1
|
Wyatt RA, Jamaluddin A, Mistry V, Quinn C, Gorvin CM. Obesity-associated MRAP2 variants impair multiple MC4R-mediated signaling pathways. Hum Mol Genet 2025; 34:533-546. [PMID: 39807633 PMCID: PMC11891872 DOI: 10.1093/hmg/ddaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/16/2025] Open
Abstract
The melanocortin-4 receptor (MC4R) is a G protein-coupled receptor expressed at hypothalamic neurons that has an important role in appetite suppression and food intake. Mutations in MC4R are the most common cause of monogenic obesity and can affect multiple signaling pathways including Gs-cAMP, Gq, ERK1/2, β-arrestin recruitment, internalization and cell surface expression. The melanocortin-2 receptor accessory protein 2 (MRAP2), is a single-pass transmembrane protein that interacts with and regulates signaling by MC4R. Variants in MRAP2 have also been identified in overweight and obese individuals. However, functional studies that have only measured the effect of MRAP2 variants on MC4R-mediated cAMP signaling have produced inconsistent findings and most do not reduce MC4R function. Here we investigated the effect of twelve of these previously reported MRAP2 variants and showed that all variants that have been identified in overweight or obese individuals impair MC4R function. When expressed at equal concentrations, seven MRAP2 variants impaired MC4R-mediated cAMP signaling, while nine variants impaired IP3 signaling. Four mutations in the MRAP2 C-terminus affected internalization. MRAP2 variants had no effect on total or cell surface expression of either the MRAP2 or MC4R proteins. Structural models predicted that MRAP2 interacts with MC4R transmembrane helices 5 and 6, and mutations in two MRAP2 residues in putative contact sites impaired the ability of MRAP2 to facilitate MC4R signaling. In summary, our studies demonstrate that human MRAP2 variants associated with obesity impair multiple MC4R signaling pathways and that both Gs-cAMP and Gq-IP3 pathways should be assessed to determine variant pathogenicity.
Collapse
Affiliation(s)
- Rachael A Wyatt
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, United Kingdom
| | - Aqfan Jamaluddin
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, United Kingdom
| | - Vinesh Mistry
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Caitlin Quinn
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | - Caroline M Gorvin
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, B15 2TT, United Kingdom
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, B15 2TT, United Kingdom
| |
Collapse
|
2
|
Cash CM, de Laat MA. Distribution and sequence analysis of the melanocortin 2 receptor in horses and ponies. Domest Anim Endocrinol 2025; 90:106896. [PMID: 39591910 DOI: 10.1016/j.domaniend.2024.106896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 10/20/2024] [Accepted: 11/19/2024] [Indexed: 11/28/2024]
Abstract
The melanocortin 2 receptor (MC2R) has relevance to equine pituitary pars intermedia dysfunction (PPID), as it is the primary binding site for ACTH, which circulates at elevated concentrations in animals affected by PPID. Despite this, little is known about MC2R in equine species. The overall aim of this investigation was to determine MC2R mRNA expression in tissues relevant to PPID in healthy horses and to examine the MC2R gene sequence in a cohort of horses and ponies with and without PPID. The study found that the MC2R gene was expressed in both adrenal and pituitary gland tissues as reported in other mammalian species. However, no expression was seen in adipose or skin tissue. An investigation of the tissue distribution and functionality of the MC2R in individuals with PPID is now recommended. Then, we investigated the coding regions (exons) of the equine MC2R gene for variations associated with PPID in a limited number of animals. This was performed using a hybridised gene capture and next generation sequencing method which found a 100% pairwise identity between all 28 individuals in the study, and with the reference genome sequence. This preliminary study found no evidence of major genetic variations in the coding region of the MC2R gene associated with PPID, though variants affecting expression may occur in the introns or remain unidentified within the exons of the gene and studies on a larger scale are required.
Collapse
Affiliation(s)
- Christina M Cash
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Melody A de Laat
- School of Biology and Environmental Science, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
3
|
Jamaluddin A, Wyatt RA, Lee J, Dowsett GK, Tadross JA, Broichhagen J, Yeo GS, Levitz J, Gorvin CM. The MRAP2 accessory protein directly interacts with melanocortin-3 receptor to enhance signaling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.06.622243. [PMID: 39574659 PMCID: PMC11580913 DOI: 10.1101/2024.11.06.622243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
The central melanocortin system links nutrition to energy expenditure, with melanocortin-4 receptor (MC4R) controlling appetite and food intake, and MC3R regulating timing of sexual maturation, rate of linear growth and lean mass accumulation. Melanocortin-2 receptor accessory protein-2 (MRAP2) is a single transmembrane protein that interacts with MC4R to potentiate it's signalling, and human mutations in MRAP2 cause obesity. Previous studies have been unable to consistently show whether MRAP2 affects MC3R activity. Here we used single-molecule pull-down (SiMPull) to confirm that MC3R and MRAP2 interact in HEK293 cells. Analysis of fluorescent photobleaching steps showed that MC3R and MRAP2 readily form heterodimers most commonly with a 1:1 stoichiometry. Human single-nucleus and spatial transcriptomics show MRAP2 is co-expressed with MC3R in hypothalamic neurons with important roles in energy homeostasis and appetite control. Functional analyses showed MRAP2 enhances MC3R cAMP signalling, impairs β-arrestin recruitment, and reduces internalization in HEK293 cells. Structural homology models revealed putative interactions between the two proteins and alanine mutagenesis of five MRAP2 and three MC3R transmembrane residues significantly reduced MRAP2 effects on MC3R signalling. Finally, we showed genetic variants in MRAP2 that have been identified in individuals that are overweight or obese prevent MRAP2's enhancement of MC3R-driven signalling. Thus, these studies reveal MRAP2 as an important regulator of MC3R function and provide further evidence for the crucial role of MRAP2 in energy homeostasis.
Collapse
Affiliation(s)
- Aqfan Jamaluddin
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Rachael A. Wyatt
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| | - Joon Lee
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Georgina K.C. Dowsett
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - John A. Tadross
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
- East Genomics Laboratory Hub, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
- Department of Histopathology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Johannes Broichhagen
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie (FMP), 13125, Berlin, Germany
| | - Giles S.H. Yeo
- Wellcome-MRC Institute of Metabolic Science-Metabolic Research Laboratories, University of Cambridge, Cambridge, UK
| | - Joshua Levitz
- Department of Biochemistry, Weill Cornell Medicine, New York, NY 10065, USA
| | - Caroline M. Gorvin
- Department of Metabolism and Systems Science, University of Birmingham, Birmingham, UK
- Centre of Membrane Proteins and Receptors (COMPARE), Universities of Birmingham and Nottingham, Birmingham, UK
| |
Collapse
|
4
|
Wang M, Lyu J, Zhang C. Single transmembrane GPCR modulating proteins: neither single nor simple. Protein Cell 2024; 15:395-402. [PMID: 37314044 PMCID: PMC11131010 DOI: 10.1093/procel/pwad035] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/15/2023] Open
Affiliation(s)
- Meng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jianjun Lyu
- Hubei Topgene Research Institute of Hubei Topgene Biotechnology Co., Ltd, East Lake High-Tech Development Zone, Wuhan 430205, China
| | - Chao Zhang
- Fundamental Research Center, Shanghai Yangzhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai 200092, China
| |
Collapse
|
5
|
Bouyoucos IA, Shaughnessy CA, Gary Anderson W, Dores RM. Molecular and pharmacological analysis of the melanocortin-2 receptor and its accessory proteins Mrap1 and Mrap2 in a Squalomorph shark, the Pacific spiny dogfish. Gen Comp Endocrinol 2023; 342:114342. [PMID: 37454980 DOI: 10.1016/j.ygcen.2023.114342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/08/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
The hypothalamus-pituitary-adrenal/interrenal (HPA/I) axis is a conserved vertebrate neuroendocrine mechanism regulating the stress response. The penultimate step of the HPA/I axis is the exclusive activation of the melanocortin-2 receptor (Mc2r) by adrenocorticotropic hormone (ACTH), requiring an accessory protein, Mrap1 or Mrap2. Limited data for only three cartilaginous fishes support the hypothesis that Mc2r/Mrap1 function in bony vertebrates is a derived trait. Further, Mc2r/Mrap1 functional properties appear to contrast among cartilaginous fishes (i.e., the holocephalans and elasmobranchs). This study sought to determine whether functional properties of Mc2r/Mrap1 are conserved across elasmobranchs and in contrast to holocephalans. The deduced amino acid sequences of Pacific spiny dogfish (Squalus suckleyi; pd) pdMc2r, pdMrap1, and pdMrap2 were obtained from a de novo transcriptome of the interrenal gland and validated against the S. suckleyi genome. pdMc2r showed high primary sequence similarity with elasmobranch and holocephalan Mc2r except at extracellular domains 1 and 2, and transmembrane domain 5. pdMraps showed similarly high sequence similarity with holocephalan and other elasmobranch Mraps, with all cartilaginous fish Mrap1 orthologs lacking an activation motif. cAMP reporter gene assays demonstrated that pdMc2r requires an Mrap for activation, and can be activated by stingray (sr) ACTH(1-24), srACTH(1-13)NH2 (i.e., α-MSH), and γ-melanocyte-stimulating hormone at physiological concentrations. However, pdMc2r was three orders of magnitude more sensitive to srACTH(1-24) than srACTH(1-13)NH2. Further, pdMc2r was two orders of magnitude more sensitive to srACTH(1-24) when expressed with pdMrap1 than with pdMrap2. These data suggest that functional properties of pdMc2r/pdMrap1 reflect other elasmobranchs and contrast what is seen in holocephalans.
Collapse
Affiliation(s)
- Ian A Bouyoucos
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada.
| | | | - W Gary Anderson
- Department of Biological Sciences, University of Manitoba, Winnipeg, MB R3T 2N2, Canada; Bamfield Marine Sciences Centre, Bamfield, BC V0R 1B0, Canada
| | - Robert M Dores
- Department of Biological Sciences, University of Denver, Denver, CO 80208, USA
| |
Collapse
|
6
|
Bernard A, Ojeda Naharros I, Yue X, Mifsud F, Blake A, Bourgain-Guglielmetti F, Ciprin J, Zhang S, McDaid E, Kim K, Nachury MV, Reiter JF, Vaisse C. MRAP2 regulates energy homeostasis by promoting primary cilia localization of MC4R. JCI Insight 2023; 8:e155900. [PMID: 36692018 PMCID: PMC9977312 DOI: 10.1172/jci.insight.155900] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 11/30/2022] [Indexed: 01/24/2023] Open
Abstract
The G protein-coupled receptor melanocortin-4 receptor (MC4R) and its associated protein melanocortin receptor-associated protein 2 (MRAP2) are essential for the regulation of food intake and body weight in humans. MC4R localizes and functions at the neuronal primary cilium, a microtubule-based organelle that senses and relays extracellular signals. Here, we demonstrate that MRAP2 is critical for the weight-regulating function of MC4R neurons and the ciliary localization of MC4R. More generally, our study also reveals that GPCR localization to primary cilia can require specific accessory proteins that may not be present in heterologous cell culture systems. Our findings further demonstrate that targeting of MC4R to neuronal primary cilia is essential for the control of long-term energy homeostasis and suggest that genetic disruption of MC4R ciliary localization may frequently underlie inherited forms of obesity.
Collapse
Affiliation(s)
| | | | - Xinyu Yue
- Department of Medicine and The Diabetes Center
| | | | - Abbey Blake
- Department of Medicine and The Diabetes Center
| | | | | | - Sumei Zhang
- Department of Medicine and The Diabetes Center
| | - Erin McDaid
- Department of Medicine and The Diabetes Center
| | - Kellan Kim
- Department of Medicine and The Diabetes Center
| | | | - Jeremy F. Reiter
- Department of Biochemistry and Biophysics, Cardiovascular Research Institute, UCSF, San Francisco, California, USA
- Chan Zuckerberg Biohub, San Francisco, California, USA
| | | |
Collapse
|
7
|
Yin TC, Mittal A, Buscaglia P, Li W, Sebag JA. Activation of amygdala prokineticin receptor 2 neurons drives the anorexigenic activity of the neuropeptide PK2. J Biol Chem 2022; 299:102814. [PMID: 36539034 PMCID: PMC9860486 DOI: 10.1016/j.jbc.2022.102814] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 12/09/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022] Open
Abstract
Energy homeostasis is a complex system involving multiple hormones, neuropeptides, and receptors. Prokineticins (PK1 and PK2) are agonists to two G protein-coupled receptors, prokineticin receptor 1 and 2 (PKR1 and PKR2), which decrease food intake when injected in rodents. The relative contribution of PKR1 and PKR2 to the anorexigenic effect of PK2 and their site of action in the brain have not yet been elucidated. While PKR1 and PKR2 are both expressed in the hypothalamus, a central region involved in the control of energy homeostasis, PKR2 is also present in the amygdala, which has recently been shown to regulate food intake in response to several anorexigenic signals. PKR trafficking and signaling are inhibited by the melanocortin receptor accessory protein 2 (MRAP2), thus suggesting that MRAP2 has the potential to alter the anorexigenic activity of PK2 in vivo. In this study, we investigated the importance of PKR1 and PKR2 for PK2-mediated inhibition of food intake, the brain region involved in this function, and the effect of MRAP2 on PK2 action in vivo. Using targeted silencing of PKR2 and chemogenetic manipulation of PKR2 neurons, we show that the anorexigenic effect of PK2 is mediated by PKR2 in the amygdala and that altering MRAP2 expression in PKR2 neurons modulates the activity of PK2. Collectively, our results provide evidence that inhibition of food intake by PKs is not mediated through activation of hypothalamic neurons but rather amygdala PKR2 neurons and further establishes the importance of MRAP2 in the regulation of energy homeostasis.
Collapse
Affiliation(s)
- Terry C. Yin
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA,Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Ayushi Mittal
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA,Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Paul Buscaglia
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA,Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Wenxian Li
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA,Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA
| | - Julien A. Sebag
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, Iowa, USA,Fraternal Order of Eagle Diabetes Research Center, University of Iowa, Iowa City, Iowa, USA,Iowa Neuroscience Institute, University of Iowa, Iowa City, Iowa, USA,Pappajohn Biomedical Institute, University of Iowa, Iowa City, Iowa, USA,For correspondence: Julien A. Sebag
| |
Collapse
|
8
|
Wang M, Wang X, Jiang B, Zhai Y, Zheng J, Yang L, Tai X, Li Y, Fu S, Xu J, Lei X, Kuang Z, Zhang C, Bai X, Li M, Zan T, Qu S, Li Q, Zhang C. Identification of MRAP protein family as broad-spectrum GPCR modulators. Clin Transl Med 2022; 12:e1091. [PMID: 36314066 PMCID: PMC9619224 DOI: 10.1002/ctm2.1091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND The melanocortin receptor accessory proteins (MRAP1 and MRAP2) are well-known endocrine regulators for the trafficking and signalling of all five melanocortin receptors (MC1R-MC5R). The observation of MRAP2 on regulating several non-melanocortin G protein-coupled receptors (GPCRs) has been sporadically reported, whereas other endogenous GPCR partners of the MRAP protein family are largely unknown. METHODS Here, we performed single-cell transcriptome analysis and drew a fine GPCR blueprint and MRAPs-associated network of two major endocrine organs, the hypothalamus and adrenal gland at single-cell resolution. We also integrated multiple bulk RNA-seq profiles and single-cell datasets of human and mouse tissues, and narrowed down a list of 48 GPCRs with strong endogenous co-expression correlation with MRAPs. RESULTS 36 and 46 metabolic-related GPCRs were consequently identified as novel interacting partners of MRAP1 or MRAP2, respectively. MRAPs exhibited protein-protein interactions and varying pharmacological properties on the surface translocation, constitutive activities and ligand-stimulated downstream signalling of these GPCRs. Knockdown of MRAP2 expression by hypothalamic administration of adeno-associated virus (AAV) packed shRNA stimulated body weight gain in mouse model. Co-injection of corticotropinreleasing factor (CRF), the agonist of corticotropin releasing hormone receptor 1 (CRHR1), suppressed feeding behaviour in a MRAP2-dependent manner. CONCLUSIONS Collectively, our study has comprehensively elucidated the complex GPCR networks in two major endocrine organs and redefined the MRAP protein family as broad-spectrum GPCR modulators. MRAP proteins not only serve as a vital endocrine pivot on the regulation of global GPCR activities in vivo that could explain the composite physiological phenotypes of the MRAP2 null murine model but also provide us with new insights of the phenotyping investigation of GPCR-MRAP functional complexes.
Collapse
Affiliation(s)
- Meng Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaozhu Wang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Bopei Jiang
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yue Zhai
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jihong Zheng
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Liu Yang
- Department of Endocrinology and MetabolismNational Metabolic Management CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Xiaolu Tai
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Yunpeng Li
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Shaliu Fu
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jing Xu
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Xiaowei Lei
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Zhe Kuang
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Cong Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xuanxuan Bai
- School of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Mingyu Li
- Fujian Provincial Key Laboratory of Innovative Drug Target ResearchSchool of Pharmaceutical SciencesXiamen UniversityXiamenChina
| | - Tao Zan
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Shen Qu
- Department of Endocrinology and MetabolismNational Metabolic Management CenterShanghai Tenth People's HospitalSchool of MedicineTongji UniversityShanghaiChina
| | - Qingfeng Li
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| | - Chao Zhang
- Department of Plastic and Reconstructive SurgeryShanghai Ninth People's HospitalShanghai Jiao Tong University School of MedicineShanghaiChina
| |
Collapse
|
9
|
Wilting J, Becker J. The lymphatic vascular system: much more than just a sewer. Cell Biosci 2022; 12:157. [PMID: 36109802 PMCID: PMC9476376 DOI: 10.1186/s13578-022-00898-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/06/2022] [Indexed: 11/18/2022] Open
Abstract
Almost 400 years after the (re)discovery of the lymphatic vascular system (LVS) by Gaspare Aselli (Asellius G. De lactibus, sive lacteis venis, quarto vasorum mesaraicorum genere, novo invento Gasparis Asellii Cremo. Dissertatio. (MDCXXIIX), Milan; 1628.), structure, function, development and evolution of this so-called 'second' vascular system are still enigmatic. Interest in the LVS was low because it was (and is) hardly visible, and its diseases are not as life-threatening as those of the blood vascular system. It is not uncommon for patients with lymphedema to be told that yes, they can live with it. Usually, the functions of the LVS are discussed in terms of fluid homeostasis, uptake of chylomicrons from the gut, and immune cell circulation. However, the broad molecular equipment of lymphatic endothelial cells suggests that they possess many more functions, which are also reflected in the pathophysiology of the system. With some specific exceptions, lymphatics develop in all organs. Although basic structure and function are the same regardless their position in the body wall or the internal organs, there are important site-specific characteristics. We discuss common structure and function of lymphatics; and point to important functions for hyaluronan turn-over, salt balance, coagulation, extracellular matrix production, adipose tissue development and potential appetite regulation, and the influence of hypoxia on the regulation of these functions. Differences with respect to the embryonic origin and molecular equipment between somatic and splanchnic lymphatics are discussed with a side-view on the phylogeny of the LVS. The functions of the lymphatic vasculature are much broader than generally thought, and lymphatic research will have many interesting and surprising aspects to offer in the future.
Collapse
Affiliation(s)
- Jörg Wilting
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany.
| | - Jürgen Becker
- Department of Anatomy and Cell Biology, University Medical School Göttingen, Göttingen, Germany
| |
Collapse
|
10
|
Xu J, Wang M, Fu Y, Zhang C, Kuang Z, Bian S, Wan R, Qu S, Zhang C. Reversion of MRAP2 Protein Sequence Generates a Functional Novel Pharmacological Modulator for MC4R Signaling. BIOLOGY 2022; 11:biology11060874. [PMID: 35741395 PMCID: PMC9219869 DOI: 10.3390/biology11060874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/26/2022] [Accepted: 06/02/2022] [Indexed: 02/06/2023]
Abstract
Simple Summary Reversion of the wild-type protein sequences of single transmembrane melanocortin accessory protein families (MRAP2) in mice and zebrafish created novel functional pharmacological modulators for regulating melanocortin 4 receptor (MC4R) signaling. All of the brand new reversed MRAP2 (rMRAP2) proteins could form proper dimeric topology on the plasma membrane and interact with and affect the ligand-stimulated pharmacological profiles of zebrafish and mouse MC4R signaling in vitro. Abstract As a member of the melanocortin receptor family, melanocortin 4 receptor (MC4R) plays a critical role in regulating energy homeostasis and feeding behavior, and has been proven as a promising therapeutic target for treating severe obesity syndrome. Numerous studies have demonstrated that central MC4R signaling is significantly affected by melanocortin receptor accessory protein 2 (MRAP2) in humans, mice and zebrafish. MRAP2 proteins exist as parallel or antiparallel dimers on the plasma membrane, but the structural insight of dual orientations with the pharmacological profiles has not yet been fully studied. Investigation and optimization of the conformational topology of MRAP2 are critical for the development of transmembrane allosteric modulators to treat MC4R-associated disorders. In this study, we synthesized a brand new single transmembrane protein by reversing wild-type mouse and zebrafish MRAP2 sequences and examined their dimerization, interaction and pharmacological activities on mouse and zebrafish MC4R signaling. We showed that the reversed zebrafish MRAPa exhibited an opposite function on modulating zMC4R signaling and the reversed mouse MRAP2 lost the capability for regulating MC4R trafficking but exhibited a novel function for cAMP cascades, despite proper expression and folding. Taken together, our results provided new biochemical insights on the oligomeric states and membrane orientations of MRAP2 proteins, as well as its pharmacological assistance for modulating MC4R signaling.
Collapse
Affiliation(s)
- Jing Xu
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, China; (J.X.); (Y.F.); (C.Z.); (Z.K.)
| | - Meng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China;
| | - Yanbin Fu
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, China; (J.X.); (Y.F.); (C.Z.); (Z.K.)
| | - Cong Zhang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, China; (J.X.); (Y.F.); (C.Z.); (Z.K.)
| | - Zhe Kuang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, China; (J.X.); (Y.F.); (C.Z.); (Z.K.)
| | - Shan Bian
- Institute for Regenerative Medicine, Shanghai East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200120, China;
| | - Rui Wan
- Department of Critical Care Medicine, Naval Medical Center of PLA, Shanghai 200052, China
- Correspondence: (R.W.); (S.Q.); (C.Z.)
| | - Shen Qu
- Department of Endocrinology and Metabolism, National Metabolic Management Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China
- Correspondence: (R.W.); (S.Q.); (C.Z.)
| | - Chao Zhang
- Fundamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Life Sciences and Technology, Tongji University, Shanghai 201619, China; (J.X.); (Y.F.); (C.Z.); (Z.K.)
- Correspondence: (R.W.); (S.Q.); (C.Z.)
| |
Collapse
|
11
|
Xu Y, Li L, Zheng J, Wang M, Jiang B, Zhai Y, Lu L, Zhang C, Kuang Z, Yang X, Jin LN, Lin G, Zhang C. Pharmacological modulation of the cAMP signaling of two isoforms of melanocortin-3 receptor by melanocortin receptor accessory proteins in the tetrapod Xenopus laevis. Endocr Connect 2021; 10:1477-1488. [PMID: 34678757 PMCID: PMC8630767 DOI: 10.1530/ec-21-0179] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 10/22/2021] [Indexed: 11/29/2022]
Abstract
As a member of the seven-transmembrane rhodopsin-like G protein-coupled receptor superfamily, the melanocortin-3 receptor (MC3R) is vital for the regulation of energy homeostasis and rhythms synchronizing in mammals, and its pharmacological effect could be directly influenced by the presence of melanocortin receptor accessory proteins (MRAPs), MRAP1 and MRAP2. The tetrapod amphibian Xenopus laevis (xl) retains higher duplicated genome than extant teleosts and serves as an ideal model system for embryonic development and physiological studies. However, the melanocortin system of the Xenopus laevis has not yet been thoroughly evaluated. In this work, we performed sequence alignment, phylogenetic tree, and synteny analysis of two xlMC3Rs. Co-immunoprecipitation and immunofluorescence assay further confirmed the co-localization and in vitro interaction of xlMC3Rs with xlMRAPs on the plasma membrane. Our results demonstrated that xlMRAP2.L/S could improve α-MSH-stimulated xlMC3Rs signaling and suppress their surface expression. Moreover, xlMC3R.L showed a similar profile on the ligands and surface expression in the presence of xlMRAP1.L. Overall, the distinct pharmacological modulation of xlMC3R.L and xlMC3R.S by dual MRAP2 proteins elucidated the functional consistency of melanocortin system during genomic duplication of tetrapod vertebrates.
Collapse
Affiliation(s)
- Ying Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jihong Zheng
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bopei Jiang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yue Zhai
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liumei Lu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhe Kuang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xiaomei Yang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Correspondence should be addressed to X Yang or L-N Jin or G Lin or C Zhang: or or or
| | - Li-Na Jin
- Department of Hematology, Changzheng Hospital, Naval Medical University, Shanghai, China
- Correspondence should be addressed to X Yang or L-N Jin or G Lin or C Zhang: or or or
| | - Gufa Lin
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Correspondence should be addressed to X Yang or L-N Jin or G Lin or C Zhang: or or or
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Correspondence should be addressed to X Yang or L-N Jin or G Lin or C Zhang: or or or
| |
Collapse
|
12
|
Verdinez JA, Sebag JA. Role of N-Linked Glycosylation in PKR2 Trafficking and Signaling. Front Neurosci 2021; 15:730417. [PMID: 34483834 PMCID: PMC8414166 DOI: 10.3389/fnins.2021.730417] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 07/27/2021] [Indexed: 12/26/2022] Open
Abstract
Prokineticin receptors are GPCRs involved in several physiological processes including the regulation of energy homeostasis, nociception, and reproductive function. PKRs are inhibited by the endogenous accessory protein MRAP2 which prevents them from trafficking to the plasma membrane. Very little is known about the importance of post-translational modification of PKRs and their role in receptor trafficking and signaling. Here we identify 2 N-linked glycosylation sites within the N-terminal region of PKR2 and demonstrate that glycosylation of PKR2 at position 27 is important for its plasma membrane localization and signaling. Additionally, we show that glycosylation at position 7 results in a decrease in PKR2 signaling through Gαs without impairing Gαq/11 signaling.
Collapse
Affiliation(s)
- Jissele A Verdinez
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| | - Julien A Sebag
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, United States.,Fraternal Order of Eagles Diabetes Research Center, University of Iowa, Iowa City, IA, United States.,Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, United States
| |
Collapse
|
13
|
Chang M, Chen B, Shaffner J, Dworkin LD, Gong R. Melanocortin System in Kidney Homeostasis and Disease: Novel Therapeutic Opportunities. Front Physiol 2021; 12:651236. [PMID: 33716796 PMCID: PMC7943476 DOI: 10.3389/fphys.2021.651236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 02/03/2021] [Indexed: 12/30/2022] Open
Abstract
Melanocortin peptides, melanocortin receptors, melanocortin receptor accessory proteins, and endogenous antagonists of melanocortin receptors are the key components constituting the melanocortin hormone system, one of the most complex and important hormonal systems in our body. A plethora of evidence suggests that melanocortins possess a protective activity in a variety of kidney diseases in both rodent models and human patients. In particular, the steroidogenic melanocortin peptide adrenocorticotropic hormone (ACTH), has been shown to exert a beneficial effect in a number of kidney diseases, possibly via a mechanism independent of its steroidogenic activity. In patients with steroid-resistant nephrotic glomerulopathy, ACTH monotherapy is still effective in inducing proteinuria remission. This has inspired research on potential implications of the melanocortin system in glomerular diseases. However, our understanding of the role of the melanocortinergic pathway in kidney disease is very limited, and there are still huge unknowns to be explored. The most controversial among these is the identification of effector cells in the kidney as well as the melanocortin receptors responsible for conveying the renoprotective action. This review article introduces the melanocortin hormone system, summarizes the existing evidence for the expression of melanocortin receptors in the kidney, and evaluates the potential strategy of melanocortin therapy for kidney disease.
Collapse
Affiliation(s)
- Mingyang Chang
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Bohan Chen
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - James Shaffner
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Lance D Dworkin
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| | - Rujun Gong
- Division of Nephrology, Department of Medicine, University of Toledo College of Medicine, Toledo, OH, United States
| |
Collapse
|
14
|
Wang M, Zhai Y, Lu L, Zhang C, Li N, Xue S, Cheng D, Fu S, Liu Q, Zhang C. Elucidation of the dimeric interplay of dual MRAP2 proteins in the zebrafish. J Cell Physiol 2021; 236:6472-6480. [PMID: 33559170 DOI: 10.1002/jcp.30321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/07/2022]
Abstract
The melanocortin receptor accessory protein 2 (MRAP2) plays an essential role in the regulation of metabolic homeostasis and deletion of which results in severe obesity syndrome in mice and human. Mammalian MRAP2 is recognized as an endogenous physiological mediator through the potentiation of the MC4R signaling in vivo. Two isoforms of MRAP2 are identified in zebrafish genome, zMRAP2a and zMRAP2b. However, the mechanism of assembling dual topology and the regulatory roles of each complex on the melanocortin cascades remains unclear. In this study, we showed the bidirectional homo- and hetero-dimeric topologies of two zebrafish MRAP2 isoforms on the plasma membrane. Orientation fixed chimeric proteins could affect the trafficking and pharmacological properties of zMC4R signaling. Reciprocal replacement of zMRAP2a and zMRAP2b proteins elucidated the major participation of the carboxyl terminal as the functional domain for modulating zMC4R signaling. Our findings revealed the complex and dynamic conformational regulation of dual zebrafish MRAP2 proteins in vitro.
Collapse
Affiliation(s)
- Meng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Zhai
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Liumei Lu
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Na Li
- Yantai Derui Bio-Tech Co.,Ltd, Yantai, Shandong, China
| | - Song Xue
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Daofu Cheng
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shaliu Fu
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Qi Liu
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
15
|
Tai X, Xue S, Zhang C, Liu Y, Chen J, Han Y, Lin G, Zhang C. Pharmacological evaluation of MRAP proteins on Xenopus neural melanocortin signaling. J Cell Physiol 2021; 236:6344-6361. [PMID: 33521982 DOI: 10.1002/jcp.30306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/14/2022]
Abstract
Melanocortin-3 receptor (MC3R) and melanocortin-4 receptor (MC4R), two neural G protein-coupled receptors are known to be functionally critical for energy balance in vertebrates. As allosteric regulators of melanocortin receptors, melanocortin accessory proteins (MRAPs) are also involved in energy homeostasis. The interaction of MRAPs and melanocortin signaling was previously shown in mammals and zebrafish, but nothing had been reported in amphibians. As the basal class of tetrapods, amphibians occupy a phylogenetic transition between teleosts and terrestrial animals. Here we examined the evolutionary conservation of MC3R, MC4R, and MRAPs between diploid Xenopus tropicalis (xt-) and other chordates and investigated the pharmacological regulatory properties of MRAPs on the neural MC3R and MC4R signaling. Our results showed that xtMRAP and xtMRAP2 both exerted robust potentiation effect on agonist (α-MSH and adrenocorticotropin [ACTH]) induced activation and modulated the basal activity and cell surface translocation of xtMC3R and xtMC4R. In addition, the presence of two accessory proteins could convert xtMC3R and xtMC4R into ACTH-preferred receptors. These findings suggest that the presence of MRAPs exhibits fine control over the pharmacological activities of the neuronal MC3R and MC4R signaling in the Xenopus tropicalis, which is physiologically relevant with the complicated transition of feeding behaviors during their life history.
Collapse
Affiliation(s)
- Xiaolu Tai
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Song Xue
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu Liu
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jie Chen
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yu Han
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Zhang
- Shanghai Key Laboratory of Signaling and Disease Research, Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Li L, Xu Y, Zheng J, Kuang Z, Zhang C, Li N, Lin G, Zhang C. Pharmacological modulation of dual melanocortin-4 receptor signaling by melanocortin receptor accessory proteins in the Xenopus laevis. J Cell Physiol 2021; 236:5980-5993. [PMID: 33501674 DOI: 10.1002/jcp.30280] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 12/29/2020] [Accepted: 01/04/2021] [Indexed: 01/09/2023]
Abstract
Physiological modulation of melanocortin-4 receptor (MC4R) signaling by MRAP2 proteins plays an indispensable role in appetite control and energy homeostasis in the central nervous system. Great interspecies differences of the interaction and regulation of melanocortin receptors by MRAP protein family have been reported in several diploid vertebrates but never been investigated in the tetrapod amphibian Xenopus laevis. Here, we performed phylogenetic and synteny-based analyses to explore the evolutionary aspects of dual copies of X. laevis MC4R (xlMC4R) and MRAP2 (xlMRAP2) proteins. Our data showed that xlMRAPs directly interacted with xlMC4Rs on the cell surface as a functional antiparallel dimeric topology and pharmacological studies suggested a homology specific regulatory pattern of the melanocortin system in X. laevis.
Collapse
Affiliation(s)
- Lei Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ying Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Jihong Zheng
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhe Kuang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Na Li
- Yantai Derui Bio-Tech Co., Ltd., Yantai, Shandong, China
| | - Gufa Lin
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| |
Collapse
|
17
|
Wang M, Pi L, Lei X, Li L, Xu J, Kuang Z, Zhang C, Li L, Zhang C. Functional Characterization of the Internal Symmetry of MRAP2 Antiparallel Homodimer. Front Endocrinol (Lausanne) 2021; 12:750797. [PMID: 34759891 PMCID: PMC8572914 DOI: 10.3389/fendo.2021.750797] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 09/30/2021] [Indexed: 11/19/2022] Open
Abstract
The melanocortin receptors are defined as a series of vital pharmaceutical targets to regulate neuronal appetite and maintain controllable body weight for mammals and teleosts. Melanocortin receptor accessory protein 2 (MRAP2) functions as an essential accessory player that modulates the surface translocation and binding to a variety of endogenous or synthetic hormones of central melanocortin-4 receptor (MC4R) signaling. MRAP2 is a single-transmembrane protein and could form a functional symmetric antiparallel homodimer topology. Here, we inverted the N-terminal, transmembrane, and C-terminal domains and generated six distinct conformational variants of the mouse MRAP2 to explore the functional orientations and the internal symmetry of MRAP2 dimers. These remolded MRAP2 mutants showed proper assembly of the antiparallel homodimer and binding to the MC4R, but slightly altered the regulatory profile on the surface expression and the ligand-stimulated cAMP cascades of MC4R. This study elucidated the importance of the orientation of each domain of the single-transmembrane protein and revealed the pharmacological properties of the internal symmetry of the antiparallel homodimer for MRAP2.
Collapse
Affiliation(s)
- Meng Wang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Linyu Pi
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowei Lei
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Li
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Zhe Kuang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liang Li
- Department of Thyroid and Breast Surgery, ZiBo Central Hospital Affiliated of Binzhou Medical University, Zibo, China
- *Correspondence: Liang Li, ; Chao Zhang,
| | - Chao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Institute of Precision Medicine, Shanghai Ninth People’s Hospital, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- *Correspondence: Liang Li, ; Chao Zhang,
| |
Collapse
|
18
|
Berruien NNA, Smith CL. Emerging roles of melanocortin receptor accessory proteins (MRAP and MRAP2) in physiology and pathophysiology. Gene 2020; 757:144949. [PMID: 32679290 DOI: 10.1016/j.gene.2020.144949] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 01/07/2023]
Abstract
Melanocortin-2 receptor accessory protein (MRAP) has an unusual dual topology and influences the expression, localisation, signalling and internalisation of the melanocortin receptor 2 (MC2); the adrenocorticotropic hormone (ACTH) receptor. Mutations in MRAP are associated with familial glucocorticoid deficiency type-2 and evidence is emerging of the importance of MRAP in adrenal development and ACTH signalling. Human MRAP has two functional splice variants: MRAP-α and MRAP-β, unlike MRAP-β, MRAP-α has little expression in brain but is highly expressed in ovary. MRAP2, identified through whole human genome sequence analysis, has approximately 40% sequence homology to MRAP. MRAP2 facilitates MC2 localisation to the cell surface but not ACTH signalling. MRAP and MRAP2 have been found to regulate the surface expression and signalling of all melanocortin receptors (MC1-5). Additionally, MRAP2 moderates the signalling of the G-protein coupled receptors (GCPRs): orexin, prokineticin and GHSR1a; the ghrelin receptor. Whilst MRAP appears to be mainly involved in glucocorticoid synthesis, an important role is emerging for MRAP2 in regulating appetite and energy homeostasis. Transgenic models indicate the importance of MRAP in adrenal gland formation. Like MC3R and MC4R knockout mice, MRAP2 knockout mice have an obese phenotype. In vitro studies indicate that MRAP2 enhances the MC3 and MC4 response to the agonist αMSH, which, like ACTH, is produced through precursor polypeptide proopiomelanocortin (POMC) cleavage. Analysis of cohorts of individuals with obesity have revealed several MRAP2 genetic variants with loss of function mutations which are causative of monogenic hyperphagic obesity with hyperglycaemia and hypertension. MRAP2 may also be associated with female infertility. This review summarises current knowledge of MRAP and MRAP2, their influence on GPCR signalling, and focusses on pathophysiology, particularly familial glucocorticoid deficiency type-2 and obesity.
Collapse
Affiliation(s)
- Nasrin N A Berruien
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| | - Caroline L Smith
- School of Life Sciences, University of Westminster, 115 New Cavendish Street, London W1W 6UW, UK.
| |
Collapse
|
19
|
Chen V, Bruno AE, Britt LL, Hernandez CC, Gimenez LE, Peisley A, Cone RD, Millhauser GL. Membrane orientation and oligomerization of the melanocortin receptor accessory protein 2. J Biol Chem 2020; 295:16370-16379. [PMID: 32943551 DOI: 10.1074/jbc.ra120.015482] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/08/2020] [Indexed: 12/12/2022] Open
Abstract
The melanocortin receptor accessory protein 2 (MRAP2) plays a pivotal role in the regulation of several G protein-coupled receptors that are essential for energy balance and food intake. MRAP2 loss-of-function results in obesity in mammals. MRAP2 and its homolog MRAP1 have an unusual membrane topology and are the only known eukaryotic proteins that thread into the membrane in both orientations. In this study, we demonstrate that the conserved polybasic motif that dictates the membrane topology and dimerization of MRAP1 does not control the membrane orientation and dimerization of MRAP2. We also show that MRAP2 dimerizes through its transmembrane domain and can form higher-order oligomers that arrange MRAP2 monomers in a parallel orientation. Investigating the molecular details of MRAP2 structure is essential for understanding the mechanism by which it regulates G protein-coupled receptors and will aid in elucidating the pathways involved in metabolic dysfunction.
Collapse
Affiliation(s)
- Valerie Chen
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Antonio E Bruno
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Laura L Britt
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA
| | - Ciria C Hernandez
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Luis E Gimenez
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alys Peisley
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Roger D Cone
- Life Sciences Institute and Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California, USA.
| |
Collapse
|
20
|
Tao YX. Molecular chaperones and G protein-coupled receptor maturation and pharmacology. Mol Cell Endocrinol 2020; 511:110862. [PMID: 32389798 DOI: 10.1016/j.mce.2020.110862] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 05/04/2020] [Accepted: 05/05/2020] [Indexed: 12/15/2022]
Abstract
G protein-coupled receptors (GPCRs) are highly conserved versatile signaling molecules located at the plasma membrane that respond to diverse extracellular signals. They regulate almost all physiological processes in the vertebrates. About 35% of current drugs target these receptors. Mutations in these genes have been identified as causes of numerous diseases. The seven transmembrane domain structure of GPCRs implies that the folding of these transmembrane proteins is extremely complicated and difficult. Indeed, many wild type GPCRs are not folded optimally. The most common defect in genetic diseases caused by GPCR mutations is misfolding and failure to reach the plasma membrane where it functions. General molecular chaperones aid the folding of all proteins, including GPCRs, by preventing aggregation, promoting folding and disaggregating small aggregates. Some GPCRs need additional receptor-specific chaperones to assist their folding. Many of these receptor-specific chaperones interact with additional receptors and alter receptor pharmacology, expanding the understanding of these chaperone proteins.
Collapse
Affiliation(s)
- Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, 36849-5519, USA.
| |
Collapse
|
21
|
Hedegaard MA, Holst B. The Complex Signaling Pathways of the Ghrelin Receptor. Endocrinology 2020; 161:5734640. [PMID: 32049280 DOI: 10.1210/endocr/bqaa020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
The ghrelin receptor (GhrR) is known for its strong orexigenic effects in pharmacological doses and has long been considered as a promising target for the treatment of obesity. Several antagonists have been developed to decrease the orexigenic signaling, but none of these have been approved for the treatment of obesity because of adverse effects and lack of efficacy. Heterodimerization and biased signaling are important concepts for G-protein coupled receptor (GPCR) signaling, and the influence of these aspects on the GhrR may be important for feeding behavior and obesity. GhrR has been described to heterodimerize with other GPCRs, such as the dopamine receptors 1 and 2, leading to a modulation of the signaling properties of both dimerization partners. Another complicating factor of GhrR-mediated signaling is its ability to activate several different signaling pathways on ligand stimulation. Importantly, some ligands have shown to be "biased" or "functionally selective," implying that the ligand favors a particular signaling pathway. These unique signaling properties could have a sizeable impact on the physiological functions of the GhrR system. Importantly, heterodimerization may explain why the GhrR is expressed in areas of the brain that are difficult for peptide ligands to access. One possibility is that the purpose of GhrR expression is to modulate the function of other receptors in addition to merely being independently activated. We suggest that a deeper understanding of the signaling properties of the GhrR will facilitate future drug discovery in the areas of obesity and weight management.
Collapse
Affiliation(s)
- Morten Adler Hedegaard
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| | - Birgitte Holst
- Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
22
|
Yang Y, Harmon CM. Molecular determinants of ACTH receptor for ligand selectivity. Mol Cell Endocrinol 2020; 503:110688. [PMID: 31866318 DOI: 10.1016/j.mce.2019.110688] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/03/2019] [Accepted: 12/16/2019] [Indexed: 01/04/2023]
Abstract
The adrenocorticotropic hormone (ACTH) receptor, known as the melanocortin-2 receptor (MC2R), plays a key role in regulating adrenocortical function. ACTH receptor is a subtype of the melanocortin receptor family which is a member of the G-protein coupled receptor (GPCR) superfamily. ACTH receptor has unique characteristics among MCRs. α-MSH, β-MSH, γ-MSH and ACTH are agonists for MCRs but only ACTH is the agonist for ACTH receptor. In addition, the melanocortin receptor accessory protein (MRAP) is required for ACTH receptor expression at cell surface and function. In this review, we summarized the information available on the relationship between ACTH and ACTH receptor and provide the latest understanding of the molecular basis of the ACTH receptor responsible for ligand selectivity and function.
Collapse
Affiliation(s)
- Yingkui Yang
- Department of Surgery, State University of New York at Buffalo, USA.
| | - Carroll M Harmon
- Department of Surgery, State University of New York at Buffalo, USA
| |
Collapse
|
23
|
Rouault AAJ, Rosselli-Murai LK, Hernandez CC, Gimenez LE, Tall GG, Sebag JA. The GPCR accessory protein MRAP2 regulates both biased signaling and constitutive activity of the ghrelin receptor GHSR1a. Sci Signal 2020; 13:13/613/eaax4569. [PMID: 31911434 DOI: 10.1126/scisignal.aax4569] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Ghrelin is a hormone secreted by the stomach during fasting periods and acts through its receptor, the growth hormone secretagogue 1a (GHSR1a), to promote food intake and prevent hypoglycemia. As such, GHSR1a is an important regulator of energy and glucose homeostasis and a target for the treatment of obesity. Here, we showed that the accessory protein MRAP2 altered GHSR1a signaling by inhibiting its constitutive activity, as well as by enhancing its G protein-dependent signaling and blocking the recruitment and signaling of β-arrestin in response to ghrelin. In addition, the effects of MRAP2 on the Gαq and β-arrestin pathways were independent and involved distinct regions of MRAP2. These findings may have implications for the regulation of ghrelin function in vivo and the role of MRAP2 in energy homeostasis. They also show that accessory proteins can bias signaling downstream of GPCRs in response to their endogenous agonist.
Collapse
Affiliation(s)
- Alix A J Rouault
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA
| | | | - Ciria C Hernandez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Luis E Gimenez
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gregory G Tall
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Julien A Sebag
- Department of Molecular Physiology and Biophysics, Fraternal Order of Eagles Diabetes Research Center, Iowa Neuroscience Institute, Pappajohn Biomedical Institute, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
24
|
Rao YZ, Chen R, Zhang Y, Tao YX. Orange-spotted grouper melanocortin-4 receptor: Modulation of signaling by MRAP2. Gen Comp Endocrinol 2019; 284:113234. [PMID: 31398355 DOI: 10.1016/j.ygcen.2019.113234] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/02/2019] [Accepted: 07/28/2019] [Indexed: 02/06/2023]
Abstract
Melanocortin-4 receptor (MC4R) and melanocortin receptor accessory protein 2 (MRAP2) play important roles in the melanocortin system, and interaction of MC4R and MRAP2 is suggested to play pivotal role in energy balance of vertebrates. Orange-spotted grouper (Epinephelus coioides) is a widely cultured marine fish with high economic value in Asia. To explore potential interaction between grouper MC4R and MRAP2, herein we cloned grouper mc4r and mrap2. Grouper mc4r consisted of a 981 bp ORF encoding a putative protein of 327 amino acids, while the grouper mrap2 consisted of a 696 bp ORF encoding a putative protein of 232 amino acids. Sequence and phylogenetic analysis revealed that the grouper MC4R and MRAP2 were highly homologous at amino acid levels to several teleost MC4Rs and MRAP2s, respectively. qRT-PCR results showed that both mc4r and mrap2 were expressed primarily in the central nervous system. In the periphery, these genes were expressed more widely in male fish. The cloned grouper MC4R was functional, exhibiting high constitutive activity in cAMP pathway, capable of binding to three peptide agonists and increasing intracellular cAMP production dose-dependently. MRAP2 significantly decreased basal and agonist-stimulated cAMP signaling. MRAP2 also increased basal ERK1/2 activation but decreased ligand-induced stimulation when expressed at high levels. These data will facilitate future investigation of these molecules in regulating diverse physiological processes in orange-spotted grouper.
Collapse
Affiliation(s)
- Ying-Zhu Rao
- Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China; Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States
| | - Rong Chen
- Institute of Applied Biotechnology, Life Science and Technology School, Lingnan Normal University, Zhanjiang 524048, Guangdong, China
| | - Yong Zhang
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266373, China
| | - Ya-Xiong Tao
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, United States.
| |
Collapse
|
25
|
Wang M, Chen Y, Zhu M, Xu B, Guo W, Lyu Y, Zhang C. Pharmacological modulation of melanocortin-4 receptor by melanocortin receptor accessory protein 2 in Nile tilapia. Gen Comp Endocrinol 2019; 282:113219. [PMID: 31299224 DOI: 10.1016/j.ygcen.2019.113219] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 05/19/2019] [Accepted: 07/08/2019] [Indexed: 11/19/2022]
Abstract
The melanocortin-4 receptor (MC4R) acts as a member of G-protein coupled receptors and participate in food intake and energy expenditure. Melanocortin 2 receptor accessory protein 2 (MRAP2) plays a critical role in regulating MC4R signaling in mammals and zebrafish. However, evidence on their interaction in other teleost species remains elusive. Here, we cloned and assessed the evolutionary aspect and pharmacological modulation of MRAP2 on MC4R signaling in Nile tilapia (Oreochromis niloticus). Tissue distribution analysis of tmc4r and tmrap2 confirmed their co-expression in the brain region. tMRAP2 protein could form antiparallel homo-dimer and directly interacted with tMC4R in vitro and presence of tMRAP2 led to the reduction of agonist response and surface expression of tMC4R. Overall, our findings provide a comparative overview on the evolutionary conservation, genomic distribution, tissue-specific expression and pharmacological profile of the MC4R and MRAP2 in another non-mammalian teleost.
Collapse
Affiliation(s)
- Meng Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yijun Chen
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Ming Zhu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bingxin Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wenxuan Guo
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yunsong Lyu
- Beijing No. 12 High School, No. 15 Yize Road, Beijing, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
26
|
MRAP2 regulates endometrial receptivity and function. Gene 2019; 703:7-12. [PMID: 30951854 DOI: 10.1016/j.gene.2019.04.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 03/14/2019] [Accepted: 04/01/2019] [Indexed: 11/20/2022]
Abstract
A successful embryo implantation depends on the synchronization between a competent blastocyst and a receptive endometrium. Recently, potential modulators of endometrial receptivity (OVGP1, MRAP2, ZCCHC12, and HAP1) have been reported likely with a functional role during embryo implantation. The aim of this study was to evaluate the gene expression of these genes in the endometrium of infertile women. Eighteen endometrial biopsies, during secretory lutheal phase, were recruited from women with unexplained infertility and women who cannot conceive due to their partners' fertility problems. qRT-PCR was carried out to evaluate MRAP2, OVGP1, ZCCHC12 and HAP1 gene expression. MRAP2 expression was also detected by western blot and it was localized by immunohistochemistry. Morphological analysis was performed by light microscopy. MRAP2 was significantly up-regulated in study vs. control group. Western blot analysis confirmed the observed MRAP2 up-expression. MRAP2 resulted mainly localized in the epithelial cells of uterine glands. Morphological analysis displayed that the epithelium of the uterine glands undergo hypertrophy in women with unexplained infertility in respect to women with male infertility factor. MRAP2 could be considered a mediator of endometrial receptivity likely acting on endometrial stability by binding to MCRs and PKR1.
Collapse
|
27
|
Zhu M, Xu B, Wang M, Liu S, Zhang Y, Zhang C. Pharmacological modulation of MRAP2 protein on melanocortin receptors in the sea lamprey. Endocr Connect 2019; 8:378-388. [PMID: 30856611 PMCID: PMC6454295 DOI: 10.1530/ec-19-0019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/11/2019] [Indexed: 12/28/2022]
Abstract
Melanocortin receptors (MCRs) and their accessory proteins (MRAPs) evolutionarily first appear in the genome of sea lamprey. The most ancient melanocortin system consists of only two melanocortin receptors (slMCa and slMCb) and one MRAP2 (slMRAP2) protein, but the physiological roles have not been fully explored in this primitive species. Here, we synthesize and characterize the pharmacological features of slMRAP2 protein on two slMCRs. Our results show that the slMRAP2 protein lacks the long carboxyl terminus; it directly interacts and decreases the surface expression but enhances the α-MSH-induced agonism of slMCa and slMCb. In comparison with higher organisms such as elephant shark and zebrafish, we also demonstrate the constantly evolving regulatory function of the carboxyl terminus of MRAP2 protein, the unique antiparallel topology of slMRAP2 dimer and the homo- and hetero-dimerization of two slMCRs. This study elucidates the presence and modulation of melanocortin receptor by the accessory protein of the agnathans for the first time, which provides a better insight of the melanocortin system in ancient species of chordates.
Collapse
Affiliation(s)
- Ming Zhu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bingxin Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Meng Wang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shangyun Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Yue Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
- Correspondence should be addressed to C Zhang:
| |
Collapse
|
28
|
Liang J, Li L, Jin X, Xu B, Pi L, Liu S, Zhu W, Zhang C, Luan B, Gong L, Zhang C. Pharmacological effect of human melanocortin-2 receptor accessory protein 2 variants on hypothalamic melanocortin receptors. Endocrine 2018; 61:94-104. [PMID: 29704154 DOI: 10.1007/s12020-018-1596-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 04/09/2018] [Indexed: 10/17/2022]
Abstract
PURPOSE Melanocortin-3 receptor (MC3R), melanocortin-4 receptor (MC4R), and a recently identified melanocortin-2 receptor accessory protein 2 (MRAP2), are highly expressed in hypothalamus and coordinately regulate energy homeostasis, but the single cellular transcriptome of melanocortin system remains unknown. Several infrequent MRAP2 variants are reported from severe obese human patients but the mechanisms on how they affect melanocortin signaling are unclear. METHODS First, we performed in silico analysis of mouse hypothalamus RNA sequencing datasets at single-cell resolution from two independent studies. Next, we inspected the three-dimensional conformational alteration of three mutations on MRAP2 protein. Finally, the influence of MRAP2 variants on MC3R and MC4R signaling was analyzed in vitro. RESULTS (1) We confirmed the actual co-expression of Mrap2 with Mc3r and Mc4r, and demonstrated more broad distribution of Mrap2-positive neuronal populations than Mc3r or Mc4r in mouse hypothalamus. (2) Compared with wild-type MRAP2, MRAP2N88Y, and MRAP2R125C showed impaired α-MSH-induced MC4R or MC3R stimulation. (3) MRAP2N88Yexhibited enhanced interaction with MC4R protein and its own. CONCLUSIONS This is the first dedicated description of single-cell transcriptome signature of Mrap2, Mc3r, and Mc4r in the central nerve system and the first evidence describing the unique dimer formation, conformational change, and pharmacological effect of MRAP2 mutations on MC3R signaling.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing
- Animals
- Carrier Proteins/pharmacology
- Computer Simulation
- Genetic Variation
- Humans
- Hypothalamus/drug effects
- Hypothalamus/metabolism
- Mice
- Mutation/genetics
- Neurons/metabolism
- Nucleic Acid Conformation
- Plasmids
- RNA/genetics
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Receptors, Melanocortin/drug effects
- Signal Transduction/genetics
- alpha-MSH/pharmacology
Collapse
Affiliation(s)
- Jinye Liang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Lei Li
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Xuanxuan Jin
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bingxin Xu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Linyu Pi
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Shangyun Liu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Wei Zhu
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Cong Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China
| | - Bing Luan
- Department of Endocrinology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Lulu Gong
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Chao Zhang
- Translational Medical Center for Stem Cell Therapy and Institute for Regenerative Medicine, Shanghai East Hospital, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, China.
| |
Collapse
|
29
|
Habara M, Mori N, Okada Y, Kawasumi K, Nakao N, Tanaka Y, Arai T, Yamamoto I. Molecular characterization of feline melanocortin 4 receptor and melanocortin 2 receptor accessory protein 2. Gen Comp Endocrinol 2018; 261:31-39. [PMID: 29360464 DOI: 10.1016/j.ygcen.2018.01.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 01/17/2018] [Accepted: 01/17/2018] [Indexed: 01/06/2023]
Abstract
Melanocortin 4 receptor (MC4R), which is a member of the G protein-coupled receptor (GPCR) family, mediates regulation of energy homeostasis upon the binding of α-melanocyte-stimulating hormone (α-MSH) in the central nervous system (CNS). Melanocortin 2 receptor accessory protein 2 (MRAP2) modulates the function of MC4R. We performed cDNA cloning of cat MC4R and MRAP2 and characterized their amino acid sequences, mRNA expression patterns in cat tissues, protein-protein interactions, and functions. We found high sequence homology (>88%) with other mammalian MC4R and MRAP2 encoding 332 and 206 amino acid residues, respectively. Reverse transcription-polymerase chain reaction analysis revealed that cat MC4R and MRAP2 mRNA were expressed highly in the CNS. In CHO-K1 cells transfected with cat MC4R, stimulation with α-MSH increased intracellular cyclic adenosine monophosphate (cAMP) concentration in a dose-dependent manner. Furthermore, the presence of MRAP2 enhanced the cat MC4R-mediated cAMP production. These results suggested that cat MC4R acts as a neuronal mediator in the CNS and that its function is modulated by MRAP2. In addition, our NanoBiT study showed the dynamics of their interactions in living cells; stimulation with α-MSH slightly affected the interaction between MC4R and MRAP2, and did not affect MC4R homodimerization, suggesting that they interact in the basal state and that structural change of MC4R by activation may affect the interaction between MC4R and MRAP2.
Collapse
Affiliation(s)
- Makoto Habara
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan
| | - Nobuko Mori
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan; Laboratory of Molecular Biomedicine for Pathogenesis, Center for Disease Biology and Integrative Medicine, Faculty of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 1130033, Japan
| | - Yuki Okada
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan
| | - Koh Kawasumi
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan
| | - Nobuhiro Nakao
- Laboratory of Animal Physiology, Department of Animal Science, Faculty of Applied Life Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan
| | - Yoshikazu Tanaka
- Department of Veterinary Hygiene, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan
| | - Toshiro Arai
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan
| | - Ichiro Yamamoto
- Department of Basic Veterinary Medicine, School of Veterinary Medicine, Faculty of Veterinary Science, Nippon Veterinary and Life Science University, 1-7-1 Kyonan-cho, Musashino-shi, Tokyo 1808602, Japan.
| |
Collapse
|
30
|
Goldenberg AJ, Gehrand AL, Waples E, Jablonski M, Hoeynck B, Raff H. Effect of a melanocortin type 2 receptor (MC2R) antagonist on the corticosterone response to hypoxia and ACTH stimulation in the neonatal rat. Am J Physiol Regul Integr Comp Physiol 2018; 315:R128-R133. [PMID: 29718699 DOI: 10.1152/ajpregu.00009.2018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The adrenal stress response in the neonatal rat shifts from ACTH-independent to ACTH-dependent between postnatal days 2 (PD2) and 8 (PD8). This may be due to an increase in an endogenous, bioactive, nonimmunoreactive ligand to the melanocortin type 2 receptor (MC2R). GPS1574 is a newly described MC2R antagonist that we have shown to be effective in vitro. Further experimentation with GPS1574 would allow better insight into this seemingly ACTH-independent steroidogenic response in neonates. We evaluated the acute corticosterone response to hypoxia or ACTH injection following pretreatment with GPS1574 (32 mg/kg) or vehicle for GPS1574 in PD2, PD8, and PD15 rat pups. Pretreatment with GPS1574 decreased baseline corticosterone in PD2 pups but increased baseline corticosterone in PD8 and PD15 pups. GPS1574 did not attenuate the corticosterone response to hypoxia in PD2 pups and augmented the corticosterone response in PD8 and PD15 pups. GPS1574 augmented the corticosterone response to ACTH in PD2 and PD15 pups but had no significant impact on the response in PD8 pups. Baseline adrenal Mrap and Star mRNA increased from PD2 to PD15, whereas Mrap2 mRNA expression was low and did not change with age. The data suggest that GPS1574 is not a pure MC2R antagonist, but rather acts as a biasing agonist/antagonist. Its ability to attenuate or augment the adrenal response may depend on the ambient plasma ACTH concentration and/or developmental changes in early transduction steroidogenic pathway genes.
Collapse
Affiliation(s)
- Adam J Goldenberg
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin
| | - Ashley L Gehrand
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| | - Emily Waples
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| | - Mack Jablonski
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| | - Brian Hoeynck
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin
| | - Hershel Raff
- Endocrine Research Laboratory, Aurora St. Luke's Medical Center, Aurora Research Institute , Milwaukee, Wisconsin.,Department of Medicine, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Surgery, Medical College of Wisconsin , Milwaukee, Wisconsin.,Department of Physiology, Medical College of Wisconsin , Milwaukee, Wisconsin
| |
Collapse
|
31
|
Novoselova TV, Chan LF, Clark AJL. Pathophysiology of melanocortin receptors and their accessory proteins. Best Pract Res Clin Endocrinol Metab 2018; 32:93-106. [PMID: 29678289 DOI: 10.1016/j.beem.2018.02.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The melanocortin receptors (MCRs) and their accessory proteins (MRAPs) are involved in regulation of a diverse range of endocrine pathways. Genetic variants of these components result in phenotypic variation and disease. The MC1R is expressed in skin and variants in the MC1R gene are associated with ginger hair color. The MC2R mediates the action of ACTH in the adrenal gland to stimulate glucocorticoid production and MC2R mutations result in familial glucocorticoid deficiency (FGD). MC3R and MC4R are involved in metabolic regulation and their gene variants are associated with severe pediatric obesity, whereas the function of MC5R remains to be fully elucidated. MRAPs have been shown to modulate the function of MCRs and genetic variants in MRAPs are associated with diseases including FGD type 2 and potentially early onset obesity. This review provides an insight into recent advances in MCRs and MRAPs physiology, focusing on the disorders associated with their dysfunction.
Collapse
Affiliation(s)
- T V Novoselova
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Chartehouse Square, London, EC1M 6BQ, United Kingdom.
| | - L F Chan
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Chartehouse Square, London, EC1M 6BQ, United Kingdom
| | - A J L Clark
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of London, Chartehouse Square, London, EC1M 6BQ, United Kingdom
| |
Collapse
|
32
|
Understanding melanocortin-4 receptor control of neuronal circuits: Toward novel therapeutics for obesity syndrome. Pharmacol Res 2018; 129:10-19. [DOI: 10.1016/j.phrs.2018.01.004] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 01/25/2023]
|
33
|
Rouault AAJ, Srinivasan DK, Yin TC, Lee AA, Sebag JA. Melanocortin Receptor Accessory Proteins (MRAPs): Functions in the melanocortin system and beyond. Biochim Biophys Acta Mol Basis Dis 2017; 1863:2462-2467. [PMID: 28499989 DOI: 10.1016/j.bbadis.2017.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 05/02/2017] [Accepted: 05/05/2017] [Indexed: 12/27/2022]
Abstract
G-protein coupled receptors (GPCRs) are regulated by numerous proteins including kinases, G-proteins, β-arrestins and accessory proteins. Several families of GPCR accessory proteins like Receptor Activity Modifying Proteins, Receptor Transporting Proteins and Melanocortin Receptor Accessory Proteins (MRAPs) have been identified as regulator of receptor trafficking, signaling and ligand specificity. The MRAP family contains two members, MRAP1 and MRAP2, responsible for the formation of a functional ACTH receptor and for the regulation of energy homeostasis respectively. Like all known GPCR accessory proteins, MRAPs are single transmembrane proteins, however, they form a unique structure since they assemble as an anti-parallel homodimer. Moreover, the accepted idea that MRAPs are specific regulators of melanocortin receptors was recently challenged by the discovery that MRAP2 inhibits the activity of prokineticin receptors. Recent studies are starting to explain the role of the unusual structure of MRAPs and to illustrate the importance of MRAP2 for the maintenance of both energy and glucose homeostasis. This article is part of a Special Issue entitled: Melanocortin Receptors - edited by Ya-Xiong Tao.
Collapse
Affiliation(s)
- Alix A J Rouault
- University of Iowa, Carver College of Medicine, Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Iowa City, IA 52242, United States
| | - Dinesh K Srinivasan
- University of Iowa, Carver College of Medicine, Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Iowa City, IA 52242, United States
| | - Terry C Yin
- University of Iowa, Carver College of Medicine, Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Iowa City, IA 52242, United States
| | - Abigail A Lee
- University of Iowa, Carver College of Medicine, Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Iowa City, IA 52242, United States
| | - Julien A Sebag
- University of Iowa, Carver College of Medicine, Department of Molecular Physiology and Biophysics, Fraternal Order of Eagle Diabetes Research Center, Iowa City, IA 52242, United States.
| |
Collapse
|
34
|
Ren J, Li Y, Xu N, Li H, Li C, Han R, Wang Y, Li Z, Kang X, Liu X, Tian Y. Association of estradiol on expression of melanocortin receptors and their accessory proteins in the liver of chicken (Gallus gallus). Gen Comp Endocrinol 2017; 240:182-190. [PMID: 27793723 DOI: 10.1016/j.ygcen.2016.10.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 10/18/2016] [Accepted: 10/24/2016] [Indexed: 12/31/2022]
Abstract
The melanocortin receptor accessory proteins (MRAP and MRAP2) are small single-pass transmembrane proteins that regulate the biological functions of the melanocortin receptor (MCR) family. MCRs comprise five receptors (MC1R-MC5R) with diverse physiological roles in mammals. Five MCR members and two MRAPs were also predicted in the chicken (Gallus gallus) genome. However, little is known about their expression, regulation and biological functions. In this study, we cloned the MRAP and MRAP2 genes. Sequencing analysis revealed that the functional domains of MRAP and MRAP2 were conserved among species, suggesting that the physiological roles of chicken MRAP and MRAP2 could be similar to their mammalian counterparts. Tissue expression analysis demonstrated that MRAP was expressed in the adrenal gland, liver, spleen, glandular stomach and lungs, while MRAP2 is predominantly expressed in the adrenal gland. All five MCRs were present in the adrenal gland, but showed different expression patterns in other tissues. The MC5R was the only MCR member that was expressed in the chicken liver. The expression levels of MRAP in chicken liver were significantly increased at sexual maturity stage, and were significantly up-regulated (P<0.05) when chickens and chicken primary hepatocytes were treated with 17β-estradiol in vivo and in vitro, respectively; however, expression levels of PPARγ were down-regulated, and no effect on MC5R was observed. Our results suggested that estrogen could stimulate the expression of MRAP in the liver of chicken through inhibiting the expression of transcription regulation factor PPARγ, and MRAP might play its biological role in a different way rather than forming an MRAP/MC2R complex in chicken liver during the egg-laying period.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Carrier Proteins/genetics
- Carrier Proteins/metabolism
- Chickens/genetics
- Cloning, Molecular
- Estradiol/pharmacology
- Gene Expression Profiling
- Gene Expression Regulation, Developmental/drug effects
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Humans
- Liver/drug effects
- Liver/metabolism
- PPAR gamma/genetics
- PPAR gamma/metabolism
- Phylogeny
- Receptor, Melanocortin, Type 2/chemistry
- Receptor, Melanocortin, Type 2/genetics
- Receptor, Melanocortin, Type 2/metabolism
- Receptors, Melanocortin/chemistry
- Receptors, Melanocortin/genetics
- Receptors, Melanocortin/metabolism
- Sequence Alignment
- Tissue Distribution/drug effects
Collapse
Affiliation(s)
- Junxiao Ren
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanmin Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Naiyi Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Hong Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Cuicui Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China
| | - Ruili Han
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Yanbin Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhuanjian Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiangtao Kang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China
| | - Xiaojun Liu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yadong Tian
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; Henan Innovative Engineering Research Center of Poultry Germplasm Resource, Henan Agricultural University, Zhengzhou 450002, China; International Joint Research Laboratory for Poultry Breeding of Henan, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
35
|
Babischkin JS, Aberdeen GW, Pepe GJ, Albrecht ED. Estrogen Suppresses Interaction of Melanocortin 2 Receptor and Its Accessory Protein in the Primate Fetal Adrenal Cortex. Endocrinology 2016; 157:4588-4601. [PMID: 27779913 PMCID: PMC5133357 DOI: 10.1210/en.2016-1562] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We have shown that fetal adrenal fetal zone (FZ) volume and serum dehydroepiandrosterone sulfate (DHAS) levels were increased, whereas definitive and transitional zone (DZ/TZ) volume was unaltered, in baboons in which estrogen levels were suppressed by the administration of the aromatase inhibitor letrozole. The interaction of the melanocortin 2 receptor (MC2R) with its accessory protein (MRAP) is essential for trafficking MC2R to the adrenal cell surface for binding to ACTH. The present study determined whether the estrogen-dependent regulation of fetal adrenocortical development is mediated by ACTH and/or expression/interaction of MC2R and MRAP. Fetal pituitary proopiomelanocortin mRNA and plasma ACTH levels and fetal adrenal MC2R-MRAP interaction were assessed in baboons in which estrogen was suppressed/restored by letrozole/letrozole plus estradiol administration during the second half of gestation. Although fetal pituitary proopiomelanocortin and plasma ACTH levels and fetal adrenal MC2R and MRAP protein levels were unaltered, MC2R-MRAP interaction was 2-fold greater (P < .05) in the DZ/TZ in letrozole-treated baboons than in untreated animals and restored by letrozole plus estradiol treatment. We propose that the increasing levels of estradiol with advancing pregnancy suppress interaction of MC2R with MRAP, thereby diminishing MC2R movement to the cell membrane in the DZ/TZ. This would be expected to reduce progenitor cell proliferation in the DZ and migration to the FZ, thereby restraining FZ growth and DHAS production to maintain fetal adrenal DHAS and placental estradiol levels in a physiological range late in gestation.
Collapse
Affiliation(s)
- Jeffery S Babischkin
- Department of Obstetrics, Gynecology, and Reproductive Sciences (J.S.B., G.W.A., E.D.A.), Center for Studies in Reproduction, University of Maryland School of Medicine, Baltimore, Maryland 21201; and Department of Physiological Sciences (G.J.P.), Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Graham W Aberdeen
- Department of Obstetrics, Gynecology, and Reproductive Sciences (J.S.B., G.W.A., E.D.A.), Center for Studies in Reproduction, University of Maryland School of Medicine, Baltimore, Maryland 21201; and Department of Physiological Sciences (G.J.P.), Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Gerald J Pepe
- Department of Obstetrics, Gynecology, and Reproductive Sciences (J.S.B., G.W.A., E.D.A.), Center for Studies in Reproduction, University of Maryland School of Medicine, Baltimore, Maryland 21201; and Department of Physiological Sciences (G.J.P.), Eastern Virginia Medical School, Norfolk, Virginia 23501
| | - Eugene D Albrecht
- Department of Obstetrics, Gynecology, and Reproductive Sciences (J.S.B., G.W.A., E.D.A.), Center for Studies in Reproduction, University of Maryland School of Medicine, Baltimore, Maryland 21201; and Department of Physiological Sciences (G.J.P.), Eastern Virginia Medical School, Norfolk, Virginia 23501
| |
Collapse
|
36
|
A novel role for pigment genes in the stress response in rainbow trout (Oncorhynchus mykiss). Sci Rep 2016; 6:28969. [PMID: 27373344 PMCID: PMC4931468 DOI: 10.1038/srep28969] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/13/2016] [Indexed: 12/14/2022] Open
Abstract
In many vertebrate species visible melanin-based pigmentation patterns correlate with high stress- and disease-resistance, but proximate mechanisms for this trait association remain enigmatic. Here we show that a missense mutation in a classical pigmentation gene, melanocyte stimulating hormone receptor (MC1R), is strongly associated with distinct differences in steroidogenic melanocortin 2 receptor (MC2R) mRNA expression between high- (HR) and low-responsive (LR) rainbow trout (Oncorhynchus mykiss). We also show experimentally that cortisol implants increase the expression of agouti signaling protein (ASIP) mRNA in skin, likely explaining the association between HR-traits and reduced skin melanin patterning. Molecular dynamics simulations predict that melanocortin 2 receptor accessory protein (MRAP), needed for MC2R function, binds differently to the two MC1R variants. Considering that mRNA for MC2R and the MC1R variants are present in head kidney cells, we hypothesized that MC2R activity is modulated in part by different binding affinities of the MC1R variants for MRAP. Experiments in mammalian cells confirmed that trout MRAP interacts with the two trout MC1R variants and MC2R, but failed to detect regulation of MC2R signaling, possibly due to high constitutive MC1R activity.
Collapse
|
37
|
Novoselova TV, Larder R, Rimmington D, Lelliott C, Wynn EH, Gorrigan RJ, Tate PH, Guasti L, O'Rahilly S, Clark AJL, Logan DW, Coll AP, Chan LF. Loss of Mrap2 is associated with Sim1 deficiency and increased circulating cholesterol. J Endocrinol 2016; 230:13-26. [PMID: 27106110 PMCID: PMC5064762 DOI: 10.1530/joe-16-0057] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Accepted: 04/21/2016] [Indexed: 11/08/2022]
Abstract
Melanocortin receptor accessory protein 2 (MRAP2) is a transmembrane accessory protein predominantly expressed in the brain. Both global and brain-specific deletion of Mrap2 in mice results in severe obesity. Loss-of-function MRAP2 mutations have also been associated with obesity in humans. Although MRAP2 has been shown to interact with MC4R, a G protein-coupled receptor with an established role in energy homeostasis, appetite regulation and lipid metabolism, the mechanisms through which loss of MRAP2 causes obesity remains uncertain. In this study, we used two independently derived lines of Mrap2 deficient mice (Mrap2(tm1a/tm1a)) to further study the role of Mrap2 in the regulation of energy balance and peripheral lipid metabolism. Mrap2(tm1a/tm1a) mice have a significant increase in body weight, with increased fat and lean mass, but without detectable changes in food intake or energy expenditure. Transcriptomic analysis showed significantly decreased expression of Sim1, Trh, Oxt and Crh within the hypothalamic paraventricular nucleus of Mrap2(tm1a/tm1a) mice. Circulating levels of both high-density lipoprotein and low-density lipoprotein were significantly increased in Mrap2 deficient mice. Taken together, these data corroborate the role of MRAP2 in metabolic regulation and indicate that, at least in part, this may be due to defective central melanocortin signalling.
Collapse
Affiliation(s)
- T V Novoselova
- Centre for EndocrinologyQueen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - R Larder
- University of Cambridge Metabolic Research LaboratoriesMRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - D Rimmington
- University of Cambridge Metabolic Research LaboratoriesMRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - C Lelliott
- Wellcome Trust Sanger InstituteWellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - E H Wynn
- Wellcome Trust Sanger InstituteWellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - R J Gorrigan
- Centre for EndocrinologyQueen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - P H Tate
- Wellcome Trust Sanger InstituteWellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - L Guasti
- Centre for EndocrinologyQueen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - S O'Rahilly
- University of Cambridge Metabolic Research LaboratoriesMRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - A J L Clark
- Centre for EndocrinologyQueen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK
| | - D W Logan
- Wellcome Trust Sanger InstituteWellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - A P Coll
- University of Cambridge Metabolic Research LaboratoriesMRC Metabolic Disease Unit, Wellcome Trust-MRC Institute of Metabolic Science and NIHR Cambridge Biomedical Research Centre, Addenbrooke's Hospital, Cambridge, UK
| | - L F Chan
- Centre for EndocrinologyQueen Mary University of London, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Charterhouse Square, London, UK
| |
Collapse
|
38
|
Gallo-Payet N. 60 YEARS OF POMC: Adrenal and extra-adrenal functions of ACTH. J Mol Endocrinol 2016; 56:T135-56. [PMID: 26793988 DOI: 10.1530/jme-15-0257] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2016] [Accepted: 01/21/2016] [Indexed: 01/27/2023]
Abstract
The pituitary adrenocorticotropic hormone (ACTH) plays a pivotal role in homeostasis and stress response and is thus the major component of the hypothalamo-pituitary-adrenal axis. After a brief summary of ACTH production from proopiomelanocortin (POMC) and on ACTH receptor properties, the first part of the review covers the role of ACTH in steroidogenesis and steroid secretion. We highlight the mechanisms explaining the differential acute vs chronic effects of ACTH on aldosterone and glucocorticoid secretion. The second part summarizes the effects of ACTH on adrenal growth, addressing its role as either a mitogenic or a differentiating factor. We then review the mechanisms involved in steroid secretion, from the classical Cyclic adenosine monophosphate second messenger system to various signaling cascades. We also consider how the interaction between the extracellular matrix and the cytoskeleton may trigger activation of signaling platforms potentially stimulating or repressing the steroidogenic potency of ACTH. Finally, we consider the extra-adrenal actions of ACTH, in particular its role in differentiation in a variety of cell types, in addition to its known lipolytic effects on adipocytes. In each section, we endeavor to correlate basic mechanisms of ACTH function with the pathological consequences of ACTH signaling deficiency and of overproduction of ACTH.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada Division of EndocrinologyDepartment of Medicine, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
39
|
Lotfi CFP, de Mendonca POR. Comparative Effect of ACTH and Related Peptides on Proliferation and Growth of Rat Adrenal Gland. Front Endocrinol (Lausanne) 2016; 7:39. [PMID: 27242663 PMCID: PMC4860745 DOI: 10.3389/fendo.2016.00039] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/27/2016] [Accepted: 04/25/2016] [Indexed: 11/30/2022] Open
Abstract
Pro-opiomelanocortin (POMC) is a polypeptide precursor known to yield biologically active peptides related to a range of functions. These active peptides include the adrenocorticotropic hormone (ACTH), which is essential for maintenance of adrenal growth and steroidogenesis, and the alpha-melanocyte stimulation hormone, which plays a key role in energy homeostasis. However, the role of the highly conserved N-terminal region of POMC peptide fragments has begun to be unraveled only recently. Here, we review the cascade of events involved in regulation of proliferation and growth of murine adrenal cortex triggered by ACTH and other POMC-derived peptides. Key findings regarding signaling pathways and modulation of genes and proteins required for the regulation of adrenal growth are summarized. We have outlined the known mechanisms as well as future challenges for research on the regulation of adrenal proliferation and growth triggered by these peptides.
Collapse
Affiliation(s)
- Claudimara Ferini Pacicco Lotfi
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
- *Correspondence: Claudimara Ferini Pacicco Lotfi,
| | - Pedro O. R. de Mendonca
- Department of Anatomy, Institute of Biomedical Science, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
40
|
Malik S, Dolan TM, Maben ZJ, Hinkle PM. Adrenocorticotropic Hormone (ACTH) Responses Require Actions of the Melanocortin-2 Receptor Accessory Protein on the Extracellular Surface of the Plasma Membrane. J Biol Chem 2015; 290:27972-85. [PMID: 26424796 DOI: 10.1074/jbc.m115.668491] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Indexed: 01/26/2023] Open
Abstract
The melanocortin-2 (MC2) receptor is a G protein-coupled receptor that mediates responses to ACTH. The MC2 receptor acts in concert with the MC2 receptor accessory protein (MRAP) that is absolutely required for ACTH binding and signaling. MRAP has a single transmembrane domain and forms a highly unusual antiparallel homodimer that is stably associated with MC2 receptors at the plasma membrane. Despite the physiological importance of the interaction between the MC2 receptor and MRAP, there is little understanding of how the accessory protein works. The dual topology of MRAP has made it impossible to determine whether highly conserved and necessary regions of MRAP are required on the intracellular or extracellular face of the plasma membrane. The strategy used here was to fix the orientation of two antiparallel MRAP molecules and then introduce inactivating mutations on one side of the membrane or the other. This was achieved by engineering proteins containing tandem copies of MRAP fused to the amino terminus of the MC2 receptor. The data firmly establish that only the extracellular amino terminus (Nout) copy of MRAP, oriented with critical segments on the extracellular side of the membrane, is essential. The transmembrane domain of MRAP is also required in only the Nout orientation. Finally, activity of MRAP-MRAP-MC2-receptor fusion proteins with inactivating mutations in either MRAP or the receptor was rescued by co-expression of free wild-type MRAP or free wild-type receptor. These results show that the basic MRAP-MRAP-receptor signaling unit forms higher order complexes and that these multimers signal.
Collapse
Affiliation(s)
- Sundeep Malik
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, New York 14642
| | - Terrance M Dolan
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, New York 14642
| | - Zachary J Maben
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, New York 14642
| | - Patricia M Hinkle
- From the Department of Pharmacology and Physiology, University of Rochester Medical Center Rochester, New York 14642
| |
Collapse
|
41
|
Jackson DS, Ramachandrappa S, Clark AJ, Chan LF. Melanocortin receptor accessory proteins in adrenal disease and obesity. Front Neurosci 2015; 9:213. [PMID: 26113808 PMCID: PMC4461818 DOI: 10.3389/fnins.2015.00213] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 05/28/2015] [Indexed: 12/02/2022] Open
Abstract
Melanocortin receptor accessory proteins (MRAPs) are regulators of the melanocortin receptor family. MRAP is an essential accessory factor for the functional expression of the MC2R/ACTH receptor. The importance of MRAP in adrenal gland physiology is demonstrated by the clinical condition familial glucocorticoid deficiency type 2. The role of its paralog melanocortin-2-receptor accessory protein 2 (MRAP2), which is predominantly expressed in the hypothalamus including the paraventricular nucleus, has recently been linked to mammalian obesity. Whole body deletion and targeted brain specific deletion of the Mrap2 gene result in severe obesity in mice. Interestingly, Mrap2 complete knockout (KO) mice have increased body weight without detectable changes to food intake or energy expenditure. Rare heterozygous variants of MRAP2 have been found in humans with severe, early-onset obesity. In vitro data have shown that Mrap2 interaction with the melanocortin-4-receptor (Mc4r) affects receptor signaling. However, the mechanism by which Mrap2 regulates body weight in vivo is not fully understood and differences between the phenotypes of Mrap2 and Mc4r KO mice may point toward Mc4r independent mechanisms.
Collapse
Affiliation(s)
- David S Jackson
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Shwetha Ramachandrappa
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Adrian J Clark
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| | - Li F Chan
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London London, UK
| |
Collapse
|
42
|
Mountjoy KG. Pro-Opiomelanocortin (POMC) Neurones, POMC-Derived Peptides, Melanocortin Receptors and Obesity: How Understanding of this System has Changed Over the Last Decade. J Neuroendocrinol 2015; 27:406-18. [PMID: 25872650 DOI: 10.1111/jne.12285] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Revised: 04/04/2015] [Accepted: 04/07/2015] [Indexed: 12/19/2022]
Abstract
Following the cloning of the melanocortin receptor and agouti protein genes, a model was developed for the central melanocortin system with respect to the regulation of energy and glucose homeostasis. This model comprised leptin regulation of melanocortin peptides and agouti-related peptide (AgRP) produced from central pro-opiomelanocortin (POMC) and AgRP neurones, respectively, as well as AgRP competitive antagonism of melanocortin peptides activating melanocortin 4 receptor (MC4R) to Gαs and the cAMP signalling pathway. In the last decade, there have been paradigm shifts in our understanding of the central melanocortin system as a result of the application of advanced new technologies, including Cre-LoxP transgenic mouse technology, pharmacogenetics and optogenetics. During this period, our understanding of G protein coupled receptor signal transduction has also dramatically changed, such that these receptors are now known to exist in the plasma membrane oscillating between various inactive and active conformational states, and the active states signal through G protein-dependent and G protein-independent pathways. The present review focuses on evidence obtained over the past decade that has changed our understanding of POMC gene expression and regulation in the central nervous system, POMC and AgRP neuronal circuitry, neuroanatomical functions of melanocortin receptors, melanocortin 3 receptor (MC3R) and MC4R, and signal transduction through MC3R and MC4R.
Collapse
Affiliation(s)
- K G Mountjoy
- Departments of Physiology and Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences and Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
43
|
Rodrigues AR, Almeida H, Gouveia AM. Intracellular signaling mechanisms of the melanocortin receptors: current state of the art. Cell Mol Life Sci 2015; 72:1331-45. [PMID: 25504085 PMCID: PMC11113477 DOI: 10.1007/s00018-014-1800-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 11/07/2014] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
Abstract
The melanocortin system is composed by the agonists adrenocorticotropic hormone and α, β and γ-melanocyte-stimulating hormone, and two naturally occurring antagonists, agouti and agouti-related protein. These ligands act by interaction with a family of five melanocortin receptors (MCRs), assisted by MCRs accessory proteins (MRAPs). MCRs stimulation activates different signaling pathways that mediate a diverse array of physiological processes, including pigmentation, energy metabolism, inflammation and exocrine secretion. This review focuses on the regulatory mechanisms of MCRs signaling, highlighting the differences among the five receptors. MCRs signal through G-dependent and independent mechanisms and their functional coupling to agonists at the cell surface is regulated by interacting proteins, namely MRAPs and β-arrestins. The knowledge of the distinct modulation pattern of MCRs signaling and function may be helpful for the future design of novel drugs able to combine specificity, safety and effectiveness in the course of their therapeutic use.
Collapse
Affiliation(s)
- Adriana R Rodrigues
- Department of Experimental Biology, Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319, Porto, Portugal,
| | | | | |
Collapse
|
44
|
Abstract
The purpose of this article is to review fundamentals in adrenal gland histophysiology. Key findings regarding the important signaling pathways involved in the regulation of steroidogenesis and adrenal growth are summarized. We illustrate how adrenal gland morphology and function are deeply interconnected in which novel signaling pathways (Wnt, Sonic hedgehog, Notch, β-catenin) or ionic channels are required for their integrity. Emphasis is given to exploring the mechanisms and challenges underlying the regulation of proliferation, growth, and functionality. Also addressed is the fact that while it is now well-accepted that steroidogenesis results from an enzymatic shuttle between mitochondria and endoplasmic reticulum, key questions still remain on the various aspects related to cellular uptake and delivery of free cholesterol. The significant progress achieved over the past decade regarding the precise molecular mechanisms by which the two main regulators of adrenal cortex, adrenocorticotropin hormone (ACTH) and angiotensin II act on their receptors is reviewed, including structure-activity relationships and their potential applications. Particular attention has been given to crucial second messengers and how various kinases, phosphatases, and cytoskeleton-associated proteins interact to ensure homeostasis and/or meet physiological demands. References to animal studies are also made in an attempt to unravel associated clinical conditions. Many of the aspects addressed in this article still represent a challenge for future studies, their outcome aimed at providing evidence that the adrenal gland, through its steroid hormones, occupies a central position in many situations where homeostasis is disrupted, thus highlighting the relevance of exploring and understanding how this key organ is regulated. © 2014 American Physiological Society. Compr Physiol 4:889-964, 2014.
Collapse
Affiliation(s)
- Nicole Gallo-Payet
- Division of Endocrinology, Department of Medicine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, and Centre de Recherche Clinique Étienne-Le Bel of the Centre Hospitalier Universitaire de Sherbrooke (CHUS), Sherbrooke, Quebec, Canada
| | | |
Collapse
|
45
|
Josep Agulleiro M, Cortés R, Fernández-Durán B, Navarro S, Guillot R, Meimaridou E, Clark AJL, Cerdá-Reverter JM. Melanocortin 4 receptor becomes an ACTH receptor by coexpression of melanocortin receptor accessory protein 2. Mol Endocrinol 2013; 27:1934-45. [PMID: 24085819 DOI: 10.1210/me.2013-1099] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Melanocortin 2 receptor (MC2R) is the only canonical ACTH receptor. Its functional expression requires the presence of an accessory protein, known as melanocortin receptor 2 accessory protein 1 (MRAP1). The vertebrate genome exhibits a paralogue gene called MRAP2, which is duplicated in zebrafish (MRAP2a and MRAP2b), although its function remains unknown. In this paper, we demonstrate that MRAP2a enables MC4R, a canonical MSH receptor, to be activated by ACTH with a similar sensitivity to that exhibited by MC2R. Both proteins physically interact and are coexpressed in the neurons of the preoptic area, a key region in the control of the energy balance and hypophyseal secretion in fish. ACTH injections inhibit food intake in wild-type zebrafish but not in fish lacking functional MC4R. Both MRAP1 and MRAP2a are hormonally regulated, suggesting that these proteins are substrates for feed-back regulatory pathways of melanocortin signaling. Fasting has no effect on the central expression of MRAP2a but stimulates MRAP2b expression. This protein interacts and is colocalized with MC4R in the tuberal hypothalamic neurons but has no effect on the pharmacologic profile of MC4R. However, MRPA2b is able to decrease basal reporter activity in cell lines expressing MC4R. It is plausible that MRAP2b decreases the constitutive activity of the MC4R during fasting periods, driving the animal toward a positive energy balance. Our data indicate that MRAP2s control the activity of MC4R, opening up new pathways for the regulation of melanocortin signaling and, by extension, for the regulation of the energy balance and obesity.
Collapse
Affiliation(s)
- Maria Josep Agulleiro
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, 12595 Torre de la Sal, Ribera de Cabanes, Castellón, Spain.
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Asai M, Ramachandrappa S, Joachim M, Shen Y, Zhang R, Nuthalapati N, Ramanathan V, Strochlic DE, Ferket P, Linhart K, Ho C, Novoselova TV, Garg S, Ridderstråle M, Marcus C, Hirschhorn JN, Keogh JM, O’Rahilly S, Chan LF, Clark AJ, Farooqi IS, Majzoub JA. Loss of function of the melanocortin 2 receptor accessory protein 2 is associated with mammalian obesity. Science 2013; 341:275-8. [PMID: 23869016 PMCID: PMC3788688 DOI: 10.1126/science.1233000] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Melanocortin receptor accessory proteins (MRAPs) modulate signaling of melanocortin receptors in vitro. To investigate the physiological role of brain-expressed melanocortin 2 receptor accessory protein 2 (MRAP2), we characterized mice with whole-body and brain-specific targeted deletion of Mrap2, both of which develop severe obesity at a young age. Mrap2 interacts directly with melanocortin 4 receptor (Mc4r), a protein previously implicated in mammalian obesity, and it enhances Mc4r-mediated generation of the second messenger cyclic adenosine monophosphate, suggesting that alterations in Mc4r signaling may be one mechanism underlying the association between Mrap2 disruption and obesity. In a study of humans with severe, early-onset obesity, we found four rare, potentially pathogenic genetic variants in MRAP2, suggesting that the gene may also contribute to body weight regulation in humans.
Collapse
Affiliation(s)
- Masato Asai
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115
- Departments of Pathology, Endocrinology and Diabetes, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya 466-8550, Japan
| | - Shwetha Ramachandrappa
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, CB2 0QQ, Cambridge, UK
| | - Maria Joachim
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115
| | - Yuan Shen
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115
| | - Rong Zhang
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115
| | - Nikhil Nuthalapati
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115
| | - Visali Ramanathan
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115
| | - David E. Strochlic
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115
| | - Peter Ferket
- Prestage Department of Poultry Science, North Carolina State University, Raleigh, NC 27695
| | - Kirsten Linhart
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115
| | - Caroline Ho
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115
| | - Tatiana V. Novoselova
- William Harvey Research Institute, Centre for Endocrinology Queen Mary, University of London Barts and The London School of Medicine and Dentistry, London, EC1M 6BQ, UK
| | - Sumedha Garg
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, CB2 0QQ, Cambridge, UK
| | - Martin Ridderstråle
- Department of Clinical Sciences, Lund University, Malmö, Sweden and Steno Diabetes Center, Gentofte, Denmark
| | - Claude Marcus
- Department for Clinical Science, Intervention and Technology, Karolinska Institute, Division of Pediatrics, National Childhood Obesity Centre, Stockholm, Sweden
| | - Joel N. Hirschhorn
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115
- Department of Genetics, Harvard Medical School and Broad Institute, Cambridge, MA
| | - Julia M. Keogh
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, CB2 0QQ, Cambridge, UK
| | - Stephen O’Rahilly
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, CB2 0QQ, Cambridge, UK
| | - Li F. Chan
- William Harvey Research Institute, Centre for Endocrinology Queen Mary, University of London Barts and The London School of Medicine and Dentistry, London, EC1M 6BQ, UK
| | - Adrian J. Clark
- William Harvey Research Institute, Centre for Endocrinology Queen Mary, University of London Barts and The London School of Medicine and Dentistry, London, EC1M 6BQ, UK
| | - I. Sadaf Farooqi
- University of Cambridge Metabolic Research Laboratories and NIHR Cambridge Biomedical Research Centre, Institute of Metabolic Science, Addenbrooke’s Hospital, CB2 0QQ, Cambridge, UK
| | - Joseph A. Majzoub
- Division of Endocrinology, Department of Medicine, Boston Children’s Hospital, Harvard Medical School, 300 Longwood Avenue, Boston, MA 02115
| |
Collapse
|
47
|
Sebag JA, Zhang C, Hinkle PM, Bradshaw AM, Cone RD. Developmental control of the melanocortin-4 receptor by MRAP2 proteins in zebrafish. Science 2013; 341:278-81. [PMID: 23869017 PMCID: PMC4255277 DOI: 10.1126/science.1232995] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The melanocortin-4 receptor (MC4R) is essential for control of energy homeostasis in vertebrates. MC4R interacts with melanocortin receptor accessory protein 2 (MRAP2) in vitro, but its functions in vivo are unknown. We found that MRAP2a, a larval form, stimulates growth of zebrafish by specifically blocking the action of MC4R. In cell culture, this protein binds MC4R and reduces the ability of the receptor to bind its ligand, α-melanocyte-stimulating hormone (α-MSH). A paralog, MRAP2b, expressed later in development, also binds MC4R but increases ligand sensitivity. Thus, MRAP2 proteins allow for developmental control of MC4R activity, with MRAP2a blocking its function and stimulating growth during larval development, whereas MRAP2b enhances responsiveness to α-MSH once the zebrafish begins feeding, thus increasing the capacity for regulated feeding and growth.
Collapse
Affiliation(s)
- Julien A. Sebag
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Chao Zhang
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Patricia M. Hinkle
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Amanda M. Bradshaw
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Roger D. Cone
- Department of Molecular Physiology and Biophysics, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| |
Collapse
|
48
|
Cerdá-Reverter JM, Agulleiro MJ, Cortés R, Sánchez E, Guillot R, Leal E, Fernández-Durán B, Puchol S, Eley M. Involvement of melanocortin receptor accessory proteins (MRAPs) in the function of melanocortin receptors. Gen Comp Endocrinol 2013; 188:133-6. [PMID: 23410915 DOI: 10.1016/j.ygcen.2013.01.017] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 01/21/2013] [Accepted: 01/27/2013] [Indexed: 12/30/2022]
Abstract
The melanocortin system integrates different agonists, competitive or inverse agonists, and receptors. Recent investigations have also discovered a specific system of melanocortin receptor accessory proteins (MRAPs) that are involved in the regulation of the functional expression of these receptors. MRAP1 mutations are responsible for type 2 familial glucocorticoid deficiency (FGD2), a rare autosomal disorder characterized by high plasma adrenocorticotropin hormone (ACTH) levels but severe cortisol deficiency. ACTH binds melanocortin 2 receptor (MC2R), a G protein-coupled receptor, in the adrenal gland to promote corticosteroid synthesis. In the absence of MRAP1, MC2R cannot translocate from the endoplasmic reticulum to the plasma membrane and ACTH-induced signaling is extinguished. A second MRAP protein, called MRAP2, also modulates MC2R activity. MRAPs also interact with the other melanocortin receptors, adjusting their pharmacological properties. In this paper, we briefly review the MRAP system and its interaction with melanocortin receptors.
Collapse
Affiliation(s)
- J M Cerdá-Reverter
- Department of Fish Physiology and Biotechnology, Instituto de Acuicultura de Torre de la Sal, Consejo Superior de Investigaciones Científicas (IATS-CSIC), 12595 Torre de la Sal, Ribera de Cabanes, Castellón, Spain.
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Kay EI, Botha R, Montgomery JM, Mountjoy KG. hMRAPa increases αMSH-induced hMC1R and hMC3R functional coupling and hMC4R constitutive activity. J Mol Endocrinol 2013; 50:203-15. [PMID: 23296982 DOI: 10.1530/jme-12-0221] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Human melanocortin 2 receptor accessory protein (hMRAPa) is hypothesised to have functions beyond promoting human melanocortin 2 receptor (hMC2R) functional expression. To understand these potential functions, we exogenously co-expressed hMRAPa-FLAG with each of the five hMCR subtypes in HEK293 cells and assessed hMCR subtype coupling to adenylyl cyclase. We also co-expressed each HA-hMCR subtype with hMRAPa-FLAG to investigate their subcellular localisation. hMRAPa-FLAG enhanced α-melanocyte stimulating hormone (α-MSH)-stimulated hMC1R and hMC3R but reduced NDP-α-MSH-stimulated hMC5R, maximum coupling to adenylyl cyclase. hMRAPa-FLAG specifically increased hMC4R constitutive coupling to adenylyl cyclase despite not co-localising with the HA-hMC4R in the cell membrane. hMRAPa-FLAG co-localised with HA-hMC1R or HA-hMC3R in the perinuclear region, in cytoplasmic vesicles and at the plasma membrane, while it co-localised with HA-hMC2R, HA-hMC4R and HA-hMC5R predominantly in cytoplasmic vesicles. These diverse effects of hMRAPa indicate that hMRAPa could be an important modulator of the central and peripheral melanocortin systems if hMRAPa and any hMCR subtype co-express in the same cell.
Collapse
Affiliation(s)
- Emma I Kay
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | | | | | | |
Collapse
|
50
|
Kay EI, Botha R, Montgomery JM, Mountjoy KG. hMRAPa specifically alters hMC4R molecular mass and N-linked complex glycosylation in HEK293 cells. J Mol Endocrinol 2013; 50:217-27. [PMID: 23307947 DOI: 10.1530/jme-12-0220] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Human melanocortin 2 receptor accessory protein 1(hMRAPa) is essential for human melanocortin 2 receptor (hMC2R)-regulated adrenal steroidogenesis. hMRAPa enhances hMC2R N-linked glycosylation and maturation, promotes hMC2R cell surface expression and enables ACTH to bind and activate the MC2R. However, hMRAPa is predicted to have functions beyond its critical role in hMC2R activity. It is more widely expressed than the hMC2R and it has been shown to co-immunoprecipitate with all other hMCR subtypes and other G-protein-coupled receptors, when these are co-expressed with each receptor in heterologous cells. The physiological relevance of hMRAPa interactions with these receptors is unknown. We hypothesised that hMRAPa could influence post-translational processing and maturation of these receptors, similar to its actions on the hMC2R. Here we used co-immunoprecipitation and western blotting techniques to characterise effects of hMRAPa-FLAG co-expression on the maturation of each HA-tagged hMCR subtype and the HA-tagged human calcitonin receptor-like receptor (hCL), co-expressed in HEK293 cells. While hMRAPa-FLAG interacted with all five HA-hMCR subtypes and the HA-hCL, it only altered HA-hMC4R molecular mass. This altered HA-hMC4R molecular mass was due to a change in endoglycosidase H-resistant complex N-linked glycosylation, which we observed for HA-hMC4R in both intracellular and cell surface fractions. This effect was specific to the HA-hMC4R as hMRAPa did not alter the molecular mass of any of the other receptors that we examined. In conclusion, the specific effects of hMRAPa on hMC4R molecular mass and complex N-linked glycosylation provide evidence in support of a role for MRAPα in hMC4R functions.
Collapse
Affiliation(s)
- Emma I Kay
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1142, New Zealand
| | | | | | | |
Collapse
|