019] [Indexed: 11/23/2022] Open
Abstract
The Src substrate Tks5 helps scaffold matrix-remodeling invadopodia in invasive cancer cells. Focus was directed here on how the five SH3 domains of Tks5 impact that activity. Mutations designed to inhibit protein-protein interactions were created in the individual SH3 domains of Tks5, and the constructs were introduced into the LNCaP prostate carcinoma cell line, a model system with intrinsically low Tks5 expression and which our lab had previously showed the dependence of Src-dependent Tks5 phosphorylation on invadopodia development. In LNCaP cells, acute increases in wild-type Tks5 led to increased gelatin matrix degradation. A similar result was observed when Tks5 was mutated in its 4th or 5th SH3 domains. This was in contrast to the 1st, 2nd, and 3rd SH3 domain mutations of Tks5 where each had a remarkable accentuating effect on gelatin degradation. Conversely, in the invadopodia-competent Src-3T3 model system, mutations in any one of the first three SH3 domains had a dominant negative effect that largely eliminated the presence of invadopodia, inhibited gelatin degradation activity, and redistributed both Src, cortactin, and Tks5 to what are likely endosomal compartments. A hypothesis involving Tks5 conformational states and the regulation of endosomal trafficking is presented as an explanation for these seemingly disparate results.
Collapse
Affiliation(s)
- Christina Daly
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Brewer Logan
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Joseph Breeyear
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Kelley Whitaker
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Maryam Ahmed
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| | - Darren F Seals
- Department of Biology, Appalachian State University, Boone, North Carolina, United States of America
| |
Collapse
|
41
|
Liu G, Bao Y, Liu C, Zhu Q, Zhao L, Lu X, Zhu Q, Lv Y, Bai F, Wen H, Sun Y, Zhu WG. IKKε phosphorylates kindlin-2 to induce invadopodia formation and promote colorectal cancer metastasis. Theranostics 2020; 10:2358-2373. [PMID: 32104508 PMCID: PMC7019159 DOI: 10.7150/thno.40397] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 12/30/2019] [Indexed: 12/24/2022] Open
Abstract
Invadopodia formation is a key driver of cancer metastasis. The noncanonical IkB-related kinase IKKε has been implicated in cancer metastasis, but its roles in invadopodia formation and colorectal cancer (CRC) metastasis are unclear. Methods: Immunofluorescence, gelatin-degradation assay, wound healing assay and transwell invasion assay were used to determine the influence of IKKε over-expression, knockdown and pharmacological inhibition on invadopodia formation and the migratory and invasive capacity of CRC cells in vitro. Effects of IKKε knockdown or pharmacological inhibition on CRC metastasis were examined in mice. Immunohistochemistry staining was used to detect expression levels of IKKε in CRC patient tissues, and its association with prognosis in CRC patients was also analyzed. Immunoprecipitation, western blotting and in vitro kinase assay were constructed to investigate the molecular mechanisms. Results: IKKε co-localizes with F-actin and the invadopodia marker Tks5 at the gelatin-degrading sites of CRC cells. Genetic over-expression/knockdown or pharmacological inhibition of IKKε altered invadopodia formation and the migratory and invasive capacity of CRC cells in vitro. In vivo, knockdown or pharmacological inhibition of IKKε significantly suppressed metastasis of CRC cells in mice. IKKε knockdown also inhibited invadopodia formation in vivo. Clinical investigation of tumor specimens from 191 patients with CRC revealed that high IKKε expression correlates with metastasis and poor prognosis of CRC. Mechanistically, IKKε directly binds to and phosphorylates kindlin-2 at serine 159; this effect mediates the IKKε-induced invadopodia formation and promotion of CRC metastasis. Conclusions: We identify IKKε as a novel regulator of invadopodia formation and a unique mechanism by which IKKε promotes the metastasis of CRC. Our study suggests that IKKε is a potential target to suppress CRC metastasis.
Collapse
|
42
|
Bayarmagnai B, Perrin L, Esmaeili Pourfarhangi K, Graña X, Tüzel E, Gligorijevic B. Invadopodia-mediated ECM degradation is enhanced in the G1 phase of the cell cycle. J Cell Sci 2019; 132:jcs.227116. [PMID: 31533971 DOI: 10.1242/jcs.227116] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Accepted: 09/10/2019] [Indexed: 12/16/2022] Open
Abstract
The process of tumor cell invasion and metastasis includes assembly of invadopodia, protrusions capable of degrading the extracellular matrix (ECM). The effect of cell cycle progression on invadopodia has not been elucidated. In this study, by using invadopodia and cell cycle fluorescent markers, we show in 2D and 3D cultures, as well as in vivo, that breast carcinoma cells assemble invadopodia and invade into the surrounding ECM preferentially during the G1 phase. The expression (MT1-MMP, also known as MMP14, and cortactin) and localization (Tks5; also known as SH3PXD2A) of invadopodia components are elevated in G1 phase, and cells synchronized in G1 phase exhibit significantly higher ECM degradation compared to the cells synchronized in S phase. The cyclin-dependent kinase inhibitor (CKI) p27kip1 (also known as CDKN1B) localizes to the sites of invadopodia assembly. Overexpression and stable knockdown of p27kip1 lead to contrasting effects on invadopodia turnover and ECM degradation. Taken together, these findings suggest that expression of invadopodia components, as well as invadopodia function, are linked to cell cycle progression, and that invadopodia are controlled by cell cycle regulators. Our results caution that this coordination between invasion and cell cycle must be considered when designing effective chemotherapies.
Collapse
Affiliation(s)
- Battuya Bayarmagnai
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Louisiane Perrin
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | | | - Xavier Graña
- Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.,Fels Research Institute for Cancer Biology and Molecular Biology, Temple University School of Medicine, Philadelphia, PA 19140, USA
| | - Erkan Tüzel
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA
| | - Bojana Gligorijevic
- Department of Bioengineering, Temple University, Philadelphia, PA 19122, USA .,Cancer Biology Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| |
Collapse
|
43
|
Targeting Reactive Oxygen Species in Cancer via Chinese Herbal Medicine. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:9240426. [PMID: 31583051 PMCID: PMC6754955 DOI: 10.1155/2019/9240426] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/05/2019] [Accepted: 08/23/2019] [Indexed: 02/08/2023]
Abstract
Recently, reactive oxygen species (ROS), a class of highly bioactive molecules, have been extensively studied in cancers. Cancer cells typically exhibit higher levels of basal ROS than normal cells, primarily due to their increased metabolism, oncogene activation, and mitochondrial dysfunction. This moderate increase in ROS levels facilitates cancer initiation, development, and progression; however, excessive ROS concentrations can lead to various types of cell death. Therefore, therapeutic strategies that either increase intracellular ROS to toxic levels or, conversely, decrease the levels of ROS may be effective in treating cancers via ROS regulation. Chinese herbal medicine (CHM) is a major type of natural medicine and has greatly contributed to human health. CHMs have been increasingly used for adjuvant clinical treatment of tumors. Although their mechanism of action is unclear, CHMs can execute a variety of anticancer effects by regulating intracellular ROS. In this review, we summarize the dual roles of ROS in cancers, present a comprehensive analysis of and update the role of CHM—especially its active compounds and ingredients—in the prevention and treatment of cancers via ROS regulation and emphasize precautions and strategies for the use of CHM in future research and clinical trials.
Collapse
|
44
|
Meitzler JL, Konaté MM, Doroshow JH. Hydrogen peroxide-producing NADPH oxidases and the promotion of migratory phenotypes in cancer. Arch Biochem Biophys 2019; 675:108076. [PMID: 31415727 DOI: 10.1016/j.abb.2019.108076] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 08/08/2019] [Accepted: 08/10/2019] [Indexed: 01/03/2023]
Abstract
The cellular microenvironment plays a critical role in cancer initiation and progression. Exposure to oxidative stress, specifically hydrogen peroxide (H2O2), has been linked to aberrant cellular signaling through which the development of cancer may be promoted. Three members of the NADPH oxidase family (NOX4, DUOX1 and DUOX2) explicitly generate this non-radical oxidant in a wide range of tissues, often in support of the inflammatory response. This review summarizes the contributions of each H2O2-producing NOX to the invasive behaviors of tumors and/or the epithelial-mesenchymal transition (EMT) in cancer that plays an essential role in metastasis. Tissue localization in tumorigenesis is also highlighted, with patient-derived TCGA microarray data profiled across 31 cancer cohorts to provide a comprehensive guide to the relevance of NOX4/DUOX1/DUOX2 in cancer studies.
Collapse
Affiliation(s)
- Jennifer L Meitzler
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA.
| | - Mariam M Konaté
- Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - James H Doroshow
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA; Division of Cancer Treatment and Diagnosis, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| |
Collapse
|
45
|
Purohit V, Simeone DM, Lyssiotis CA. Metabolic Regulation of Redox Balance in Cancer. Cancers (Basel) 2019; 11:cancers11070955. [PMID: 31288436 PMCID: PMC6678865 DOI: 10.3390/cancers11070955] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/01/2019] [Accepted: 07/02/2019] [Indexed: 12/13/2022] Open
Abstract
Reactive oxygen species (ROS) are chemically active free radicals produced by partial reduction of oxygen that can activate discrete signaling pathways or disrupt redox homeostasis depending on their concentration. ROS interacts with biomolecules, including DNA, and can cause mutations that can transform normal cells into cancer cells. Furthermore, certain cancer-causing mutations trigger alterations in cellular metabolism that can increase ROS production, resulting in genomic instability, additional DNA mutations, and tumor evolution. To prevent excess ROS-mediated toxicity, cancer-causing mutations concurrently activate pathways that manage this oxidative burden. Hence, an understanding of the metabolic pathways that regulate ROS levels is imperative for devising therapies that target tumor cells. In this review, we summarize the dual role of metabolism as a generator and inhibitor of ROS in cancer and discuss current strategies to target the ROS axis.
Collapse
Affiliation(s)
- Vinee Purohit
- Perlmutter Cancer Center, New York University, New York, NY 10016, USA
| | - Diane M Simeone
- Perlmutter Cancer Center, New York University, New York, NY 10016, USA
- Department of Surgery, New York University, New York, NY 10016, USA
- Department of Pathology, New York University, New York, NY 10016, USA
| | - Costas A Lyssiotis
- Departments of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, MI 48109, USA.
- Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA.
- Rogel Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
46
|
Caires-Dos-Santos L, da Silva SV, Smuczek B, de Siqueira AS, Cruz KSP, Barbuto JAM, Augusto TM, Freitas VM, Carvalho HF, Jaeger RG. Laminin-derived peptide C16 regulates Tks expression and reactive oxygen species generation in human prostate cancer cells. J Cell Physiol 2019; 235:587-598. [PMID: 31254281 DOI: 10.1002/jcp.28997] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 06/01/2019] [Accepted: 06/04/2019] [Indexed: 01/05/2023]
Abstract
Laminin peptides influence cancer biology. We investigated the role of a laminin-derived peptide C16 regulating invadopodia molecules in human prostate cancer cells (DU145). C16 augmented invadopodia activity of DU145 cells, and stimulated expression Tks4, Tks5, cortactin, and membrane-type matrix metalloproteinase 1. Reactive oxygen species generation is also related to invadopodia formation. This prompted us to address whether C16 would induce reactive oxygen species generation in DU145 cells. Quantitative fluorescence and flow cytometry showed that the peptide C16 increased reactive oxygen species in DU145 cells. Furthermore, significant colocalization between Tks5 and reactive oxygen species was observed in C16-treated cells. Results suggested that the peptide C16 increased Tks5 and reactive oxygen species in prostate cancer cells. The role of C16 increasing Tks and reactive oxygen species are novel findings on invadopodia activity.
Collapse
Affiliation(s)
- Livia Caires-Dos-Santos
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Suély V da Silva
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | - Basilio Smuczek
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,Department of Biology, UNICENTRO State University, Guarapuava, PR, Brazil
| | - Adriane S de Siqueira
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil.,School of Dentistry, Positivo University, Curitiba, PR, Brazil
| | - Karen S P Cruz
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil.,Cell Biology Laboratory, Institute of Health and Biological Sciences, Federal University of Alagoas, Maceio, AL, Brazil.,Faculty of Nutrition, Federal University of Alagoas, Maceio, AL, Brazil
| | - José Alexandre M Barbuto
- Department of Immunology, Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, SP, Brazil
| | - Taize M Augusto
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP, Brazil.,Department of Morphology and Basic Pathology, School of Medicine of Jundiai, Jundiai, SP, Brazil
| | - Vanessa M Freitas
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| | | | - Ruy G Jaeger
- Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, SP, Brazil
| |
Collapse
|
47
|
Peláez R, Pariente A, Pérez-Sala Á, Larrayoz IM. Integrins: Moonlighting Proteins in Invadosome Formation. Cancers (Basel) 2019; 11:cancers11050615. [PMID: 31052560 PMCID: PMC6562994 DOI: 10.3390/cancers11050615] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 12/24/2022] Open
Abstract
Invadopodia are actin-rich protrusions developed by transformed cells in 2D/3D environments that are implicated in extracellular matrix (ECM) remodeling and degradation. These structures have an undoubted association with cancer invasion and metastasis because invadopodium formation in vivo is a key step for intra/extravasation of tumor cells. Invadopodia are closely related to other actin-rich structures known as podosomes, which are typical structures of normal cells necessary for different physiological processes during development and organogenesis. Invadopodia and podosomes are included in the general term 'invadosomes,' as they both appear as actin puncta on plasma membranes next to extracellular matrix metalloproteinases, although organization, regulation, and function are slightly different. Integrins are transmembrane proteins implicated in cell-cell and cell-matrix interactions and other important processes such as molecular signaling, mechano-transduction, and cell functions, e.g., adhesion, migration, or invasion. It is noteworthy that integrin expression is altered in many tumors, and other pathologies such as cardiovascular or immune dysfunctions. Over the last few years, growing evidence has suggested a role of integrins in the formation of invadopodia. However, their implication in invadopodia formation and adhesion to the ECM is still not well known. This review focuses on the role of integrins in invadopodium formation and provides a general overview of the involvement of these proteins in the mechanisms of metastasis, taking into account classic research through to the latest and most advanced work in the field.
Collapse
Affiliation(s)
- Rafael Peláez
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ana Pariente
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Álvaro Pérez-Sala
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| | - Ignacio M Larrayoz
- Biomarkers and Molecular Signaling Group, Neurodegenerative Diseases Area Center for Biomedical Research of La Rioja, CIBIR, c.p., 26006. Logroño, Spain.
| |
Collapse
|
48
|
Touyz RM, Anagnostopoulou A, Rios F, Montezano AC, Camargo LL. NOX5: Molecular biology and pathophysiology. Exp Physiol 2019; 104:605-616. [PMID: 30801870 PMCID: PMC6519284 DOI: 10.1113/ep086204] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 12/12/2022]
Abstract
NEW FINDINGS What is the topic of this review? This review provides a comprehensive overview of Nox5 from basic biology to human disease and highlights unique features of this Nox isoform What advances does it highlight? Major advances in Nox5 biology relate to crystallization of the molecule and new insights into the pathophysiological role of Nox5. Recent discoveries have unravelled the crystal structure of Nox5, the first Nox isoform to be crystalized. This provides new opportunities to develop drugs or small molecules targeted to Nox5 in an isoform-specific manner, possibly for therapeutic use. Moreover genome wide association studies (GWAS) identified Nox5 as a new blood pressure-associated gene and studies in mice expressing human Nox5 in a cell-specific manner have provided new information about the (patho) physiological role of Nox5 in the cardiovascular system and kidneys. Nox5 seems to be important in the regulation of vascular contraction and kidney function. In cardiovascular disease and diabetic nephropathy, Nox5 activity is increased and this is associated with increased production of reactive oxygen species and oxidative stress implicated in tissue damage. ABSTRACT Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (Nox), comprise seven family members (Nox1-Nox5 and dual oxidase 1 and 2) and are major producers of reactive oxygen species in mammalian cells. Reactive oxygen species are crucially involved in cell signalling and function. All Noxs share structural homology comprising six transmembrane domains with two haem-binding regions and an NADPH-binding region on the intracellular C-terminus, whereas their regulatory systems, mechanisms of activation and tissue distribution differ. This explains the diverse function of Noxs. Of the Noxs, NOX5 is unique in that rodents lack the gene, it is regulated by Ca2+ , it does not require NADPH oxidase subunits for its activation, and it is not glycosylated. NOX5 localizes in the perinuclear and endoplasmic reticulum regions of cells and traffics to the cell membrane upon activation. It is tightly regulated through numerous post-translational modifications and is activated by vasoactive agents, growth factors and pro-inflammatory cytokines. The exact pathophysiological significance of NOX5 remains unclear, but it seems to be important in the physiological regulation of sperm motility, vascular contraction and lymphocyte differentiation, and NOX5 hyperactivation has been implicated in cardiovascular disease, kidney injury and cancer. The field of NOX5 biology is still in its infancy, but with new insights into its biochemistry and cellular regulation, discovery of the NOX5 crystal structure and genome-wide association studies implicating NOX5 in disease, the time is now ripe to advance NOX5 research. This review provides a comprehensive overview of our current understanding of NOX5, from basic biology to human disease, and highlights the unique characteristics of this enigmatic Nox isoform.
Collapse
Affiliation(s)
- Rhian M. Touyz
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Aikaterini Anagnostopoulou
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Francisco Rios
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Augusto C. Montezano
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| | - Livia L. Camargo
- Institute of Cardiovascular and Medical SciencesBHF Glasgow Cardiovascular CentreUniversity of GlasgowGlasgowUK
| |
Collapse
|
49
|
Parascandolo A, Laukkanen MO. Carcinogenesis and Reactive Oxygen Species Signaling: Interaction of the NADPH Oxidase NOX1-5 and Superoxide Dismutase 1-3 Signal Transduction Pathways. Antioxid Redox Signal 2019; 30:443-486. [PMID: 29478325 PMCID: PMC6393772 DOI: 10.1089/ars.2017.7268] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 02/21/2018] [Accepted: 02/22/2018] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Reduction/oxidation (redox) balance could be defined as an even distribution of reduction and oxidation complementary processes and their reaction end products. There is a consensus that aberrant levels of reactive oxygen species (ROS), commonly observed in cancer, stimulate primary cell immortalization and progression of carcinogenesis. However, the mechanism how different ROS regulate redox balance is not completely understood. Recent Advances: In the current review, we have summarized the main signaling cascades inducing NADPH oxidase NOX1-5 and superoxide dismutase (SOD) 1-3 expression and their connection to cell proliferation, immortalization, transformation, and CD34+ cell differentiation in thyroid, colon, lung, breast, and hematological cancers. CRITICAL ISSUES Interestingly, many of the signaling pathways activating redox enzymes or mediating the effect of ROS are common, such as pathways initiated from G protein-coupled receptors and tyrosine kinase receptors involving protein kinase A, phospholipase C, calcium, and small GTPase signaling molecules. FUTURE DIRECTIONS The clarification of interaction of signal transduction pathways could explain how cells regulate redox balance and may even provide means to inhibit the accumulation of harmful levels of ROS in human pathologies.
Collapse
|
50
|
Abstract
SIGNIFICANCE G protein-coupled receptors (GPCR) are the largest group of cell surface receptors, which link cells to their environment. Reactive oxygen species (ROS) can act as important cellular signaling molecules. The family of NADPH oxidases generates ROS in response to activated cell surface receptors. Recent Advances: Various signaling pathways linking GPCRs and activation of NADPH oxidases have been characterized. CRITICAL ISSUES Still, a more detailed analysis of G proteins involved in the GPCR-mediated activation of NADPH oxidases is needed. In addition, a more precise discrimination of NADPH oxidase activation due to either upregulation of subunit expression or post-translational subunit modifications is needed. Also, the role of noncanonical modulators of NADPH oxidase activation in the response to GPCRs awaits further analyses. FUTURE DIRECTIONS As GPCRs are one of the most popular classes of investigational drug targets, further detailing of G protein-coupled mechanisms in the activation mechanism of NADPH oxidases as well as better understanding of the link between newly identified NADPH oxidase interaction partners and GPCR signaling will provide new opportunities for improved efficiency and decreased off target effects of therapies targeting GPCRs.
Collapse
Affiliation(s)
- Andreas Petry
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich , TU Munich, Munich, Germany
| | - Agnes Görlach
- 1 Experimental and Molecular Pediatric Cardiology, German Heart Center Munich , TU Munich, Munich, Germany .,2 DZHK (German Centre for Cardiovascular Research) , Partner Site Munich, Munich Heart Alliance, Munich, Germany
| |
Collapse
|