1
|
Wang Y, Zhang S, Kang N, Dong L, Ni H, Liu S, Chong S, Ji Z, Wan Z, Chen X, Wang F, Lu Y, Hou B, Tong P, Qi H, Xu MM, Liu W. Progressive polyadenylation and m6A modification of Ighg1 mRNA maintain IgG1 antibody homeostasis in antibody-secreting cells. Immunity 2024; 57:2547-2564.e12. [PMID: 39476842 DOI: 10.1016/j.immuni.2024.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 07/16/2024] [Accepted: 10/08/2024] [Indexed: 11/15/2024]
Abstract
Antigen-specific antibodies are generated by antibody-secreting cells (ASCs). How RNA post-transcriptional modification affects antibody homeostasis remains unclear. Here, we found that mRNA polyadenylations and N6-methyladenosine (m6A) modifications maintain IgG1 antibody production in ASCs. IgG heavy-chain transcripts (Ighg) possessed a long 3' UTR with m6A sites, targeted by the m6A reader YTHDF1. B cell-specific deficiency of YTHDF1 impaired IgG production upon antigen immunization through reducing Ighg1 mRNA abundance in IgG1+ ASCs. Disrupting either the m6A modification of a nuclear-localized splicing intermediate Ighg1 or the nuclear localization of YTHDF1 reduced Ighg1 transcript stability. Single-cell RNA sequencing identified an ASC subset with excessive YTHDF1 expression in systemic lupus erythematosus patients, which was decreased upon therapy with immunosuppressive drugs. In a lupus mouse model, inhibiting YTHDF1-m6A interactions alleviated symptoms. Thus, we highlight a mechanism in ASCs to sustain the homeostasis of IgG antibody transcripts by integrating Ighg1 mRNA polyadenylation and m6A modification.
Collapse
Affiliation(s)
- Yu Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Shaocun Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
| | - Na Kang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Lihui Dong
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Haochen Ni
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, College of Future Technology, Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sichen Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Siankang Chong
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Zhenglin Ji
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China; The First Affiliated Hospital of Anhui Medical University and Institute of Clinical Immunology, Anhui Medical University, Hefei, Anhui, China
| | - Zhengpeng Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China
| | - Xiangjun Chen
- Zhejiang Key Laboratory of Multi-Omics in Infection and Immunity, Center for Infectious Disease Research, School of Medicine, Westlake University, Hangzhou 310024, China; Research Center for Industries of the Future, Westlake University, Hangzhou 310024, China
| | - Fei Wang
- Center for Natural Products Research, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China
| | - Yun Lu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Baidong Hou
- Key Laboratory of Epigenetic Regulation and Intervention, Institute of Biophysics, Chinese Academy of Sciences, College of life Sciences, University of Chinese Academy of Sciences, Beijing, P.R.China
| | - Pei Tong
- Key Laboratory of Immune Response and Immunotherapy, Institute of Health and Medicine, Hefei Comprehensive National Science Center, Hefei, China
| | - Hai Qi
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Meng Michelle Xu
- Department of Basic Medical Sciences, School of Medicine, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China.
| | - Wanli Liu
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua-Peking Center for Life Sciences, Institute for Immunology, Ministry of Education Key Laboratory of Protein Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Kwak K, Sohn H, George R, Torgbor C, Manzella-Lapeira J, Brzostowski J, Pierce SK. B cell responses to membrane-presented antigens require the function of the mechanosensitive cation channel Piezo1. Sci Signal 2023; 16:eabq5096. [PMID: 37751477 PMCID: PMC10691204 DOI: 10.1126/scisignal.abq5096] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/05/2023] [Indexed: 09/28/2023]
Abstract
The demand for a vaccine for coronavirus disease 2019 (COVID-19) highlighted gaps in our understanding of the requirements for B cell responses to antigens, particularly to membrane-presented antigens, as occurs in vivo. We found that human B cell responses to membrane-presented antigens required the function of Piezo1, a plasma membrane mechanosensitive cation channel. Simply making contact with a glass probe induced calcium (Ca2+) fluxes in B cells that were blocked by the Piezo1 inhibitor GsMTx4. When placed on glass surfaces, the plasma membrane tension of B cells increased, which stimulated Ca2+ influx and spreading of B cells over the glass surface, which was blocked by the Piezo1 inhibitor OB-1. B cell responses to membrane-presented antigens but not to soluble antigens were inhibited both by Piezo1 inhibitors and by siRNA-mediated knockdown of Piezo1. Thus, the activation of Piezo1 defines an essential event in B cell activation to membrane-presented antigens that may be exploited to improve the efficacy of vaccines.
Collapse
Affiliation(s)
- Kihyuck Kwak
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
- Department of Microbiology and Immunology, Institute for Immunology and Immunological Diseases, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Korea
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Rachel George
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Charles Torgbor
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Javier Manzella-Lapeira
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| |
Collapse
|
3
|
Demin KA, Krotova NA, Ilyin NP, Galstyan DS, Kolesnikova TO, Strekalova T, de Abreu MS, Petersen EV, Zabegalov KN, Kalueff AV. Evolutionarily conserved gene expression patterns for affective disorders revealed using cross-species brain transcriptomic analyses in humans, rats and zebrafish. Sci Rep 2022; 12:20836. [PMID: 36460699 PMCID: PMC9718822 DOI: 10.1038/s41598-022-22688-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/18/2022] [Indexed: 12/03/2022] Open
Abstract
Widespread, debilitating and often treatment-resistant, depression and other stress-related neuropsychiatric disorders represent an urgent unmet biomedical and societal problem. Although animal models of these disorders are commonly used to study stress pathogenesis, they are often difficult to translate across species into valuable and meaningful clinically relevant data. To address this problem, here we utilized several cross-species/cross-taxon approaches to identify potential evolutionarily conserved differentially expressed genes and their sets. We also assessed enrichment of these genes for transcription factors DNA-binding sites down- and up- stream from their genetic sequences. For this, we compared our own RNA-seq brain transcriptomic data obtained from chronically stressed rats and zebrafish with publicly available human transcriptomic data for patients with major depression and their respective healthy control groups. Utilizing these data from the three species, we next analyzed their differential gene expression, gene set enrichment and protein-protein interaction networks, combined with validated tools for data pooling. This approach allowed us to identify several key brain proteins (GRIA1, DLG1, CDH1, THRB, PLCG2, NGEF, IKZF1 and FEZF2) as promising, evolutionarily conserved and shared affective 'hub' protein targets, as well as to propose a novel gene set that may be used to further study affective pathogenesis. Overall, these approaches may advance cross-species brain transcriptomic analyses, and call for further cross-species studies into putative shared molecular mechanisms of affective pathogenesis.
Collapse
Affiliation(s)
- Konstantin A Demin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia.
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia.
| | - Nataliya A Krotova
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Nikita P Ilyin
- Almazov National Medical Research Centre, Ministry of Healthcare of Russian Federation, St. Petersburg, Russia
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Neurobiology Program, Sirius University of Science and Technology, Sochi, Russia
| | - David S Galstyan
- Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia
| | | | | | | | | | | | - Allan V Kalueff
- Laboratory of Preclinical Bioscreening, Granov Russian Research Center of Radiology and Surgical Technologies, Ministry of Healthcare of Russian Federation, Pesochny, Russia.
- Institute of Neurosciences and Medicine, Novosibirsk, Russia.
- Ural Federal University, Ekaterinburg, Russia.
| |
Collapse
|
4
|
Newman R, Tolar P. Chronic calcium signaling in IgE + B cells limits plasma cell differentiation and survival. Immunity 2021; 54:2756-2771.e10. [PMID: 34879220 DOI: 10.1016/j.immuni.2021.11.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 07/30/2021] [Accepted: 11/12/2021] [Indexed: 01/28/2023]
Abstract
In contrast to other antibody isotypes, B cells switched to IgE respond transiently and do not give rise to long-lived plasma cells (PCs) or memory B cells. To better understand IgE-BCR-mediated control of IgE responses, we developed whole-genome CRISPR screening that enabled comparison of IgE+ and IgG1+ B cell requirements for proliferation, survival, and differentiation into PCs. IgE+ PCs exhibited dependency on the PI3K-mTOR axis that increased protein amounts of the transcription factor IRF4. In contrast, loss of components of the calcium-calcineurin-NFAT pathway promoted IgE+ PC differentiation. Mice bearing a B cell-specific deletion of calcineurin B1 exhibited increased production of IgE+ PCs. Mechanistically, sustained elevation of intracellular calcium in IgE+ PCs downstream of the IgE-BCR promoted BCL2L11-dependent apoptosis. Thus, chronic calcium signaling downstream of the IgE-BCR controls the self-limiting character of IgE responses and may be relevant to the accumulation of IgE-producing cells in allergic disease.
Collapse
Affiliation(s)
- Rebecca Newman
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK; Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London NW3 2PF, UK.
| |
Collapse
|
5
|
Kitamura D. Mechanisms for the regulation of memory B-cell recall responses in mice. Int Immunol 2021; 33:791-796. [PMID: 34279036 DOI: 10.1093/intimm/dxab042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 07/17/2021] [Indexed: 11/14/2022] Open
Abstract
Upon infection by pathogens or vaccination, the adaptive immune system rapidly but transiently produces antibodies. Some weeks later, however, long-lasting immunity is established that protects the host against the same pathogens almost for life through continuous production of antibodies on one hand and the maintenance of cytotoxic T cells on the other, collectively called immunological memory. The antibody-mediated arm, also called serological memory, is mainly exerted by long-lived plasma cells and memory B cells (MBCs). MBCs express receptors for the specific pathogens and circulate to survey the body for almost a life-long period. Upon recognizing the pathogen, MBCs clonally expand and produce a large amount of the specific antibodies to stop the infection, the process called a (memory) recall response. Although such a function of MBCs has long been known, the mechanism of how their performance is regulated has been obscure. This is due to their paucity in the body, lack of definitive surface markers and obscure ontogeny. However, recent studies have revealed the multifold mechanisms by which the recall response of MBCs is regulated: Rapid and enhanced antibody production is due to a mechanism intrinsic to MBCs; namely, upregulated expression levels of surface molecules interacting with T cells and the property of IgG-class antigen receptors; to a property of the responsible subset of MBCs; and to co-stimulation through innate receptors and cytokines. It has also been unveiled that the recall response is negatively regulated by an inhibitory receptor on MBCs and by antigens with repetitive epitopes.
Collapse
Affiliation(s)
- Daisuke Kitamura
- Research Institute for Biomedical Sciences,Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| |
Collapse
|
6
|
Targeting Vesicular LGALS3BP by an Antibody-Drug Conjugate as Novel Therapeutic Strategy for Neuroblastoma. Cancers (Basel) 2020; 12:cancers12102989. [PMID: 33076448 PMCID: PMC7650653 DOI: 10.3390/cancers12102989] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/29/2022] Open
Abstract
Simple Summary Antibody Drug Conjugates are an emerging class of biopharmaceuticals that have seen an impressive increase of attention in the field of cancer therapy. Here, we describe the therapeutic activity of 1959-sss/DM3, a non-internalizing ADC targeting LGALS3BP, a secreted, extracellular vesicles-associated protein expressed by the majority of human cancers, including neuroblastoma. We show that 1959-sss/DM3 treatment can cure mice with established neuroblastoma tumours in pseudometastatic, orthotopic and Patient Derived Xenograft models. Abstract Neuroblastoma is the most common extra-cranial solid tumor in infants and children, which accounts for approximately 15% of all cancer-related deaths in the pediatric population. New therapeutic modalities are urgently needed. Antibody-Drug Conjugates (ADC)s-based therapy has been proposed as potential strategy to treat this pediatric malignancy. LGALS3BP is a highly glycosylated protein involved in tumor growth and progression. Studies have shown that LGALS3BP is enriched in extracellular vesicles (EV)s derived by most neuroblastoma cells, where it plays a critical role in preparing a favorable tumor microenvironment (TME) through direct cross talk between cancer and stroma cells. Here, we describe the development of a non-internalizing LGALS3BP ADC, named 1959-sss/DM3, which selectively targets LGALS3BP expressing neuroblastoma. 1959-sss/DM3 mediated potent therapeutic activity in different types of neuroblastoma models. Notably, we found that treatments were well tolerated at efficacious doses that were fully curative. These results offer preclinical proof-of-concept for an ADC targeting exosomal LGALS3BP approach for neuroblastomas.
Collapse
|
7
|
Barreda D, Ramón-Luing LA, Duran-Luis O, Bobadilla K, Chacón-Salinas R, Santos-Mendoza T. Scrib and Dlg1 polarity proteins regulate Ag presentation in human dendritic cells. J Leukoc Biol 2020; 108:883-893. [PMID: 32293058 DOI: 10.1002/jlb.4ma0320-544rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 03/23/2020] [Accepted: 03/24/2020] [Indexed: 12/27/2022] Open
Abstract
We recently reported, for the first time, the expression and regulation of the PDZ polarity proteins Scrib and Dlg1 in human APCs, and also described the viral targeting of these proteins by NS1 of influenza A virus in human dendritic cells (DCs). Scrib plays an important role in reactive oxygen species (ROS) production in Mϕs and uropod formation and migration in T cells, while Dlg1 is important for T cell downstream activation after Ag recognition. Nevertheless, the functions of these proteins in human DCs remain unknown. Here, we knocked-down the expression of both Scrib and Dlg1 in human DCs and then evaluated the expression of co-stimulatory molecules and cytokine production during maturation. We demonstrated that Scrib is necessary for adequate CD86 expression, while Dlg1 is important for CD83 up-regulation and IL-6 production upon maturation, suggesting that Scrib and Dlg1 participate in separate pathways in DCs. Additionally, both proteins are required for adequate IL-12 production after maturation. Furthermore, we showed that the inefficient maturation of DCs induced by Scrib or Dlg1 depletion leads to impaired T cell activation. Our results revealed the previously unknown contribution of Scrib and Dlg1 in human DCs pivotal functions, which may be able to impact innate and adaptive immune response.
Collapse
Affiliation(s)
- Dante Barreda
- Laboratory of Autoimmunity, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Ciudad de México, México
| | - Lucero A Ramón-Luing
- Laboratory of Integrative Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Olivia Duran-Luis
- Laboratory of Autoimmunity, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Karen Bobadilla
- Department of Immunology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Rommel Chacón-Salinas
- Departamento de Inmunología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, ENCB-IPN, Ciudad de México, México
| | - Teresa Santos-Mendoza
- Laboratory of Autoimmunity, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
8
|
The Scribble Complex PDZ Proteins in Immune Cell Polarities. J Immunol Res 2020; 2020:5649790. [PMID: 32411799 PMCID: PMC7210543 DOI: 10.1155/2020/5649790] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/13/2020] [Indexed: 12/24/2022] Open
Abstract
hScrib and hDlg belong to the PDZ family of proteins. Since the identification of these highly phylogenetically conserved scaffolds, an increasing amount of experiments has elucidated the roles of hScrib and hDlg in a variety of cell functions. Remarkably, their participation during the establishment of polarity in epithelial cells is well documented. Although the role of both proteins in the immune system is scantly known, it has become a growing field of investigation. Here, we summarize the interactions and functions of hScrib and hDlg1, which participate in diverse functions involving cell polarization in immune cells, and discuss their relevance in the immune cell biology. The fundamental role of hScrib and hDlg1 during the establishment of the immunological synapse, hence T cell activation, and the recently described role of hScrib in reactive oxygen species production in macrophages and of hDlg1 in cytokine production by dendritic cells highlight the importance of both proteins in immune cell biology. The expression of these proteins in other leukocytes can be anticipated and needs to be confirmed. Due to their multiple interaction domains, there is a wide range of possible interactions of hScrib and hDlg1 that remains to be explored in the immune system.
Collapse
|
9
|
Dong X, Li X, Liu C, Xu K, Shi Y, Liu W. Discs large homolog 1 regulates B-cell proliferation and antibody production. Int Immunol 2020; 31:759-770. [PMID: 31169885 DOI: 10.1093/intimm/dxz046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 06/05/2019] [Indexed: 12/11/2022] Open
Abstract
Antibody production results from B-cell activation and proliferation upon antigen binding. Discs large homolog 1 (Dlg1), a scaffold protein from the membrane-associated guanylate kinase family, has been shown to regulate the antigen receptor signaling and cell polarity in lymphocytes; however, the physiological function of Dlg1 in humoral responses is not completely clear. Here, we addressed this question using a conditional knockout (KO) mouse model with Dlg1 deficiency in different B-cell subsets by crossing dlg1fl/fl mice with either mb1cre/+ or aicdacre/+ mice, respectively. In both mouse models, we observed that Dlg1 deficiency in B cells (Dlg1-KO B cells) led to obvious hyper-antibody responses upon immunization, the effect of which was more obvious in antigen-recall responses. Mechanistically, we found that Dlg1-KO B cells exhibited hyper-proliferation compared with wild-type B cells upon antigen stimulation, suggesting that the hyper-antibody responses are likely induced by the hyper-proliferation of Dlg1-KO B cells. Indeed, further studies demonstrated that Dlg1 deficiency in B cells led to the down-regulation of a tumor suppressor, FoxO1. Thus, all these results reveal an unexpected function of Dlg1 in restraining hyper-antibody responses through the inhibition of FoxO1 and thus antigen-binding-induced proliferation in B cells.
Collapse
Affiliation(s)
- Xuejiao Dong
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xinxin Li
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| | - Ce Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| | - Kun Xu
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, China
| | - Yi Shi
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, China
| |
Collapse
|
10
|
Kodama T, Hasegawa M, Sakamoto Y, Haniuda K, Kitamura D. Ubiquitination of IgG1 cytoplasmic tail modulates B-cell signalling and activation. Int Immunol 2020; 32:385-395. [DOI: 10.1093/intimm/dxaa009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Accepted: 01/30/2020] [Indexed: 12/13/2022] Open
Abstract
AbstractUpon antigen stimulation, IgG+ B cells rapidly proliferate and differentiate into plasma cells, which has been attributed to the characteristics of membrane-bound IgG (mIgG), but the underlying molecular mechanisms remain elusive. We have found that a part of mouse mIgG1 is ubiquitinated through the two responsible lysine residues (K378 and K386) in its cytoplasmic tail and this ubiquitination is augmented upon antigen stimulation. The ubiquitination of mIgG1 involves its immunoglobulin tail tyrosine (ITT) motif, Syk/Src-family kinases and Cbl proteins. Analysis of a ubiquitination-defective mutant of mIgG1 revealed that ubiquitination of mIgG1 facilitates its ligand-induced endocytosis and intracellular trafficking from early endosome to late endosome, and also prohibits the recycling pathway, thus attenuating the surface expression level of mIgG1. Accordingly, ligation-induced activation of B-cell receptor (BCR) signalling molecules is attenuated by the mIgG1 ubiquitination, except MAP kinase p38 whose activation is up-regulated due to the ubiquitination-mediated prohibition of mIgG1 recycling. Adaptive transfer experiments demonstrated that ubiquitination of mIgG1 facilitates expansion of germinal centre B cells. These results indicate that mIgG1-mediated signalling and cell activation is regulated by ubiquitination of mIgG1, and such regulation may play a role in expansion of germinal centre B cells.
Collapse
Affiliation(s)
- Tadahiro Kodama
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Mika Hasegawa
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Yui Sakamoto
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Kei Haniuda
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| | - Daisuke Kitamura
- Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Yamazaki, Noda, Chiba, Japan
| |
Collapse
|
11
|
Feng Y, Wang Y, Zhang S, Haneef K, Liu W. Structural and immunogenomic insights into B-cell receptor activation. J Genet Genomics 2020; 47:27-35. [PMID: 32111437 DOI: 10.1016/j.jgg.2019.12.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 11/10/2019] [Accepted: 12/09/2019] [Indexed: 02/08/2023]
Abstract
B cells express B-cell receptors (BCRs) which recognize antigen to trigger signaling cascades for B-cell activation and subsequent antibody production. BCR activation has a crucial influence on B-cell fate. How BCR is activated upon encountering antigen remains to be solved, although tremendous progresses have been achieved in the past few years. Here, we summarize the models that have been proposed to explain BCR activation, including the cross-linking model, the conformation-induced oligomerization model, the dissociation activation model, and the conformational change model. Especially, we elucidate the partially resolved structures of antibodies and/or BCRs by far and discusse how these current structural and further immunogenomic messages and more importantly the future studies may shed light on the explanation of BCR activation and the relevant diseases in the case of dysregulation.
Collapse
Affiliation(s)
- Yangyang Feng
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yu Wang
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Shaocun Zhang
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Kabeer Haneef
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
12
|
Kwak K, Quizon N, Sohn H, Saniee A, Manzella-Lapeira J, Holla P, Brzostowski J, Lu J, Xie H, Xu C, Spillane KM, Tolar P, Pierce SK. Intrinsic properties of human germinal center B cells set antigen affinity thresholds. Sci Immunol 2019; 3:3/29/eaau6598. [PMID: 30504208 DOI: 10.1126/sciimmunol.aau6598] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/26/2018] [Indexed: 12/17/2022]
Abstract
Protective antibody responses to vaccination or infection depend on affinity maturation, a process by which high-affinity germinal center (GC) B cells are selected on the basis of their ability to bind, gather, and present antigen to T follicular helper (Tfh) cells. Here, we show that human GC B cells have intrinsically higher-affinity thresholds for both B cell antigen receptor (BCR) signaling and antigen gathering as compared with naïve B cells and that these functions are mediated by distinct cellular structures and pathways that ultimately lead to antigen affinity- and Tfh cell-dependent differentiation to plasma cells. GC B cells bound antigen through highly dynamic, actin- and ezrin-rich pod-like structures that concentrated BCRs. The behavior of these structures was dictated by the intrinsic antigen affinity thresholds of GC B cells. Low-affinity antigens triggered continuous engagement and disengagement of membrane-associated antigens, whereas high-affinity antigens induced stable synapse formation. The pod-like structures also mediated affinity-dependent antigen internalization by unconventional pathways distinct from those of naïve B cells. Thus, intrinsic properties of human GC B cells set thresholds for affinity selection.
Collapse
Affiliation(s)
- Kihyuck Kwak
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Nicolas Quizon
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Haewon Sohn
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Avva Saniee
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Javier Manzella-Lapeira
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Prasida Holla
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Jinghua Lu
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - HengYi Xie
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Chenguang Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Katelyn M Spillane
- Department of Physics, King's College London, London WC2R 2LS, UK.,Immune Receptor Activation Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Division of Immunology and Inflammation, Imperial College London, London SW7 2AZ, UK
| | - Pavel Tolar
- Immune Receptor Activation Laboratory, Francis Crick Institute, London NW1 1AT, UK.,Division of Immunology and Inflammation, Imperial College London, London SW7 2AZ, UK
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA.
| |
Collapse
|
13
|
Gutiérrez-González LH, Santos-Mendoza T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism. FASEB J 2019; 33:10607-10617. [PMID: 31336050 DOI: 10.1096/fj.201900518r] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
PDZ proteins are highly conserved through evolution; the principal function of this large family of proteins is to assemble protein complexes that are involved in many cellular processes, such as cell-cell junctions, cell polarity, recycling, or trafficking. Many PDZ proteins that have been identified as targets of viral pathogens by promoting viral replication and spread are also involved in epithelial cell polarity. Here, we briefly review the PDZ polarity proteins in cells of the immune system to subsequently focus on our hypothesis that the viral PDZ-dependent targeting of PDZ polarity proteins in these cells may alter the cellular fitness of the host to favor that of the virus; we further hypothesize that this modification of the cellular fitness landscape occurs as a common and widespread mechanism for immune evasion by viruses and possibly other pathogens.-Gutiérrez-González, L. H., Santos-Mendoza, T. Viral targeting of PDZ polarity proteins in the immune system as a potential evasion mechanism.
Collapse
Affiliation(s)
- Luis H Gutiérrez-González
- Department of Virology and Mycology, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Teresa Santos-Mendoza
- Laboratory of Autoimmunity, Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
14
|
Zhao X, Xie H, Zhao M, Ahsan A, Li X, Wang F, Yi J, Yang Z, Wu C, Raman I, Li QZ, Kim TJ, Liu W. Fc receptor-like 1 intrinsically recruits c-Abl to enhance B cell activation and function. SCIENCE ADVANCES 2019; 5:eaaw0315. [PMID: 31328160 PMCID: PMC6637015 DOI: 10.1126/sciadv.aaw0315] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/13/2019] [Indexed: 06/01/2023]
Abstract
B cell activation is regulated by the stimulatory or inhibitory co-receptors of B cell receptors (BCRs). Here, we investigated the signaling mechanism of Fc receptor-like 1 (FcRL1), a newly identified BCR co-receptor. FcRL1 was passively recruited into B cell immunological synapses upon BCR engagement in the absence of FcRL1 cross-linking, suggesting that FcRL1 may intrinsically regulate B cell activation and function. BCR cross-linking alone led to the phosphorylation of the intracellular Y281ENV motif of FcRL1 to provide a docking site for c-Abl, an SH2 domain-containing kinase. The FcRL1 and c-Abl signaling module, in turn, potently augmented B cell activation and proliferation. FcRL1-deficient mice exhibited markedly impaired formation of extrafollicular plasmablasts and germinal centers, along with decreased antibody production upon antigen stimulation. These findings reveal a critical BCR signal-enhancing function of FcRL1 through its intrinsic recruitment to B cell immunological synapses and subsequent recruitment of c-Abl upon BCR cross-linking.
Collapse
Affiliation(s)
- Xingwang Zhao
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Hengyi Xie
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Meng Zhao
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Asma Ahsan
- Biochemistry and Structural Biology Lab, Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management of Sciences (LUMS) Lahore, Pakistan
| | - Xinxin Li
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Fei Wang
- Natural Products Research Center, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China
| | - Junyang Yi
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, U.S. National Institutes of Health, Bethesda, MD 20851, USA
| | - Indu Raman
- Department of Immunology and Internal Medicine, IIMT Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Quan-Zhen Li
- Department of Immunology and Internal Medicine, IIMT Microarray Core Facility, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Tae Jin Kim
- Division of Immunobiology, School of Medicine, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon 16419, Republic of Korea
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Lab for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Koike T, Harada K, Horiuchi S, Kitamura D. The quantity of CD40 signaling determines the differentiation of B cells into functionally distinct memory cell subsets. eLife 2019; 8:44245. [PMID: 31225793 PMCID: PMC6636905 DOI: 10.7554/elife.44245] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 06/14/2019] [Indexed: 12/15/2022] Open
Abstract
In mice, memory B (Bmem) cells can be divided into two subpopulations: CD80hi Bmem cells, which preferentially differentiate into plasma cells; and CD80lo Bmem cells, which become germinal center (GC) B cells during a recall response. We demonstrate that these distinct responses can be B-cell-intrinsic and essentially independent of B-cell receptor (BCR) isotypes. Furthermore, we find that the development of CD80hi Bmem cells in the primary immune response requires follicular helper T cells, a relatively strong CD40 signal and a high-affinity BCR on B cells, whereas the development of CD80lo Bmem cells does not. Quantitative differences in CD40 stimulation were enough to recapitulate the distinct B cell fate decisions in an in vitro culture system. The quantity of CD40 signaling appears to be translated into NF-κB activation, followed by BATF upregulation that promotes Bmem cell differentiation from GC B cells.
Collapse
Affiliation(s)
- Takuya Koike
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Koshi Harada
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Shu Horiuchi
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| | - Daisuke Kitamura
- Division of Molecular Biology, Research Institute for Biomedical Sciences (RIBS), Tokyo University of Science, Noda, Japan
| |
Collapse
|
16
|
Dong X, Wei L, Guo X, Yang Z, Wu C, Li P, Lu L, Qi H, Shi Y, Hu X, Wu L, Chen L, Liu W. Dlg1 Maintains Dendritic Cell Function by Securing Voltage-Gated K + Channel Integrity. THE JOURNAL OF IMMUNOLOGY 2019; 202:3187-3197. [PMID: 31028120 DOI: 10.4049/jimmunol.1900089] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Accepted: 04/01/2019] [Indexed: 02/06/2023]
Abstract
Dendritic cells (DCs) play key roles in Ab responses by presenting Ags to lymphocytes and by producing proinflammatory cytokines. In this study, we reported that DC-specific knockout of discs large homologue 1 (Dlg1) resulted in a significantly reduced capacity to mediate Ab responses to both thymus-independent and thymus-dependent Ags in Dlg1 fl/flCd11c-Cre-GFP mice. Mechanistically, Dlg1-deficient DCs showed severely impaired endocytosis and phagocytosis capacities upon Ag exposure. In parallel, loss of Dlg1 significantly jeopardized the proinflammatory cytokine production by DCs upon TLR stimulation. Thus, Dlg1-deficient DCs lost their functions to support innate and adaptive immunities. At a cellular level, Dlg1 exhibited an indispensable function to maintain membrane potential changes by securing potassium ion (K+) efflux and subsequent calcium ion (Ca2+) influx events in DCs upon stimulation, both of which are known to be required for proper function of DCs. At a molecular level, Dlg1 did so by retaining the integrity of voltage-gated K+ channels (including Kv1.3) in DCs. The loss of Dlg1 led to a decreased expression of K+ channels, resulting in impaired membrane potential changes and, as a consequence, reduced proinflammatory cytokine production, compromised Ag endocytosis, and phagocytosis. In conclusion, this study provided, to our knowledge, a novel insight into Dlg1 and the voltage-gated K+ channels axis in DC functions.
Collapse
Affiliation(s)
- Xuejiao Dong
- Ministry of Education Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Lisi Wei
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| | - Xueheng Guo
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China.,National Education Examinations Authority, Beijing 100084, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143
| | - Chuan Wu
- Experimental Immunology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD 20851
| | - Peiyu Li
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China.,Department of Infectious Diseases and Shenzhen Key Laboratory for Endogenous Infections, Shenzhen Nanshan People's Hospital, Guangdong Medical University, Shenzhen 518052, China
| | - Lu Lu
- Key Laboratory of Medical Molecular Virology of the Ministry of Education/Ministry of Health, School of Basic Medical Sciences and Shanghai Public Health Clinical Center, Fudan University, Shanghai 200032, China
| | - Hai Qi
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Yan Shi
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Xiaoyu Hu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Li Wu
- Institute for Immunology, School of Medicine, Tsinghua University, Beijing 100084, China;
| | - Liangyi Chen
- State Key Laboratory of Membrane Biology, Beijing Key Laboratory of Cardiometabolic Molecular Medicine, Institute of Molecular Medicine, Peking University, Beijing 100871, China;
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Center for Life Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Beijing Key Laboratory for Immunological Research on Chronic Diseases, Institute for Immunology, Tsinghua University, Beijing 100084, China;
| |
Collapse
|
17
|
Xu C, Fang Y, Yang Z, Jing Y, Zhang Y, Liu C, Liu W. MARCKS regulates tonic and chronic active B cell receptor signaling. Leukemia 2019; 33:710-729. [PMID: 30209404 DOI: 10.1038/s41375-018-0244-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Revised: 06/12/2018] [Accepted: 07/30/2018] [Indexed: 01/16/2023]
Abstract
Tonic or chronic active B-cell receptor (BCR) signaling is essential for the survival of normal or some malignant B cells, respectively. However, the molecular mechanism regulating the strength of these two types of BCR signaling remains unknown. Here, using high-speed high-resolution single-molecule tracking in live cells, we identified that PKCβ, STIM1, and IP3R1/2/3 molecules affected the lateral Brownian mobile behavior of BCRs on the plasma membrane of quiescent B cells, which was correlated to the strength of BCR signaling. Further mechanistic studies revealed that these three molecules influenced BCR mobility by regulating the membrane tethering of MARCKS to the inner leaflet of the plasma membrane. Indeed, membrane-untethered or deficiency of MARCKS significantly decreased, while membrane-tethered or overexpression of MARCKS drastically increased the lateral mobility of BCRs. Functional experiments indicated that the membrane-tethered MARCKS suppressed the survival and/or proliferation in both B-cell tumor cells and mouse primary splenic B cells in vitro and in vivo. Mechanistically, we found that membrane-tethered MARCKS increased BCR lateral mobility, and thus decreased BCR nanoclustering by disturbing the interaction between cortical F-actin and the inner leaflet of the plasma membrane, resulting in the suppression of the strength of both tonic and chronic active BCR signaling. Conclusively, MARCKS is a newly identified molecule regulating the strength of BCR signaling by modulating cytoskeleton and plasma membrane interactions, both in the physiological and pathological conditions, suggesting that MARCKS is a putative target for drug design.
Collapse
Affiliation(s)
- Chenguang Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Yan Fang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China
| | - Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Yukai Jing
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yonghui Zhang
- School of Pharmaceutical Sciences, Collaborative Innovation Center for Biotherapy, Tsinghua University, Beijing, 100084, China
| | - Chaohong Liu
- Department of Pathogen Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, 100084, China.
- Beijing Key Lab for Immunological Research on Chronic Diseases, Beijing, 100084, China.
| |
Collapse
|
18
|
Abstract
In this review, Boothby et al. summarize some salient advances toward elucidation of the molecular programming of the fate choices and function of B cells in the periphery. They also note unanswered questions that pertain to differences among subsets of B lymphocytes and plasma cells. Mature B lymphocytes are crucial components of adaptive immunity, a system essential for the evolutionary fitness of mammals. Adaptive lymphocyte function requires an initially naïve cell to proliferate extensively and its progeny to have the capacity to assume a variety of fates. These include either terminal differentiation (the long-lived plasma cell) or metastable transcriptional reprogramming (germinal center and memory B cells). In this review, we focus principally on the regulation of differentiation and functional diversification of the “B2” subset. An overview is combined with an account of more recent advances, including initial work on mechanisms that eliminate DNA methylation and potential links between intracellular metabolites and chromatin editing.
Collapse
|
19
|
Yang Z, Allen CDC. Expression of Exogenous Genes in Murine Primary B Cells and B Cell Lines Using Retroviral Vectors. Methods Mol Biol 2018; 1707:39-49. [PMID: 29388098 DOI: 10.1007/978-1-4939-7474-0_3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
B cells, after activation, can undergo class-switch recombination and somatic hypermutation of their immunoglobulin genes, and can differentiate into memory cells and plasma cells. Expressing genes in altered versions in primary B cells and B cell lines is an important approach to understanding how B cell receptor signaling leads to B cell activation and differentiation. Recombinant retrovirus-based transduction is the most efficient method to deliver exogenous genes for expression in B cells. In this chapter, we describe streamlined protocols for using recombinant retroviral vectors to transduce both murine primary B cells and B cell lines.
Collapse
Affiliation(s)
- Zhiyong Yang
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94143, USA
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Christopher D C Allen
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, 94143, USA.
- Department of Anatomy, University of California, San Francisco, San Francisco, CA, 94143, USA.
| |
Collapse
|
20
|
Wang J, Xu L, Shaheen S, Liu S, Zheng W, Sun X, Li Z, Liu W. Growth of B Cell Receptor Microclusters Is Regulated by PIP 2 and PIP 3 Equilibrium and Dock2 Recruitment and Activation. Cell Rep 2018; 21:2541-2557. [PMID: 29186690 DOI: 10.1016/j.celrep.2017.10.117] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/18/2017] [Accepted: 10/29/2017] [Indexed: 01/24/2023] Open
Abstract
The growth of B cell receptor (BCR) microclusters upon antigen stimulation drives B cell activation. Here, we show that PI3K-mediated PIP3 production is required for the growth of BCR microclusters. This growth is likely inhibited by PTEN and dependent on its plasma membrane binding and lipid phosphatase activities. Mechanistically, we find that PIP3-dependent recruitment and activation of a guanine nucleotide exchange factor, Dock2, is required for the sustained growth of BCR microclusters through remodeling of the F-actin cytoskeleton. As a consequence, Dock2 deficiency significantly disrupts the structure of the B cell immunological synapse. Finally, we find that primary B cells from systemic lupus erythematosus (SLE) patients exhibit more prominent BCR and PI3K microclusters than B cells from healthy controls. These results demonstrate the importance of a PI3K- and PTEN-governed PIP2 and PIP3 equilibrium in regulating the activation of B cells through Dock2-controlled growth of BCR microclusters.
Collapse
Affiliation(s)
- Jing Wang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Liling Xu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Samina Shaheen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Sichen Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China
| | - Wenjie Zheng
- Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Peking University People's Hospital & Beijing Key Laboratory for Rheumatism Mechanism and Immune Diagnosis (BZ0135), Beijing 100044, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
21
|
Wan Z, Xu C, Chen X, Xie H, Li Z, Wang J, Ji X, Chen H, Ji Q, Shaheen S, Xu Y, Wang F, Tang Z, Zheng JS, Chen W, Lou J, Liu W. PI(4,5)P2 determines the threshold of mechanical force-induced B cell activation. J Cell Biol 2018; 217:2565-2582. [PMID: 29685902 PMCID: PMC6028545 DOI: 10.1083/jcb.201711055] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 03/06/2018] [Accepted: 04/05/2018] [Indexed: 12/14/2022] Open
Abstract
B lymphocytes use B cell receptors (BCRs) to sense the chemical and physical features of antigens. The activation of isotype-switched IgG-BCR by mechanical force exhibits a distinct sensitivity and threshold in comparison with IgM-BCR. However, molecular mechanisms governing these differences remain to be identified. In this study, we report that the low threshold of IgG-BCR activation by mechanical force is highly dependent on tethering of the cytoplasmic tail of the IgG-BCR heavy chain (IgG-tail) to the plasma membrane. Mechanistically, we show that the positively charged residues in the IgG-tail play a crucial role by highly enriching phosphatidylinositol (4,5)-biphosphate (PI(4,5)P2) into the membrane microdomains of IgG-BCRs. Indeed, manipulating the amounts of PI(4,5)P2 within IgG-BCR membrane microdomains significantly altered the threshold and sensitivity of IgG-BCR activation. Our results reveal a lipid-dependent mechanism for determining the threshold of IgG-BCR activation by mechanical force.
Collapse
Affiliation(s)
- Zhengpeng Wan
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Chenguang Xu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xiangjun Chen
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Hengyi Xie
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Zongyu Li
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Xingyu Ji
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Haodong Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
| | - Qinghua Ji
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Samina Shaheen
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China
| | - Yang Xu
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Fei Wang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
| | - Ji-Shen Zheng
- School of Life Sciences, University of Science and Technology of China, Hefei, China
| | - Wei Chen
- School of Basic Medical Sciences, Zhejiang University, Hangzhou, China
| | - Jizhong Lou
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, Tsinghua University, Beijing, China .,Beijing Key Laboratory for Immunological Research on Chronic Diseases, Beijing, China
| |
Collapse
|
22
|
Barreda D, Sánchez-Galindo M, López-Flores J, Nava-Castro KE, Bobadilla K, Salgado-Aguayo A, Santos-Mendoza T. PDZ proteins are expressed and regulated in antigen-presenting cells and are targets of influenza A virus. J Leukoc Biol 2017; 103:731-738. [PMID: 29345359 DOI: 10.1002/jlb.4ab0517-184r] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 10/27/2017] [Accepted: 11/20/2017] [Indexed: 11/08/2022] Open
Abstract
In this work, we identified the expression, regulation, and viral targeting of Scribble and Dlg1 in antigen-presenting cells. Scribble and Dlg1 belong to the family of PDZ (postsynaptic density (PSD95), disc large (Dlg), and zonula occludens (ZO-1)) proteins involved in cell polarity. The relevance of PDZ proteins in cellular functions is reinforced by the fact that many viruses interfere with host PDZ-dependent interactions affecting cellular mechanisms thus favoring viral replication. The functions of Scribble and Dlg have been widely studied in polarized cells such as epithelial and neuron cells. However, within the cells of the immune system, their functions have been described only in T and B lymphocytes. Here we demonstrated that Scribble and Dlg1 are differentially expressed during antigen-presenting cell differentiation and dendritic cell maturation. While both Scribble and Dlg1 seem to participate in distinct dendritic cell functions, both are targeted by the viral protein NS1 of influenza A in a PDZ-dependent manner in dendritic cells. Our findings suggest that these proteins might be involved in the mechanisms of innate immunity and/or antigen processing and presentation that can be hijacked by viral pathogens.
Collapse
Affiliation(s)
- Dante Barreda
- Department of Immunology. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Department of Immunology, ENCB-IPN, Mexico City, Mexico
| | - Marisa Sánchez-Galindo
- Department of Immunology. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Department of Genetics and Molecular Biology, Center of Research and Advanced Studies (CINVESTAV), Mexico City, Mexico
| | - Jessica López-Flores
- Department of Immunology. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Karen E Nava-Castro
- Department of Immunology. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico.,Cátedras CONACYT, Mexico City, Mexico
| | - Karen Bobadilla
- Department of Immunology. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Alfonso Salgado-Aguayo
- Department of Research in Pulmonary Fibrosis. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| | - Teresa Santos-Mendoza
- Department of Immunology. Instituto Nacional de Enfermedades Respiratorias Ismael Cosío Villegas, Mexico City, Mexico
| |
Collapse
|
23
|
Wang H, Chen X, Wang D, Yao C, Wang Q, Xie J, Shi X, Xiang Y, Liu W, Zhang L. Epitope-focused immunogens against the CD4-binding site of HIV-1 envelope protein induce neutralizing antibodies against auto- and heterologous viruses. J Biol Chem 2017; 293:830-846. [PMID: 29187598 DOI: 10.1074/jbc.m117.816447] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/20/2017] [Indexed: 11/06/2022] Open
Abstract
Recent discoveries of broadly neutralizing antibodies (bnAbs) in HIV-1-infected individuals have led to the identification of several major "vulnerable sites" on the HIV-1 envelope (Env) glycoprotein. These sites have provided precise targets for HIV-1 vaccine development, but identifying and utilizing many of these targets remain technically challenging. Using a yeast surface display-based approach, we sought to identify epitope-focused antigenic domains (EADs) containing one of the "vulnerable sites," the CD4-binding site (CD4bs), through screening and selection of a combinatorial antigen library of the HIV-1 envelope glycoprotein with the CD4bs bnAb VRC01. We isolated multiple EADs and found that their trimeric forms have biochemical and structural features that preferentially bind and activate B cells that express VRC01 in vitro More importantly, these EADs could induce detectable levels of neutralizing antibodies against genetically related autologous and heterologous subtype B viruses in guinea pigs. Our results demonstrate that an epitope-focused approach involving a screen of a combinatorial antigen library is feasible. The EADs identified here represent a promising collection of possible targets in the rational design of HIV-1 vaccines and lay the foundation for harnessing the specific antigenicity of CD4bs for protective immunogenicity in vivo.
Collapse
Affiliation(s)
- Hua Wang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, and
| | - Dianhong Wang
- Beijing Advanced Innovation Center for Structural Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Chen Yao
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Qian Wang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Jiayu Xie
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Xuanling Shi
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine
| | - Ye Xiang
- Beijing Advanced Innovation Center for Structural Biology, and Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Medicine, Tsinghua University, Beijing 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Institute for Immunology, and
| | - Linqi Zhang
- From the Comprehensive AIDS Research Center, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, and School of Medicine,
| |
Collapse
|
24
|
Limitations of Qdot labelling compared to directly-conjugated probes for single particle tracking of B cell receptor mobility. Sci Rep 2017; 7:11379. [PMID: 28900238 PMCID: PMC5595841 DOI: 10.1038/s41598-017-11563-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 08/18/2017] [Indexed: 12/25/2022] Open
Abstract
Single-particle tracking (SPT) is a powerful method for exploring single-molecule dynamics in living cells with nanoscale spatiotemporal resolution. Photostability and bright fluorescence make quantum dots (Qdots) a popular choice for SPT. However, their large size could potentially alter the mobility of the molecule of interest. To test this, we labelled B cell receptors on the surface of B-lymphocytes with monovalent Fab fragments of antibodies that were either linked to Qdots via streptavidin or directly conjugated to the small organic fluorophore Cy3. Imaging of receptor mobility by total internal reflection fluorescence microscopy (TIRFM), followed by quantitative single-molecule diffusion and confinement analysis, definitively showed that Qdots sterically hinder lateral mobility regardless of the substrate to which the cells were adhered. Qdot labelling also drastically altered the frequency with which receptors transitioned between apparent slow- and fast-moving states and reduced the size of apparent confinement zones. Although we show that Qdot-labelled probes can detect large differences in receptor mobility, they fail to resolve subtle differences in lateral diffusion that are readily detectable using Cy3-labelled Fabs. Our findings highlight the utility and limitations of using Qdots for TIRFM and wide-field-based SPT, and have significant implications for interpreting SPT data.
Collapse
|
25
|
Lee J, Sengupta P, Brzostowski J, Lippincott-Schwartz J, Pierce SK. The nanoscale spatial organization of B-cell receptors on immunoglobulin M- and G-expressing human B-cells. Mol Biol Cell 2016; 28:511-523. [PMID: 27974642 PMCID: PMC5305258 DOI: 10.1091/mbc.e16-06-0452] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/01/2016] [Accepted: 12/08/2016] [Indexed: 12/12/2022] Open
Abstract
In resting and activated B-cells, IgM and IgG B-cell receptors (BCRs) reside in highly heterogeneous protein islands that vary in size and number of BCRs but intrinsically maintain a high frequency of BCR monomers. IgG BCRs are more clustered than IgM BCRs on resting cells and form larger protein islands after antigen activation. B-cell activation is initiated by the binding of antigen to the B-cell receptor (BCR). Here we used dSTORM superresolution imaging to characterize the nanoscale spatial organization of immunoglobulin M (IgM) and IgG BCRs on the surfaces of resting and antigen-activated human peripheral blood B-cells. We provide insights into both the fundamental process of antigen-driven BCR clustering and differences in the spatial organization of IgM and IgG BCRs that may contribute to the characteristic differences in the responses of naive and memory B-cells to antigen. We provide evidence that although both IgM and IgG BCRs reside in highly heterogeneous protein islands that vary in size and number of BCR single-molecule localizations, both resting and activated B-cells intrinsically maintain a high frequency of single isolated BCR localizations, which likely represent BCR monomers. IgG BCRs are more clustered than IgM BCRs on resting cells and form larger protein islands after antigen activation. Small, dense BCR clusters likely formed via protein–protein interactions are present on the surface of resting cells, and antigen activation induces these to come together to form less dense, larger islands, a process likely governed, at least in part, by protein–lipid interactions.
Collapse
Affiliation(s)
- Jinmin Lee
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Prabuddha Sengupta
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147.,Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Joseph Brzostowski
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| | - Jennifer Lippincott-Schwartz
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, VA 20147.,Cell Biology and Metabolism Program, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852
| |
Collapse
|
26
|
Xu L, Xia M, Guo J, Sun X, Li H, Xu C, Gu X, Zhang H, Yi J, Fang Y, Xie H, Wang J, Shen Z, Xue B, Sun Y, Meckel T, Chen YH, Hu Z, Li Z, Xu C, Gong H, Liu W. Impairment on the lateral mobility induced by structural changes underlies the functional deficiency of the lupus-associated polymorphism FcγRIIB-T232. J Exp Med 2016; 213:2707-2727. [PMID: 27799621 PMCID: PMC5110019 DOI: 10.1084/jem.20160528] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 08/08/2016] [Accepted: 09/28/2016] [Indexed: 12/18/2022] Open
Abstract
Xu et al. show that the lupus-associated polymorphism FcγRIIB-T232 has structural changes of the TM domain that reduces lateral mobility and inhibitory functions. FcγRIIB functions to suppress the activation of immune cells. A single-nucleotide polymorphism in the transmembrane (TM) domain of FcγRIIB, FcγRIIB-T232, is associated with lupus. In this study, we investigated the pathogenic mechanism of FcγRIIB-T232 at both functional and structural levels. Our results showed that FcγRIIB-T232 exhibited significantly reduced lateral mobility compared with FcγRIIB-I232 and was significantly less enriched into the microclusters of immune complexes (ICs) after stimulation. However, if sufficient responding time is given for FcγRIIB-T232 to diffuse and interact with the ICs, FcγRIIB-T232 can restore its inhibitory function. Moreover, substituting the FcγRIIB-T232 TM domain with that of a fast floating CD86 molecule restored both the rapid mobility and the inhibitory function, which further corroborated the importance of fast mobility for FcγRIIB to function. Mechanistically, the crippled lateral mobility of FcγRIIB-T232 can be explained by the structural changes of the TM domain. Both atomistic simulations and nuclear magnetic resonance measurement indicated that the TM helix of FcγRIIB-T232 exhibited a more inclined orientation than that of FcγRIIB-I232, thus resulting in a longer region embedded in the membrane. Therefore, we conclude that the single-residue polymorphism T232 enforces the inclination of the TM domain and thereby reduces the lateral mobility and inhibitory functions of FcγRIIB.
Collapse
Affiliation(s)
- Liling Xu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Mengdie Xia
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jun Guo
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xiaolin Sun
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing 100044, China
| | - Hua Li
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Chenguang Xu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Xiaomei Gu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Haowen Zhang
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Junyang Yi
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yan Fang
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Hengyi Xie
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jing Wang
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhixun Shen
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Boxin Xue
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Yujie Sun
- State Key Laboratory of Biomembrane and Membrane Biotechnology, Biodynamic Optical Imaging Center, School of Life Sciences, Peking University, Beijing 100871, China
| | - Tobias Meckel
- Membrane Dynamics, Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Ying-Hua Chen
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhibin Hu
- Department of Epidemiology, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhanguo Li
- Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing 100044, China
| | - Chenqi Xu
- National Center for Protein Science Shanghai, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China .,School of Life Science and Technology, ShanghaiTech University, Shanghai 200031, China
| | - Haipeng Gong
- Ministry of Education Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wanli Liu
- Ministry of Education Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Institute for Immunology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
27
|
Liu W, Wang H, Xu C. Antigen Receptor Nanoclusters: Small Units with Big Functions. Trends Immunol 2016; 37:680-689. [PMID: 27555115 DOI: 10.1016/j.it.2016.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Revised: 07/25/2016] [Accepted: 07/28/2016] [Indexed: 01/08/2023]
Abstract
Adaptive lymphocytes express highly variable antigen receptors, allowing them to recognize a large variety of proteins, for example, derived from pathogens and tumor cells. Despite decades of investigations, the signaling mechanisms of these receptors are still incompletely understood. Super-resolution imaging studies revealed that antigen receptors, their coreceptors, and even some downstream signaling molecules tend to form dynamic nanometers-sized self-clusters in quiescent cells. Antigen stimulation induces the coalescence of these nanoclusters to form membrane proximal signalosomes that can mediate efficient signal transduction. In this review, we discuss the dynamic structures of T cell receptor and B cell receptor nanoclusters, the driving forces behind this spatial reorganization, as well as their potential relevance in the modulation of lymphocyte activation and function.
Collapse
Affiliation(s)
- Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China.
| | - Haopeng Wang
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Chenqi Xu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; State Key Laboratory of Molecular Biology, National Center for Protein Science Shanghai, Shanghai Science Research Center, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
28
|
Antibodies with 'Original Antigenic Sin' Properties Are Valuable Components of Secondary Immune Responses to Influenza Viruses. PLoS Pathog 2016; 12:e1005806. [PMID: 27537358 PMCID: PMC4990287 DOI: 10.1371/journal.ppat.1005806] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 07/11/2016] [Indexed: 01/12/2023] Open
Abstract
Human antibodies (Abs) elicited by influenza viruses often bind with a high affinity to past influenza virus strains, but paradoxically, do not bind to the viral strain actually eliciting the response. This phenomena is called ‘original antigenic sin’ (OAS) since this can occur at the expense of generating new de novo Abs. Here, we characterized the specificity and functionality of Abs elicited in mice that were sequentially exposed to two antigenically distinct H1N1 influenza virus strains. Many Abs elicited under these conditions had an OAS phenotype, in that they bound strongly to the viral strain used for the first exposure and very weakly to the viral strain used for the second exposure. We found that OAS and non-OAS Abs target the same general region of the influenza hemagglutinin protein and that B cells expressing these two types of Abs can be clonally-related. Surprisingly, although OAS Abs bound with very low affinities, some were able to effectively protect against an antigenically drifted viral strain following passive transfer in vivo. Taken together, our data indicate that OAS Abs share some level of cross-reactivity between priming and recall viral strains and that B cells producing these Abs can be protective when recalled into secondary immune responses. Humans are continuously exposed to antigenically distinct influenza virus strains. Influenza virus infections early in life elicit immune responses that are subsequently recalled upon exposures with different influenza virus strains. Antibodies elicited against older influenza strains can dominate immune responses elicited against new influenza strains. This process is referred to as ‘original antigenic sin’ since the recall of antibodies against past influenza strains can occur at the apparent expense of generating antibodies against new viral strains. It has been proposed that ‘original antigenic sin’ contributes to vaccine failures. Here, we use a mouse model to show that antibodies that have an ‘original antigenic sin’ phenotype surprisingly target the same regions of influenza viruses that are recognized by strain-specific antibodies. Most importantly, despite the observation that ‘original antigenic sin’ antibodies bound poorly in conventional binding assays, these antibodies were able to efficiently protect in vivo. These data indicate that antibodies with an ‘original antigenic sin’ phenotype are an underappreciated valuable component of secondary immune responses to influenza viruses.
Collapse
|
29
|
Moens L, Kane A, Tangye SG. Naïve and memory B cells exhibit distinct biochemical responses following BCR engagement. Immunol Cell Biol 2016; 94:774-86. [PMID: 27101923 DOI: 10.1038/icb.2016.41] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2015] [Revised: 04/17/2016] [Accepted: 04/18/2016] [Indexed: 01/08/2023]
Abstract
Immunological memory is characterized by the rapid reactivation of memory B cells that produce large quantities of high-affinity antigen-specific antibodies. This contrasts the response of naïve B cells, and the primary immune response, which is much slower and of lower affinity. Memory responses are critical for protection against infectious diseases and form the basis of most currently available vaccines. Although we have known about the phenomenon of long-lived memory for centuries, the biochemical differences underlying these diverse responses of naïve and memory B cells is incompletely resolved. Here we investigated the nature of B-cell receptor (BCR) signaling in human splenic naïve, IgM(+) memory and isotype-switched memory B cells following multivalent BCR crosslinking. We observed comparable rapid and transient phosphorylation kinetics for proximal (phosphotyrosine and spleen tyrosine kinase) and propagation (B-cell linker, phospholipase Cγ2) signaling components in these different B-cell subsets. However, the magnitude of activation of downstream components of the BCR signaling pathway were greater in memory compared with naïve cells. Although no differences were observed in the magnitude of Ca(2+) mobilization between subsets, IgM(+) memory B cells exhibited a more rapid Ca(2+) mobilization and a greater depletion of the Ca(2+) endoplasmic reticulum stores, while IgG(+) memory B cells had a prolonged Ca(2+) uptake. Collectively, our findings show that intrinsic signaling features of B-cell subsets contribute to the robust response of human memory B cells over naïve B cells. This has implications for our understanding of memory B-cell responses and provides a framework to modulate these responses in the setting of vaccination and immunopathologies, such as immunodeficiency and autoimmunity.
Collapse
Affiliation(s)
- Leen Moens
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia
| | - Alisa Kane
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St Vincent's Clinical School, UNSW, Darlinghurst, New South Wales, Australia
| | - Stuart G Tangye
- Immunology Division, Garvan Institute of Medical Research, Darlinghurst, New South Wales, Australia.,St Vincent's Clinical School, UNSW, Darlinghurst, New South Wales, Australia
| |
Collapse
|
30
|
Gitlin AD, von Boehmer L, Gazumyan A, Shulman Z, Oliveira TY, Nussenzweig MC. Independent Roles of Switching and Hypermutation in the Development and Persistence of B Lymphocyte Memory. Immunity 2016; 44:769-81. [PMID: 26944202 DOI: 10.1016/j.immuni.2016.01.011] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Revised: 12/16/2015] [Accepted: 01/20/2016] [Indexed: 01/11/2023]
Abstract
Somatic hypermutation (SHM) and class-switch recombination (CSR) increase the affinity and diversify the effector functions of antibodies during immune responses. Although SHM and CSR are fundamentally different, their independent roles in regulating B cell fate have been difficult to uncouple because a single enzyme, activation-induced cytidine deaminase (encoded by Aicda), initiates both reactions. Here, we used a combination of Aicda and antibody mutant alleles that separate the effects of CSR and SHM on polyclonal immune responses. We found that class-switching to IgG1 biased the fate choice made by B cells, favoring the plasma cell over memory cell fate without significantly affecting clonal expansion in the germinal center (GC). In contrast, SHM reduced the longevity of memory B cells by creating polyreactive specificities that were selected against over time. Our data define the independent contributions of SHM and CSR to the generation and persistence of memory in the antibody system.
Collapse
Affiliation(s)
- Alexander D Gitlin
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA.
| | - Lotta von Boehmer
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
| | - Anna Gazumyan
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
| | - Ziv Shulman
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
| | - Thiago Y Oliveira
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA
| | - Michel C Nussenzweig
- Laboratory of Molecular Immunology, The Rockefeller University, New York, NY 10065 USA; Howard Hughes Medical Institute, The Rockefeller University, New York, NY 10065 USA.
| |
Collapse
|
31
|
Polarity and asymmetric cell division in the control of lymphocyte fate decisions and function. Curr Opin Immunol 2016; 39:143-9. [PMID: 26945468 DOI: 10.1016/j.coi.2016.02.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Revised: 02/11/2016] [Accepted: 02/11/2016] [Indexed: 01/12/2023]
Abstract
Polarity is important in several lymphocyte processes including lymphocyte migration, formation of the immunological synapse, and asymmetric cell division (ACD). While lymphocyte migration and immunological synapse formation are relatively well understood, the role of lymphocyte ACD is less clear. Recent advances in measuring polarity enable more robust analyses of asymmetric cell division. Use of these new methods has produced crucial quantification of ACD at precise phases of lymphocyte development and activation. These developments are leading to a better understanding of the drivers of fate choice during lymphocyte activation and provide a context within which to explain the effects of ACD.
Collapse
|
32
|
Acidic phospholipids govern the enhanced activation of IgG-B cell receptor. Nat Commun 2015; 6:8552. [PMID: 26440273 PMCID: PMC4600742 DOI: 10.1038/ncomms9552] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 09/02/2015] [Indexed: 11/08/2022] Open
Abstract
B cells that express the isotype-switched IgG-B cell receptor (IgG-BCR) are one of the driving forces for antibody memory. To allow for a rapid memory IgG antibody response, IgG-BCR evolved into a highly effective signalling machine. Here, we report that the positively charged cytoplasmic domain of mIgG (mIgG-tail) specifically interacts with negatively charged acidic phospholipids. The key immunoglobulin tail tyrosine (ITT) in mIgG-tail is thus sequestered in the membrane hydrophobic core in quiescent B cells. Pre-disruption of such interaction leads to excessive recruitment of BCRs and inflated BCR signalling upon antigen stimulation, resulting in hyperproliferation of primary B cells. Physiologically, membrane-sequestered mIgG-tail can be released by antigen engagement or Ca(2+) mobilization in the initiation of B cell activation. Our studies suggest a novel regulatory mechanism for how dynamic association of mIgG-tail with acidic phospholipids governs the enhanced activation of IgG-BCR.
Collapse
|
33
|
The forkhead transcription factor FOXP1 represses human plasma cell differentiation. Blood 2015; 126:2098-109. [PMID: 26289642 DOI: 10.1182/blood-2015-02-626176] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Accepted: 08/07/2015] [Indexed: 02/02/2023] Open
Abstract
Expression of the forkhead transcription factor FOXP1 is essential for early B-cell development, whereas downregulation of FOXP1 at the germinal center (GC) stage is required for GC B-cell function. Aberrantly high FOXP1 expression is frequently observed in diffuse large B-cell lymphoma and mucosa-associated lymphoid tissue lymphoma, being associated with poor prognosis. Here, by gene expression analysis upon ectopic overexpression of FOXP1 in primary human memory B cells (MBCs) and B-cell lines, combined with chromatin immunoprecipitation and sequencing, we established that FOXP1 directly represses expression of PRDM1, IRF4, and XBP1, transcriptional master regulators of plasma cell (PC) differentiation. In accordance, FOXP1 is prominently expressed in primary human naive and MBCs, but expression strongly decreases during PC differentiation. Moreover, as compared with immunoglobulin (Ig) M(+) MBCs, IgG(+) MBCs combine lower expression of FOXP1 with an enhanced intrinsic PC differentiation propensity, and constitutive (over)expression of FOXP1 in B-cell lines and primary human MBCs represses their ability to differentiate into PCs. Taken together, our data indicate that proper control of FOXP1 expression plays a critical role in PC differentiation, whereas aberrant expression of FOXP1 might contribute to lymphomagenesis by blocking this terminal B-cell differentiation.
Collapse
|
34
|
Wan Z, Chen X, Chen H, Ji Q, Chen Y, Wang J, Cao Y, Wang F, Lou J, Tang Z, Liu W. The activation of IgM- or isotype-switched IgG- and IgE-BCR exhibits distinct mechanical force sensitivity and threshold. eLife 2015; 4:e06925. [PMID: 26258882 PMCID: PMC4555871 DOI: 10.7554/elife.06925] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 08/08/2015] [Indexed: 02/06/2023] Open
Abstract
B lymphocytes use B cell receptors (BCRs) to sense the physical features of the antigens. However, the sensitivity and threshold for the activation of BCRs resulting from the stimulation by mechanical forces are unknown. Here, we addressed this question using a double-stranded DNA-based tension gauge tether system serving as a predefined mechanical force gauge ranging from 12 to 56 pN. We observed that IgM-BCR activation is dependent on mechanical forces and exhibits a multi-threshold effect. In contrast, the activation of isotype-switched IgG- or IgE-BCR only requires a low threshold of less than 12 pN, providing an explanation for their rapid activation in response to antigen stimulation. Mechanistically, we found that the cytoplasmic tail of the IgG-BCR heavy chain is both required and sufficient to account for the low mechanical force threshold. These results defined the mechanical force sensitivity and threshold that are required to activate different isotyped BCRs.
Collapse
Affiliation(s)
- Zhengpeng Wan
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| | - Haodong Chen
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
| | - Qinghua Ji
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Yingjia Chen
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| | - Jing Wang
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| | - Yiyun Cao
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| | - Fei Wang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
| | - Jizhong Lou
- Laboratory of RNA Biology, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Zhuo Tang
- Natural Products Research Center, Chengdu Institution of Biology, Chinese Academy of Science, Chengdu, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, School of Life Sciences, Tsinghua University, Beijing, China
| |
Collapse
|
35
|
De Los Santos C, Chang CW, Mycek MA, Cardullo RA. FRAP, FLIM, and FRET: Detection and analysis of cellular dynamics on a molecular scale using fluorescence microscopy. Mol Reprod Dev 2015; 82:587-604. [PMID: 26010322 PMCID: PMC4515154 DOI: 10.1002/mrd.22501] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2015] [Accepted: 05/01/2015] [Indexed: 01/01/2023]
Abstract
The combination of fluorescent-probe technology plus modern optical microscopes allows investigators to monitor dynamic events in living cells with exquisite temporal and spatial resolution. Fluorescence recovery after photobleaching (FRAP), for example, has long been used to monitor molecular dynamics both within cells and on cellular surfaces. Although bound by the diffraction limit imposed on all optical microscopes, the combination of digital cameras and the application of fluorescence intensity information on large-pixel arrays have allowed such dynamic information to be monitored and quantified. Fluorescence lifetime imaging microscopy (FLIM), on the other hand, utilizes the information from an ensemble of fluorophores to probe changes in the local environment. Using either fluorescence-intensity or lifetime approaches, fluorescence resonance energy transfer (FRET) microscopy provides information about molecular interactions, with Ångstrom resolution. In this review, we summarize the theoretical framework underlying these methods and illustrate their utility in addressing important problems in reproductive and developmental systems.
Collapse
Affiliation(s)
- Carla De Los Santos
- Departments of Biology and Bioengineering, University of California, Riverside, Riverside, CA 92501
| | - Ching-Wei Chang
- Department of Bioengineering, University of California, Berkeley 94720
| | - Mary-Ann Mycek
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
| | - Richard A. Cardullo
- Departments of Biology and Bioengineering, University of California, Riverside, Riverside, CA 92501
| |
Collapse
|
36
|
Chen X, Li G, Wan Z, Liu C, Zeng Y, Liu W. How B cells remember? A sophisticated cytoplasmic tail of mIgG is pivotal for the enhanced transmembrane signaling of IgG-switched memory B cells. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2015; 118:89-94. [PMID: 26004919 DOI: 10.1016/j.pbiomolbio.2015.04.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2014] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 11/26/2022]
Abstract
Antibody memory is critical for protection against many human infectious diseases and is the basis for nearly all current human vaccines. Isotype switched immunoglobulin (Ig) G-expressing memory B cells are considered as one of the fundaments for the rapid, high affinity and high-titered memory antibody response. The detailed molecular mechanism of the enhanced activation of IgG-switched memory B cells upon BCR engagement with antigens has been an elusive question in immunology. In this review, we tried to discuss all the exciting new advances revealing the molecular mechanisms of the transmembrane signaling through mIgG cytoplasmic tail in IgG-switched memory B cells.
Collapse
Affiliation(s)
- Xiangjun Chen
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Infectious Diseases, HangZhou, China
| | - Gen Li
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhengpeng Wan
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Ce Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yingyue Zeng
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Wanli Liu
- MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China; Collaborative Innovation Center for Infectious Diseases, HangZhou, China.
| |
Collapse
|
37
|
Xu L, Auzins A, Sun X, Xu Y, Harnischfeger F, Lu Y, Li Z, Chen YH, Zheng W, Liu W. The synaptic recruitment of lipid rafts is dependent on CD19-PI3K module and cytoskeleton remodeling molecules. J Leukoc Biol 2015; 98:223-34. [PMID: 25979433 DOI: 10.1189/jlb.2a0614-287rr] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 04/15/2015] [Indexed: 11/24/2022] Open
Abstract
Sphingolipid- and cholesterol-rich lipid raft microdomains are important in the initiation of BCR signaling. Although it is known that lipid rafts promote the coclustering of BCR and Lyn kinase microclusters within the B cell IS, the molecular mechanism of the recruitment of lipid rafts into the B cell IS is not understood completely. Here, we report that the synaptic recruitment of lipid rafts is dependent on the cytoskeleton-remodeling proteins, RhoA and Vav. Such an event is also efficiently regulated by motor proteins, myosin IIA and dynein. Further evidence suggests the synaptic recruitment of lipid rafts is, by principle, an event triggered by BCR signaling molecules and second messenger molecules. BCR-activating coreceptor CD19 potently enhances such an event depending on its cytoplasmic Tyr421 and Tyr482 residues. The enhancing function of the CD19-PI3K module in synaptic recruitment of lipid rafts is also confirmed in human peripheral blood B cells. Thus, these results improve our understanding of the molecular mechanism of the recruitment of lipid raft microdomains in B cell IS.
Collapse
Affiliation(s)
- Liling Xu
- *MOE Key Laboratory of Protein Science, School of Life Sciences, and State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Arturs Auzins
- *MOE Key Laboratory of Protein Science, School of Life Sciences, and State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xiaolin Sun
- *MOE Key Laboratory of Protein Science, School of Life Sciences, and State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yinsheng Xu
- *MOE Key Laboratory of Protein Science, School of Life Sciences, and State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Fiona Harnischfeger
- *MOE Key Laboratory of Protein Science, School of Life Sciences, and State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Yun Lu
- *MOE Key Laboratory of Protein Science, School of Life Sciences, and State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Zhanguo Li
- *MOE Key Laboratory of Protein Science, School of Life Sciences, and State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Ying-Hua Chen
- *MOE Key Laboratory of Protein Science, School of Life Sciences, and State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wenjie Zheng
- *MOE Key Laboratory of Protein Science, School of Life Sciences, and State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Wanli Liu
- *MOE Key Laboratory of Protein Science, School of Life Sciences, and State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Rheumatology and Immunology, Clinical Immunology Center, Peking University People's Hospital, Beijing, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; and Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
38
|
Liu C, Zhao X, Xu L, Yi J, Shaheen S, Han W, Wang F, Zheng W, Xu C, Liu W. A negative-feedback function of PKC β in the formation and accumulation of signaling-active B cell receptor microclusters within B cell immunological synapse. J Leukoc Biol 2015; 97:887-900. [PMID: 25740961 DOI: 10.1189/jlb.2a0714-320r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Revised: 12/08/2014] [Accepted: 12/30/2014] [Indexed: 11/24/2022] Open
Abstract
Advanced live cell imaging studies suggested that B cell activation is initiated by the formation of BCR microclusters and subsequent B cell IS upon BCR and antigen recognition. PKC family member PKCβ is highly expressed in B cells and plays an important role in the initiation of B cell activation. Here, we reported an inhibitory function of PKCβ through a negative-feedback manner in B cell activation. Compared with WT (PKCβ-WT) or the constitutively active (PKCβ-ΔNPS) form of PKCβ, DN PKCβ (PKCβ-DN) unexpectedly enhanced the accumulation of BCR microclusters into the B cell IS, leading to the recruitment of an excessive amount of pSyk, pPLC-γ2, and pBLNK signaling molecules into the membrane-proximal BCR signalosome. Enhanced calcium mobilization responses in the decay phase were also observed in B cells expressing PKCβ-DN. Mechanistic studies showed that this negative-feedback function of PKCβ works through the induction of an inhibitory form of pBtk at S180 (pBtk-S180). Indeed, the capability of inducing the formation of an inhibitory pBtk-S180 is in the order of PKCβ-ΔNPS > PKCβ-WT > PKCβ-DN. Thus, these results improve our comprehensive understanding on the positive and negative function of PKCβ in the fine tune of B cell activation.
Collapse
Affiliation(s)
- Ce Liu
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - XingWang Zhao
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - LiLing Xu
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - JunYang Yi
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Samina Shaheen
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Weidong Han
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei Wang
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjie Zheng
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenqi Xu
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wanli Liu
- *MOE Key Laboratory of Protein Sciences, School of Life Sciences, Tsinghua University, Beijing, China; Collaborative Innovation Center for Infectious Diseases, Hangzhou, China; Department of Immunology, Bio-therapeutic Department, Institute of Basic Medicine, Chinese PLA General Hospital, Beijing, China; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China; Department of Rheumatology and Clinical Immunology, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China; and **State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
39
|
Wienands J, Engels N. The Memory Function of the B Cell Antigen Receptor. Curr Top Microbiol Immunol 2015; 393:107-121. [PMID: 26362935 DOI: 10.1007/82_2015_480] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Activated B lymphocytes preserve their antigen experience by differentiating into long-lived pools of antibody-secreting plasma cells or various types of memory B cells (MBCs). The former population constantly produces serum immunoglobulins with sufficient specificity and affinity to thwart infections with recurrent pathogens. By contrast, memory B cell populations retain their antigen receptors on the cell surface and hence need pathogen-induced differentiation steps before they can actively contribute to host defense. The terminal differentiation of MBCs into antibody-secreting plasma cells is hallmarked by the absence of the lag phase characteristic for primary antibody responses. Moreover, secondary antibody responses are predominantly driven by MBCs that bear an antigen receptor of the IgG class on their surface although IgM-positive memory populations exist as well. These fundamental principles of B cell memory were enigmatic for decades. Only recently, we have begun to understand the underlying mechanisms. This review summarizes our current understanding of how different subpopulations of MBCs are generated during primary immune responses and how their functional heterogeneity on antigen recall is controlled by different signaling capabilities of B cell antigen receptor (BCR) isotypes and by the nature of the antigen.
Collapse
Affiliation(s)
- Jürgen Wienands
- Medical Faculty, Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Humboldtallee 34, 37073, Göttingen, Germany.
| | - Niklas Engels
- Medical Faculty, Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Humboldtallee 34, 37073, Göttingen, Germany.
| |
Collapse
|
40
|
Engels N, König LM, Schulze W, Radtke D, Vanshylla K, Lutz J, Winkler TH, Nitschke L, Wienands J. The immunoglobulin tail tyrosine motif upgrades memory-type BCRs by incorporating a Grb2-Btk signalling module. Nat Commun 2014; 5:5456. [PMID: 25413232 PMCID: PMC4263166 DOI: 10.1038/ncomms6456] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 10/02/2014] [Indexed: 11/25/2022] Open
Abstract
The vigorous response of IgG-switched memory B cells to recurring pathogens involves enhanced signalling from their B-cell antigen receptors (BCRs). However, the molecular signal amplification mechanisms of memory-type BCRs remained unclear. Here, we identify the immunoglobulin tail tyrosine (ITT) motif in the cytoplasmic segments of membrane-bound IgGs (mIgGs) as the principle signal amplification device of memory-type BCRs in higher vertebrates and decipher its signalling microanatomy. We show that different families of protein tyrosine kinases act upstream and downstream of the ITT. Spleen tyrosine kinase (Syk) activity is required for ITT phosphorylation followed by recruitment of the adaptor protein Grb2 into the mIgG-BCR signalosome. Grb2 in turn recruits Bruton's tyrosine kinase (Btk) to amplify BCR-induced Ca(2+) mobilization. This molecular interplay of kinases and adaptors increases the antigen sensitivity of memory-type BCRs, which provides a cell-intrinsic trigger mechanism for the rapid reactivation of IgG-switched memory B cells on antigen recall.
Collapse
Affiliation(s)
- Niklas Engels
- Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Medical Faculty, Humboldtallee 34, 37073 Göttingen, Germany
| | - Lars M. König
- Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Medical Faculty, Humboldtallee 34, 37073 Göttingen, Germany
| | - Wiebke Schulze
- Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Medical Faculty, Humboldtallee 34, 37073 Göttingen, Germany
| | - Daniel Radtke
- Chair of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Kanika Vanshylla
- Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Medical Faculty, Humboldtallee 34, 37073 Göttingen, Germany
| | - Johannes Lutz
- Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Medical Faculty, Humboldtallee 34, 37073 Göttingen, Germany
| | - Thomas H. Winkler
- Hematopoiesis Unit, Department of Biology, Nikolaus-Fiebiger-Center for Molecular Medicine, Friedrich-Alexander-University Erlangen-Nürnberg, Glückstrasse 6, 91054 Erlangen, Germany
| | - Lars Nitschke
- Chair of Genetics, Department of Biology, Friedrich-Alexander-University Erlangen-Nürnberg, Staudtstrasse 5, 91058 Erlangen, Germany
| | - Jürgen Wienands
- Institute of Cellular and Molecular Immunology, Georg-August-University of Göttingen, Medical Faculty, Humboldtallee 34, 37073 Göttingen, Germany
| |
Collapse
|
41
|
Xu Y, Xu L, Zhao M, Xu C, Fan Y, Pierce SK, Liu W. No receptor stands alone: IgG B-cell receptor intrinsic and extrinsic mechanisms contribute to antibody memory. Cell Res 2014; 24:651-64. [PMID: 24839903 PMCID: PMC4042179 DOI: 10.1038/cr.2014.65] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Acquired immunological memory is a striking phenomenon. A lethal epidemic sweeps through a naïve population, many die but those who survive are never "attacked twice - never at least fatally", as the historian Thucydides observed in 430 BCE. Antibody memory is critical for protection against many human infectious diseases and is the basis for nearly all current human vaccines. Antibody memory is encoded, in part, in isotype-switched immunoglobulin (Ig)G-expressing memory B cells that are generated in the primary response to antigen and give rise to rapid, high-affinity and high-titered antibody responses upon challenge with the same antigen. How IgG-B-cell receptors (BCRs) and antigen-induced IgG-BCR signaling contribute to memory antibody responses are not fully understood. In this review, we summarize exciting new advances that are revealing the cellular and molecular mechanisms at play in antibody memory and discuss how studies using different experimental approaches will help elucidate the complex phenomenon of B-cell memory.
Collapse
Affiliation(s)
- Yinsheng Xu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| | - Liling Xu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Meng Zhao
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - ChenGuang Xu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yilin Fan
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, NIH, Rockville, MD 20852, USA
| | - Wanli Liu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Tsinghua University, Beijing 100084, China
| |
Collapse
|
42
|
Xu L, Li G, Wang J, Fan Y, Wan Z, Zhang S, Shaheen S, Li J, Wang L, Yue C, Zhao Y, Wang F, Brzostowski J, Chen YH, Zheng W, Liu W. Through an ITIM-Independent Mechanism the FcγRIIB Blocks B Cell Activation by Disrupting the Colocalized Microclustering of the B Cell Receptor and CD19. THE JOURNAL OF IMMUNOLOGY 2014; 192:5179-91. [DOI: 10.4049/jimmunol.1400101] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Pham K, Sacirbegovic F, Russell SM. Polarized cells, polarized views: asymmetric cell division in hematopoietic cells. Front Immunol 2014; 5:26. [PMID: 24550912 PMCID: PMC3909886 DOI: 10.3389/fimmu.2014.00026] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Accepted: 01/16/2014] [Indexed: 11/17/2022] Open
Abstract
It has long been recognized that alterations in cell shape and polarity play important roles in coordinating lymphocyte functions. In the last decade, a new aspect of lymphocyte polarity has attracted much attention, termed asymmetric cell division (ACD). ACD has previously been shown to dictate or influence many aspects of development in model organisms such as the worm and the fly, and to be disrupted in disease. Recent observations that ACD also occurs in lymphocytes led to exciting speculations that ACD might influence lymphocyte differentiation and function, and leukemia. Dissecting the role that ACD might play in these activities has not been straightforward, and the evidence to date for a functional role in lymphocyte fate determination has been controversial. In this review, we discuss the evidence to date for ACD in lymphocytes, and how it might influence lymphocyte fate. We also discuss current gaps in our knowledge, and suggest approaches to definitively test the physiological role of ACD in lymphocytes.
Collapse
Affiliation(s)
- Kim Pham
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre , East Melbourne, VIC , Australia ; Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology , Hawthorn, VIC , Australia
| | - Faruk Sacirbegovic
- Department of Pathology, University of Melbourne , Melbourne, VIC , Australia
| | - Sarah M Russell
- Immune Signalling Laboratory, Peter MacCallum Cancer Centre , East Melbourne, VIC , Australia ; Centre for Micro-Photonics, Faculty of Engineering and Industrial Sciences, Swinburne University of Technology , Hawthorn, VIC , Australia ; Department of Pathology, University of Melbourne , Melbourne, VIC , Australia ; Sir Peter MacCallum Department of Oncology, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
44
|
Lozano R, Marín R, Freire I, Santacruz MJ, Pascual-García A. Analysis of the cumulative effect of schizophrenia-related single nucleotide polymorphisms. Neuropsychiatr Dis Treat 2014; 10:1079-80. [PMID: 24966678 PMCID: PMC4062554 DOI: 10.2147/ndt.s66657] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Affiliation(s)
- Roberto Lozano
- Pharmacy Department, Hospital Real de Nuestra Señora de Gracia, Zaragoza, Spain
| | - Reyes Marín
- Psychiatry Department, Hospital Real de Nuestra Señora de Gracia, Zaragoza, Spain
| | - Isabel Freire
- Psychiatry Department, Hospital Real de Nuestra Señora de Gracia, Zaragoza, Spain
| | | | | |
Collapse
|
45
|
Pierce SK, Liu W. Encoding immunological memory in the initiation of B-cell receptor signaling. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2013; 78:231-7. [PMID: 24100585 DOI: 10.1101/sqb.2013.78.020206] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
In one of the earliest events in the initiation of antigen-driven antibody responses, naïve, IgM-, and IgD-expressing B cells enter germinal centers where they irreversibly isotype switch to the expression of predominately IgG B-cell receptors (BCRs). The IgG-expressing B cells then undergo rounds of antigen-driven selection, ultimately exiting germinal centers as IgG-expressing memory B cells or plasma blast. This early switch from IgM to IgG begs the question: Of what advantage to the memory response is the B cell's expression of an IgG BCR? Despite convincing evidence that the expression of IgG BCRs is essential for antibody memory responses in vivo, the molecular basis of this requirement is only incompletely understood. Here we describe intrinsic features of IgG BCRs that endow memory B cells with the ability to rapidly and efficiently initiate signaling. Remarkably, efficient signaling is mediated through the cytoplasmic tail of the membrane IgG that binds to synapse associated protein 97, a member of a large family of proteins that are best studied for their role in regulating receptor signaling in neuronal synapses. These findings underscore an interesting parallel in the mechanisms at play in encoding immunological memory and memory in the nervous system.
Collapse
Affiliation(s)
- Susan K Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland 20852
| | - Wanli Liu
- MOE Key Laboratory of Protein Science, School of Life Sciences, Tsinghua University, Beijing 100084, China Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, China
| |
Collapse
|
46
|
Pierce SK, VanHook AM. Science Signaling
Podcast: 31 July 2012. Sci Signal 2012. [DOI: 10.1126/scisignal.2003402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
A scaffolding protein enables clustering of IgG B cell receptors to promote antibody secretion by memory B cells.
Collapse
Affiliation(s)
- Susan K. Pierce
- Laboratory of Immunogenetics, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD 20852, USA
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue, NW, Washington, DC 20005, USA
| |
Collapse
|