1
|
Tayama Y, Mizukami S, Toume K, Komatsu K, Yanagi T, Nara T, Tieu P, Huy NT, Hamano S, Hirayama K. Anti-Trypanosoma cruzi activity of Coptis rhizome extract and its constituents. Trop Med Health 2023; 51:12. [PMID: 36859380 PMCID: PMC9976467 DOI: 10.1186/s41182-023-00502-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/09/2023] [Indexed: 03/03/2023] Open
Abstract
BACKGROUND Current therapeutic agents, including nifurtimox and benznidazole, are not sufficiently effective in the chronic phase of Trypanosoma cruzi infection and are accompanied by various side effects. In this study, 120 kinds of extracts from medicinal herbs used for Kampo formulations and 94 kinds of compounds isolated from medicinal herbs for Kampo formulations were screened for anti-T. cruzi activity in vitro and in vivo. METHODS As an experimental method, a recombinant protozoan cloned strain expressing luciferase, namely Luc2-Tulahuen, was used in the experiments. The in vitro anti-T. cruzi activity on epimastigote, trypomastigote, and amastigote forms was assessed by measuring luminescence intensity after treatment with the Kampo extracts or compounds. In addition, the cytotoxicity of compounds was tested using mouse and human feeder cell lines. The in vivo anti-T. cruzi activity was measured by a murine acute infection model using intraperitoneal injection of trypomastigotes followed by live bioluminescence imaging. RESULTS As a result, three protoberberine-type alkaloids, namely coptisine chloride, dehydrocorydaline nitrate, and palmatine chloride, showed strong anti-T. cruzi activities with low cytotoxicity. The IC50 values of these compounds differed depending on the side chain, and the most effective compound, coptisine chloride, showed a significant effect in the acute infection model. CONCLUSIONS For these reasons, coptisine chloride is a hit compound that can be a potential candidate for anti-Chagas disease drugs. In addition, it was expected that there would be room for further improvement by modifying the side chains of the basic skeleton.
Collapse
Affiliation(s)
- Yuki Tayama
- grid.174567.60000 0000 8902 2273Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan
| | - Shusaku Mizukami
- grid.174567.60000 0000 8902 2273Department of Immune Regulation, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan ,grid.174567.60000 0000 8902 2273School of Tropical Medicines and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Kazufumi Toume
- grid.267346.20000 0001 2171 836XSection of Pharmacognosy, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Katsuko Komatsu
- grid.267346.20000 0001 2171 836XSection of Pharmacognosy, Institute of Natural Medicine, University of Toyama, Toyama, Japan
| | - Tetsuo Yanagi
- grid.174567.60000 0000 8902 2273NEKKEN Bio-Resource Center (NBRC), Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan ,grid.174567.60000 0000 8902 2273The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Takeshi Nara
- grid.411789.20000 0004 0371 1051Faculty of Pharmacy, Iryo Sosei University, Iwaki, Fukushima Japan
| | - Paul Tieu
- grid.25073.330000 0004 1936 8227Faculty of Health Sciences, McMaster University, Hamilton, ON Canada ,Online Research Club, Nagasaki, Japan
| | - Nguyen Tien Huy
- grid.174567.60000 0000 8902 2273Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273School of Tropical Medicines and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,Online Research Club, Nagasaki, Japan
| | - Shinjiro Hamano
- grid.174567.60000 0000 8902 2273Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523 Japan ,grid.174567.60000 0000 8902 2273Department of Parasitology, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, Japan ,grid.174567.60000 0000 8902 2273The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523 Japan
| | - Kenji Hirayama
- Department of Immunogenetics, Institute of Tropical Medicine (NEKKEN), Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,Graduate School of Biomedical Sciences, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,School of Tropical Medicines and Global Health, Nagasaki University, 1-12-4 Sakamoto, Nagasaki, 852-8523, Japan. .,The Joint Usage/Research Center On Tropical Disease, Institute of Tropical Medicine (NEKKEN), Nagasaki University, Nagasaki, 852-8523, Japan.
| |
Collapse
|
2
|
Kuniyori M, Sato N, Yokoyama N, Kawazu SI, Xuan X, Suzuki H, Fujisaki K, Umemiya-Shirafuji R. Vitellogenin-2 Accumulation in the Fat Body and Hemolymph of Babesia-Infected Haemaphysalis longicornis Ticks. Front Cell Infect Microbiol 2022; 12:908142. [PMID: 35800383 PMCID: PMC9253295 DOI: 10.3389/fcimb.2022.908142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/24/2022] [Indexed: 11/13/2022] Open
Abstract
The protozoan parasite Babesia spp. invades into tick oocytes and remains in the offspring. The transovarial transmission phenomenon of Babesia in ticks has been demonstrated experimentally, but the molecular mechanisms remain unclear. Babesia invasion into oocytes occurs along with the progression of oogenesis. In the present study, to find the key tick factor(s) for Babesia transmission, we focused on molecules involved in yolk protein precursor (vitellogenin, Vg) synthesis and Vg uptake, which are crucial events in tick oogenesis. With a Haemaphysalis longicornis tick–Babesia ovata experimental model, the expression profiles of Akt, target of rapamycin, S6K, GATA, and Vg, Vg synthesis-related genes, and Vg receptor (VgR) and autophagy-related gene 6 (ATG6), Vg uptake-related genes, were analyzed using real-time PCR using tissues collected during the preovipositional period in Babesia-infected ticks. The expression levels of H. longicornis Vg-2 (HlVg-2) and HlVg-3 decreased in the fat body of Babesia-infected ticks 1 day after engorgement. In the ovary, HlVg-2 mRNA expression was significantly higher in Babesia-infected ticks than in uninfected ticks 1 and 2 days after engorgement and decreased 3 days after engorgement. HlVgR expression was significantly lower in Babesia-infected ticks than in uninfected ticks 2 and 4 days after engorgement. HlATG6 had a lower gene expression in Babesia-infected ticks compared to uninfected ticks 2 days after engorgement. Additionally, western blot analysis using protein extracts from each collected tissue revealed that H. longicornis Vg-2 (HlVg-2) accumulate in the fat body and hemolymph of Babesia-infected ticks. These results suggest that Vg uptake from the hemolymph to the ovary was suppressed in the presence of B. ovata. Moreover, HlVg-2 knockdown ticks had a lower detection rate of B. ovata DNA in the ovary and a significant reduction of B. ovata DNA in the hemolymph compared with control ticks. Taken together, our results suggest that accumulated HlVg-2 is associated with Babesia infection or transmission in the tick body. These findings, besides previous reports on VgR, provide important information to elucidate the transovarial transmission mechanisms of pathogens in tick vectors.
Collapse
Affiliation(s)
- Maki Kuniyori
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Nariko Sato
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Naoaki Yokoyama
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Shin-ichiro Kawazu
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Xuenan Xuan
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Hiroshi Suzuki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
| | - Kozo Fujisaki
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- National Agricultural and Food Research Organization, Tsukuba, Japan
| | - Rika Umemiya-Shirafuji
- National Research Center for Protozoan Diseases, Obihiro University of Agriculture and Veterinary Medicine, Obihiro, Japan
- *Correspondence: Rika Umemiya-Shirafuji,
| |
Collapse
|
3
|
Bustamante C, Díez-Mejía AF, Arbeláez N, Soares MJ, Robledo SM, Ochoa R, Varela-M. RE, Marín-Villa M. In Silico, In Vitro, and Pharmacokinetic Studies of UBMC-4, a Potential Novel Compound for Treating against Trypanosoma cruzi. Pathogens 2022; 11:pathogens11060616. [PMID: 35745470 PMCID: PMC9229894 DOI: 10.3390/pathogens11060616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/18/2022] [Accepted: 05/21/2022] [Indexed: 12/10/2022] Open
Abstract
The lack of therapeutic alternatives for the treatment of Chagas disease, a neglected disease, drives the discovery of new drugs with trypanocidal activity. Consequently, we conducted in vitro studies using UBMC-4, a potential Trypanosoma cruzi AKT-like pleckstrin homology (PH) domain inhibitory compound found using bioinformatics tools. The half effective concentration (EC50) on intracellular amastigotes was determined at 1.85 ± 1 μM showing low cytotoxicity (LC50) > 40 μM on human cell lines tested. In order to study the lethal effect caused by the compound on epimastigotes, morphological changes were assessed by scanning and transmission electron microscopy. Progressive alterations such as flagellum inactivation, cell size reduction, nuclear structure alteration, condensation of chromatin towards the nuclear periphery, vacuole formation, and mitochondrial swelling with kinetoplast integrity loss were evidenced. In addition, apoptosis-like markers in T. cruzi were assessed by flow cytometry, demonstrating that the effect of UBMC-4 on T. cruzi AKT-like kinase reduced the tolerance to nutritional stress-triggered, apoptosis-like events, including DNA fragmentation, mitochondrial damage, and loss of plasma membrane integrity. After this, UBMC-4 was formulated for oral administration and pharmacokinetics were analyzed in a mouse model. Finally, upon oral administration of 200 mg/kg in mice, we found that a UBMC-4 plasma concentration remaining in circulation beyond 24 h after administration is well described by the two-compartment model. We conclude that UBMC-4 has an effective trypanocidal activity in vitro at low concentrations and this effect is evident in T. cruzi cell structures. In mice, UBMC-4 was well absorbed and reached plasma concentrations higher than the EC50, showing features that would aid in developing a new drug to treat Chagas disease.
Collapse
Affiliation(s)
- Christian Bustamante
- PECET-Programa de Estudio y Control de Enfermedades Tropicales, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia; (A.F.D.-M.); (N.A.); (S.M.R.)
- Correspondence: (C.B.); (M.M.-V.)
| | - Andrés Felipe Díez-Mejía
- PECET-Programa de Estudio y Control de Enfermedades Tropicales, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia; (A.F.D.-M.); (N.A.); (S.M.R.)
| | - Natalia Arbeláez
- PECET-Programa de Estudio y Control de Enfermedades Tropicales, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia; (A.F.D.-M.); (N.A.); (S.M.R.)
| | - Maurilio José Soares
- Cell Biology Laboratory, Carlos Chagas Institute/Fiocruz, Curitiba 81350-010, Paraná, Brazil;
| | - Sara M. Robledo
- PECET-Programa de Estudio y Control de Enfermedades Tropicales, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia; (A.F.D.-M.); (N.A.); (S.M.R.)
| | - Rodrigo Ochoa
- Biophysics of Tropical Diseases, Max Planck Tandem Group, Universidad de Antioquia, Medellín 050010, Colombia;
| | - Rubén E. Varela-M.
- Grupo (QUIBIO), School of Basic Sciences, Universidad Santiago de Cali, Cali 760032, Colombia;
| | - Marcel Marín-Villa
- PECET-Programa de Estudio y Control de Enfermedades Tropicales, School of Medicine, Universidad de Antioquia, Medellín 050010, Colombia; (A.F.D.-M.); (N.A.); (S.M.R.)
- Correspondence: (C.B.); (M.M.-V.)
| |
Collapse
|
4
|
Zhong Z, Wang J, He S, Su X, Huang W, Chen M, Zhuo Z, Zhu X, Fang M, Li T, Zhang S, Ge S, Zhang J, Xia N. An encodable multiplex microsphere-phase amplification sensing platform detects SARS-CoV-2 mutations. Biosens Bioelectron 2022; 203:114032. [PMID: 35131697 PMCID: PMC8802492 DOI: 10.1016/j.bios.2022.114032] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/20/2022] [Indexed: 12/11/2022]
Abstract
SARS-CoV-2 variants of concern (VOCs) contain several single-nucleotide variants (SNVs) at key sites in the receptor-binding region (RBD) that enhance infectivity and transmission, as well as cause immune escape, resulting in an aggravation of the coronavirus disease 2019 (COVID-19) pandemic. Emerging VOCs have sparked the need for a diagnostic method capable of simultaneously monitoring these SNVs. To date, no highly sensitive, efficient clinical tool exists to monitor SNVs simultaneously. Here, an encodable multiplex microsphere-phase amplification (MMPA) sensing platform that combines primer-coded microsphere technology with dual fluorescence decoding strategy to detect SARS-CoV-2 RNA and simultaneously identify 10 key SNVs in the RBD. MMPA limits the amplification refractory mutation system PCR (ARMS-PCR) reaction for specific target sequence to the surface of a microsphere with specific fluorescence coding. This effectively solves the problem of non-specific amplification among primers and probes in multiplex PCR. For signal detection, specific fluorescence codes inside microspheres are used to determine the corresponding relationship between the microspheres and the SNV sites, while the report probes hybridized with PCR products are used to detect the microsphere amplification intensity. The MMPA platform offers a lower SARS-CoV-2 RNA detection limit of 28 copies/reaction, the ability to detect a respiratory pathogen panel without cross-reactivity, and a SNV analysis accuracy level comparable to that of sequencing. Moreover, this super-multiple parallel SNVs detection method enables a timely updating of the panel of detected SNVs that accompanies changing VOCs, and presents a clinical availability that traditional sequencing methods do not.
Collapse
|
5
|
Disruption of Active Trans-Sialidase Genes Impairs Egress from Mammalian Host Cells and Generates Highly Attenuated Trypanosoma cruzi Parasites. mBio 2022; 13:e0347821. [PMID: 35073735 PMCID: PMC8787462 DOI: 10.1128/mbio.03478-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Trans-sialidases (TS) are unusual enzymes present on the surface of Trypanosoma cruzi, the causative agent of Chagas disease. Encoded by the largest gene family in the T. cruzi genome, only few members of the TS family have catalytic activity. Active trans-sialidases (aTS) are responsible for transferring sialic acid from host glycoconjugates to mucins, also present on the parasite surface. The existence of several copies of TS genes has impaired the use of reverse genetics to study this highly polymorphic gene family. Using CRISPR-Cas9, we generated aTS knockout cell lines displaying undetectable levels of TS activity, as shown by sialylation assays and labeling with antibodies that recognize sialic acid-containing mucins. In vitro infection assays showed that disruption of aTS genes does not affect the parasite's capacity to invade cells or to escape from the parasitophorous vacuole but resulted in impaired differentiation of amastigotes into trypomastigotes and parasite egress from the cell. When inoculated into mice, aTS mutants were unable to establish infection even in the highly susceptible gamma interferon (IFN-γ) knockout mice. Mice immunized with aTS mutants were fully protected against a challenge infection with the virulent T. cruzi Y strain. Altogether, our results confirmed the role of aTS as a T. cruzi virulence factor and indicated that aTS play a major role during the late stages of intracellular development and parasite egress. Notably, mutants lacking TS activity are completely avirulent in animal models of infection and may be used as a live attenuated vaccine against Chagas disease. IMPORTANCE Trypanosoma cruzi is the causative agent of Chagas disease, a neglected tropical disease that affects approximately 6 to 8 million people and for which there is no effective treatment or vaccine. The parasite expresses a family of surface proteins, named trans-sialidases, responsible for transferring sialic acid from host glycoconjugates to parasite mucins. Although recognized as a main virulence factor, the multiple roles of these proteins during infection have not yet been fully characterized, mainly because the presence of several copies of aTS genes has impaired their study using reverse genetics. By applying CRISPR-Cas9, we generated aTS knockout parasites and showed that, although aTS parasite mutants were able to infect cells in vitro, they have an impaired capacity to egress from the infected cell. Importantly, aTS mutants lost the ability to cause infection in vivo but provided full protection against a challenge infection with a virulent strain.
Collapse
|
6
|
Martinez SJ, Nardella GN, Rodríguez ME, Rivero CV, Agüero F, Romano PS. Biological features of TcM: A new Trypanosoma cruzi isolate from Argentina classified into TcV lineage. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100152. [PMID: 35909611 PMCID: PMC9325899 DOI: 10.1016/j.crmicr.2022.100152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
TcM is a new T. cruzi isolate that belongs to DTU TcV. TcV is a T. cruzi linage prevalent in human infections of Argentina. TcM is less virulent that TcY strain. TcM displays slow-growing rate and muscle tissue tropism. TcM is more susceptible to benznidazole than TcY.
Trypanosoma cruzi, the etiologic agent of Chagas disease (CD) presents a wide genetic and phenotypic diversity that is classified into seven lineages or discrete typing units (DTU: TcI to TcVI and Tcbat). Although isolates and strains that belong to a particular group can share some attributes, such as geographic distribution, others like growth rate, cell tropism, and response to treatment can be highly variable. In addition, studies that test new trypanocidal drugs are frequently conducted on T. cruzi strains maintained for a long time in axenic culture, resulting in changes in parasite virulence and other important features. This work aimed to isolate and characterize a new T. cruzi strain from a chronic Chagas disease patient. The behavior of this isolate was studied by using standard in vitro assays and in vivo mice infection tests and compared with the T. cruzi Y strain (TcY), broadly used in research laboratories worldwide. Data showed that TcM behaves as a slow-growing strain in vitro that develops chronic infections in mice and displays high tropism to muscular tissues, in accordance with its clinical performance. In contrast, the Y strain behaved as an acute strain that can infect different types of cells and tissues. Interestingly, TcM, which belongs to DTU TcV, is more susceptible to benznidazole than TcY, a TcII strain considered moderately resistant to this drug. These differential properties contribute to the characterization of a TcV strain, one of the main lineages in the southern countries of South America, and open the possibility to introduce changes that improve the management of Chagas patients in the future
Collapse
Affiliation(s)
- Santiago José Martinez
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Mendoza, Argentina
| | | | - Matías Exequiel Rodríguez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-CONICET-UNSAM), Buenos Aires, Argentina
| | - Cynthia Vanesa Rivero
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Mendoza, Argentina
| | - Fernán Agüero
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (IIB-CONICET-UNSAM), Buenos Aires, Argentina
| | - Patricia Silvia Romano
- Laboratorio de Biología de Trypanosoma cruzi y la célula hospedadora. Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Mendoza, Argentina
- Facultad de Ciencias Médicas. Universidad Nacional de Cuyo (FCM-UNCUYO), Mendoza, Argentina
- Corresponding author at: Instituto de Histología y Embriología, Universidad Nacional de Cuyo (IHEM-CONICET-UNCUYO), Casilla de Correo 56, Centro Universitario, Parque General San Martín, (5500) Mendoza, Argentina
| |
Collapse
|
7
|
Lafon-Hughes L, Fernández Villamil SH, Vilchez Larrea SC. Tankyrase inhibitors hinder Trypanosoma cruzi infection by altering host-cell signalling pathways. Parasitology 2021; 148:1680-1690. [PMID: 35060470 PMCID: PMC11010053 DOI: 10.1017/s0031182021001402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 06/25/2021] [Accepted: 07/28/2021] [Indexed: 11/06/2022]
Abstract
Chagas disease is a potentially life-threatening protozoan infection affecting around 8 million people, for which only chemotherapies with limited efficacy and severe adverse secondary effects are available. The aetiological agent, Trypanosoma cruzi, displays varied cell invading tactics and triggers different host cell signals, including the Wnt/β-catenin pathway. Poly(ADP-ribose) (PAR) can be synthetized by certain members of the poly(ADP-ribose) polymerase (PARP) family: PARP-1/-2 and Tankyrases-1/2 (TNKS). PAR homoeostasis participates in the host cell response to T. cruzi infection and TNKS are involved in Wnt signalling, among other pathways. Therefore, we hypothesized that TNKS inhibitors (TNKSi) could hamper T. cruzi infection. We showed that five TNKSi (FLALL9, MN64, XAV939, G007LK and OULL9) diminished T. cruzi infection of Vero cells. As most TNKSi did not affect the viability of axenically cultivated parasites, our results suggested that TNKSi were interfering with parasite–host cell signalling. Infection by T. cruzi induced nuclear translocation of β-catenin, as well as upregulation of TNF-α expression and secretion. These changes were hampered by TNKSi. Further signals should be monitored in this model and in vivo. As a TNKSi has entered cancer clinical trials with promising results, our findings encourage further studies aiming at drug repurposing strategies.
Collapse
Affiliation(s)
- Laura Lafon-Hughes
- Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- Grupo de Biofisicoquímica, Departamento de Ciencias Biológicas, Centro Universitario Regional Litoral Norte, Universidad de la República (CENUR-UdelaR), Salto, Uruguay
| | - Silvia H. Fernández Villamil
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ‘Dr. Héctor N. Torres’, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Química Biológica, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| | - Salomé C. Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular ‘Dr. Héctor N. Torres’, Consejo Nacional de Investigaciones Científicas y Técnicas, Ciudad Autónoma de Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Autónoma de Buenos Aires, Argentina
| |
Collapse
|
8
|
Nazareth L, St John J, Murtaza M, Ekberg J. Phagocytosis by Peripheral Glia: Importance for Nervous System Functions and Implications in Injury and Disease. Front Cell Dev Biol 2021; 9:660259. [PMID: 33898462 PMCID: PMC8060502 DOI: 10.3389/fcell.2021.660259] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/17/2021] [Indexed: 12/30/2022] Open
Abstract
The central nervous system (CNS) has very limited capacity to regenerate after traumatic injury or disease. In contrast, the peripheral nervous system (PNS) has far greater capacity for regeneration. This difference can be partly attributed to variances in glial-mediated functions, such as axon guidance, structural support, secretion of growth factors and phagocytic activity. Due to their growth-promoting characteristic, transplantation of PNS glia has been trialed for neural repair. After peripheral nerve injuries, Schwann cells (SCs, the main PNS glia) phagocytose myelin debris and attract macrophages to the injury site to aid in debris clearance. One peripheral nerve, the olfactory nerve, is unique in that it continuously regenerates throughout life. The olfactory nerve glia, olfactory ensheathing cells (OECs), are the primary phagocytes within this nerve, continuously clearing axonal debris arising from the normal regeneration of the nerve and after injury. In contrast to SCs, OECs do not appear to attract macrophages. SCs and OECs also respond to and phagocytose bacteria, a function likely critical for tackling microbial invasion of the CNS via peripheral nerves. However, phagocytosis is not always effective; inflammation, aging and/or genetic factors may contribute to compromised phagocytic activity. Here, we highlight the diverse roles of SCs and OECs with the focus on their phagocytic activity under physiological and pathological conditions. We also explore why understanding the contribution of peripheral glia phagocytosis may provide us with translational strategies for achieving axonal regeneration of the injured nervous system and potentially for the treatment of certain neurological diseases.
Collapse
Affiliation(s)
- Lynn Nazareth
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia
| | - James St John
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Mariyam Murtaza
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Jenny Ekberg
- Menzies Health Institute Queensland, Griffith University, Southport, QLD, Australia.,Clem Jones Centre for Neurobiology and Stem Cell Research, Griffith University, Nathan, QLD, Australia.,Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| |
Collapse
|
9
|
Participation of Central Muscarinic Receptors on the Nervous Form of Chagas Disease in Mice Infected via Intracerebroventricular with Colombian Trypanosoma cruzi Strain. Pathogens 2021; 10:pathogens10020121. [PMID: 33503848 PMCID: PMC7922850 DOI: 10.3390/pathogens10020121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/09/2021] [Accepted: 01/14/2021] [Indexed: 11/30/2022] Open
Abstract
Acute chagasic encephalitis is a clinically severe central nervous system (CNS) manifestation. However, the knowledge of the nervous form of Chagas disease is incomplete. The role of the muscarinic acetylcholine receptor (mAChR) on mice behavior and brain lesions induced by Trypanosoma cruzi (Colombian strain) was herein investigated in mice treated with the mAChR agonist and antagonist (carbachol and atropine), respectively. Immunosuppressed or non-immunosuppressed mice were intracerebroventricularly (icv) or intraperitoneally (ip) infected. All groups were evaluated 15 d.p.i. (days post infection). Intraperitoneally infected animals had subpatent parasitemia. Patent parasitemia occurred only in icv infected mice. The blockade of mAChR increased the parasitemia, parasitism and lesions compared to its activation. Infected not treated (INT ip) mice did not present meningitis and encephalitis, regardless of immunosuppression. INT icv brains presented higher cellularity, discrete signs of cellular degeneration, frequent presence of parasites and focal meningitis. The immunosuppressed atropine + icv mice presented increased intracellular parasitism associated with degenerative parenchymal changes, while carbachol + icv mice presented discrete meningitis, preservation of the cortex and absence of relevant parasitism. Cholinergic receptor blockage increased impairment of coordination vs. receptor activation. Muscarinic cholinergic pathway seems to be involved in immune mediated cell invasion events while its blockade favored infection evolution, brain lesions, and behavioral alterations.
Collapse
|
10
|
Libisch MG, Rego N, Robello C. Transcriptional Studies on Trypanosoma cruzi - Host Cell Interactions: A Complex Puzzle of Variables. Front Cell Infect Microbiol 2021; 11:692134. [PMID: 34222052 PMCID: PMC8248493 DOI: 10.3389/fcimb.2021.692134] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 05/26/2021] [Indexed: 01/05/2023] Open
Abstract
Chagas Disease, caused by the protozoan parasite Trypanosoma cruzi, affects nearly eight million people in the world. T. cruzi is a complex taxon represented by different strains with particular characteristics, and it has the ability to infect and interact with almost any nucleated cell. The T. cruzi-host cell interactions will trigger molecular signaling cascades in the host cell that will depend on the particular cell type and T. cruzi strain, and also on many different experimental variables. In this review we collect data from multiple transcriptomic and functional studies performed in different infection models, in order to highlight key differences between works that in our opinion should be addressed when comparing and discussing results. In particular, we focus on changes in the respiratory chain and oxidative phosphorylation of host cells in response to infection, which depends on the experimental model of T. cruzi infection. Finally, we also discuss host cell responses which reiterate independently of the strain, cell type and experimental conditions.
Collapse
Affiliation(s)
- María Gabriela Libisch
- Laboratorio de Interacciones Hospedero Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Natalia Rego
- Unidad de Bioinformática, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Carlos Robello
- Laboratorio de Interacciones Hospedero Patógeno-UBM, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Departamento de Bioquímica, Facultad de Medicina, Universidad de la República, Montevideo, Uruguay
- *Correspondence: Carlos Robello,
| |
Collapse
|
11
|
Lattanzi R, Maftei D, Fullone MR, Miele R. Trypanosoma cruzi trans-sialidase induces STAT3 and ERK activation by prokineticin receptor 2 binding. Cell Biochem Funct 2020; 39:326-334. [PMID: 32892338 DOI: 10.1002/cbf.3586] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 07/15/2020] [Accepted: 08/01/2020] [Indexed: 01/22/2023]
Abstract
Tc85, as other members of trans-sialidase family, is involved in Trypanosoma cruzi parasite adhesion to mammalian cells. Particularly, Tc85 acts through specific interactions with prokineticin receptor 2, a G-protein coupled receptor involved in diverse physiological and pathological processes. In this manuscript, through biochemical analyses, we demonstrated that LamG, a Tc85 domain, physically interacts with the prokineticin receptor 2. Moreover, expressing prokineticin receptor 1 and 2 we demonstrated that LamG specifically activates prokineticin receptor 2 through a strong coupling with Gαi or Gαq proteins in yeast strains and inducing ERK and NFAT phosphorylation in CHO mammalian cells. To demonstrate a Tc85 physiological role in T. cruzi infection of the nervous system, we evidenced a strong STAT3 and ERK activation by LamG in mice Dorsal Root Ganglia. L173R is the most common prokineticin receptor 2 mutation reported in Kallmann syndrome and it is a founder mutation. Our results demonstrated that in cells co-expressing prokineticin receptor 2 mutant (L173R) and wild-type, LamG is unable to induce signal transduction. The L173R mutation in heterozygosity may allow for a selective advantage due to increased protection from T. cruzi infection. SIGNIFICANCE OF THE STUDY: The Chagas' disease affecting millions of people worldwide is caused by an eukaryotic microorganism called T. cruzi. Pharmacological treatment for patients with Chagas' disease is still limited. Indeed, the small number of drugs available shows important side effects that can be debilitating for patient health. In order to replicate and produce new parasites T. cruzi uses a complex of different proteins produced by both the parasite and the human host cells. So, understanding the molecular details used by T. cruzi to be internalised by different types of human cells is an important step towards the development of new drugs for this disease. Prokineticin receptors are relevant for host-parasite interaction. To characterise the signal transduction cascade induced by their activation may help to understand the molecular details of cell infection, leading to novel therapeutic alternative for this debilitating disease.
Collapse
Affiliation(s)
- Roberta Lattanzi
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Daniela Maftei
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University of Rome, Rome, Italy
| | - Maria Rosaria Fullone
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Rossella Miele
- Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
12
|
Cerbán FM, Stempin CC, Volpini X, Carrera Silva EA, Gea S, Motran CC. Signaling pathways that regulate Trypanosoma cruzi infection and immune response. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165707. [DOI: 10.1016/j.bbadis.2020.165707] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 01/14/2020] [Accepted: 01/22/2020] [Indexed: 02/07/2023]
|
13
|
Penas FN, Carta D, Cevey ÁC, Rada MJ, Pieralisi AV, Ferlin MG, Sales ME, Mirkin GA, Goren NB. Pyridinecarboxylic Acid Derivative Stimulates Pro-Angiogenic Mediators by PI3K/AKT/mTOR and Inhibits Reactive Nitrogen and Oxygen Species and NF-κB Activation Through a PPARγ-Dependent Pathway in T. cruzi-Infected Macrophages. Front Immunol 2020; 10:2955. [PMID: 31993046 PMCID: PMC6964702 DOI: 10.3389/fimmu.2019.02955] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 12/02/2019] [Indexed: 12/24/2022] Open
Abstract
Chagas disease is caused by Trypanosoma cruzi infection and represents an important public health concern in Latin America. Macrophages are one of the main infiltrating leukocytes in response to infection. Parasite persistence could trigger a sustained activation of these cells, contributing to the damage observed in this pathology, particularly in the heart. HP24, a pyridinecarboxylic acid derivative, is a new PPARγ ligand that exerts anti-inflammatory and pro-angiogenic effects. The aim of this work was to deepen the study of the mechanisms involved in the pro-angiogenic and anti-inflammatory effects of HP24 in T. cruzi-infected macrophages, which have not yet been elucidated. We show for the first time that HP24 increases expression of VEGF-A and eNOS through PI3K/AKT/mTOR and PPARγ pathways and that HP24 inhibits iNOS expression and NO release, a pro-inflammatory mediator, through PPARγ-dependent mechanisms. Furthermore, this study shows that HP24 modulates H2O2 production in a PPARγ-dependent manner. It is also demonstrated that this new PPARγ ligand inhibits the NF-κB pathway. HP24 inhibits IKK phosphorylation and IκB-α degradation, as well as p65 translocation to the nucleus in a PPARγ-dependent manner. In Chagas disease, both the sustained increment in pro-inflammatory mediators and microvascular abnormalities are crucial aspects for the generation of cardiac damage. Elucidating the mechanism of action of new PPARγ ligands is highly attractive, given the fact that it can be used as an adjuvant therapy, particularly in the case of Chagas disease in which inflammation and tissue remodeling play an important role in the pathophysiology of this disease.
Collapse
Affiliation(s)
- Federico Nicolás Penas
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Davide Carta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Ágata Carolina Cevey
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Jimena Rada
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Azul Victoria Pieralisi
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Grazia Ferlin
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - María Elena Sales
- Centro de Estudios Farmacológicos y Botánicos (CEFyBO), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Gerardo A Mirkin
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones en Microbiología y Parasitología Médica (IMPaM), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Nora Beatriz Goren
- Departamento de Microbiología, Parasitología e Inmunología, Facultad de Medicina, Universidad de Buenos Aires, Buenos Aires, Argentina.,Instituto de Investigaciones Biomédicas en Retrovirus y Sida (INBIRS), CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| |
Collapse
|
14
|
Mekonnen YA, Gültas M, Effa K, Hanotte O, Schmitt AO. Identification of Candidate Signature Genes and Key Regulators Associated With Trypanotolerance in the Sheko Breed. Front Genet 2019; 10:1095. [PMID: 31803229 PMCID: PMC6872528 DOI: 10.3389/fgene.2019.01095] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 10/11/2019] [Indexed: 12/23/2022] Open
Abstract
African animal trypanosomiasis (AAT) is caused by a protozoan parasite that affects the health of livestock. Livestock production in Ethiopia is severely hampered by AAT and various controlling measures were not successful to eradicate the disease. AAT affects the indigenous breeds in varying degrees. However, the Sheko breed shows better trypanotolerance than other breeds. The tolerance attributes of Sheko are believed to be associated with its taurine genetic background but the genetic controls of these tolerance attributes of Sheko are not well understood. In order to investigate the level of taurine background in the genome, we compare the genome of Sheko with that of 11 other African breeds. We find that Sheko has an admixed genome composed of taurine and indicine ancestries. We apply three methods: (i) The integrated haplotype score (iHS), (ii) the standardized log ratio of integrated site specific extended haplotype homozygosity between populations (Rsb), and (iii) the composite likelihood ratio (CLR) method to discover selective sweeps in the Sheko genome. We identify 99 genomic regions harboring 364 signature genes in Sheko. Out of the signature genes, 15 genes are selected based on their biological importance described in the literature. We also identify 13 overrepresented pathways and 10 master regulators in Sheko using the TRANSPATH database in the geneXplain platform. Most of the pathways are related with oxidative stress responses indicating a possible selection response against the induction of oxidative stress following trypanosomiasis infection in Sheko. Furthermore, we present for the first time the importance of master regulators involved in trypanotolerance not only for the Sheko breed but also in the context of cattle genomics. Our finding shows that the master regulator Caspase is a key protease which plays a major role for the emergence of adaptive immunity in harmony with the other master regulators. These results suggest that designing and implementing genetic intervention strategies is necessary to improve the performance of susceptible animals. Moreover, the master regulatory analysis suggests potential candidate therapeutic targets for the development of new drugs for trypanosomiasis treatment.
Collapse
Affiliation(s)
- Yonatan Ayalew Mekonnen
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany
| | - Mehmet Gültas
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| | - Kefena Effa
- Animal Biosciences, National Program Coordinator for African Dairy Genetic Gain, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Olivier Hanotte
- Cells, Organisms amd Molecular Genetics, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom.,LiveGene, International Livestock Research Institute (ILRI), Addis Ababa, Ethiopia
| | - Armin O Schmitt
- Breeding Informatics Group, Department of Animal Sciences, University of Göttingen, Göttingen, Germany.,Center for Integrated Breeding Research (CiBreed), University of Göttingen, Göttingen, Germany
| |
Collapse
|
15
|
Długosz E, Basałaj K, Zawistowska-Deniziak A. Cytokine production and signalling in human THP-1 macrophages is dependent on Toxocara canis glycans. Parasitol Res 2019; 118:2925-2933. [PMID: 31396715 PMCID: PMC6754358 DOI: 10.1007/s00436-019-06405-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 07/19/2019] [Indexed: 12/11/2022]
Abstract
The effect of Toxocara canis antigens on cytokine production by human THP-1 macrophages was studied in vitro. Toxocara Excretory–Secretory products (TES) and recombinant mucins (Tc-MUC-2, Tc-MUC-3, Tc-MUC-4, and Tc-MUC-5) as well as deglycosylated forms of these antigens were used in the study. TES products stimulated macrophages to produce the innate proinflammatory IL-1β, IL-6, and TNF-α cytokines regardless of the presence of glycans. Recombinant mucins induced glycan-dependent cytokine production. Sugar moieties led to at least 3-fold higher production of regulatory IL-10 as well as proinflammatory cytokines. The presence of glycans on mucins also affected the downstream signalling pathways in stimulated cells. The most prominent difference was noted in AKT and AMPK kinase activation. AKT phosphorylation was observed in cells stimulated with glycosylated mucins, whereas treatment with deglycosylated antigens led to AMPK phosphorylation. MAP kinase family members such as JNK and p38 and c-Jun transcription factor were phosphorylated in both cases what suggests that toll-like receptor signalling may be involved in mucin-treated macrophages. This pathway is however modified by other signalling molecules as only mucins containing intact sugars significantly induced the production of cytokines.
Collapse
Affiliation(s)
- Ewa Długosz
- Division of Parasitology, Department of Preclinical Sciences, Faculty of Veterinary Medicine, Warsaw University of Life Sciences-SGGW, Ciszewskiego 8, 02-786, Warsaw, Poland.
| | - Katarzyna Basałaj
- W. Stefański Institute of Parasitology, Twarda 51/55, 00-818, Warsaw, Poland
| | | |
Collapse
|
16
|
Li S, Gong P, Zhang N, Li X, Tai L, Wang X, Yang Z, Yang J, Zhu X, Zhang X, Li J. 14-3-3 Protein of Neospora caninum Modulates Host Cell Innate Immunity Through the Activation of MAPK and NF-κB Pathways. Front Microbiol 2019; 10:37. [PMID: 30740096 PMCID: PMC6355710 DOI: 10.3389/fmicb.2019.00037] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 01/10/2019] [Indexed: 12/30/2022] Open
Abstract
Neospora caninum is an obligate intracellular apicomplexan parasite, the etiologic agent of neosporosis, and a major cause of reproductive loss in cattle. There is still a lack of effective prevention and treatment measures. The 14-3-3 protein is a widely expressed acidic protein that spontaneously forms dimers within apicomplexan parasites. This protein has been isolated and sequenced in many parasites; however, there are few reports about the N. caninum 14-3-3 protein. Here, we successfully expressed and purified a recombinant fusion protein of Nc14-3-3 (rNc14-3-3) and prepared a polyclonal antibody. Immunofluorescence and immunogold electron microscopy studies of tachyzoites or N. caninum-infected cells suggested that 14-3-3 was localized in the cytosol and the membrane. Western blotting analysis indicated that rNc14-3-3 could be recognized by N. caninum-infected mouse sera, suggesting that 14-3-3 may be an infection-associated antigen that is involved in the host immune response. We demonstrated that rNc14-3-3 induced cytokine expression by activating the MAPK and AKT signaling pathways, and inhibitors of p38, ERK, JNK, and AKT could significantly decrease the production of IL-6, IL-12p40, and TNF-α. In addition, phosphorylated nuclear factor-κB (NF-κB/p65) was observed in wild-type peritoneal macrophages (PMs) treated with rNc14-3-3, and the protein level of NF-κB/p65 was reduced in the cytoplasm but increased correspondingly in the nucleus after 2 h of treatment. These results were also observed in deficient in TLR2-/- PMs. Taken together, our results indicated that the N. caninum 14-3-3 protein can induce effective immune responses and stimulate cytokine expression by activating the MAPK, AKT, and NF-κB signaling pathways but did not dependent TLR2, suggesting that Nc14-3-3 is a novel vaccine candidate against neosporosis.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Pengtao Gong
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Nan Zhang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xin Li
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Lixin Tai
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xu Wang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Zhengtao Yang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ju Yang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Xingquan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Xichen Zhang
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- Key Laboratory of Zoonosis Research by Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, China
| |
Collapse
|
17
|
A systematic review of the Trypanosoma cruzi genetic heterogeneity, host immune response and genetic factors as plausible drivers of chronic chagasic cardiomyopathy. Parasitology 2018; 146:269-283. [PMID: 30210012 DOI: 10.1017/s0031182018001506] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Chagas disease is a complex tropical pathology caused by the kinetoplastid Trypanosoma cruzi. This parasite displays massive genetic diversity and has been classified by international consensus in at least six Discrete Typing Units (DTUs) that are broadly distributed in the American continent. The main clinical manifestation of the disease is the chronic chagasic cardiomyopathy (CCC) that is lethal in the infected individuals. However, one intriguing feature is that only 30-40% of the infected individuals will develop CCC. Some authors have suggested that the immune response, host genetic factors, virulence factors and even the massive genetic heterogeneity of T. cruzi are responsible of this clinical pattern. To date, no conclusive data support the reason why a few percentages of the infected individuals will develop CCC. Therefore, we decided to conduct a systematic review analysing the host genetic factors, immune response, cytokine production, virulence factors and the plausible association of the parasite DTUs and CCC. The epidemiological and clinical implications are herein discussed.
Collapse
|
18
|
Suman S, Rachakonda G, Mandape SN, Sakhare SS, Villalta F, Pratap S, Lima MF, Nde PN. Phospho-proteomic analysis of primary human colon epithelial cells during the early Trypanosoma cruzi infection phase. PLoS Negl Trop Dis 2018; 12:e0006792. [PMID: 30222739 PMCID: PMC6160231 DOI: 10.1371/journal.pntd.0006792] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Revised: 09/27/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022] Open
Abstract
The protozoan parasite Trypanosoma cruzi, the causative agent of Chagas disease, causes severe morbidity and mortality in afflicted individuals. About 30% of T. cruzi-infected individuals present with cardiac, gastrointestinal tract, and/or neurological disorders. Megacolon, one of the major pathologies of Chagas disease, is accompanied by gastrointestinal motility disorders. The molecular mechanism of T. cruzi-mediated megacolon in Chagas disease is currently unknown. To decipher the molecular mechanism of T. cruzi-induced alteration in the colon during the early infection phase, we exposed primary human colonic epithelial cells (HCoEpiC) to invasive T. cruzi trypomastigotes at multiple time points to determine changes in the phosphoprotein networks in the cells following infection using proteome profiler Human phospho-kinase arrays. We found significant changes in the phosphorylation pattern that can mediate cellular deregulations in colonic epithelial cells after infection. We detected a significant increase in the levels of phosphorylated heat shock protein (p-HSP) 27 and transcription factors that regulate various cellular functions, including c-Jun and CREB. Our study confirmed significant upregulation of phospho (p-) Akt S473, p-JNK, which may directly or indirectly modulate CREB and c-Jun phosphorylation, respectively. We also observed increased levels of phosphorylated CREB and c-Jun in the nucleus. Furthermore, we found that p-c-Jun and p-CREB co-localized in the nucleus at 180 minutes post infection, with a maximum Pearson correlation coefficient of 0.76±0.02. Increased p-c-Jun and p-CREB have been linked to inflammatory and profibrotic responses. T. cruzi infection of HCoEpiC induces an increased expression of thrombospondin-1 (TSP-1), which is fibrogenic at elevated levels. We also found that T. cruzi infection modulates the expression of NF-kB and JAK2-STAT1 signaling molecules which can increase pro-inflammatory flux. Bioinformatics analysis of the phosphoprotein networks derived using the phospho-protein data serves as a blueprint for T. cruzi-mediated cellular transformation of primary human colonic cells during the early phase of T. cruzi infection.
Collapse
Affiliation(s)
- Shankar Suman
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Girish Rachakonda
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Sammed N. Mandape
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Shruti S. Sakhare
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Fernando Villalta
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Siddharth Pratap
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Maria F. Lima
- School of Graduate Studies and Research, Meharry Medical College, Nashville, Tennessee, United States of America
| | - Pius N. Nde
- Department of Microbiology and Immunology, Meharry Medical College, Nashville, Tennessee, United States of America
| |
Collapse
|
19
|
Saha A, Basu M, Ukil A. Recent advances in understanding Leishmania donovani
infection: The importance of diverse host regulatory pathways. IUBMB Life 2018; 70:593-601. [PMID: 29684241 DOI: 10.1002/iub.1759] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/02/2018] [Indexed: 02/03/2023]
Affiliation(s)
- Amrita Saha
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| | - Moumita Basu
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| | - Anindita Ukil
- Department of Biochemistry; University of Calcutta; Kolkata West Bengal India
| |
Collapse
|
20
|
Canonical PI3Kγ signaling in myeloid cells restricts Trypanosoma cruzi infection and dampens chagasic myocarditis. Nat Commun 2018; 9:1513. [PMID: 29666415 PMCID: PMC5904108 DOI: 10.1038/s41467-018-03986-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 03/26/2018] [Indexed: 12/22/2022] Open
Abstract
Chagas disease is caused by infection with the protozoan Trypanosoma cruzi (T. cruzi) and is an important cause of severe inflammatory heart disease. However, the mechanisms driving Chagas disease cardiomyopathy have not been completely elucidated. Here, we show that the canonical PI3Kγ pathway is upregulated in both human chagasic hearts and hearts of acutely infected mice. PI3Kγ-deficient mice and mutant mice carrying catalytically inactive PI3Kγ are more susceptible to T. cruzi infection. The canonical PI3Kγ signaling in myeloid cells is essential to restrict T. cruzi heart parasitism and ultimately to avoid myocarditis, heart damage, and death of mice. Furthermore, high PIK3CG expression correlates with low parasitism in human Chagas’ hearts. In conclusion, these results indicate an essential role of the canonical PI3Kγ signaling pathway in the control of T. cruzi infection, providing further insight into the molecular mechanisms involved in the pathophysiology of chagasic heart disease. Trypanosoma cruzi infection causes Chagas disease, but mechanisms underlying pathogenesis are unclear. Here, Silva et al. show that canonical PI3Kγ signaling in myeloid cells restricts T. cruzi infection in mice and that high PIK3CG expression correlates with low parasite levels in human Chagas’ hearts.
Collapse
|
21
|
Reis-Cunha JL, Valdivia HO, Bartholomeu DC. Gene and Chromosomal Copy Number Variations as an Adaptive Mechanism Towards a Parasitic Lifestyle in Trypanosomatids. Curr Genomics 2018; 19:87-97. [PMID: 29491737 PMCID: PMC5814966 DOI: 10.2174/1389202918666170911161311] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2017] [Revised: 03/14/2017] [Accepted: 04/18/2017] [Indexed: 12/21/2022] Open
Abstract
Trypanosomatids are a group of kinetoplastid parasites including some of great public health importance, causing debilitating and life-long lasting diseases that affect more than 24 million people worldwide. Among the trypanosomatids, Trypanosoma cruzi, Trypanosoma brucei and species from the Leishmania genus are the most well studied parasites, due to their high prevalence in human infections. These parasites have an extreme genomic and phenotypic variability, with a massive expansion in the copy number of species-specific multigene families enrolled in host-parasite interactions that mediate cellular invasion and immune evasion processes. As most trypanosomatids are heteroxenous, and therefore their lifecycles involve the transition between different hosts, these parasites have developed several strategies to ensure a rapid adaptation to changing environments. Among these strategies, a rapid shift in the repertoire of expressed genes, genetic variability and genome plasticity are key mechanisms. Trypanosomatid genomes are organized into large directional gene clusters that are transcribed polycistronically, where genes derived from the same polycistron may have very distinct mRNA levels. This particular mode of transcription implies that the control of gene expression operates mainly at post-transcriptional level. In this sense, gene duplications/losses were already associated with changes in mRNA levels in these parasites. Gene duplications also allow the generation of sequence variability, as the newly formed copy can diverge without loss of function of the original copy. Recently, aneuploidies have been shown to occur in several Leishmania species and T. cruzi strains. Although aneuploidies are usually associated with debilitating phenotypes in superior eukaryotes, recent data shows that it could also provide increased fitness in stress conditions and generate drug resistance in unicellular eukaryotes. In this review, we will focus on gene and chromosomal copy number variations and their relevance to the evolution of trypanosomatid parasites.
Collapse
Affiliation(s)
- João Luís Reis-Cunha
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
| | - Hugo O. Valdivia
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao, Peru
| | - Daniella Castanheira Bartholomeu
- Universidade Federal de Minas Gerais, Laboratório de Imunologia e Genômica de Parasitos, Instituto de Ciências Biológicas, Belo Horizonte, Brazil
- Centro de Investigaciones Tecnológicas, Biomédicas y Medioambientales, Callao, Peru
| |
Collapse
|
22
|
Roy S, Gupta P, Palit S, Basu M, Ukil A, Das PK. The role of PD-1 in regulation of macrophage apoptosis and its subversion by Leishmania donovani. Clin Transl Immunology 2017; 6:e137. [PMID: 28690843 PMCID: PMC5493582 DOI: 10.1038/cti.2017.12] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Revised: 02/03/2017] [Accepted: 02/16/2017] [Indexed: 01/10/2023] Open
Abstract
Programmed death-1 receptor (PD-1) expressed in many immune cells is known to trigger T-cell exhaustion but the significance of macrophage-associated PD-1 in relevance to macrophage apoptosis is not known. This study is aimed to delineate whether PD-1 pathway has any role in eliciting macrophage apoptosis and, if so, then how the intra-macrophage parasite, Leishmania donovani modulates PD-1 pathway for protecting its niche. Resting macrophages when treated with H2O2 showed increased PD-1 expression and apoptosis, which was further enhanced on PD-1 agonist treatment. The administration of either PD-1 receptor or PD-1 ligand-blocking antibodies reversed the process thus documenting the involvement of PD-1 in macrophage apoptosis. On the contrary, L. donovani-infected macrophages showed decreased PD-1 expression concurrent with inhibition of apoptosis. The activation of PD-1 pathway was found to negatively regulate the phosphorylation of pro-survival AKT, which was reversed during infection. Infection-induced PD-1 downregulation led to the activation of AKT resulting in phosphorylation and subsequent inhibition of proapoptotic protein BAD. Strong association of SHP2 (a SH2-containing ubiquitously expressed tyrosine-specific protein phosphatase) with PD-1 along with AKT deactivation observed in H2O2-treated macrophages was reversed by L. donovani infection. Kinetic analysis coupled with inhibitor-based approach and knockdown experiments demonstrated that L. donovani infection actively downregulated the PD-1 by deactivating NFATc1 as revealed by its reduced nuclear translocation. The study thus elucidates the detailed mechanism of the role of PD-1 in macrophage apoptosis and its negative modulation by Leishmania for their intracellular survival.
Collapse
Affiliation(s)
- Shalini Roy
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Purnima Gupta
- Department of Biochemistry, Calcutta University, Kolkata, India
| | - Shreyasi Palit
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| | - Moumita Basu
- Department of Biochemistry, Calcutta University, Kolkata, India
| | - Anindita Ukil
- Department of Biochemistry, Calcutta University, Kolkata, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
23
|
John Von Freyend S, Kwok-Schuelein T, Netter HJ, Haqshenas G, Semblat JP, Doerig C. Subverting Host Cell P21-Activated Kinase: A Case of Convergent Evolution across Pathogens. Pathogens 2017; 6:pathogens6020017. [PMID: 28430160 PMCID: PMC5488651 DOI: 10.3390/pathogens6020017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/29/2017] [Accepted: 04/09/2017] [Indexed: 12/14/2022] Open
Abstract
Intracellular pathogens have evolved a wide range of strategies to not only escape from the immune systems of their hosts, but also to directly exploit a variety of host factors to facilitate the infection process. One such strategy is to subvert host cell signalling pathways to the advantage of the pathogen. Recent research has highlighted that the human serine/threonine kinase PAK, or p21-activated kinase, is a central component of host-pathogen interactions in many infection systems involving viruses, bacteria, and eukaryotic pathogens. PAK paralogues are found in most mammalian tissues, where they play vital roles in a wide range of functions. The role of PAKs in cell proliferation and survival, and their involvement in a number of cancers, is of great interest in the context of drug discovery. In this review we discuss the latest insights into the surprisingly central role human PAK1 plays for the infection by such different infectious disease agents as viruses, bacteria, and parasitic protists. It is our intention to open serious discussion on the applicability of PAK inhibitors for the treatment, not only of neoplastic diseases, which is currently the primary objective of drug discovery research targeting these enzymes, but also of a wide range of infectious diseases.
Collapse
Affiliation(s)
- Simona John Von Freyend
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Terry Kwok-Schuelein
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Cancer Program, Monash Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, Victoria 3800, Australia.
| | - Hans J Netter
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
- Victorian Infectious Diseases Reference Laboratory, Melbourne Health, The Peter Doherty Institute, Melbourne, Victoria 3000, Australia.
| | - Gholamreza Haqshenas
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| | | | - Christian Doerig
- Infection and Immunity Program, Monash Biomedicine Discovery Institute and Department of Microbiology, Monash University, Melbourne, Victoria 3800, Australia.
| |
Collapse
|
24
|
Cruz JS, Machado FS, Ropert C, Roman-Campos D. Molecular mechanisms of cardiac electromechanical remodeling during Chagas disease: Role of TNF and TGF-β. Trends Cardiovasc Med 2017; 27:81-91. [DOI: 10.1016/j.tcm.2016.08.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 07/29/2016] [Accepted: 08/05/2016] [Indexed: 12/21/2022]
|
25
|
Gupta P, Srivastav S, Saha S, Das PK, Ukil A. Leishmania donovani inhibits macrophage apoptosis and pro-inflammatory response through AKT-mediated regulation of β-catenin and FOXO-1. Cell Death Differ 2016; 23:1815-1826. [PMID: 27662364 DOI: 10.1038/cdd.2016.101] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 07/18/2016] [Accepted: 08/17/2016] [Indexed: 12/25/2022] Open
Abstract
In order to establish infection, intra-macrophage parasite Leishmania donovani needs to inhibit host defense parameters like inflammatory cytokine production and apoptosis. In the present study, we demonstrate that the parasite achieves both by exploiting a single host regulator AKT for modulating its downstream transcription factors, β-catenin and FOXO-1. L. donovani-infected RAW264.7 and bone marrow-derived macrophages (BMDM) treated with AKT inhibitor or dominant negative AKT constructs showed decreased anti-inflammatory cytokine production and increased host cell apoptosis resulting in reduced parasite survival. Infection-induced activated AKT triggered phosphorylation-mediated deactivation of its downstream target, GSK-3β. Inactivated GSK-3β, in turn, could no longer sequester cytosolic β-catenin, an anti-apoptotic transcriptional regulator, as evidenced from its nuclear translocation during infection. Constitutively active GSK-3β-transfected L. donovani-infected cells mimicked the effects of AKT inhibition and siRNA-mediated silencing of β-catenin led to disruption of mitochondrial potential along with increased caspase-3 activity and IL-12 production leading to decreased parasite survival. In addition to activating anti-apoptotic β-catenin, phospho-AKT inhibits activation of FOXO-1, a pro-apoptotic transcriptional regulator. Nuclear retention of FOXO-1, inhibited during infection, was reversed when infected cells were transfected with dominant negative AKT constructs. Overexpression of FOXO-1 in infected macrophages not only documented increased apoptosis but promoted enhanced TLR4 expression and NF-κB activity along with an increase in IL-1β and decrease in IL-10 secretion. In vivo administration of AKT inhibitor significantly decreased liver and spleen parasite burden and switched cytokine balance in favor of host. In contrast, GSK-3β inhibitor did not result in any significant change in infectivity parameters. Collectively our findings revealed that L. donovani triggered AKT activation to regulate GSK-3β/β-catenin/FOXO-1 axis, thus ensuring inhibition of both host cell apoptosis and immune response essential for its intra-macrophage survival.
Collapse
Affiliation(s)
- Purnima Gupta
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Supriya Srivastav
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Shriya Saha
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| | - Pijush K Das
- Infectious Diseases and Immunology Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Anindita Ukil
- Department of Biochemistry, University of Calcutta, Kolkata 700019, India
| |
Collapse
|
26
|
Henao-Martínez AF, Agler AH, Watson AM, Hennessy C, Davidson E, Demos-Davies K, McKinsey TA, Wilson M, Schwartz DA, Yang IV. AKT network of genes and impaired myocardial contractility during murine acute Chagasic myocarditis. Am J Trop Med Hyg 2015; 92:523-9. [PMID: 25582694 DOI: 10.4269/ajtmh.14-0433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Chagasic disease is associated with high morbidity in Latin America. Acute Chagasic myocarditis is consistently found in acute infections, but little is known about its contribution to chronic cardiomyopathy. The aim of the study was to phenotypically characterize two strains of mice with differential Chagas infection susceptibility and correlate strain myocarditis phenotypes with heart tissue gene expression. C57BL/6J and Balb/c mice were injected intraperitoneally with 0 or 150-200 tissue-derived trypomastigotes (Tulahuen strain). Echocardiograms, brain natriuretic peptide, and troponin were measured. Heart tissue was harvested for histopathological analysis and gene expression profiling on microarrays. Genes differently expressed between infected Balb/c and C57BL/6J mice were identified. Echocardiograms showed differences in Balb/c versus C57BL/6J infected mice in heart rate (413 versus 476 beats per minute; P = 0.0001), stroke volume (31.9 ± 9.3 versus 39.2 ± 5.5 μL; P = 0.03), and cardiac output (13.1 ± 3.5 versus 18.7 ± 3.2 μL/min; P = 0.002). Gene expression at 4 weeks analysis showed 32 statistically significant (q value < 0.05) differentially expressed genes between infected Balb/c and C57BL/6J mice that were enriched for genes related to the protein kinase B (AKT) pathway. These specific phenotypic features of cardiac response during acute Chagasic myocarditis may, in part, be related to host AKT network regulation.
Collapse
Affiliation(s)
- Andrés F Henao-Martínez
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Anne Hermetet Agler
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Alan M Watson
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Corinne Hennessy
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Elizabeth Davidson
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Kim Demos-Davies
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Timothy A McKinsey
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Michael Wilson
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - David A Schwartz
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| | - Ivana V Yang
- Division of Infectious Diseases and Departments of Medicine and Immunology, University of Colorado, Denver, Colorado; Department of Epidemiology, Colorado School of Public Health, Denver, Colorado; Department of Pathology, Denver Health, Denver, Colorado
| |
Collapse
|
27
|
Parasite-derived neurotrophic factor/trans-sialidase of Trypanosoma cruzi links neurotrophic signaling to cardiac innate immune response. Infect Immun 2014; 82:3687-96. [PMID: 24935974 DOI: 10.1128/iai.02098-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The Chagas' disease parasite Trypanosoma cruzi elicits a potent inflammatory response in acutely infected hearts that keeps parasitism in check and triggers cardiac abnormalities. A most-studied mechanism underlying innate immunity in T. cruzi infection is Toll-like receptor (TLR) activation by lipids and other parasite molecules. However, yet-to-be-identified pathways should exist. Here, we show that T. cruzi strongly upregulates monocyte chemoattractant protein 1 (MCP-1)/CCL2 and fractalkine (FKN)/CX3CL1 in cellular and mouse models of heart infection. Mechanistically, upregulation of MCP-1 and FKN stems from the interaction of parasite-derived neurotrophic factor (PDNF)/trans-sialidase with neurotrophic receptors TrkA and TrkC, as assessed by pharmacological inhibition, neutralizing antibodies, and gene silencing studies. Administration of a single dose of intravenous PDNF to naive mice results in a dose-dependent increase in MCP-1 and FKN in the heart and liver with pulse-like kinetics that peak at 3 h postinjection. Intravenous PDNF also augments MCP-1 and FKN in TLR signaling-deficient MyD88-knockout mice, underscoring the MyD88-independent action of PDNF. Although single PDNF injections do not increase MCP-1 and FKN receptors, multiple PDNF injections at short intervals up the levels of receptor transcripts in the heart and liver, suggesting that sustained PDNF triggers cell recruitment at infection sites. Thus, given that MCP-1 and FKN are chemokines essential to the recruitment of immune cells to combat inflammation triggers and to enhance tissue repair, our findings uncover a new mechanism in innate immunity against T. cruzi infection mediated by Trk signaling akin to an endogenous inflammatory and fibrotic pathway resulting from cardiomyocyte-TrkA recognition by matricellular connective tissue growth factor (CTGF/CCN2).
Collapse
|
28
|
Haoues M, Refai A, Mallavialle A, Barbouche MR, Laabidi N, Deckert M, Essafi M. Forkhead box O3 (FOXO3) transcription factor mediates apoptosis in BCG-infected macrophages. Cell Microbiol 2014; 16:1378-90. [PMID: 24712562 DOI: 10.1111/cmi.12298] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 03/08/2014] [Accepted: 03/25/2014] [Indexed: 01/10/2023]
Abstract
Enhanced apoptosis of BCG-infected macrophages has been shown to induce stronger dendritic cell-mediated cross-priming of T cells, leading to higher protection against tuberculosis (TB). Uncovering host effectors underlying BCG-induced apoptosis may then prove useful to improve BCG efficacy through priming macrophage apoptosis. Her we report that BCG-mediated apoptosis of human macrophages relies on FOXO3 transcription factor activation. BCG induced a significant apoptosis of THP1 (TDMs) and human monocytes (MDMs)-derived macrophages when a high moi was used, as shown by annexin V/7-AAD staining. BCG-induced apoptosis was associated with dephosphorylation of the prosurvival activated threonine kinase (Akt) and its target FOXO3. Cell fractionation and immunofluorescence microscopy showed translocation of FOXO3 to the nucleus in BCG-infected cells, concomitantly with an increase of FOXO3 transcriptional activity. Moreover, FOXO3 expression knock-down by small interfering RNA (siRNA) partially inhibited the BCG-induced apoptosis. Finally, real-time quantitative PCR (qRT-PCR) analysis of the expression profile of BCG-infected macrophages showed an upregulation of two pro-apoptotic targets of FOXO3, NOXA and p53 upregulated modulator of apoptosis (PUMA). Our results thus indicate that FOXO3 plays an important role in BCG-induced apoptosis of human macrophages and may represent a potential target to improve vaccine efficacy through enhanced apoptosis-mediated cross-priming of T cells.
Collapse
Affiliation(s)
- Meriam Haoues
- Institut Pasteur de Tunis, LTCII, LR11IPT02, Tunis, 1002, Tunisia; Université Tunis El Manar, Tunis, 1068, Tunisia
| | | | | | | | | | | | | |
Collapse
|
29
|
Walker DM, Oghumu S, Gupta G, McGwire BS, Drew ME, Satoskar AR. Mechanisms of cellular invasion by intracellular parasites. Cell Mol Life Sci 2013; 71:1245-63. [PMID: 24221133 DOI: 10.1007/s00018-013-1491-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2013] [Revised: 10/04/2013] [Accepted: 10/07/2013] [Indexed: 12/22/2022]
Abstract
Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.
Collapse
Affiliation(s)
- Dawn M Walker
- Department of Microbial Infection and Immunity, Wexner Medical Center, The Ohio State University, Columbus, OH, 43210, USA
| | | | | | | | | | | |
Collapse
|
30
|
Roman-Campos D, Sales-Junior P, Duarte HL, Gomes ER, Lara A, Campos P, Rocha NN, Resende RR, Ferreira A, Guatimosim S, Gazzinelli RT, Ropert C, Cruz JS. Novel insights into the development of chagasic cardiomyopathy: Role of PI3Kinase/NO axis. Int J Cardiol 2013; 167:3011-20. [DOI: 10.1016/j.ijcard.2012.09.020] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2011] [Revised: 08/10/2012] [Accepted: 09/10/2012] [Indexed: 10/27/2022]
|
31
|
Aridgides D, Salvador R, PereiraPerrin M. Trypanosoma cruzi highjacks TrkC to enter cardiomyocytes and cardiac fibroblasts while exploiting TrkA for cardioprotection against oxidative stress. Cell Microbiol 2013; 15:1357-66. [PMID: 23414299 DOI: 10.1111/cmi.12119] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 01/26/2013] [Accepted: 01/31/2013] [Indexed: 12/13/2022]
Abstract
Chronic Chagas cardiomyopathy (CCC), caused by the obligate intracellular protozoan parasite Trypanosoma cruzi, is a major cause of morbidity and mortality in Latin America. CCC begins when T. cruzi enters cardiac cells for intracellular multiplication and differentiation, a process that starts with recognition of host-cell entry receptors. However, the nature of these surface molecules and corresponding parasite counter-receptor(s) is poorly understood. Here we show that antibodies against neurotrophin (NT) receptor TrkC, but not against family members TrkA and TrkB, prevent T. cruzi from invading primary cultures of cardiomyocytes and cardiac fibroblasts. Invasion is also selectively blocked by the TrkC ligand NT-3, and by antagonists of Trk autophosphorylation and downstream signalling. Therefore, these results indicate that T. cruzi gets inside cardiomyocytes and cardiac fibroblasts by activating TrkC preferentially over TrkA. Accordingly, short hairpin RNA interference of TrkC (shTrkC), but not TrkA, selectively prevents T. cruzi from entering cardiac cells. Additionally, T. cruzi parasite-derived neurotrophic factor (PDNF)/trans-sialidase, a TrkC-binding protein, but not family member gp85, blocks entry dose-dependently, underscoring the specificity of PDNF as TrkC counter-receptor in cardiac cell invasion. In contrast to invasion, competitive and shRNA inhibition studies demonstrate that T. cruzi-PDNF recognition of TrkA, but not TrkC on primary cardiomyocytes and the cardiomyocyte cell line H9c2 protects the cells against oxidative stress. Thus, this study shows that T. cruzi via PDNF favours neurotrophin receptor TrkC for cardiac cell entry and TrkA for cardiomyocyte protection against oxidative stress, and suggests a new therapeutic opportunity in PDNF and/or fragments thereof for CCC therapy as entry inhibitors and/or cardioprotection agonists.
Collapse
Affiliation(s)
- Daniel Aridgides
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, MA, USA
| | | | | |
Collapse
|
32
|
Aridgides D, Salvador R, PereiraPerrin M. Trypanosoma cruzi coaxes cardiac fibroblasts into preventing cardiomyocyte death by activating nerve growth factor receptor TrkA. PLoS One 2013; 8:e57450. [PMID: 23437390 PMCID: PMC3578799 DOI: 10.1371/journal.pone.0057450] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 01/22/2013] [Indexed: 01/01/2023] Open
Abstract
Rationale Cardiomyocytes express neurotrophin receptor TrkA that promotes survival following nerve growth factor (NGF) ligation. Whether TrkA also resides in cardiac fibroblasts (CFs) and underlies cardioprotection is unknown. Objective To test whether CFs express TrkA that conveys paracrine signals to neighbor cardiomyocytes using, as probe, the Chagas disease parasite Trypanosoma cruzi, which expresses a TrkA-binding neurotrophin mimetic, named PDNF. T cruzi targets the heart, causing chronic debilitating cardiomyopathy in ∼30% patients. Methods and Results Basal levels of TrkA and TrkC in primary CFs are comparable to those in cardiomyocytes. However, in the myocardium, TrkA expression is significantly lower in fibroblasts than myocytes, and vice versa for TrkC. Yet T cruzi recognition of TrkA on fibroblasts, preferentially over cardiomyocytes, triggers a sharp and sustained increase in NGF, including in the heart of infected mice or of mice administered PDNF intravenously, as early as 3-h post-administration. Further, NGF-containing T cruzi- or PDNF-induced fibroblast-conditioned medium averts cardiomyocyte damage by H2O2, in agreement with the previously recognized cardioprotective role of NGF. Conclusions TrkA residing in CFs induces an exuberant NGF production in response to T cruzi infection, enabling, in a paracrine fashion, myocytes to resist oxidative stress, a leading Chagas cardiomyopathy trigger. Thus, PDNF-TrkA interaction on CFs may be a mechanism orchestrated by T cruzi to protect its heart habitat, in concert with the long-term (decades) asymptomatic heart parasitism that characterizes Chagas disease. Moreover, as a potent booster of cardioprotective NGF in vivo, PDNF may offer a novel therapeutic opportunity against cardiomyopathies.
Collapse
Affiliation(s)
- Daniel Aridgides
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America,
- Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Ryan Salvador
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America,
- Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Mercio PereiraPerrin
- Graduate Program in Immunology, Sackler School of Graduate Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America,
- Department of Pathology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
33
|
Caradonna KL, Engel JC, Jacobi D, Lee CH, Burleigh BA. Host metabolism regulates intracellular growth of Trypanosoma cruzi. Cell Host Microbe 2013; 13:108-17. [PMID: 23332160 DOI: 10.1016/j.chom.2012.11.011] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2012] [Revised: 09/08/2012] [Accepted: 11/12/2012] [Indexed: 11/15/2022]
Abstract
Metabolic coupling of intracellular pathogens with host cells is essential for successful colonization of the host. Establishment of intracellular infection by the protozoan Trypanosoma cruzi leads to the development of human Chagas' disease, yet the functional contributions of the host cell toward the infection process remain poorly characterized. Here, a genome-scale functional screen identified interconnected metabolic networks centered around host energy production, nucleotide metabolism, pteridine biosynthesis, and fatty acid oxidation as key processes that fuel intracellular T. cruzi growth. Additionally, the host kinase Akt, which plays essential roles in various cellular processes, was critical for parasite replication. Targeted perturbations in these host metabolic pathways or Akt-dependent signaling pathways modulated the parasite's replicative capacity, highlighting the adaptability of this intracellular pathogen to changing conditions in the host. These findings identify key cellular process regulating intracellular T. cruzi growth and illuminate the potential to leverage host pathways to limit T. cruzi infection.
Collapse
Affiliation(s)
- Kacey L Caradonna
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, 665 Huntington Avenue, Building I, Room 817, Boston, MA 02115, USA
| | | | | | | | | |
Collapse
|
34
|
dC-Rubin SSC, Schenkman S. Trypanosoma cruzi trans-sialidase as a multifunctional enzyme in Chagas’ disease. Cell Microbiol 2012; 14:1522-30. [DOI: 10.1111/j.1462-5822.2012.01831.x] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/13/2012] [Accepted: 06/18/2012] [Indexed: 11/27/2022]
Affiliation(s)
| | - Sergio Schenkman
- Departamento de Microbiologia; Imunologia e Parasitologia; Universidade Federal de São Paulo; UNIFESP; São Paulo; Brasil
| |
Collapse
|
35
|
Abstract
The Trypanosoma cruzi genome contains the most widely expanded content (∼12,000 genes) of the trypanosomatids sequenced to date. This expansion is reflected in the high number of repetitive sequences and particularly in the large quantity of genes that make up its multigene families. Recently it was discovered that the contents of these families vary between phylogenetically unrelated strains. We review the basic characteristics of trans-sialidases and mucins as part of the mechanisms of immune evasion of T. cruzi and as ligands and factors involved in the cross talk between the host cell and the parasite. We also show recently published data describing two new multigene families, DGF-1 and MASP, that form an important part of the scenario representing the complex biology of T. cruzi.
Collapse
|
36
|
Biologic and genetics aspects of chagas disease at endemic areas. J Trop Med 2012; 2012:357948. [PMID: 22529863 PMCID: PMC3317048 DOI: 10.1155/2012/357948] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2011] [Accepted: 11/28/2011] [Indexed: 11/17/2022] Open
Abstract
The etiologic agent of Chagas Disease is the Trypanosoma cruzi, transmitted through blood-sucking insect vectors of the Triatominae subfamily, representing one of the most serious public health concerns in Latin America. There are geographic variations in the prevalence of clinical forms and morbidity of Chagas disease, likely due to genetic variation of the T. cruzi and the host genetic and environmental features. Increasing evidence has supported that inflammatory cytokines and chemokines are responsible for the generation of the inflammatory infiltrate and tissue damage. Moreover, genetic polymorphisms, protein expression levels, and genomic imbalances are associated with disease progression. This paper discusses these key aspects. Large surveys were carried out in Brazil and served as baseline for definition of the control measures adopted. However, Chagas disease is still active, and aspects such as host-parasite interactions, genetic mechanisms of cellular interaction, genetic variability, and tropism need further investigations in the attempt to eradicate the disease.
Collapse
|
37
|
Nagajyothi F, Machado FS, Burleigh BA, Jelicks LA, Scherer PE, Mukherjee S, Lisanti MP, Weiss LM, Garg NJ, Tanowitz HB. Mechanisms of Trypanosoma cruzi persistence in Chagas disease. Cell Microbiol 2012; 14:634-43. [PMID: 22309180 DOI: 10.1111/j.1462-5822.2012.01764.x] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Trypanosoma cruzi infection leads to development of chronic Chagas disease. In this article, we provide an update on the current knowledge of the mechanisms employed by the parasite to gain entry into the host cells and establish persistent infection despite activation of a potent immune response by the host. Recent studies point to a number of T. cruzi molecules that interact with host cell receptors to promote parasite invasion of the diverse host cells. T. cruzi expresses an antioxidant system and thromboxane A(2) to evade phagosomal oxidative assault and suppress the host's ability to clear parasites. Additional studies suggest that besides cardiac and smooth muscle cells that are the major target of T. cruzi infection, adipocytes and adipose tissue serve as reservoirs from where T. cruzi can recrudesce and cause disease decades later. Further, T. cruzi employs at least four strategies to maintain a symbiotic-like relationship with the host, and ensure consistent supply of nutrients for its own survival and long-term persistence. Ongoing and future research will continue to help refining the models of T. cruzi invasion and persistence in diverse tissues and organs in the host.
Collapse
Affiliation(s)
- Fnu Nagajyothi
- Department of Pathology, Albert Einstein College of Medicine, Bronx, NY, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Rodrigues V, Cordeiro-da-Silva A, Laforge M, Ouaissi A, Silvestre R, Estaquier J. Modulation of mammalian apoptotic pathways by intracellular protozoan parasites. Cell Microbiol 2012; 14:325-33. [PMID: 22168464 DOI: 10.1111/j.1462-5822.2011.01737.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During intracellular parasitic infections, pathogens and host cells take part in a complex web of events that are crucial for the outcome of the infection. Modulation of host cell apoptosis by pathogens attracted the attention of scientists during the last decade. Apoptosis is an efficient mechanism used by the host to control infection and limit pathogen multiplication and dissemination. In order to ensure completion of their complex life cycles and to guarantee transmission between different hosts, intracellular parasites have developed mechanisms to block apoptosis and sustain the viability of their host cells. Here, we review how some of the most prominent intracellular protozoan parasites modulate the main mammalian apoptotic pathways by emphasizing the advances from the last decade, which have begun to dissect this dynamic and complex interaction.
Collapse
|
39
|
Nagajyothi F, Zhao D, Weiss LM, Tanowitz HB. Curcumin treatment provides protection against Trypanosoma cruzi infection. Parasitol Res 2012; 110:2491-9. [PMID: 22215192 DOI: 10.1007/s00436-011-2790-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2011] [Accepted: 12/14/2011] [Indexed: 10/14/2022]
Abstract
Trypanosoma cruzi, the etiologic agent of Chagas disease, causes an acute myocarditis and chronic cardiomyopathy. The current therapeutic agents for this disease are not always effective and often have severe side effects. Curcumin, a plant polyphenol, has demonstrated a wide range of potential therapeutic effects. In this study, we examined the effect of curcumin on T. cruzi infection in vitro and in vivo. Curcumin pretreatment of fibroblasts inhibited parasite invasion. Treatment reduced the expression of the low density lipoprotein receptor, which is involved in T. cruzi host cell invasion. Curcumin treatment of T. cruzi-infected CD1 mice reduced parasitemia and decreased the parasitism of infected heart tissue. This was associated with a significant reduction in macrophage infiltration and inflammation in both the heart and liver; moreover, curcumin-treated infected mice displayed a 100% survival rate in contrast to the 60% survival rate commonly observed in untreated infected mice. These data are consistent with curcumin modulating infection-induced changes in signaling pathways involved in inflammation, oxidative stress, and apoptosis. These data suggest that curcumin and its derivatives could be a suitable drug for the amelioration of chagasic heart disease.
Collapse
Affiliation(s)
- Fnu Nagajyothi
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, NY, USA.
| | | | | | | |
Collapse
|
40
|
Chuenkova MV, Pereiraperrin M. Neurodegeneration and neuroregeneration in Chagas disease. ADVANCES IN PARASITOLOGY 2011; 76:195-233. [PMID: 21884893 DOI: 10.1016/b978-0-12-385895-5.00009-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Autonomic dysfunction plays a significant role in the development of chronic Chagas disease (CD). Destruction of cardiac parasympathetic ganglia can underlie arrhythmia and heart failure, while lesions of enteric neurons in the intestinal plexuses are a direct cause of aperistalsis and megasyndromes. Neuropathology is generated by acute infection when the parasite, though not directly damaging to neuronal cells, elicits immune reactions that can become cytotoxic, inducing oxidative stress and neurodegeneration. Anti-neuronal autoimmunity may further contribute to neuropathology. Much less clear is the mechanism of subsequent neuronal regeneration in patients that survive acute infection. Morphological and functional recovery of the peripheral neurons in these patients correlates with the absence of CD clinical symptoms, while persistent neuronal deficiency is observed for the symptomatic group. The discovery that Trypanosoma cruzi trans-sialidase can moonlight as a parasite-derived neurotrophic factor (PDNF) suggests that the parasite might influence the balance between neuronal degeneration and regeneration. PDNF functionally mimics mammalian neurotrophic factors in that it binds and activates neurotrophin Trk tyrosine kinase receptors, a mechanism which prevents neurodegeneration. PDNF binding to Trk receptors triggers PI3K/Akt/GSK-3β and MAPK/Erk/CREB signalling cascades which in neurons translates into resistance to oxidative and nutritional stress, and inhibition of apoptosis, whereas in the cytoplasm of infected cells, PDNF represents a substrate-activator of the host Akt kinase, enhancing host-cell survival until completion of the intracellular cycle of the parasite. Such dual activity of PDNF provides sustained activation of survival mechanisms which, while prolonging parasite persistence in host tissues, can underlie distinct outcomes of CD.
Collapse
Affiliation(s)
- Marina V Chuenkova
- Department of Pathology and Sackler School of Graduate Students, Tufts University School of Medicine, Boston, Massachusetts, USA
| | | |
Collapse
|
41
|
Caradonna KL, Burleigh BA. Mechanisms of host cell invasion by Trypanosoma cruzi. ADVANCES IN PARASITOLOGY 2011; 76:33-61. [PMID: 21884886 DOI: 10.1016/b978-0-12-385895-5.00002-5] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
One of the more accepted concepts in our understanding of the biology of early Trypanosoma cruzi-host cell interactions is that the mammalian-infective trypomastigote forms of the parasite must transit the host cell lysosomal compartment in order to establish a productive intracellular infection. The acidic environment of the lysosome provides the appropriate conditions for parasite-mediated disruption of the parasitophorous vacuole and release of T. cruzi into the host cell cytosol, where replication of intracellular amastigotes occurs. Recent findings indicate a level of redundancy in the lysosome-targeting process where T. cruzi trypomastigotes exploit different cellular pathways to access host cell lysosomes in non-professional phagocytic cells. In addition, the reversible nature of the host cell penetration process was recently demonstrated when conditions for fusion of the nascent parasite vacuole with the host endosomal-lysosomal system were not met. Thus, the concept of parasite retention as a critical component of the T. cruzi invasion process was introduced. Although it is clear that host cell recognition, attachment and signalling are required to initiate invasion, integration of this knowledge with our understanding of the different routes of parasite entry is largely lacking. In this chapter, we focus on current knowledge of the cellular pathways exploited by T. cruzi trypomastigotes to invade non-professional phagocytic cells and to gain access to the host cell lysosome compartment.
Collapse
Affiliation(s)
- Kacey L Caradonna
- Department of Immunology and Infectious Diseases, Harvard School of Public Health, Boston,Massachusetts, USA
| | | |
Collapse
|
42
|
Toll-like receptor-2 and interleukin-6 mediate cardiomyocyte protection from apoptosis during Trypanosoma cruzi murine infection. Med Microbiol Immunol 2011; 201:145-55. [DOI: 10.1007/s00430-011-0216-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Indexed: 01/02/2023]
|
43
|
Neurotrophin receptor TrkC is an entry receptor for Trypanosoma cruzi in neural, glial, and epithelial cells. Infect Immun 2011; 79:4081-7. [PMID: 21788388 DOI: 10.1128/iai.05403-11] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Trypanosoma cruzi, the agent of Chagas' disease, infects a variety of mammalian cells in a process that includes multiple cycles of intracellular division and differentiation starting with host receptor recognition by a parasite ligand(s). Earlier work in our laboratory showed that the neurotrophin-3 (NT-3) receptor TrkC is activated by T. cruzi surface trans-sialidase, also known as parasite-derived neurotrophic factor (PDNF). However, it has remained unclear whether TrkC is used by T. cruzi to enter host cells. Here, we show that a neuronal cell line (PC12-NNR5) relatively resistant to T. cruzi became highly susceptible to infection when overexpressing human TrkC but not human TrkB. Furthermore, trkC transfection conferred an ∼3.0-fold intracellular growth advantage. Sialylation-deficient Chinese hamster ovarian (CHO) epithelial cell lines Lec1 and Lec2 also became much more permissive to T. cruzi after transfection with the trkC gene. Additionally, NT-3 specifically blocked T. cruzi infection of the TrkC-NNR5 transfectants and of naturally permissive TrkC-bearing Schwann cells and astrocytes, as did recombinant PDNF. Two specific inhibitors of Trk autophosphorylation (K252a and AG879) and inhibitors of Trk-induced MAPK/Erk (U0126) and Akt kinase (LY294002) signaling, but not an inhibitor of insulin-like growth factor 1 receptor, abrogated TrkC-mediated cell invasion. Antibody to TrkC blocked T. cruzi infection of the TrkC-NNR5 transfectants and of cells that naturally express TrkC. The TrkC antibody also significantly and specifically reduced cutaneous infection in a mouse model of acute Chagas' disease. TrkC is ubiquitously expressed in the peripheral and central nervous systems, and in nonneural cells infected by T. cruzi, including cardiac and gastrointestinal muscle cells. Thus, TrkC is implicated as a functional PDNF receptor in cell entry, independently of sialic acid recognition, mediating broad T. cruzi infection both in vitro and in vivo.
Collapse
|
44
|
Abstract
Intracellular parasitism has arisen only a few times during the long ancestry of protozoan parasites including in diverse groups such as microsporidians, kinetoplastids, and apicomplexans. Strategies used to gain entry differ widely from injection (e.g. microsporidians), active penetration of the host cell (e.g. Toxoplasma), recruitment of lysosomes to a plasma membrane wound (e.g. Trypanosoma cruzi), to host cell-mediated phagocytosis (e.g. Leishmania). The resulting range of intracellular niches is equally diverse ranging from cytosolic (e.g. T. cruzi) to residing within a non-fusigenic vacuole (e.g. Toxoplasma, Encephalitozoon) or a modified phagolysosome (e.g. Leishmania). These lifestyle choices influence access to nutrients, interaction with host cell signaling pathways, and detection by pathogen recognition systems. As such, intracellular life requires a repertoire of adaptations to assure entry-exit from the cell, as well as to thwart innate immune mechanisms and prevent clearance. Elucidating these pathways at the cellular and molecular level may identify key steps that can be targeted to reduce parasite survival or augment immunologic responses and thereby prevent disease.
Collapse
Affiliation(s)
- L David Sibley
- Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63100, USA.
| |
Collapse
|
45
|
Trypanosoma cruzi infection induces a global host cell response in cardiomyocytes. Infect Immun 2011; 79:1855-62. [PMID: 21343357 DOI: 10.1128/iai.00643-10] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Chagas' disease, caused by the hemoflagellate protozoan Trypanosoma cruzi, affects millions of people in South and Central America. Chronic chagasic cardiomyopathy, the most devastating manifestation of this disease, occurs in approximately one-third of infected individuals. Events associated with the parasite's tropism for and invasion of cardiomyocytes have been the focus of intense investigation in recent years. In the present study, we use murine microarrays to investigate the cellular response caused by invasion of primary murine cardiomyocytes by T. cruzi trypomastigotes. These studies identified 353 murine genes that were differentially expressed during the early stages of invasion and infection of these cells. Genes associated with the immune response, inflammation, cytoskeleton organization, cell-cell and cell-matrix interactions, apoptosis, cell cycle, and oxidative stress are among those affected during the infection. Our data indicate that T. cruzi induces broad modulations of the host cell machinery in ways that provide insight into how the parasite survives, replicates, and persists in the infected host and ultimately defines the clinical outcome of the infection.
Collapse
|
46
|
Bao Y, Weiss LM, Ma YF, Kahn S, Huang H. Protein kinase A catalytic subunit interacts and phosphorylates members of trans-sialidase super-family in Trypanosoma cruzi. Microbes Infect 2010; 12:716-26. [PMID: 20466066 DOI: 10.1016/j.micinf.2010.04.014] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 04/23/2010] [Accepted: 04/29/2010] [Indexed: 12/01/2022]
Abstract
Protein kinase A (PKA) has been suggested as a regulator of stage differentiation in Trypanosoma cruzi. Using a yeast two-hybrid system we have begun to characterize the downstream substrates of T. cruzi PKA. We identified several members of the trans-sialidase super family by this approach. Immunoprecitation demonstrated that a TcPKAc monoclonal antibody was able to pull-down proteins recognized by trans-sialidase antibodies as well as a SA85-1.1 antibody and vice versa. An in vitro phosphorylation assay demonstrated that PKA phosphorylated the recombinant protein of an active trans-sialidase. In addition, a phospho-(Ser/Thr) PKA substrate antibody detected bands on immunoblot analysis of trans-sialidase antibody precipitated proteins from parasite lysate and the media of L(6)E(9) myoblasts infected with trypomastigotes as well as from a SA85-1.1 antibody precipitated proteins from parasite lysate. Immunofluorescence analysis suggested that some TcPKAc localizes to the plasma membrane surface of trypomastigotes. The identified trans-sialidases have PKA consensus phosphorylation sites located near the endoplasmic reticulum retention motif in the N-terminal. These data support that PKA phosphorylates trans-sialidase super family members in vivo.
Collapse
Affiliation(s)
- Yi Bao
- Department of Pathology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | | | | | | | | |
Collapse
|