1
|
Ehrenberg AJ, Sant C, Pereira FL, Li SH, Buxton J, Langlois S, Trinidad M, Oh I, Leite REP, Rodriguez RD, Paes VR, Pasqualucci CA, Seeley WW, Spina S, Suemoto CK, Temple S, Kaufer D, Grinberg LT. Pathways underlying selective neuronal vulnerability in Alzheimer's disease: Contrasting the vulnerable locus coeruleus to the resilient substantia nigra. Alzheimers Dement 2025; 21:e70087. [PMID: 40135662 PMCID: PMC11938114 DOI: 10.1002/alz.70087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/07/2025] [Accepted: 02/11/2025] [Indexed: 03/27/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD) selectively affects certain brain regions, yet the mechanisms of selective vulnerability remain poorly understood. The neuromodulatory subcortical system, which includes nuclei exhibiting a range of vulnerability and resilience to AD-type degeneration, presents a framework for uncovering these mechanisms. METHODS We leveraged transcriptomics and immunohistochemistry in paired samples from human post mortem tissue representing a vulnerable and resilient region-the locus coeruleus (LC) and substantia nigra (SN). These regions have comparable anatomical features but distinct vulnerability to AD. RESULTS We identified significant differences in cholesterol homeostasis, antioxidant pathways, KRAS signaling, and estrogen signaling at a bulk transcriptomic level. Notably, evidence of sigma-2 receptor upregulation was detected in the LC. DISCUSSION Our findings highlight pathways differentiating the LC and SN, potentially explaining the LC's selective vulnerability in AD. Such pathways offer potential targets of disease-modifying therapies for AD. HIGHLIGHTS Intraindividual comparative RNAseq was used to study selective vulnerability. Metallothionein genes are significantly enriched in the substantia nigra. Cholesterol homeostatic genes are significantly enriched in the locus coeruleus. The locus coeruleus is likely more susceptible to toxic amyloid beta oligomers.
Collapse
Affiliation(s)
- Alexander J. Ehrenberg
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
- Helen Wills Neuroscience Institute, Dept. of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
- Dept. of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Cathrine Sant
- Gladstone Institute for Neurological DiseasesGladstone InstitutesSan FranciscoCaliforniaUSA
- Neuroscience Graduate ProgramUniversity of CaliforniaSan FranciscoCaliforniaUSA
| | - Felipe L. Pereira
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Song Hua Li
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Jessica Buxton
- Dept. of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Sonali Langlois
- Helen Wills Neuroscience Institute, Dept. of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Marena Trinidad
- Innovative Genomics InstituteUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Ian Oh
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | | | | | | | | | - William W. Seeley
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Salvatore Spina
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
| | - Claudia K. Suemoto
- Division of GeriatricsUniversity of São Paulo Medical SchoolSão PauloBrazil
| | | | - Daniela Kaufer
- Helen Wills Neuroscience Institute, Dept. of NeuroscienceUniversity of CaliforniaBerkeleyCaliforniaUSA
- Dept. of Integrative BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
| | - Lea T. Grinberg
- Memory and Aging CenterWeill Institute for Neurosciences, University of CaliforniaSan FranciscoCaliforniaUSA
- Dept. of PathologyUniversity of São Paulo Medical SchoolSão PauloBrazil
- Global Brain Health InstituteUniversity of CaliforniaSan FranciscoCaliforniaUSA
| |
Collapse
|
2
|
Fang H, Li P, Zhu S, Bi R. Genetic factors underlying Mandibular prognathism: insights from recent human and animal studies. Mamm Genome 2025; 36:293-305. [PMID: 39607497 DOI: 10.1007/s00335-024-10084-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
This review aims to provide an updated overview of the genetic etiology of mandibular prognathism (MP), focusing on recent research efforts, to summarize the findings from human studies utilizing genome-wide association studies (GWAS), candidate gene analyses, whole exome sequencing (WES) and single-nucleotide polymorphisms (SNPs) in relation to MP. Additionally, insights from animal studies are incorporated to understand the molecular mechanisms underlying mandibular development and the pathogenesis of MP. A comprehensive literature search was conducted to identify relevant studies on the genetic basis of MP. Human studies employing GWAS, candidate gene analyses, and SNPs investigations were reviewed. Animal studies, including European seabass, zebrafish, transgenic mouse and miniature horse were also examined to provide additional insights into mandibular development and MP's pathogenesis using GWAS, WES, transgenic techniques, morpholino antisense oligos and homozygote. Human studies have identified multiple loci and genes potentially associated with MP through GWAS, candidate gene analyses, and SNP investigations. Animal models have contributed valuable information about the molecular mechanisms involved in mandibular development and the development of MP. Recent research efforts have enhanced our understanding of the genetic etiology of MP. Integration of genetic studies with functional analyses has shed light on key signaling pathways and gene regulatory networks implicated in MP.
Collapse
Affiliation(s)
- Han Fang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, 610041, China.
| |
Collapse
|
3
|
Paul ME, Chen D, Vish KJ, Lartey NL, Hughes E, Freeman ZT, Saunders TL, Stiegler AL, King PD, Boggon TJ. The C2 domain augments Ras GTPase-activating protein catalytic activity. Proc Natl Acad Sci U S A 2025; 122:e2418433122. [PMID: 39899710 PMCID: PMC11831179 DOI: 10.1073/pnas.2418433122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 12/23/2024] [Indexed: 02/05/2025] Open
Abstract
Regulation of Ras GTPases by GTPase-activating proteins (GAPs) is essential for their normal signaling. Nine of the ten GAPs for Ras contain a C2 domain immediately proximal to their canonical GAP domain, and in RasGAP (p120GAP, p120RasGAP; RASA1) mutation of this domain is associated with vascular malformations in humans. Here, we show that the C2 domain of RasGAP is required for full catalytic activity toward Ras. Analyses of the RasGAP C2-GAP crystal structure, AlphaFold models, and sequence conservation reveal direct C2 domain interaction with the Ras allosteric lobe. This is achieved by an evolutionarily conserved surface centered around RasGAP residue R707, point mutation of which impairs the catalytic advantage conferred by the C2 domain in vitro. In mice, R707C mutation phenocopies the vascular and signaling defects resulting from constitutive disruption of the RASA1 gene. In SynGAP, mutation of the equivalent conserved C2 domain surface impairs catalytic activity. Our results indicate that the C2 domain is required to achieve full catalytic activity of GAPs for Ras.
Collapse
Affiliation(s)
- Maxum E. Paul
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
| | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Kimberly J. Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
| | - Nathaniel L. Lartey
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Elizabeth Hughes
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI48109
| | - Zachary T. Freeman
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI48109
| | - Thomas L. Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, MI48109
- Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, MI48109
| | - Amy L. Stiegler
- Department of Pharmacology, Yale University, New Haven, CT06520
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI48109
| | - Titus J. Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT06520
- Department of Pharmacology, Yale University, New Haven, CT06520
- Yale Cancer Center, Yale University, New Haven, CT06520
| |
Collapse
|
4
|
Chen D, Tang Y, Lapinski PE, Wiggins D, Sevick EM, Davis MJ, King PD. EPHB4-RASA1 Inhibition of PIEZO1 Ras Activation Drives Lymphatic Valvulogenesis. Circ Res 2024; 135:1048-1066. [PMID: 39421925 PMCID: PMC11560524 DOI: 10.1161/circresaha.124.325383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/01/2024] [Accepted: 10/02/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND EPHB4 (ephrin receptor B4) and the RASA1 (p120 Ras GTPase-activating protein) are necessary for the development of lymphatic vessel (LV) valves. However, precisely how EPHB4 and RASA1 regulate LV valve development is unknown. In this study, we examine the mechanisms by which EPHB4 and RASA1 regulate the development of LV valves. METHODS We used LV-specific inducible EPHB4-deficient mice and EPHB4 knockin mice that express a form of EPHB4 that is unable to bind RASA1 yet retains protein tyrosine kinase activity (EPHB4 2YP) to study the role of EPHB4 and RASA1 in LV valve development in the embryo and LV valve maintenance in adults. We also used human dermal lymphatic endothelial cells in vitro to study the role of EPHB4 and RASA1 as regulators of LV valve specification induced by oscillatory shear stress, considered the trigger for LV valve specification in vivo. RESULTS LV valve specification, continued valve development postspecification, and LV valve maintenance were blocked upon induced loss of EPHB4 in LV. LV valve specification and maintenance were also impaired in EPHB4 2YP mice. Defects in LV valve development were reversed by inhibition of the Ras-MAPK (mitogen-activated protein kinase) signaling pathway. In human dermal lymphatic endothelial cells, loss of expression of EPHB4 or its ephrin b2 ligand, loss of expression of RASA1, and inhibition of physical interaction between EPHB4 and RASA1 resulted in dysregulated oscillatory shear stress-induced Ras-MAPK activation and impaired expression of LV specification markers that could be rescued by Ras-MAPK pathway inhibition. The same results were observed when human dermal lymphatic endothelial cells were stimulated with the Yoda1 agonist of the PIEZO1 oscillatory shear stress sensor. Although Yoda1 increased the number of LV valves when administered to wild-type embryos, it did not increase LV valve number when administered to EPHB4 2YP embryos. CONCLUSIONS EPHB4 is necessary for LV valve specification, continued valve development postspecification, and valve maintenance. LV valve specification requires physical interaction between EPHB4 and RASA1 to limit activation of the Ras-MAPK pathway in lymphatic endothelial cells. Specifically, EPHB4-RASA1 physical interaction is necessary to dampen Ras-MAPK activation induced through the PIEZO1 oscillatory shear stress sensor. These findings reveal the mechanism by which EPHB4 and RASA1 regulate the development of LV valves.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Yipei Tang
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Philip E. Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - David Wiggins
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Eva M. Sevick
- Center for Molecular Imaging, The Brown Foundation Institute of Molecular Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Michael J. Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65212, USA
| | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| |
Collapse
|
5
|
Ham H, Jing H, Lamborn IT, Kober MM, Koval A, Berchiche YA, Anderson DE, Druey KM, Mandl JN, Isidor B, Ferreira CR, Freeman AF, Ganesan S, Karsak M, Mustillo PJ, Teo J, Zolkipli-Cunningham Z, Chatron N, Lecoquierre F, Oler AJ, Schmid JP, Kuhns DB, Xu X, Hauck F, Al-Herz W, Wagner M, Terhal PA, Muurinen M, Barlogis V, Cruz P, Danielson J, Stewart H, Loid P, Rading S, Keren B, Pfundt R, Zarember KA, Vill K, Potocki L, Olivier KN, Lesca G, Faivre L, Wong M, Puel A, Chou J, Tusseau M, Moutsopoulos NM, Matthews HF, Simons C, Taft RJ, Soldatos A, Masle-Farquhar E, Pittaluga S, Brink R, Fink DL, Kong HH, Kabat J, Kim WS, Bierhals T, Meguro K, Hsu AP, Gu J, Stoddard J, Banos-Pinero B, Slack M, Trivellin G, Mazel B, Soomann M, Li S, Watts VJ, Stratakis CA, Rodriguez-Quevedo MF, Bruel AL, Lipsanen-Nyman M, Saultier P, Jain R, Lehalle D, Torres D, Sullivan KE, Barbarot S, Neu A, Duffourd Y, Similuk M, McWalter K, Blanc P, Bézieau S, Jin T, Geha RS, Casanova JL, Makitie OM, Kubisch C, Edery P, Christodoulou J, Germain RN, Goodnow CC, Sakmar TP, Billadeau DD, Küry S, Katanaev VL, Zhang Y, et alHam H, Jing H, Lamborn IT, Kober MM, Koval A, Berchiche YA, Anderson DE, Druey KM, Mandl JN, Isidor B, Ferreira CR, Freeman AF, Ganesan S, Karsak M, Mustillo PJ, Teo J, Zolkipli-Cunningham Z, Chatron N, Lecoquierre F, Oler AJ, Schmid JP, Kuhns DB, Xu X, Hauck F, Al-Herz W, Wagner M, Terhal PA, Muurinen M, Barlogis V, Cruz P, Danielson J, Stewart H, Loid P, Rading S, Keren B, Pfundt R, Zarember KA, Vill K, Potocki L, Olivier KN, Lesca G, Faivre L, Wong M, Puel A, Chou J, Tusseau M, Moutsopoulos NM, Matthews HF, Simons C, Taft RJ, Soldatos A, Masle-Farquhar E, Pittaluga S, Brink R, Fink DL, Kong HH, Kabat J, Kim WS, Bierhals T, Meguro K, Hsu AP, Gu J, Stoddard J, Banos-Pinero B, Slack M, Trivellin G, Mazel B, Soomann M, Li S, Watts VJ, Stratakis CA, Rodriguez-Quevedo MF, Bruel AL, Lipsanen-Nyman M, Saultier P, Jain R, Lehalle D, Torres D, Sullivan KE, Barbarot S, Neu A, Duffourd Y, Similuk M, McWalter K, Blanc P, Bézieau S, Jin T, Geha RS, Casanova JL, Makitie OM, Kubisch C, Edery P, Christodoulou J, Germain RN, Goodnow CC, Sakmar TP, Billadeau DD, Küry S, Katanaev VL, Zhang Y, Lenardo MJ, Su HC. Germline mutations in a G protein identify signaling cross-talk in T cells. Science 2024; 385:eadd8947. [PMID: 39298586 PMCID: PMC11811912 DOI: 10.1126/science.add8947] [Show More Authors] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 10/15/2023] [Accepted: 07/12/2024] [Indexed: 09/22/2024]
Abstract
Humans with monogenic inborn errors responsible for extreme disease phenotypes can reveal essential physiological pathways. We investigated germline mutations in GNAI2, which encodes Gαi2, a key component in heterotrimeric G protein signal transduction usually thought to regulate adenylyl cyclase-mediated cyclic adenosine monophosphate (cAMP) production. Patients with activating Gαi2 mutations had clinical presentations that included impaired immunity. Mutant Gαi2 impaired cell migration and augmented responses to T cell receptor (TCR) stimulation. We found that mutant Gαi2 influenced TCR signaling by sequestering the guanosine triphosphatase (GTPase)-activating protein RASA2, thereby promoting RAS activation and increasing downstream extracellular signal-regulated kinase (ERK)/mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3K)-AKT S6 signaling to drive cellular growth and proliferation.
Collapse
Affiliation(s)
- Hyoungjun Ham
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic; Rochester, MN, USA
| | - Huie Jing
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Ian T. Lamborn
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| | - Megan M. Kober
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Alexey Koval
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva; 1211 Geneva, Switzerland
| | - Yamina A. Berchiche
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; New York, NY, USA
| | - D. Eric Anderson
- Advanced Mass Spectrometry Facility, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH; Bethesda, MD 20892, USA
| | - Kirk M. Druey
- Lung and Vascular Inflammation Section, Laboratory of Allergic Diseases, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Judith N. Mandl
- Lymphocyte Biology Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Bertrand Isidor
- Nantes Université, CHU Nantes, Service de Génétique Médicale; F-44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax; F-44000 Nantes, France
| | - Carlos R. Ferreira
- Skeletal Genomics Unit, Metabolic Medicine Branch, DIR, National Human Genome Research Institute (NHGRI), NIH; Bethesda, MD, USA
| | - Alexandra F. Freeman
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Sundar Ganesan
- Biological Imaging Section, Research Technologies Branch, DIR, NIAID, NIH; Bethesda, MD 20892, USA
| | - Meliha Karsak
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Peter J. Mustillo
- Nationwide Children’s Hospital; Columbus, OH, USA
- The Ohio State University College of Medicine; Columbus, OH, USA
| | - Juliana Teo
- Department of Haematology, The Children’s Hospital Westmead; Sydney, New South Wales, Australia
| | - Zarazuela Zolkipli-Cunningham
- Mitochondrial Medicine Frontier Program, Division of Human Genetics, Department of Pediatrics, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
- Department of Pediatrics, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA, USA
| | - Nicolas Chatron
- Service de Génétique, Hospices Civils de Lyon; Lyon, France
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène; 69008 Lyon, France
| | - François Lecoquierre
- Univ Rouen Normandie, Inserm U12045 and CHU Rouen, Department of Genetics and Reference Center for Developmental Disorders; FHU-G4 Génomique, F-76000, Rouen, France
| | - Andrew J. Oler
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children’s Hospital Zurich; Zurich, Switzerland
- Pediatric Immunology, University of Zurich; Zurich, Switzerland
| | - Douglas B. Kuhns
- Neutrophil Monitoring Lab, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research; Frederick, MD, USA
| | - Xuehua Xu
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH; Rockville, MD, USA
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children’s Hospital, University Hospital, Ludwig-Maximilians-Universität (LMU); Munich, Germany
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University; Kuwait City, Kuwait
- Department of Pediatrics, Al-Sabah Hospital; Kuwait City, Kuwait
| | - Matias Wagner
- Institute of Human Genetics, Technical University Munich, School of Medicine and Health; Munich, Germany
- Institute of Neurogenomics, Helmholtz Zentrum München; Neuherberg, Germany
- Department of Pediatrics, Division of Pediatric Neurology, Developmental Medicine and Social Pediatrics, University Hospital of Munich; Munich, Germany
| | - Paulien A. Terhal
- Division of Laboratories, Pharmacy and Biomedical Genetics, University Medical Centre Utrecht; 3584EA Utrecht, the Netherlands
| | - Mari Muurinen
- Folkhälsan Research Center, Genetics Research Program; Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki; Helsinki, Finland
| | - Vincent Barlogis
- APHM, La Timone Children’s Hospital, Department of Pediatric Hematology, Immunology, and Oncology; Marseille, France
- Aix Marseille University, EA 3279 Research Unit; Marseille, France
| | - Phillip Cruz
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Jeffrey Danielson
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Helen Stewart
- Oxford Centre for Genomic Medicine, Nuffield Orthopaedic Centre, Oxford University Hospitals, NHS Foundation Trust; Headington, Oxford OX3 7HE, UK
| | - Petra Loid
- Folkhälsan Research Center, Genetics Research Program; Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki; Helsinki, Finland
| | - Sebastian Rading
- Neuronal and Cellular Signal Transduction, Center for Molecular Neurobiology Hamburg (ZMNH), University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Boris Keren
- Genetic Departement, Assistance Publique - Hôpitaux de Paris.Sorbonne University; Paris, France
- SeqOIA Laboratory, FMG2025, Paris; France
| | - Rolph Pfundt
- Department of Human Genetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center; Nijmegen, The Netherlands
| | - Kol A. Zarember
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Katharina Vill
- LMU University Hospital I Department of Pediatrics I Division of Pediatric Neurology I MUC iSPZ Hauner - Munich University Center for Children with Medical and Developmental Complexity I Dr. von Hauner Children’s Hospital; Munich, Germany
| | - Lorraine Potocki
- Department of Molecular and Human Genetics, Baylor College of Medicine; Houston, Texas, USA
- Texas Children’s Hospital; Houston, Texas, USA
| | - Kenneth N. Olivier
- Pulmonary Branch, Division of Intramural Research, DIR, National Heart Lung and Blood Institute (NHLBI), NIH; Bethesda, MD, USA
| | - Gaetan Lesca
- Service de Génétique, Hospices Civils de Lyon; Lyon, France
- Univ Lyon, Univ Lyon 1, CNRS, INSERM, Physiopathologie et Génétique du Neurone et du Muscle, UMR5261, U1315, Institut NeuroMyoGène; 69008 Lyon, France
| | - Laurence Faivre
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté; Dijon, France
- Centre de Génétique et Centre de Référence “Anomalies du Développement et Syndromes Malformatifs de l’Inter-région Est”, FHU TRANSLAD, CHU Dijon Bourgogne; Dijon, France
| | - Melanie Wong
- Department of Allergy and Immunology, The Children’s Hospital at Westmead; Sydney, New South Wales, Australia
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University; New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale INSERM U1163; Paris, France
- University of Paris Cité, Imagine Institute; Paris, France
| | - Janet Chou
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School; Boston, MA, United States
| | - Maud Tusseau
- Genetics Department, Lyon University Hospital; Lyon, France
- The International Center of Research in Infectiology, Lyon University, INSERM U1111, CNRS UMR 5308, ENS, UCBL; Lyon, France
| | - Niki M. Moutsopoulos
- Oral Immunity and Infection Section, DIR, National Institute of Dental and Craniofacial Research (NIDCR), NIH; Bethesda, MD, USA
| | - Helen F. Matthews
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Cas Simons
- Centre for Population Genomics, Garvan Institute of Medical Research and UNSW Sydney; Sydney, NSW, Australia
- Murdoch Children’s Research Institute; Melbourne, Victoria, Australia
| | - Ryan J. Taft
- Institute for Molecular Bioscience, University of Queensland; St. Lucia, Queensland, Australia
- Illumina, Inc, San Diego; CA, USA
| | - Ariane Soldatos
- National Institute of Neurological Disorders and Stroke (NINDS), NIH; Bethesda, MD, USA
| | - Etienne Masle-Farquhar
- Immunogenomics Laboratory, Garvan Institute of Medical Research; Sydney, New South Wales, Australia
- School of Clinical Medicine, UNSW Sydney; Sydney, NSW, Australia
| | - Stefania Pittaluga
- Laboratory of Pathology, Center for Cancer Research, NCI, NIH; Bethesda, MD, USA
| | - Robert Brink
- St Vincent’s Clinical School, UNSW; Sydney, NSW, Australia
- B cell Biology Laboratory, Garvan Institute of Medical Research; Sydney, New South Wales, Australia
| | - Danielle L. Fink
- Neutrophil Monitoring Lab, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research; Frederick, MD, USA
| | - Heidi H. Kong
- Cutaneous Microbiome and Inflammation Section, Dermatology Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH; Bethesda, MD, USA
| | - Juraj Kabat
- Biological Imaging Section, Research Technologies Branch, DIR, NIAID, NIH; Bethesda, MD 20892, USA
| | - Woo Sung Kim
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH; Rockville, MD, USA
| | - Tatjana Bierhals
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Kazuyuki Meguro
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Amy P. Hsu
- Laboratory of Clinical Immunology and Microbiology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Jingwen Gu
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Jennifer Stoddard
- Immunology Service, Department of Laboratory Medicine, Clinical Center, NIH; Bethesda, MD, USA
| | - Benito Banos-Pinero
- Oxford Genetics Laboratories, Oxford University Hospitals NHS Foundation Trust; Oxford, Oxfordshire, UK
| | - Maria Slack
- Division of Allergy and Immunology, Department of Pediatrics, University of Rochester Medical Center and Golisano Children’s Hospital; Rochester, NY, USA
| | - Giampaolo Trivellin
- Section on Endocrinology & Genetics (SEGEN), DIR, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH; Bethesda, MD, USA
| | - Benoît Mazel
- Centre de Génétique et Centre de Référence “Anomalies du Développement et Syndromes Malformatifs de l’Inter-région Est”, FHU TRANSLAD, CHU Dijon Bourgogne; Dijon, France
- Centre de Référence Déficiences Intellectuelles de Causes Rares, CHU Dijon Bourgogne; Dijon, France
| | - Maarja Soomann
- Division of Immunology, University Children’s Hospital Zurich; Zurich, Switzerland
| | - Samuel Li
- Bioinformatics and Computational Biosciences Branch, Office of Cyber Infrastructure and Computational Biology (OCICB), NIAID, NIH; Bethesda, MD, USA
| | - Val J. Watts
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University; West Lafayette, IN, USA
| | - Constantine A. Stratakis
- Section on Endocrinology & Genetics (SEGEN), DIR, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), NIH; Bethesda, MD, USA
| | | | - Ange-Line Bruel
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté; Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD; CHU Dijon Bourgogne, Dijon, France
| | - Marita Lipsanen-Nyman
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
| | - Paul Saultier
- APHM, La Timone Children’s Hospital, Department of Pediatric Hematology, Immunology, and Oncology; Marseille, France
- Aix Marseille University, INSERM; INRAe, C2VN, Marseille, France
| | - Rashmi Jain
- Clinical Immunology, Oxford University Hospitals NHS Foundation Trust; Oxford, OX3 9DU, UK
| | - Daphne Lehalle
- AP-HP Sorbonne Université, UF de Génétique Clinique, Centre de Référence Maladies Rares des anomalies du développement et syndromes malformatifs, Hôpital Trousseau; Paris, France
| | - Daniel Torres
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Kathleen E. Sullivan
- Division of Allergy and Immunology, Children’s Hospital of Philadelphia; Philadelphia, PA, USA
| | - Sébastien Barbarot
- Nantes Université, Department of Dermatology, CHU Nantes, INRAE; UMR 1280, PhAN, F-44000 Nantes, France
| | - Axel Neu
- Department of Pediatrics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Yannis Duffourd
- UMR1231 GAD, Inserm, Université Bourgogne-Franche Comté; Dijon, France
- Unité Fonctionnelle Innovation en Diagnostic génomique des maladies rares, FHU TRANSLAD; CHU Dijon Bourgogne, Dijon, France
| | - Morgan Similuk
- Centralized Sequencing Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | | | | | - Stéphane Bézieau
- Nantes Université, CHU Nantes, Service de Génétique Médicale; F-44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax; F-44000 Nantes, France
| | - Tian Jin
- Chemotaxis Signal Section, Laboratory of Immunogenetics, DIR, NIAID, NIH; Rockville, MD, USA
| | - Raif S. Geha
- Division of Immunology, Boston Children’s Hospital, Department of Pediatrics, Harvard Medical School; Boston, MA, United States
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University; New York, NY, USA
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, Institut National de la Santé et de la Recherche Médicale INSERM U1163; Paris, France
- University of Paris Cité, Imagine Institute; Paris, France
- Howard Hughes Medical Institute; New York, NY, USA
- Department of Pediatrics, Necker Hospital for Sick Children; Paris, France
| | - Outi M. Makitie
- Folkhälsan Research Center, Genetics Research Program; Helsinki, Finland
- Children’s Hospital, University of Helsinki and Helsinki University Hospital; Helsinki, Finland
- Research Program for Clinical and Molecular Metabolism, University of Helsinki; Helsinki, Finland
| | - Christian Kubisch
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
- Martin Zeitz Center for Rare Diseases, University Medical Center Hamburg-Eppendorf; 20246 Hamburg, Germany
| | - Patrick Edery
- Service de Génétique, Hospices Civils de Lyon; Lyon, France
- Centre de Recherche en Neurosciences de Lyon, Inserm U1028, UMR CNRS 5292, Université Claude Bernard Lyon 1; Lyon, France
| | - John Christodoulou
- Murdoch Children’s Research Institute; Melbourne, Victoria, Australia
- Department of Paediatrics, University of Melbourne; Melbourne, Australia
- Specialty of Child & Adolescent Health, University of Sydney; Sydney, Australia
| | - Ronald N. Germain
- Lymphocyte Biology Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Christopher C. Goodnow
- Immunogenomics Laboratory, Garvan Institute of Medical Research; Sydney, New South Wales, Australia
- Cellular Genomics Futures Institute; Sydney, NSW, Australia
| | - Thomas P. Sakmar
- Laboratory of Chemical Biology and Signal Transduction, The Rockefeller University; New York, NY, USA
- Karolinska Institutet, Department of Neurobiology, Care Sciences and Society, Center for Alzheimer Research, Division of Neurogeriatrics; Stockholm, Sweden
| | - Daniel D. Billadeau
- Division of Oncology Research, Schulze Center for Novel Therapeutics, Mayo Clinic; Rochester, MN, USA
| | - Sébastien Küry
- Nantes Université, CHU Nantes, Service de Génétique Médicale; F-44000 Nantes, France
- Nantes Université, CHU Nantes, CNRS, INSERM, l’institut du thorax; F-44000 Nantes, France
| | - Vladimir L. Katanaev
- Department of Cell Physiology and Metabolism, Faculty of Medicine, Translational Research Center in Oncohaematology, University of Geneva; 1211 Geneva, Switzerland
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University; 690090 Vladivostok, Russia
| | - Yu Zhang
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Michael J. Lenardo
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
- Molecular Development of the Immune System Section, Laboratory of Immune System Biology, DIR, NIAID, NIH; Bethesda, MD, USA
| | - Helen C. Su
- Human Immunological Diseases Section, Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research (DIR), NIAID, NIH; Bethesda, MD, USA
- Clinical Genomics Program, DIR, NIAID, NIH; Bethesda, MD, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA, USA
| |
Collapse
|
6
|
Pandya DV, Parikh RV, Gena RM, Kothari NR, Parekh PS, Chorawala MR, Jani MA, Yadav MR, Shah PA. The scaffold protein disabled 2 (DAB2) and its role in tumor development and progression. Mol Biol Rep 2024; 51:701. [PMID: 38822973 DOI: 10.1007/s11033-024-09653-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 05/20/2024] [Indexed: 06/03/2024]
Abstract
BACKGROUND Disabled 2 (DAB2) is a multifunctional protein that has emerged as a critical component in the regulation of tumor growth. Its dysregulation is implicated in various types of cancer, underscoring its importance in understanding the molecular mechanisms underlying tumor development and progression. This review aims to unravel the intricate molecular mechanisms by which DAB2 exerts its tumor-suppressive functions within cancer signaling pathways. METHODS AND RESULTS We conducted a comprehensive review of the literature focusing on the structure, expression, physiological functions, and tumor-suppressive roles of DAB2. We provide an overview of the structure, expression, and physiological functions of DAB2. Evidence supporting DAB2's role as a tumor suppressor is explored, highlighting its ability to inhibit cell proliferation, induce apoptosis, and modulate key signaling pathways involved in tumor suppression. The interaction between DAB2 and key oncogenes is examined, elucidating the interplay between DAB2 and oncogenic signaling pathways. We discuss the molecular mechanisms underlying DAB2-mediated tumor suppression, including its involvement in DNA damage response and repair, regulation of cell cycle progression and senescence, and modulation of epithelial-mesenchymal transition (EMT). The review explores the regulatory networks involving DAB2, covering post-translational modifications, interactions with other tumor suppressors, and integration within complex signaling networks. We also highlight the prognostic significance of DAB2 and its role in pre-clinical studies of tumor suppression. CONCLUSION This review provides a comprehensive understanding of the molecular mechanisms by which DAB2 exerts its tumor-suppressive functions. It emphasizes the significance of DAB2 in cancer signaling pathways and its potential as a target for future therapeutic interventions.
Collapse
Affiliation(s)
- Disha V Pandya
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Rajsi V Parikh
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Ruhanahmed M Gena
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Nirjari R Kothari
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India
| | - Priyajeet S Parekh
- Pharmacy Practice Division, AV Pharma LLC, 1545 University Blvd N Ste A, Jacksonville, FL, 32211, USA
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad, Gujarat, 380009, India.
| | - Maharsh A Jani
- Pharmacy Practice Division, Anand Niketan, Shilaj, Ahmedabad, Gujarat, 380059, India
| | - Mayur R Yadav
- Department of Pharmacy Practice and Administration, Western University of Health Science, 309 E Second St, Pomona, CA, 91766, USA
| | - Palak A Shah
- Department of Pharmacology and Pharmacy Practice, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar, Gujarat, 382023, India
| |
Collapse
|
7
|
Xiao Y, Zhu Y, Chen J, Wu M, Wang L, Su L, Feng F, Hou Y. Overexpression of SYNGAP1 suppresses the proliferation of rectal adenocarcinoma via Wnt/β-Catenin signaling pathway. Discov Oncol 2024; 15:135. [PMID: 38679635 PMCID: PMC11056356 DOI: 10.1007/s12672-024-00997-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 04/24/2024] [Indexed: 05/01/2024] Open
Abstract
Rectal adenocarcinoma (READ) is a common malignant tumor of the digestive tract. Growing studies have confirmed Ras GTPase-activating proteins are involved in the progression of several tumors. This study aimed to explore the expression and function of Ras GTPase-activating proteins in READ. In this study, we analyzed RNA sequencing data from 165 patients with READ and 789 normal tissue samples, identifying 5603 differentially expressed genes (DEGs), including 2937 upregulated genes and 2666 downregulated genes. Moreover, we also identified two dysregulated genes, RASA4 and SYNGAP1, among six Ras GTPase-activating proteins. High NF1 expression was associated with longer overall survival, while high SYNGAP1 expression showed a trend towards extended overall survival. Further analysis revealed the mutation frequency and copy number variations of Ras GTPase-activating proteins in various cancer samples. Additionally, DNA methylation analysis demonstrated a negative correlation between DNA methylation of Ras GTPase-activating proteins and their expression. Moreover, among Ras GTPase-activating proteins, we focused on SYNGAP1, and experimental validation confirmed that the overexpression of SYNGAP1 in READ significantly suppressed READ cell proliferation and increased apoptosis via regulating the Wnt/β-Catenin signaling pathway. These findings underscored the potential significance of SYNGAP1 in READ and provide new insights for further research and treatment.
Collapse
Affiliation(s)
- Yun Xiao
- Department of Oncology and Hematology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Ying Zhu
- Department of Oncology and Hematology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Jiaojiao Chen
- Department of Oncology and Hematology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Mei Wu
- Department of Oncology and Hematology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Lan Wang
- Department of Oncology and Hematology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Li Su
- Department of Oncology and Hematology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China
| | - Fei Feng
- Department of Oncology and Hematology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
| | - Yanli Hou
- Department of Oncology and Hematology, Chongqing Hospital of Traditional Chinese Medicine, Chongqing, China.
| |
Collapse
|
8
|
Olivier JF, Langlais D, Jeyakumar T, Polyak MJ, Galarneau L, Cayrol R, Jiang H, Molloy KR, Xu G, Suzuki H, LaCava J, Gros P, Fodil N. CCDC88B interacts with RASAL3 and ARHGEF2 and regulates dendritic cell function in neuroinflammation and colitis. Commun Biol 2024; 7:77. [PMID: 38200184 PMCID: PMC10781698 DOI: 10.1038/s42003-023-05751-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
CCDC88B is a risk factor for several chronic inflammatory diseases in humans and its inactivation causes a migratory defect in DCs in mice. CCDC88B belongs to a family of cytoskeleton-associated scaffold proteins that feature protein:protein interaction domains. Here, we identified the Rho/Rac Guanine Nucleotide Exchange Factor 2 (ARHGEF2) and the RAS Protein Activator Like 3 (RASAL3) as CCDC88B physical and functional interactors. Mice defective in Arhgef2 or Rasal3 show dampened neuroinflammation, and display altered cellular response and susceptibility to colitis; ARHGEF2 maps to a human Chromosome 1 locus associated with susceptibility to IBD. Arhgef2 and Rasal3 mutant DCs show altered migration and motility in vitro, causing either reduced (Arhgef2) or enhanced (Rasal3) migratory properties. The CCDC88B/RASAL3/ARHGEF2 complex appears to regulate DCs migration by modulating activation of RHOA, with ARHGEF2 and RASAL3 acting in opposite regulatory fashions, providing a molecular mechanism for the involvement of these proteins in DCs immune functions.
Collapse
Affiliation(s)
- Jean-Frederic Olivier
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, Montreal, QC, Canada
| | - David Langlais
- McGill Research Center on Complex Traits, Montreal, QC, Canada
- Department of Human Genetics, Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
| | - Thiviya Jeyakumar
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, Montreal, QC, Canada
| | - Maria J Polyak
- Department of Biochemistry, McGill University, Montreal, QC, Canada
- McGill Research Center on Complex Traits, Montreal, QC, Canada
| | - Luc Galarneau
- Department of Medicine, Sherbrooke University, Sherbrooke, QC, Canada
| | - Romain Cayrol
- Department of Pathology, University of Montreal Hospital Center (CHUM), Montreal, QC, Canada
- University of Montreal Hospital Center Research Center (CR-CHUM), Montreal, QC, Canada
- Department of Pathology and Cellular Biology, University of Montreal, Montreal, QC, Canada
| | - Hua Jiang
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
| | - Kelly R Molloy
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, NY, USA
| | - Guoyue Xu
- Department of Human Genetics, Victor Phillip Dahdaleh Institute of Genomic Medicine, Montreal, QC, Canada
| | - Harumi Suzuki
- Department of Immunology and Pathology, National Center for Global Health and Medicine, Tokyo, Japan
| | - John LaCava
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY, USA
- European Research Institute for the Biology of Ageing, University Medical Center Groningen, Groningen, The Netherlands
| | - Philippe Gros
- Department of Biochemistry, McGill University, Montreal, QC, Canada.
- McGill Research Center on Complex Traits, Montreal, QC, Canada.
| | - Nassima Fodil
- McGill Research Center on Complex Traits, Montreal, QC, Canada
- CERMO-FC, Pavillon des Sciences Biologiques, Montreal, QC, Canada
| |
Collapse
|
9
|
Chen D, Wiggins D, Sevick EM, Davis MJ, King PD. An EPHB4-RASA1 signaling complex inhibits shear stress-induced Ras-MAPK activation in lymphatic endothelial cells to promote the development of lymphatic vessel valves. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.22.568378. [PMID: 38045382 PMCID: PMC10690291 DOI: 10.1101/2023.11.22.568378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
EPHB4 is a receptor protein tyrosine kinase that is required for the development of lymphatic vessel (LV) valves. We show here that EPHB4 is necessary for the specification of LV valves, their continued development after specification, and the maintenance of LV valves in adult mice. EPHB4 promotes LV valve development by inhibiting the activation of the Ras-MAPK pathway in LV endothelial cells (LEC). For LV specification, this role for EPHB4 depends on its ability to interact physically with the p120 Ras-GTPase-activating protein (RASA1) that acts as a negative regulator of Ras. Through physical interaction, EPHB4 and RASA1 dampen oscillatory shear stress (OSS)-induced Ras-MAPK activation in LEC, which is required for LV specification. We identify the Piezo1 OSS sensor as a focus of EPHB4-RASA1 regulation of OSS-induced Ras-MAPK signaling mediated through physical interaction. These findings contribute to an understanding of the mechanism by which EPHB4, RASA1 and Ras regulate lymphatic valvulogenesis.
Collapse
|
10
|
Zhao S, Mekbib KY, van der Ent MA, Allington G, Prendergast A, Chau JE, Smith H, Shohfi J, Ocken J, Duran D, Furey CG, Hao LT, Duy PQ, Reeves BC, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu PY, Wang YC, Mane S, Piwowarczyk P, Fehnel KP, See AP, Iskandar BJ, Aagaard-Kienitz B, Moyer QJ, Dennis E, Kiziltug E, Kundishora AJ, DeSpenza T, Greenberg ABW, Kidanemariam SM, Hale AT, Johnston JM, Jackson EM, Storm PB, Lang SS, Butler WE, Carter BS, Chapman P, Stapleton CJ, Patel AB, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay EZ, Zhao H, Moreno-De-Luca A, Proctor MR, Smith ER, Orbach DB, Alper SL, Nicoli S, Boggon TJ, Lifton RP, Gunel M, King PD, Jin SC, Kahle KT. Mutation of key signaling regulators of cerebrovascular development in vein of Galen malformations. Nat Commun 2023; 14:7452. [PMID: 37978175 PMCID: PMC10656524 DOI: 10.1038/s41467-023-43062-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 10/30/2023] [Indexed: 11/19/2023] Open
Abstract
To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and most severe of congenital brain arteriovenous malformations, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP (RASA1) harbored a genome-wide significant burden of loss-of-function de novo variants (2042.5-fold, p = 4.79 x 10-7). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 (EPHB4) (17.5-fold, p = 1.22 x 10-5), which cooperates with p120 RasGAP to regulate vascular development. Additional probands had damaging variants in ACVRL1, NOTCH1, ITGB1, and PTPN11. ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomic analysis defined developing endothelial cells as a likely spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant (Phe867Leu) exhibited disrupted developmental angiogenesis and impaired hierarchical development of arterial-capillary-venous networks, but only in the presence of a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have implications for patients and their families.
Collapse
Affiliation(s)
- Shujuan Zhao
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kedous Y Mekbib
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Martijn A van der Ent
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Garrett Allington
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Pathology, Yale School of Medicine, New Haven, CT, USA
| | - Andrew Prendergast
- Yale Zebrafish Research Core, Yale School of Medicine, New Haven, CT, USA
| | - Jocelyn E Chau
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
| | - Hannah Smith
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - John Shohfi
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jack Ocken
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Daniel Duran
- Department of Neurosurgery, University of Mississippi Medical Center, Jackson, MS, USA
| | - Charuta G Furey
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
- Department of Neurosurgery, Barrow Neurological Institute, Phoenix, AZ, USA
- Ivy Brain Tumor Center, Department of Translational Neuroscience, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Le Thi Hao
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Phan Q Duy
- Department of Neurosurgery, University of Virginia School of Medicine, Charlottesville, VA, USA
| | - Benjamin C Reeves
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Junhui Zhang
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | | | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Timothy Nottoli
- Yale Genome Editing Center, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Suxia Bai
- Yale Genome Editing Center, Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, USA
| | - Myron Rolle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xue Zeng
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Po-Ying Fu
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Yung-Chun Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - Shrikant Mane
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Paulina Piwowarczyk
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Katie Pricola Fehnel
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Alfred Pokmeng See
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Bermans J Iskandar
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Beverly Aagaard-Kienitz
- Department of Neurological Surgery, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Quentin J Moyer
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evan Dennis
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emre Kiziltug
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Tyrone DeSpenza
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Ana B W Greenberg
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Andrew T Hale
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - James M Johnston
- Department of Neurosurgery, University of Alabama School of Medicine, Birmingham, AL, USA
| | - Eric M Jackson
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Phillip B Storm
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Shih-Shan Lang
- Department of Neurosurgery, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Division of Neurosurgery, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - William E Butler
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Bob S Carter
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Paul Chapman
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Christopher J Stapleton
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Aman B Patel
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Georges Rodesch
- Service de Neuroradiologie Diagnostique et Thérapeutique, Hôpital Foch, Suresnes, France
- Department of Interventional Neuroradiology, Hôpital Fondation A. de Rothschild, Paris, France
| | - Stanislas Smajda
- Department of Interventional Neuroradiology, Hôpital Fondation A. de Rothschild, Paris, France
| | - Alejandro Berenstein
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Tanyeri Barak
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Hongyu Zhao
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Andres Moreno-De-Luca
- Department of Radiology, Autism & Developmental Medicine Institute, Genomic Medicine Institute, Geisinger, Danville, PA, USA
| | - Mark R Proctor
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Edward R Smith
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Darren B Orbach
- Department of Neurosurgery, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurointerventional Radiology, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Stefania Nicoli
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
- Yale Cardiovascular Research Center, Department of Internal Medicine, Section of Cardiology, Yale School of Medicine, New Haven, CT, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale School of Medicine, New Haven, CT, USA
- Department of Pharmacology, Yale School of Medicine, New Haven, CT, USA
| | - Richard P Lifton
- Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Murat Gunel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO, USA.
| | - Kristopher T Kahle
- Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, MA, US.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
11
|
Vish KJ, Stiegler AL, Boggon TJ. Diverse p120RasGAP interactions with doubly phosphorylated partners EphB4, p190RhoGAP, and Dok1. J Biol Chem 2023; 299:105098. [PMID: 37507023 PMCID: PMC10470053 DOI: 10.1016/j.jbc.2023.105098] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 07/30/2023] Open
Abstract
RasGAP (p120RasGAP), the founding member of the GTPase-activating protein (GAP) family, is one of only nine human proteins to contain two SH2 domains and is essential for proper vascular development. Despite its importance, its interactions with key binding partners remains unclear. In this study we provide a detailed viewpoint of RasGAP recruitment to various binding partners and assess their impact on RasGAP activity. We reveal the RasGAP SH2 domains generate distinct binding interactions with three well-known doubly phosphorylated binding partners: p190RhoGAP, Dok1, and EphB4. Affinity measurements demonstrate a 100-fold weakened affinity for RasGAP-EphB4 binding compared to RasGAP-p190RhoGAP or RasGAP-Dok1 binding, possibly driven by single versus dual SH2 domain engagement with a dominant N-terminal SH2 interaction. Small-angle X-ray scattering reveals conformational differences between RasGAP-EphB4 binding and RasGAP-p190RhoGAP binding. Importantly, these interactions do not impact catalytic activity, implying RasGAP utilizes its SH2 domains to achieve diverse spatial-temporal regulation of Ras signaling in a previously unrecognized fashion.
Collapse
Affiliation(s)
- Kimberly J Vish
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA
| | - Amy L Stiegler
- Department of Pharmacology, Yale University, New Haven, Connecticut, USA
| | - Titus J Boggon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, USA; Department of Pharmacology, Yale University, New Haven, Connecticut, USA; Department of Yale Cancer Center, Yale University, New Haven, Connecticut, USA.
| |
Collapse
|
12
|
Ding H, Yu JH, Ge G, Ma YY, Wang JC, Zhang J, Liu J. RASAL2 Deficiency Attenuates Hepatic Steatosis by Promoting Hepatic VLDL Secretion via the AKT/TET1/MTTP Axis. J Clin Transl Hepatol 2023; 11:261-272. [PMID: 36643045 PMCID: PMC9817063 DOI: 10.14218/jcth.2022.00042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 05/03/2022] [Accepted: 05/10/2022] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND AND AIMS RAS protein activator like 2 (RASAL2) is a newly discovered metabolic regulator involved in energy homeostasis and adipogenesis. However, whether RASAL2 is involved in hepatic lipid metabolism remains undetermined. This study explored the function of RASAL2 and elucidated its potential mechanisms in nonalcoholic fatty liver disease (NAFLD). METHODS NAFLD models were established either by feeding mice a high-fat diet or by incubation of hepatocytes with 1 mM free fatty acids (oleic acid:palmitic acid=2:1). Pathological changes were observed by hematoxylin and eosin staining. Lipid accumulation was assessed by Oil Red O staining, BODIPY493/503 staining, and triglyceride quantification. The in vivo secretion rate of very low-density lipoprotein was determined by intravenous injection of tyloxapol. Gene regulation was analyzed by chromatin immunoprecipitation assays and hydroxymethylated DNA immunoprecipitation combined with real-time polymerase chain reaction. RESULTS RASAL2 deficiency ameliorated hepatic steatosis both in vivo and in vitro. Mechanistically, RASAL2 deficiency upregulated hepatic TET1 expression by activating the AKT signaling pathway and thereby promoted MTTP expression by DNA hydroxymethylation, leading to increased production and secretion of very low-density lipoprotein, which is the major carrier of triglycerides exported from the liver to distal tissues. CONCLUSIONS Our study reports the first evidence that RASAL2 deficiency ameliorates hepatic steatosis by regulating lipid metabolism through the AKT/TET1/MTTP axis. These findings will help understand the pathogenesis of NAFLD and highlight the potency of RASAL2 as a new molecular target for NAFLD.
Collapse
Affiliation(s)
- Hao Ding
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jiang-Hong Yu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ge Ge
- Department of Dermatology, The Seventh Medical Center of PLA General Hospital, Beijing, China
| | - Yan-Yun Ma
- Human Phenome Institute, Fudan University, Shanghai, China
- Ministry of Education Key Laboratory of Contemporary Anthropology and State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
- Six-sector Industrial Research Institute, Fudan University, Shanghai, China
| | - Jiu-Cun Wang
- Human Phenome Institute, Fudan University, Shanghai, China
| | - Jun Zhang
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Liu
- Department of Digestive Diseases, Huashan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
13
|
Zhao S, Mekbib KY, van der Ent MA, Allington G, Prendergast A, Chau JE, Smith H, Shohfi J, Ocken J, Duran D, Furey CG, Le HT, Duy PQ, Reeves BC, Zhang J, Nelson-Williams C, Chen D, Li B, Nottoli T, Bai S, Rolle M, Zeng X, Dong W, Fu PY, Wang YC, Mane S, Piwowarczyk P, Fehnel KP, See AP, Iskandar BJ, Aagaard-Kienitz B, Kundishora AJ, DeSpenza T, Greenberg ABW, Kidanemariam SM, Hale AT, Johnston JM, Jackson EM, Storm PB, Lang SS, Butler WE, Carter BS, Chapman P, Stapleton CJ, Patel AB, Rodesch G, Smajda S, Berenstein A, Barak T, Erson-Omay EZ, Zhao H, Moreno-De-Luca A, Proctor MR, Smith ER, Orbach DB, Alper SL, Nicoli S, Boggon TJ, Lifton RP, Gunel M, King PD, Jin SC, Kahle KT. Genetic dysregulation of an endothelial Ras signaling network in vein of Galen malformations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.18.532837. [PMID: 36993588 PMCID: PMC10055230 DOI: 10.1101/2023.03.18.532837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To elucidate the pathogenesis of vein of Galen malformations (VOGMs), the most common and severe congenital brain arteriovenous malformation, we performed an integrated analysis of 310 VOGM proband-family exomes and 336,326 human cerebrovasculature single-cell transcriptomes. We found the Ras suppressor p120 RasGAP ( RASA1 ) harbored a genome-wide significant burden of loss-of-function de novo variants (p=4.79×10 -7 ). Rare, damaging transmitted variants were enriched in Ephrin receptor-B4 ( EPHB4 ) (p=1.22×10 -5 ), which cooperates with p120 RasGAP to limit Ras activation. Other probands had pathogenic variants in ACVRL1 , NOTCH1 , ITGB1 , and PTPN11 . ACVRL1 variants were also identified in a multi-generational VOGM pedigree. Integrative genomics defined developing endothelial cells as a key spatio-temporal locus of VOGM pathophysiology. Mice expressing a VOGM-specific EPHB4 kinase-domain missense variant exhibited constitutive endothelial Ras/ERK/MAPK activation and impaired hierarchical development of angiogenesis-regulated arterial-capillary-venous networks, but only when carrying a "second-hit" allele. These results illuminate human arterio-venous development and VOGM pathobiology and have clinical implications.
Collapse
|
14
|
Genetics of brain arteriovenous malformations and cerebral cavernous malformations. J Hum Genet 2023; 68:157-167. [PMID: 35831630 DOI: 10.1038/s10038-022-01063-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 06/26/2022] [Indexed: 11/08/2022]
Abstract
Cerebrovascular malformations comprise abnormal development of cerebral vasculature. They can result in hemorrhagic stroke due to rupture of lesions as well as seizures and neurological defects. The most common forms of cerebrovascular malformations are brain arteriovenous malformations (bAVMs) and cerebral cavernous malformations (CCMs). They occur in both sporadic and inherited forms. Rapidly evolving molecular genetic methodologies have helped to identify causative or associated genes involved in genesis of bAVMs and CCMs. In this review, we highlight the current knowledge regarding the genetic basis of these malformations.
Collapse
|
15
|
Coccia E, Valeri L, Zuntini R, Caraffi SG, Peluso F, Pagliai L, Vezzani A, Pietrangiolillo Z, Leo F, Melli N, Fiorini V, Greco A, Lepri FR, Pisaneschi E, Marozza A, Carli D, Mussa A, Radio FC, Conti B, Iascone M, Gargano G, Novelli A, Tartaglia M, Zuffardi O, Bedeschi MF, Garavelli L. Prenatal Clinical Findings in RASA1-Related Capillary Malformation-Arteriovenous Malformation Syndrome. Genes (Basel) 2023; 14:genes14030549. [PMID: 36980822 PMCID: PMC10048332 DOI: 10.3390/genes14030549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/20/2023] [Accepted: 02/20/2023] [Indexed: 02/24/2023] Open
Abstract
Pathogenic variants in RASA1 are typically associated with a clinical condition called “capillary malformation-arteriovenous malformation” (CM-AVM) syndrome, an autosomal dominant genetic disease characterized by a broad phenotypic variability, even within families. In CM-AVM syndrome, multifocal capillary and arteriovenous malformations are mainly localized in the central nervous system, spine and skin. Although CM-AVM syndrome has been widely described in the literature, only 21 cases with prenatal onset of clinical features have been reported thus far. Here, we report four pediatric cases of molecularly confirmed CM-AVM syndrome which manifested during the prenatal period. Polyhydramnios, non-immune hydrops fetalis and chylothorax are only a few possible aspects of this condition, but a correct interpretation of these prenatal signs is essential due to the possible fatal consequences of unrecognized encephalic and thoracoabdominal deep vascular malformations in newborns and in family members carrying the same RASA1 variant.
Collapse
Affiliation(s)
- Emanuele Coccia
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Department of Medical and Surgical Science, Postgraduate School of Medical Genetics, Alma Mater StudiorumUniversity of Bologna, 40126 Bologna, Italy
| | - Lara Valeri
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Paediatrics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Roberta Zuntini
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Stefano Giuseppe Caraffi
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
- Correspondence: ; Tel.: +39-0522-296158/+39-0522-296244
| | - Francesca Peluso
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Luca Pagliai
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Antonietta Vezzani
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Zaira Pietrangiolillo
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Francesco Leo
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Nives Melli
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Valentina Fiorini
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Andrea Greco
- Postgraduate School of Paediatrics, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Francesca Romana Lepri
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Elisa Pisaneschi
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Annabella Marozza
- Medical Genetics Unit, Careggi University Hospital, 50134 Florence, Italy
- Medical Genetics Unit, Department of Experimental and Clinical Biomedical Sciences “Mario Serio”, University of Florence, 50121 Florence, Italy
| | - Diana Carli
- Department of Public Health and Pediatric Sciences, Regina Margherita Children’s Hospital, Azienda Ospedaliero-Universitaria di Torino, 10126 Turin, Italy
| | - Alessandro Mussa
- Department of Public Health and Pediatric Sciences, Regina Margherita Children’s Hospital, Azienda Ospedaliero-Universitaria di Torino, 10126 Turin, Italy
| | | | - Beatrice Conti
- Clinical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Maria Iascone
- Laboratory of Medical Genetics, Ospedale Papa Giovanni XXIII, 24127 Bergamo, Italy
| | - Giancarlo Gargano
- Neonatal Intensive Care Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| | - Antonio Novelli
- Translational Cytogenomics Research Unit, Laboratory of Medical Genetics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Marco Tartaglia
- Molecular Genetics and Functional Genomics, Bambino Gesù Children’s Hospital, IRCCS, 00146 Rome, Italy
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy
| | - Maria Francesca Bedeschi
- Clinical Genetics Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy
| |
Collapse
|
16
|
Tang Y, Sun L, Li S, Liu H, Luo L, Chen Z, Li G. Role of cytoskeleton-related proteins in the acrosome reaction of Eriocheir sinensis spermatozoa. BMC Genom Data 2023; 24:4. [PMID: 36782118 PMCID: PMC9926718 DOI: 10.1186/s12863-023-01112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/07/2023] [Indexed: 02/15/2023] Open
Abstract
Cytoskeleton-related proteins are essential for cell shape maintenance and cytoskeleton remodeling. The spermatozoa of Eriocheir sinensis (Chinese mitten crab) have a unique cellular structure, and the mechanism of spermatozoal metamorphosis during the acrosome reaction is not well understood. In this study, the E. sinensis spermatozoa were induced using calcium ionophore A23187 to undergo the acrosome reaction in vitro, and the acrosome-reacting and fresh (non-reacting) spermatozoa were collected separately. The differential expression of cytoskeleton-related protein genes in acrosome-reacting and fresh spermatozoa of E. sinensis was analyzed by whole transcriptome sequencing and bioinformatics analysis, and PPI network and miRNA-mRNA regulation network were constructed to analyze their possible function and regulation mechanism. The results showed that numerous differentially expressed cytoskeleton-related protein genes, miRNAs and lncRNAs were found in acrosome-reacting and fresh spermatozoa of E. sinensis; 27 cytoskeleton-related protein genes were down regulated and 687 miRNAs were up regulated in acrosome-reacting spermatozoa; 147 miRNAs target these 27 cytoskeleton-related protein genes. In the PPI networks, RAC1, BCAR1, RDX, NCKAP1, EPS8, CDC42BPA, LIMK1, ELMO2, GNAI1 and OCRL were identified as hub proteins. These proteins are mainly involved in the regulation of cytoskeleton organization, actin cytoskeleton organization, microtubule skeleton organization and small GTPase-mediated signal transduction and other biological processes, and play roles in pathways such as actin cytoskeletal regulation and axon guidance. miR-9, miR-31 and two novel miRNAs in the miRNA-mRNA regulatory network are the core miRNAs targeting cytoskeleton-related protein genes. miR-9 targets and regulates OBSCN, CDC42BPA, ELMO2, BCAS3, TPR and OCRL; while miR-31 targets and regulates CDC42BPA and TPR. This study provides a theoretical basis for revealing the mechanism of acrosome reaction under the special spermatozoa morphology of E. sinensis.
Collapse
Affiliation(s)
- Yulian Tang
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lishuang Sun
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Shu Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Huiting Liu
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Lvjing Luo
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Zhengyu Chen
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China
| | - Genliang Li
- Youjiang Medical University for Nationalities, Baise, 533000, Guangxi, China.
| |
Collapse
|
17
|
Chen D, Van der Ent MA, Lartey NL, King PD. EPHB4-RASA1-Mediated Negative Regulation of Ras-MAPK Signaling in the Vasculature: Implications for the Treatment of EPHB4- and RASA1-Related Vascular Anomalies in Humans. Pharmaceuticals (Basel) 2023; 16:165. [PMID: 37259315 PMCID: PMC9959185 DOI: 10.3390/ph16020165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 08/26/2023] Open
Abstract
Ephrin receptors constitute a large family of receptor tyrosine kinases in mammals that through interaction with cell surface-anchored ephrin ligands regulate multiple different cellular responses in numerous cell types and tissues. In the cardiovascular system, studies performed in vitro and in vivo have pointed to a critical role for Ephrin receptor B4 (EPHB4) as a regulator of blood and lymphatic vascular development and function. However, in this role, EPHB4 appears to act not as a classical growth factor receptor but instead functions to dampen the activation of the Ras-mitogen activated protein signaling (MAPK) pathway induced by other growth factor receptors in endothelial cells (EC). To inhibit the Ras-MAPK pathway, EPHB4 interacts functionally with Ras p21 protein activator 1 (RASA1) also known as p120 Ras GTPase-activating protein. Here, we review the evidence for an inhibitory role for an EPHB4-RASA1 interface in EC. We further discuss the mechanisms by which loss of EPHB4-RASA1 signaling in EC leads to blood and lymphatic vascular abnormalities in mice and the implications of these findings for an understanding of the pathogenesis of vascular anomalies in humans caused by mutations in EPHB4 and RASA1 genes. Last, we provide insights into possible means of drug therapy for EPHB4- and RASA1-related vascular anomalies.
Collapse
Affiliation(s)
| | | | | | - Philip D. King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
18
|
Palmieri M, Zulato E, Wahl SGF, Guibert N, Frullanti E. Diagnostic accuracy of circulating free DNA testing for the detection of KRAS mutations in non-small cell lung cancer: A systematic review and meta-analysis. Front Genet 2022; 13:1015161. [PMID: 36386815 PMCID: PMC9640997 DOI: 10.3389/fgene.2022.1015161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 10/11/2022] [Indexed: 11/25/2022] Open
Abstract
Kirsten rat sarcoma viral oncogene homolog (KRAS) gene encodes a GTPase that acts as a molecular switch for intracellular signal transduction, promoting cell growth and proliferation. Mutations in the KRAS gene represent important biomarkers for NSCLC targeted therapy. However, detection of KRAS mutations in tissues has shown some limitations. During the last years, analyses of circulating free DNA (cfDNA) has emerged as an alternative and minimally invasive, approach to investigate tumor molecular changes. Here, we assessed the diagnostic performance of cfDNA analysis, compared to tissues through a meta-analysis and systematic review of existing literature. From 561 candidate papers, we finally identified 40 studies, including 2,805 NSCLC patients. We extracted values relating to the number of true-positive, false-positive, false-negative, and true-negative. Pooled sensitivity, specificity, positive likelihood ratio, negative likelihood ratio, and diagnostic odds ratio, each with 95% CI, were calculated. A summary receiver operating characteristic curve and the area under curve (AUC) were used to evaluate the overall diagnostic performance. The pooled sensitivity was 0.71 (95% CI 0.68–0.74) and the specificity was 0.93 (95% CI 0.92–0.94). The diagnostic odds ratio was 35.24 (95% CI 24.88–49.91) and the area under the curve was 0.92 (SE = 0.094). These results provide evidence that detection of KRAS mutation using cfDNA testing is of adequate diagnostic accuracy thus offering to the clinicians a new promising screening test for NSCLC patients.
Collapse
Affiliation(s)
- Maria Palmieri
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
| | - Elisabetta Zulato
- Basic and Translational Oncology Unit, Istituto Oncologico Veneto IOV—IRCCS, Padova, Italy
| | - Sissel Gyrid Freim Wahl
- Department of Pathology, St. Olavs Hospital, Trondheim University Hospital, Trondheim, Norway
- Department of Clinical and Molecular Medicine, NTNU, Norwegian University of Technology and Science, Trondheim, Norway
| | - Nicolas Guibert
- Thoracic Oncology Department, Larrey Hospital, University Hospital of Toulouse, Toulouse, France
- Inserm, Centre de Recherche en Cancérologie de Toulouse, CRCT UMR-1037, Toulouse, France
- University of Toulouse III (Paul Sabatier), Toulouse, France
| | - Elisa Frullanti
- Med Biotech Hub and Competence Center, Department of Medical Biotechnologies, University of Siena, Siena, Italy
- *Correspondence: Elisa Frullanti,
| |
Collapse
|
19
|
Xu Y, Lindh CH, Fletcher T, Jakobsson K, Engström K. Perfluoroalkyl substances influence DNA methylation in school-age children highly exposed through drinking water contaminated from firefighting foam: a cohort study in Ronneby, Sweden. ENVIRONMENTAL EPIGENETICS 2022; 8:dvac004. [PMID: 35308102 PMCID: PMC8931254 DOI: 10.1093/eep/dvac004] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/04/2022] [Indexed: 05/31/2023]
Abstract
Perfluoroalkyl substances (PFASs) are widespread synthetic substances with various adverse health effects. A potential mechanism of toxicity for PFASs is via epigenetic changes, such as DNA methylation. Previous studies have evaluated associations between PFAS exposure and DNA methylation among newborns and adults. However, no study has evaluated how PFASs influence DNA methylation among children of school age. In this exploratory study with school-age children exposed to PFASs through drinking water highly contaminated from firefighting foams, we aimed to investigate whether exposure to PFASs was associated with alteration in DNA methylation and epigenetic age acceleration. Sixty-three children aged 7-11 years from the Ronneby Biomarker Cohort (Sweden) were included. The children were either controls with only background exposure (n = 32; perfluorooctane sulfonic acid: median 2.8 and range 1-5 ng/ml) or those exposed to very high levels of PFASs (n = 31; perfluorooctane sulfonic acid: median 295 and range 190-464 ng/ml). These two groups were matched on sex, age, and body mass index. Genome-wide methylation of whole-blood DNA was analyzed using the Infinium MethylationEPIC BeadChip kit. Epigenetic age acceleration was derived from the DNA methylation data. Twelve differentially methylated positions and seven differentially methylated regions were found when comparing the high-exposure group to the control group. There were no differences in epigenetic age acceleration between these two groups (P = 0.66). We found that PFAS exposure was associated with DNA methylation at specific genomic positions and regions in children at school age, which may indicate a possible mechanism for linking PFAS exposure to health effects.
Collapse
Affiliation(s)
- Yiyi Xu
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Medicinaregatan 18A, Gothenburg 413 90, Sweden
| | - Christian H Lindh
- Department of Laboratory Medicine, Division of Occupational and Environmental Medicine, Lund University, Scheelevägen 2, Lund 223 63, Sweden
| | - Tony Fletcher
- Department of Social and Environmental Health Research, London School of Hygiene & Tropical Medicine, Keppel St, London WC1E 7HT, UK
| | - Kristina Jakobsson
- School of Public Health and Community Medicine, Institute of Medicine, University of Gothenburg, Medicinaregatan 18A, Gothenburg 413 90, Sweden
- Occupational and Environmental Medicine, Sahlgrenska University Hospital, Medicinaregatan 16 A, Gothenburg 413 90, Sweden
| | - Karin Engström
- **Correspondence address. Department of Laboratory Medicine, EPI@LUND, Division of Occupational and Environmental Medicine, Lund University, Biskopsgatan 9, Lund 223 62, Sweden. Tel: +46 46 222 16 38; E-mail:
| |
Collapse
|
20
|
Chen D, Hughes ED, Saunders TL, Wu J, Hernández Vásquez MN, Makinen T, King PD. Angiogenesis depends upon EPHB4-mediated export of collagen IV from vascular endothelial cells. JCI Insight 2022; 7:156928. [PMID: 35015735 PMCID: PMC8876457 DOI: 10.1172/jci.insight.156928] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 01/05/2022] [Indexed: 11/17/2022] Open
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a blood vascular anomaly caused by inherited loss of function mutations in RASA1 or EPHB4 genes that encode p120 Ras GTPase-activating protein (p120 RasGAP/RASA1) and Ephrin receptor B4 (EPHB4) respectively. However, whether RASA1 and EPHB4 function in the same molecular signaling pathway to regulate the blood vasculature is uncertain. Here, we show that induced endothelial cell (EC)-specific disruption of Ephb4 in mice results in accumulation of collagen IV in the EC endoplasmic reticulum leading to EC apoptotic death and defective developmental, neonatal and pathological angiogenesis, as reported previously in induced EC-specific RASA1-deficient mice. Moreover, defects in angiogenic responses in EPHB4-deficient mice can be rescued by drugs that inhibit signaling through the Ras pathway and drugs that promote collagen IV export from the ER. However, EPHB4 mutant mice that express a form of EPHB4 that is unable to physically engage RASA1 but retains protein tyrosine kinase activity show normal angiogenic responses. These findings provide strong evidence that RASA1 and EPHB4 function in the same signaling pathway to protect against the development of CM-AVM independent of physical interaction and have important implications with regards possible means of treatment of this disease.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, United States of America
| | - Elizabeth D Hughes
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, United States of America
| | - Thomas L Saunders
- Transgenic Animal Model Core, University of Michigan Medical School, Ann Arbor, United States of America
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal, Montreal, Canada
| | | | - Taija Makinen
- Department of Immunology, Genetics, and Pathology, Uppsala University, Uppsala, Sweden
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan School of Medicine, Ann Arbor, United States of America
| |
Collapse
|
21
|
Xiao WR, Wu M, Bi XR. Ozone oil promotes wound healing via increasing miR-21-5p-mediated inhibition of RASA1. Wound Repair Regen 2021; 29:406-416. [PMID: 33783943 DOI: 10.1111/wrr.12907] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 01/19/2021] [Accepted: 02/07/2021] [Indexed: 10/21/2022]
Abstract
Skin wound is a very common type of injury and the healing process greatly affects the life quality of individuals. Ozone has been shown beneficial to wound healing with unclear mechanisms. Here, we tested the effect of ozone oil (OZ) on wound healing and investigated the underlying mechanisms. Mouse skin wound model and Masson staining were used to evaluate the effect of OZ on wound healing. Primary fibroblast culture was employed to assess the functions of OZ, miR-21-5p, and RASA1. QRT-PCR and western blot were used to determine expression levels of miR-21-5p, RASA1, α-SMA, and collagen I. CCK-8 assay and scratch wound healing assay were used to measure viability and migration of fibroblasts. Dual luciferase activity assay was performed to validate miR-21-5p/RASA1 interaction. OZ accelerated wound healing in mice and promoted proliferation and migration abilities of fibroblasts. miR-21-5p was increased while RASA1 was reduced during the wound healing and OZ treatment augmented those changes, as well as increased levels of α-SMA and collagen I. Knockdown of miR-21-5p suppressed those effects of OZ on fibroblasts. Furthermore, miR-21-5p directly targeted RASA1 mRNA and negatively regulated its expression. Overexpression of RASA1 inhibited fibroblast proliferation and migration as well as diminished α-SMA and collagen I protein expression. Additionally, RASA1 overexpression blocked the promotion of miR-21-5p overexpression on fibroblast viability and migration. In vivo, miR-21-5p facilitated wound healing while overexpression of RASA1 reversed the effect. OZ promoted wound healing by enhancing miR-21-5p-mediated RASA1 inhibition to increase fibroblast proliferation and migration.
Collapse
Affiliation(s)
- Wei-Rong Xiao
- The 2nd Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Meng Wu
- The 2nd Department of Dermatology, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| | - Xiang-Rong Bi
- The 2nd Operation Room Department, Hunan Provincial People's Hospital, The First Affiliated Hospital of Hunan Normal University, Changsha, Hunan Province, China
| |
Collapse
|
22
|
Robledo RF, Ciciotte SL, Graber JH, Zhao Y, Lambert AJ, Gwynn B, Maki NJ, Brindley EC, Hartman E, Blanc L, Peters LL. Differential effects of RASA3 mutations on hematopoiesis are profoundly influenced by genetic background and molecular variant. PLoS Genet 2020; 16:e1008857. [PMID: 33370780 PMCID: PMC7793307 DOI: 10.1371/journal.pgen.1008857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 01/08/2021] [Accepted: 11/24/2020] [Indexed: 01/31/2023] Open
Abstract
Studies of the severely pancytopenic scat mouse model first demonstrated the crucial role of RASA3, a dual RAS and RAP GTPase activating protein (GAP), in hematopoiesis. RASA3 is required for survival in utero; germline deletion is lethal at E12.5–13.5 due to severe hemorrhage. Here, conditional deletion in hematopoietic stem and progenitor cells (HSPCs) using Vav-iCre recapitulates the null phenotype demonstrating that RASA3 is required at the stem and progenitor level to maintain blood vessel development and integrity and effective blood production. In adults, bone marrow blood cell production and spleen stress erythropoiesis are suppressed significantly upon induction of RASA3 deficiency, leading to pancytopenia and death within two weeks. Notably, RASA3 missense mutations in two mouse models, scat (G125V) and hlb381 (H794L), show dramatically different hematopoietic consequences specific to both genetic background and molecular variant. The mutation effect is mediated at least in part by differential effects on RAS and RAP activation. In addition, we show that the role of RASA3 is conserved during human terminal erythropoiesis, highlighting a potential function for the RASA3-RAS axis in disordered erythropoiesis in humans. Finally, global transcriptomic studies in scat suggest potential targets to ameliorate disease progression. Hematopoiesis is the process by which blood cells are formed. An individual must have a normal complement of red blood cells to prevent anemia, platelets to control bleeding, and white blood cells to maintain immune functions. All blood cells are derived from hematopoietic stem cells that differentiate into progenitor cells that then develop into mature circulating cells. We studied several mouse strains carrying different mutations in the gene encoding RASA3 and human CD34+ cells, which can be induced to produce blood cells in culture. We show that RASA3 is required at the earliest stages of blood formation, the stem and progenitor cells, and that the complement of genes other than RASA3, or the genetic background, profoundly alters the overall effect on blood formation. Further, the molecular nature of the mutation in RASA3 also has a profound and independent effect on overall blood formation. One mutant mouse strain, designated scat, suffers cyclic anemia characterized by severe anemic crisis episodes interspersed with remissions where the anemia significantly improves. Comparison of scat crisis and remission hematopoietic stem and progenitor cells reveals striking differences in gene expression. Analyses of these expression differences provide clues to processes that potentially drive improvement of anemia in scat and provide new avenues to pursue in future studies to identify novel therapeutics for anemia.
Collapse
Affiliation(s)
| | | | - Joel H. Graber
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Yue Zhao
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Amy J. Lambert
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Babette Gwynn
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | - Nathaniel J. Maki
- Mount Desert Island Biological Laboratory, Salisbury Cove, Maine, United States of America
| | - Elena C. Brindley
- Feinstein Institutes for Medical Research, Manhasset, New York, United States of America
| | - Emily Hartman
- Feinstein Institutes for Medical Research, Manhasset, New York, United States of America
| | - Lionel Blanc
- Feinstein Institutes for Medical Research, Manhasset, New York, United States of America
- * E-mail: (LB); (LLP)
| | - Luanne L. Peters
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- * E-mail: (LB); (LLP)
| |
Collapse
|
23
|
Chen D, Geng X, Lapinski PE, Davis MJ, Srinivasan RS, King PD. RASA1-driven cellular export of collagen IV is required for the development of lymphovenous and venous valves in mice. Development 2020; 147:dev192351. [PMID: 33144395 PMCID: PMC7746672 DOI: 10.1242/dev.192351] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 10/26/2020] [Indexed: 12/14/2022]
Abstract
RASA1, a negative regulator of Ras-MAPK signaling, is essential for the development and maintenance of lymphatic vessel valves. However, whether RASA1 is required for the development and maintenance of lymphovenous valves (LVV) and venous valves (VV) is unknown. In this study, we show that induced disruption of Rasa1 in mouse embryos did not affect initial specification of LVV or central VV, but did affect their continued development. Similarly, a switch to expression of a catalytically inactive form of RASA1 resulted in impaired LVV and VV development. Blocked development of LVV was associated with accumulation of the basement membrane protein, collagen IV, in LVV-forming endothelial cells (EC), and could be partially or completely rescued by MAPK inhibitors and drugs that promote collagen IV folding. Disruption of Rasa1 in adult mice resulted in venous hypertension and impaired VV function that was associated with loss of EC from VV leaflets. In conclusion, RASA1 functions as a negative regulator of Ras signaling in EC that is necessary for EC export of collagen IV, thus permitting the development of LVV and the development and maintenance of VV.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Xin Geng
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO 65102, USA
| | - R Sathish Srinivasan
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| |
Collapse
|
24
|
Bui K, Hong YK. Ras Pathways on Prox1 and Lymphangiogenesis: Insights for Therapeutics. Front Cardiovasc Med 2020; 7:597374. [PMID: 33263009 PMCID: PMC7688453 DOI: 10.3389/fcvm.2020.597374] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/12/2020] [Indexed: 12/12/2022] Open
Abstract
Over the past couple of decades, lymphatics research has accelerated and gained a much-needed recognition in pathophysiology. As the lymphatic system plays heavy roles in interstitial fluid drainage, immune surveillance and lipid absorption, the ablation or excessive growth of this vasculature could be associated with many complications, from lymphedema to metastasis. Despite their growing importance in cancer, few anti-lymphangiogenic therapies exist today, as they have yet to pass phase 3 clinical trials and acquire FDA approval. As such, many studies are being done to better define the signaling pathways that govern lymphangiogenesis, in hopes of developing new therapeutic approaches to inhibit or stimulate this process. This review will cover our current understanding of the Ras signaling pathways and their interactions with Prox1, the master transcriptional switch involved in specifying lymphatic endothelial cell fate and lymphangiogenesis, in hopes of providing insights to lymphangiogenesis-based therapies.
Collapse
Affiliation(s)
| | - Young-Kwon Hong
- Department of Surgery, Department of Biochemistry and Molecular Medicine, Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
25
|
Bowden TJ, Kraev I, Lange S. Extracellular vesicles and post-translational protein deimination signatures in haemolymph of the American lobster (Homarus americanus). FISH & SHELLFISH IMMUNOLOGY 2020; 106:79-102. [PMID: 32731012 DOI: 10.1016/j.fsi.2020.06.053] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/21/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
The American lobster (Homarus americanus) is a commercially important crustacean with an unusual long life span up to 100 years and a comparative animal model of longevity. Therefore, research into its immune system and physiology is of considerable importance both for industry and comparative immunology studies. Peptidylarginine deiminases (PADs) are a phylogenetically conserved enzyme family that catalyses post-translational protein deimination via the conversion of arginine to citrulline. This can lead to structural and functional protein changes, sometimes contributing to protein moonlighting, in health and disease. PADs also regulate the cellular release of extracellular vesicles (EVs), which is an important part of cellular communication, both in normal physiology and in immune responses. Hitherto, studies on EVs in Crustacea are limited and neither PADs nor associated protein deimination have been studied in a Crustacean species. The current study assessed EV and deimination signatures in haemolymph of the American lobster. Lobster EVs were found to be a poly-dispersed population in the 10-500 nm size range, with the majority of smaller EVs, which fell within 22-115 nm. In lobster haemolymph, 9 key immune and metabolic proteins were identified to be post-translationally deiminated, while further 41 deiminated protein hits were identified when searching against a Crustacean database. KEGG (Kyoto encyclopedia of genes and genomes) and GO (gene ontology) enrichment analysis of these deiminated proteins revealed KEGG and GO pathways relating to a number of immune, including anti-pathogenic (viral, bacterial, fungal) and host-pathogen interactions, as well as metabolic pathways, regulation of vesicle and exosome release, mitochondrial function, ATP generation, gene regulation, telomerase homeostasis and developmental processes. The characterisation of EVs, and post-translational deimination signatures, reported in lobster in the current study, and the first time in Crustacea, provides insights into protein moonlighting functions of both species-specific and phylogenetically conserved proteins and EV-mediated communication in this long-lived crustacean. The current study furthermore lays foundation for novel biomarker discovery for lobster aquaculture.
Collapse
Affiliation(s)
- Timothy J Bowden
- Aquaculture Research Institute, School of Food & Agriculture, University of Maine, Orono, ME, USA.
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science,Technology, Engineering and Mathematics, Open University, Milton Keynes, MK7 6AA, UK.
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London, W1W 6UW, UK.
| |
Collapse
|
26
|
Duan Y, Yin X, Lai X, Liu C, Nie W, Li D, Xie Z, Li Z, Meng F. Upregulation of DAB2IP Inhibits Ras Activity and Tumorigenesis in Human Pancreatic Cancer Cells. Technol Cancer Res Treat 2020; 19:1533033819895494. [PMID: 32336215 PMCID: PMC7225836 DOI: 10.1177/1533033819895494] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
KRAS mutation-induced Ras activation plays an important role in the pathogenesis of pancreatic cancer, but the role of wild-type Ras and Ras GTPase-activating proteins remains unclear. The present study was designed to determine the expression spectra of Ras GTPase-activating proteins genes in pancreatic cancer cells, and the role of DAB2IP, a Ras GTPase-activating proteins gene, in the development and progression of pancreatic cancer. Following the analyses of the expression profiles of 16 Ras GTPase-activating proteins in 6 pancreatic cancer cell lines including Bxpc-3 (with wild-type KRAS), Capan-2, Sw1990, Aspc-1, CFPAC-1, and Panc-1 (with mutant KRAS) and 1 normal human pancreatic ductal epithelial cell line, H6C7, the expression of DAB2IP messenger RNA was further analyzed by quantitative real-time polymerase chain reaction. The role of DAB2IP in pancreatic cancer was further investigated in vitro and in vivo by upregulating DAB2IP in Bxpc-3 cells through transfection of DAB2IP into Bxpc-3 cells with recombinant lentivirus. The DAB2IP expression in pancreatic cancer cells and tissues with wild-type KRAS was significantly lower than that in cells and tissues with mutant KRAS (P < .05). In Bxpc-3 cells with wild-type KRAS, overexpression of DAB2IP decreased the expression of P-AKT and P-ERK and the Ras activity; increased the expression of P-JNK and caspase 3; inhibited cell proliferation, invasiveness, and migration; and increased the cell sensitivity to cetuximab. Overexpression of DAB2IP inhibited tumor progression in a mouse model. In conclusion, DAB2IP downregulates Ras activity in wild-type pancreatic cancer cells. Overexpression of DAB2IP decreases the Ras activity, inhibits cell proliferation, and increases sensitivity to cetuximab in wild-type pancreatic cancer cells. In conclusion, DAB2IP may serve as a potential molecular therapeutic target for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Yifan Duan
- Department of Huiqiao Building, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Xiaoyu Yin
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaorong Lai
- Department of Oncology Medicine, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Chao Liu
- Department of Pathology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Wenjing Nie
- The Third People's Hospital of Foshan, Foshan City, Guangdong Province, China
| | - Dongfeng Li
- Research Center of Medical Sciences, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zijun Xie
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Gastroenterology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou City, Guangdong Province, China
| | - Zijun Li
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Guangdong Provincial Institute of Geriatrics, Guangzhou, China
| | - Fan Meng
- Department of Gastroenterology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China.,Department of Gastroenterology, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
27
|
Twenty Years of SynGAP Research: From Synapses to Cognition. J Neurosci 2020; 40:1596-1605. [PMID: 32075947 DOI: 10.1523/jneurosci.0420-19.2020] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 01/03/2020] [Accepted: 01/07/2020] [Indexed: 12/11/2022] Open
Abstract
SynGAP is a potent regulator of biochemical signaling in neurons and plays critical roles in neuronal function. It was first identified in 1998, and has since been extensively characterized as a mediator of synaptic plasticity. Because of its involvement in synaptic plasticity, SynGAP has emerged as a critical protein for normal cognitive function. In recent years, mutations in the SYNGAP1 gene have been shown to cause intellectual disability in humans and have been linked to other neurodevelopmental disorders, such as autism spectrum disorders and schizophrenia. While the structure and biochemical function of SynGAP have been well characterized, a unified understanding of the various roles of SynGAP at the synapse and its contributions to neuronal function remains to be achieved. In this review, we summarize and discuss the current understanding of the multifactorial role of SynGAP in regulating neuronal function gathered over the last two decades.
Collapse
|
28
|
Harrell Stewart DR, Clark GJ. Pumping the brakes on RAS - negative regulators and death effectors of RAS. J Cell Sci 2020; 133:133/3/jcs238865. [PMID: 32041893 DOI: 10.1242/jcs.238865] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Mutations that activate the RAS oncoproteins are common in cancer. However, aberrant upregulation of RAS activity often occurs in the absence of activating mutations in the RAS genes due to defects in RAS regulators. It is now clear that loss of function of Ras GTPase-activating proteins (RasGAPs) is common in tumors, and germline mutations in certain RasGAP genes are responsible for some clinical syndromes. Although regulation of RAS is central to their activity, RasGAPs exhibit great diversity in their binding partners and therefore affect signaling by multiple mechanisms that are independent of RAS. The RASSF family of tumor suppressors are essential to RAS-induced apoptosis and senescence, and constitute a barrier to RAS-mediated transformation. Suppression of RASSF protein expression can also promote the development of excessive RAS signaling by uncoupling RAS from growth inhibitory pathways. Here, we will examine how these effectors of RAS contribute to tumor suppression, through both RAS-dependent and RAS-independent mechanisms.
Collapse
Affiliation(s)
- Desmond R Harrell Stewart
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40222, USA
| | - Geoffrey J Clark
- Department of Pharmacology & Toxicology, University of Louisville School of Medicine, Louisville, KY 40222, USA
| |
Collapse
|
29
|
Lee SH, Lee S. Change of Ras and its guanosine triphosphatases (GTPases) during development and regression in bovine corpus luteum. Theriogenology 2019; 144:16-26. [PMID: 31887652 DOI: 10.1016/j.theriogenology.2019.12.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/28/2019] [Accepted: 12/19/2019] [Indexed: 12/30/2022]
Abstract
The aim of this study was to determine the change of Ras and its guanosine triphosphatases (GTPases) proteins in the bovine corpus luteum (CL) during estrous cycle and investigate protein-protein interaction between hormone receptors and Ras proteins via angiogenetic and apoptotic factors using bioinformatics database. The bovine CLs at proliferation phase (PP), secretion phase (SP), and regression phase (RP) were dissected from abattoir ovaries (n = 4/stage), whole of the tissue samples was used to analyze two-dimensional electrophoresis (2-DE), mRNA, and protein analysis. The protein-protein interaction between the Ras GTPases proteins and hormone receptors were analyzed using Search Tool for the Retrieval of Interacting Genes (STRING) database. The Ras protein activator like 3 (RASAL3), Ras GTPase activating protein 3 (RASA3), Ras guanine nucleotide exchange factors 1 beta (RasGEF1B) were discovered by the 2-DE and mass spectrometry in bovine CLs, and the protein spots of RASA3 and RASAL3 were significantly increased in the SPCL compared to the PPCL, whereas the RasGEF1B was reduced in the PPCL (P < 0.05). The mRNA and proteins expression of progesterone receptor, estrogen receptor alpha (ERα), vascular endothelial growth factor A (VEGFA), angiopoietin 1 (Ang1), VEGF receptor2 (VEGFR2), and Tie2 were significantly increased, but intrinsic and extrinsic apoptotic factors were decreased in PPCL and SPCL compared to RPCL (P < 0.05). Based on STRING database, we determined that RasGEF1B is activated by ERα via VEGFA and VEGFR2, then RasGEF1B activates H-Ras and R-Ras. In addition, the RasGAP protein was significantly increased, however, the RasGEF, H-Ras and R-Ras proteins were reduced in SPCL compared to PPCL and RPCL (P < 0.05). In summary, the RasGEF and Ras proteins were raised during the development, whereas the RasGAP was increased when development was completed, then the Ras and its GTPases dramatically decreased at the regression in bovine CL. In conclusion, these results suggest that Ras and Ras GTPases could be changed during development and regression, activated by the ERα via angiogenetic signaling during proliferation, and may be important to understanding of the Ras and its GTPases system for estrous cycle in bovine CL.
Collapse
Affiliation(s)
- S H Lee
- Discipline of ICT, University of Tasmania, Hobart, Tasmania, Australia
| | - S Lee
- College of Animal Life Sciences, Kangwon National University, Chuncheon, Republic of Korea.
| |
Collapse
|
30
|
Mishra R, Haldar S, Suchanti S, Bhowmick NA. Epigenetic changes in fibroblasts drive cancer metabolism and differentiation. Endocr Relat Cancer 2019; 26:R673-R688. [PMID: 31627186 PMCID: PMC6859444 DOI: 10.1530/erc-19-0347] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 10/17/2019] [Indexed: 12/17/2022]
Abstract
Genomic changes that drive cancer initiation and progression contribute to the co-evolution of the adjacent stroma. The nature of the stromal reprogramming involves differential DNA methylation patterns and levels that change in response to the tumor and systemic therapeutic intervention. Epigenetic reprogramming in carcinoma-associated fibroblasts are robust biomarkers for cancer progression and have a transcriptional impact that support cancer epithelial progression in a paracrine manner. For prostate cancer, promoter hypermethylation and silencing of the RasGAP, RASAL3 that resulted in the activation of Ras signaling in carcinoma-associated fibroblasts. Stromal Ras activity initiated a process of macropinocytosis that provided prostate cancer epithelia with abundant glutamine for metabolic conversion to fuel its proliferation and a signal to transdifferentiate into a neuroendocrine phenotype. This epigenetic oncogenic metabolic/signaling axis seemed to be further potentiated by androgen receptor signaling antagonists and contributed to therapeutic resistance. Intervention of stromal signaling may complement conventional therapies targeting the cancer cell.
Collapse
Affiliation(s)
- Rajeev Mishra
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Subhash Haldar
- Department of Biotechnology, Brainware University, Kolkata, India
| | - Surabhi Suchanti
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | - Neil A Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California, USA
- Department of Research, Greater Los Angeles Veterans Administration, Los Angeles, California, USA
- Correspondence should be addressed to N A Bhowmick:
| |
Collapse
|
31
|
Li L, Fan Y, Huang X, Luo J, Zhong L, Shu XS, Lu L, Xiang T, Chan ATC, Yeo W, Chen C, Chan WY, Huganir RL, Tao Q. Tumor Suppression of Ras GTPase-Activating Protein RASA5 through Antagonizing Ras Signaling Perturbation in Carcinomas. iScience 2019; 21:1-18. [PMID: 31654850 PMCID: PMC6820368 DOI: 10.1016/j.isci.2019.10.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 08/08/2019] [Accepted: 09/30/2019] [Indexed: 12/30/2022] Open
Abstract
Aberrant RAS signaling activation is common in cancers with even few Ras mutations, indicating alternative dysregulation other than genetic mutations. We identified a Ras GTPase-activating gene RASA5/SYNGAP1, at the common 6p21.3 deletion, methylated/downregulated in multiple carcinomas and different from other RASA family members (RASA1-RASA4), indicating its special functions in tumorigenesis. RASA5 mutations are rare, unlike other RASA members, whereas its promoter CpG methylation is frequent in multiple cancer cell lines and primary carcinomas and associated with patient's poor survival. RASA5 expression inhibited tumor cell migration/invasion and growth in mouse model, functioning as a tumor suppressor. RASA5 suppressed RAS signaling, depending on its Ras GTPase-activating protein catalytic activity, which could be counteracted by oncogenic HRas Q61L mutant. RASA5 knockdown enhanced Ras signaling to promote tumor cell growth. RASA5 also inhibited epithelial-mesenchymal transition (EMT) through regulating actin reorganization. Thus, epigenetic inactivation of RASA5 contributing to hyperactive RAS signaling is involved in Ras-driven human oncogenesis.
Collapse
Affiliation(s)
- Lili Li
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| | - Yichao Fan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Xin Huang
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Jie Luo
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Lan Zhong
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Xing-Sheng Shu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong; School of Medicine and Institute of Molecular Medicine, Shenzhen University, Shenzhen, China
| | - Li Lu
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Molecular Oncology and Epigenetics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Anthony T C Chan
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Winnie Yeo
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of CAS and Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, China
| | - Wai Yee Chan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Qian Tao
- Cancer Epigenetics Laboratory, Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Center for Cancer and Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong.
| |
Collapse
|
32
|
Thaker YR, Raab M, Strebhardt K, Rudd CE. GTPase-activating protein Rasal1 associates with ZAP-70 of the TCR and negatively regulates T-cell tumor immunity. Nat Commun 2019; 10:4804. [PMID: 31641113 PMCID: PMC6805919 DOI: 10.1038/s41467-019-12544-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2018] [Accepted: 09/09/2019] [Indexed: 12/11/2022] Open
Abstract
Immunotherapy involving checkpoint blockades of inhibitory co-receptors is effective in combating cancer. Despite this, the full range of mediators that inhibit T-cell activation and influence anti-tumor immunity is unclear. Here, we identify the GTPase-activating protein (GAP) Rasal1 as a novel TCR-ZAP-70 binding protein that negatively regulates T-cell activation and tumor immunity. Rasal1 inhibits via two pathways, the binding and inhibition of the kinase domain of ZAP-70, and GAP inhibition of the p21ras-ERK pathway. It is expressed in activated CD4 + and CD8 + T-cells, and inhibits CD4 + T-cell responses to antigenic peptides presented by dendritic cells as well as CD4 + T-cell responses to peptide antigens in vivo. Furthermore, siRNA reduction of Rasal1 expression in T-cells shrinks B16 melanoma and EL-4 lymphoma tumors, concurrent with an increase in CD8 + tumor-infiltrating T-cells expressing granzyme B and interferon γ-1. Our findings identify ZAP-70-associated Rasal1 as a new negative regulator of T-cell activation and tumor immunity. Activation of T cells in the tumor microenvironment can be inhibited through a variety of mechanisms. Here, the authors show that Rasal1, a GTPase-activating protein, binds and inhibits signaling downstream of the T Cell Receptor complex and that consistently, its reduced expression enhances anti-tumor T-cell responses in two syngeneic cancer mouse models.
Collapse
Affiliation(s)
- Youg Raj Thaker
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK.,School of Biological Science, Protein Structure and Disease Mechanisms, University of Essex, Wivenhoe Park, Colchester, CO4 3SQ, UK
| | - Monika Raab
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Klaus Strebhardt
- Department of Obstetrics and Gynaecology, School of Medicine, J.W. Goethe-University, Theodor-Stern-Kai 7, 60590, Frankfurt, Germany
| | - Christopher E Rudd
- Cell Signalling Section, Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QP, UK. .,Département de Immunologie-Oncologie, Centre de Recherche Hôpital Maisonneuve-Rosemont, Montreal, QC, H1T 2M4, Canada. .,Département de Medicine, Université de Montréal, Montreal, QC, H3C 3J7, Canada.
| |
Collapse
|
33
|
Chen D, Teng JM, North PE, Lapinski PE, King PD. RASA1-dependent cellular export of collagen IV controls blood and lymphatic vascular development. J Clin Invest 2019; 129:3545-3561. [PMID: 31185000 DOI: 10.1172/jci124917] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Combined germline and somatic second hit inactivating mutations of the RASA1 gene, which encodes a negative regulator of the Ras signaling pathway, cause blood and lymphatic vascular lesions in the human autosomal dominant vascular disorder capillary malformation-arteriovenous malformation (CM-AVM). How RASA1 mutations in endothelial cells (EC) result in vascular lesions in CM-AVM is unknown. Here, using different murine models of RASA1-deficiency, we found that RASA1 was essential for the survival of EC during developmental angiogenesis in which primitive vascular plexuses are remodeled into hierarchical vascular networks. RASA1 was required for EC survival during developmental angiogenesis because it was necessary for export of collagen IV from EC and deposition in vascular basement membranes. In the absence of RASA1, dysregulated Ras mitogen-activated protein kinase (MAPK) signal transduction in EC resulted in impaired folding of collagen IV and its retention in the endoplasmic reticulum (ER) leading to EC death. Remarkably, the chemical chaperone, 4-phenylbutyric acid, and small molecule inhibitors of MAPK and 2-oxoglutarate dependent collagen IV modifying enzymes rescued ER retention of collagen IV and EC apoptosis and resulted in normal developmental angiogenesis. These findings have important implications with regards an understanding of the molecular pathogenesis of CM-AVM and possible means of treatment.
Collapse
Affiliation(s)
- Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Joyce M Teng
- Department of Dermatology, Stanford University, Stanford, California, USA
| | - Paula E North
- Department of Pathology, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, Wisconsin, USA
| | - Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
34
|
Scheffzek K, Shivalingaiah G. Ras-Specific GTPase-Activating Proteins-Structures, Mechanisms, and Interactions. Cold Spring Harb Perspect Med 2019; 9:cshperspect.a031500. [PMID: 30104198 DOI: 10.1101/cshperspect.a031500] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Ras-specific GTPase-activating proteins (RasGAPs) down-regulate the biological activity of Ras proteins by accelerating their intrinsic rate of GTP hydrolysis, basically by a transition state stabilizing mechanism. Oncogenic Ras is commonly not sensitive to RasGAPs caused by interference of mutants with the electronic or steric requirements of the transition state, resulting in up-regulation of activated Ras in respective cells. RasGAPs are modular proteins containing a helical catalytic RasGAP module surrounded by smaller domains that are frequently involved in the subcellular localization or contributing to regulatory features of their host proteins. In this review, we summarize current knowledge about RasGAP structure, mechanism, regulation, and dual-substrate specificity and discuss in some detail neurofibromin, one of the most important negative Ras regulators in cellular growth control and neuronal function.
Collapse
Affiliation(s)
- Klaus Scheffzek
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Giridhar Shivalingaiah
- Division of Biological Chemistry (Biocenter), Medical University of Innsbruck, A-6020 Innsbruck, Austria
| |
Collapse
|
35
|
Post JB, Hami N, Mertens AEE, Elfrink S, Bos JL, Snippert HJG. CRISPR-induced RASGAP deficiencies in colorectal cancer organoids reveal that only loss of NF1 promotes resistance to EGFR inhibition. Oncotarget 2019; 10:1440-1457. [PMID: 30858928 PMCID: PMC6402720 DOI: 10.18632/oncotarget.26677] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Accepted: 02/01/2019] [Indexed: 12/16/2022] Open
Abstract
Anti-EGFR therapy is used to treat metastatic colorectal cancer (CRC) patients, for which initial response rates of 10-20% have been achieved. Although the presence of HER2 amplifications and oncogenic mutations in KRAS, NRAS, and BRAF are associated with EGFR-targeted therapy resistance, for a large population of CRC patients the underlying mechanism of RAS-MEK-ERK hyperactivation is not clear. Loss-of-function mutations in RASGAPs are often speculated in literature to promote CRC growth as being negative regulators of RAS, but direct experimental evidence is lacking. We generated a CRISPR-mediated knock out panel of all RASGAPs in patient-derived CRC organoids and found that only loss of NF1, but no other RASGAPs e.g. RASA1, results in enhanced RAS-ERK signal amplification and improved tolerance towards limited EGF stimulation. Our data suggests that NF1-deficient CRCs are likely not responsive to anti-EGFR monotherapy and can potentially function as a biomarker for CRC progression.
Collapse
Affiliation(s)
- Jasmin B Post
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Nizar Hami
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Alexander E E Mertens
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Suraya Elfrink
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Johannes L Bos
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| | - Hugo J G Snippert
- Center for Molecular Medicine, Section Molecular Cancer Research, University Medical Center Utrecht, Utrecht, The Netherlands.,Oncode Netherlands, Institute Netherlands, Office Jaarbeurs Innovation Mile, Utrecht, The Netherlands
| |
Collapse
|
36
|
Barnes NE, Mendoza KM, Strasburg GM, Velleman SG, Reed KM. Thermal challenge alters the transcriptional profile of the breast muscle in turkey poults. Poult Sci 2019; 98:74-91. [PMID: 30239949 DOI: 10.3382/ps/pey401] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022] Open
Abstract
Extremes in temperature represent environmental stressors that impact the well-being and economic value of poultry. As homeotherms, young poultry with immature thermoregulatory systems are especially susceptible to thermal extremes. Genetic variation and differences in gene expression resulting from selection for production traits, likely contribute to thermal stress response. This study was designed to investigate in vivo transcriptional changes in the breast muscle of young turkey poults from an unselected randombred line and one selected for 16 wk body weight under hot and cold thermal challenge. Newly hatched turkey poults were brooded for 3 d at one of 3 temperatures: control (35°C), cold (31°C), or hot (39°C). Samples of the pectoralis major were harvested and subjected to deep RNA sequencing. Significant differential gene expression was observed in both growth-selected and randombred birds at both temperature extremes when compared to control-brooded poults. Growth-selected birds responded to thermal stress through changes in genes predicted to have downstream transcriptional effects and that would result in reduced muscle growth. Slower growing randombred birds responded to thermal stress through modulation of lipid-related genes, suggesting reduction in lipid storage, transport, and synthesis, consistent with changes in energy metabolism required to maintain body temperature.
Collapse
Affiliation(s)
- Natalie E Barnes
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Kristelle M Mendoza
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| | - Gale M Strasburg
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Sandra G Velleman
- Department of Animal Sciences, The Ohio State University/Ohio Agricultural Research and Development Center, Wooster, OH 44691, USA
| | - Kent M Reed
- Department of Veterinary and Biomedical Sciences, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
37
|
Galloway DA, Blandford SN, Berry T, Williams JB, Stefanelli M, Ploughman M, Moore CS. miR-223 promotes regenerative myeloid cell phenotype and function in the demyelinated central nervous system. Glia 2018; 67:857-869. [PMID: 30548333 DOI: 10.1002/glia.23576] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 11/05/2018] [Accepted: 11/15/2018] [Indexed: 12/28/2022]
Abstract
In the injured central nervous system, myeloid cells, including macrophages and microglia, are key contributors to both myelin injury and repair. This immense plasticity emphasizes the need to further understand the precise molecular mechanisms that contribute to the dynamic regulation of myeloid cell polarization and function. Herein, we demonstrate that miR-223 is upregulated in multiple sclerosis (MS) patient monocytes and the alternatively-activated and tissue-regenerating M2-polarized human macrophages and microglia. Using miR-223 knock-out mice, we observed that miR-223 is dispensable for maximal pro-inflammatory responses, but is required for efficient M2-associated phenotype and function, including phagocytosis. Using the lysolecithin animal model, we further demonstrate that miR-223 is required to efficiently clear myelin debris and promote remyelination. These results suggest miR-223 constrains neuroinflammation while also promoting repair, a finding of important pathophysiological relevance to MS as well as other neurodegenerative diseases.
Collapse
Affiliation(s)
- Dylan A Galloway
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Stephanie N Blandford
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Tangyne Berry
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - John B Williams
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Mark Stefanelli
- Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Michelle Ploughman
- Recovery and Performance Laboratory, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - Craig S Moore
- Division of BioMedical Sciences, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada.,Department of Neurology, Faculty of Medicine, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| |
Collapse
|
38
|
Nozari A, Aghaei-Moghadam E, Zeinaloo A, Alavi A, Ghasemi Firouzabdi S, Minaee S, Eskandari Hesari M, Behjati F. A Pathogenic Homozygous Mutation in The Pleckstrin Homology Domain of RASA1 Is Responsible for Familial Tricuspid Atresia in An Iranian Consanguineous Family. CELL JOURNAL 2018; 21:70-77. [PMID: 30507091 PMCID: PMC6275424 DOI: 10.22074/cellj.2019.5734] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Accepted: 04/21/2018] [Indexed: 11/28/2022]
Abstract
Objective Tricuspid atresia (TA) is a rare life-threatening form of congenital heart defect (CHD). The genetic
mechanisms underlying TA are not clearly understood. According to previous studies, the endocardial cushioning event,
as the primary sign of cardiac valvulogenesis, is governed by several overlapping signaling pathways including Ras/
ERK pathway. RASA1, a regulator of cardiovascular development, is involved in this pathway and its haploinsufficiency
(due to heterozygous mutations) has been identified as the underlying etiology of the autosomal dominant capillary
malformation/arteriovenous malformation (CM/AVM).
Materials and Methods In this prospective study, we used whole exome sequencing (WES) followed by serial
bioinformatics filtering steps for two siblings with TA and early onset CM. Their parents were consanguineous which
had a history of recurrent abortions. Patients were carefully assessed to exclude extra-cardiac anomalies.
Results We identified a homozygous RASA1 germline mutation, c.1583A>G (p.Tyr528Cys) in the family. This mutation
lies in the pleckstrin homology (PH) domain of the gene. The parents who were heterozygous for this variant displayed
CM.
Conclusion This is the first study reporting an adverse phenotypic outcome of a RASA1 homozygous mutation.
Here, we propose that the phenotypic consequence of the homozygous RASA1 p.Tyr528Cys mutation is more serious
than the heterozygous type. This could be responsible for the TA pathogenesis in our patients. We strongly suggest
that parents with CM/AVM should be investigated for RASA1 heterozygous mutations. Prenatal diagnosis and fetal
echocardiography should also be carried out in the event of pregnancy in heterozygous parents.
Collapse
Affiliation(s)
- Ahoura Nozari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Ehsan Aghaei-Moghadam
- Department of Pediatrics Cardiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aliakbar Zeinaloo
- Department of Pediatrics Cardiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Afagh Alavi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | | | - Shohre Minaee
- Department of Pediatrics Cardiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Marzieh Eskandari Hesari
- Department of Pediatrics Cardiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Farkhondeh Behjati
- Department of Pediatrics Cardiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran. Electronic Address:
| |
Collapse
|
39
|
Shin Y, Kim YW, Kim H, Shin N, Kim TS, Kwon TK, Choi JH, Chang JS. RASAL3 preferentially stimulates GTP hydrolysis of the Rho family small GTPase Rac2. Biomed Rep 2018; 9:241-246. [PMID: 30271600 DOI: 10.3892/br.2018.1119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 06/28/2018] [Indexed: 11/05/2022] Open
Abstract
Members of the Ras superfamily of small G-proteins serve as molecular switches of intracellular signaling pathways. Rac2 is a Rho subfamily GTPase switch that is specifically expressed in hematopoietic cells and regulates AKT activation in cell signaling. Ras activating protein-like 3 (RASAL3) is the recently identified Ras GTPase activating protein (GAP) that is also specifically expressed in hematopoietic cells and stimulates p21ras GTPase activity. The restricted expression of both Rac2 and RASAL3 suggests that they may serve critical roles in hematopoietic cell signaling. Here in the present study demonstrates that the catalytic domain of RASAL3 may also be able to interact with Rac2 and stimulate its GTPase activity in vitro. By contrast, p50 rhoGAP molecules did not markedly affect Rac2 GTPase activity, but did accelerate the activity of other Rho GTPases, including Rac1, RhoA and Cdc42. Collectively, the present results indicate, seemingly for the first time, that GAP activity for Rac2 is regulated by the RasGAP family protein, RASAL3.
Collapse
Affiliation(s)
- Yoonjae Shin
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Yong Woo Kim
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Hyemin Kim
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Nakyoung Shin
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Tae Sung Kim
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| | - Taeg Kyu Kwon
- Department of Immunology and Physiology, School of Medicine, Keimyung University, Daegu 42601, South Korea
| | - Jang Hyun Choi
- Department of Biological Sciences, Division of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Jong-Soo Chang
- Department of Life Science, College of Science and Technology, Daejin University, Pocheon-Si, Gyeonggi-Do 11159, South Korea
| |
Collapse
|
40
|
Bros M, Youns M, Kollek V, Buchmüller D, Bollmann F, Seo EJ, Schupp J, Montermann E, Usanova S, Kleinert H, Efferth T, Reske-Kunz AB. Differentially Tolerized Mouse Antigen Presenting Cells Share a Common miRNA Signature Including Enhanced mmu-miR-223-3p Expression Which Is Sufficient to Imprint a Protolerogenic State. Front Pharmacol 2018; 9:915. [PMID: 30174602 PMCID: PMC6108336 DOI: 10.3389/fphar.2018.00915] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 07/26/2018] [Indexed: 12/13/2022] Open
Abstract
Dendritic cells (DCs) are pivotal for the induction and maintenance of antigen-specific tolerance and immunity. miRNAs mediate post-transcriptional gene regulation and control in part the differentiation and stimulation-induced immunogenic function of DCs. However, the relevance of miRNAs for the induction and maintenance of a tolerogenic state of DCs has scarcely been highlighted yet. We differentiated mouse bone marrow cells to conventional/myeloid DCs or to tolerogenic antigen presenting cells (APCs) by using a glucocorticoid (dexamethasone) or interleukin-10, and assessed the miRNA expression patterns of unstimulated and LPS-stimulated cell populations by array analysis and QPCR. Differentially tolerized mouse APCs convergingly down-regulated a set of miRNA species at either state of activation as compared with the corresponding control DC population (mmu-miR-9-5p, mmu-miR-9-3p, mmu-miR-155-5p). These miRNAs were also upregulated in control DCs in response to stimulation. In contrast, miRNAs that were convergingly upregulated in both tolerized APC groups at stimulated state (mmu-miR-223-3p, mmu-miR-1224-5p) were downregulated in control DCs in response to stimulation. Overexpression of mmu-miR-223-3p in DCs was sufficient to prevent stimulation-associated acquisition of potent T cell stimulatory capacity. Overexpression of mmu-miR-223-3p in a DC line resulted in attenuated expression of known (Cflar, Rasa1, Ras) mRNA targets of this miRNA species shown to affect pathways that control DC activation. Taken together, we identified sets of miRNAs convergingly regulated in differentially tolerized APCs, which may contribute to imprint stimulation-resistant tolerogenic function as demonstrated for mmu-miR-223-3p. Knowledge of miRNAs with protolerogenic function enables immunotherapeutic approaches aimed to modulate immune responses by regulating miRNA expression.
Collapse
Affiliation(s)
- Matthias Bros
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Mahmoud Youns
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Verena Kollek
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Diana Buchmüller
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Franziska Bollmann
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Ean-Jeong Seo
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Jonathan Schupp
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Evelyn Montermann
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Svetlana Usanova
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Hartmut Kleinert
- Department of Pharmacology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| | - Thomas Efferth
- Department of Biochemistry and Molecular Biology, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Angelika B Reske-Kunz
- Department of Dermatology, University Medical Center, Johannes Gutenberg University, Mainz, Germany
| |
Collapse
|
41
|
Nagy JI, Lynn BD. Structural and Intermolecular Associations Between Connexin36 and Protein Components of the Adherens Junction-Neuronal Gap Junction Complex. Neuroscience 2018; 384:241-261. [PMID: 29879437 DOI: 10.1016/j.neuroscience.2018.05.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 11/20/2022]
Abstract
Intimate structural and functional relationships between gap junctions and adherens junctions have been demonstrated in peripheral tissues, but have not been thoroughly examined in the central nervous system, where adherens junctions are often found in close proximity to neuronal gap junctions. Here, we used immunofluorescence approaches to document the localization of various protein components of adherens junctions in relation to those that we have previously reported to occur at electrical synapses formed by neuronal gap junctions composed of connexin36 (Cx36). The adherens junction constituents N-cadherin and nectin-1 were frequently found to localize near or overlap with Cx36-containing gap junctions in several brain regions examined. This was also true of the adherens junction-associated proteins α-catenin and β-catenin, as well as the proteins zonula occludens-1 and AF6 (aka, afadin) that were reported constituents of both adherens junctions and gap junctions. The deployment of the protein constituents of these junctions was especially striking at somatic contacts between primary afferent neurons in the mesencephalic trigeminal nucleus (MesV), where the structural components of adherens junctions appeared to be maintained in connexin36 null mice. These results support emerging views concerning the multi-molecular composition of electrical synapses and raise possibilities for various structural and functional protein-protein interactions at what now can be considered the adherens junction-neuronal gap junction complex. Further, the results point to intracellular signaling pathways that could potentially contribute to the assembly, maintenance and turnover of this complex, as well as to the dynamic nature of neuronal communication at electrical synapses.
Collapse
Affiliation(s)
- J I Nagy
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada.
| | - B D Lynn
- Department of Physiology and Pathophysiology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
42
|
Hoang KV, Rajaram MVS, Curry HM, Gavrilin MA, Wewers MD, Schlesinger LS. Complement Receptor 3-Mediated Inhibition of Inflammasome Priming by Ras GTPase-Activating Protein During Francisella tularensis Phagocytosis by Human Mononuclear Phagocytes. Front Immunol 2018; 9:561. [PMID: 29632532 PMCID: PMC5879101 DOI: 10.3389/fimmu.2018.00561] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/06/2018] [Indexed: 01/08/2023] Open
Abstract
Francisella tularensis is a remarkably infectious facultative intracellular bacterium of macrophages that causes tularemia. Early evasion of host immune responses contributes to the success of F. tularensis as a pathogen. F. tularensis entry into human monocytes and macrophages is mediated by the major phagocytic receptor, complement receptor 3 (CR3, CD11b/CD18). We recently determined that despite a significant increase in macrophage uptake following C3 opsonization of the virulent Type A F. tularensis spp. tularensis Schu S4, this phagocytic pathway results in limited pro-inflammatory cytokine production. Notably, MAP kinase/ERK activation is suppressed immediately during C3-opsonized Schu S4-CR3 phagocytosis. A mathematical model of CR3-TLR2 crosstalk predicted early involvement of Ras GTPase-activating protein (RasGAP) in immune suppression by CR3. Here, we link CR3-mediated uptake of opsonized Schu S4 by human monocytes and macrophages with inhibition of early signal 1 inflammasome activation, evidenced by limited caspase-1 cleavage and IL-18 release. This inhibition is due to increased RasGAP activity, leading to a reduction in the Ras-ERK signaling cascade upstream of the early inflammasome activation event. Thus, our data uncover a novel signaling pathway mediated by CR3 following engagement of opsonized virulent F. tularensis to limit inflammasome activation in human phagocytic cells, thereby contributing to evasion of the host innate immune system.
Collapse
Affiliation(s)
- Ky V Hoang
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Murugesan V S Rajaram
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Heather Marie Curry
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States
| | - Mikhail A Gavrilin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Mark D Wewers
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Department of Internal Medicine, Davis Heart & Lung Research Institute, The Ohio State University, Columbus, OH, United States
| | - Larry S Schlesinger
- Center for Microbial Interface Biology, Department of Microbial Infection and Immunity, The Ohio State University, Columbus, OH, United States.,Texas Biomedical Research Institute, San Antonio, TX, United States
| |
Collapse
|
43
|
Hayashi T, Desmeules P, Smith RS, Drilon A, Somwar R, Ladanyi M. RASA1 and NF1 are Preferentially Co-Mutated and Define A Distinct Genetic Subset of Smoking-Associated Non-Small Cell Lung Carcinomas Sensitive to MEK Inhibition. Clin Cancer Res 2018; 24:1436-1447. [PMID: 29127119 PMCID: PMC6440215 DOI: 10.1158/1078-0432.ccr-17-2343] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2017] [Revised: 10/24/2017] [Accepted: 11/06/2017] [Indexed: 12/31/2022]
Abstract
Purpose: Ras-GTPase-activating proteins (RasGAP), notably NF1 and RASA1, mediate negative control of the RAS/MAPK pathway. We evaluated clinical and molecular characteristics of non-small cell lung carcinoma (NSCLC) with RASA1 mutations in comparison with NF1-mutated cases.Experimental Design: Large genomic datasets of NSCLC [MSK-IMPACT dataset at MSKCC (n = 2,004), TCGA combined lung cancer dataset (n = 1,144)] were analyzed to define concurrent mutations and clinical features of RASA1-mutated NSCLCs. Functional studies were performed using immortalized human bronchial epithelial cells (HBEC) and NSCLC lines with truncating mutations in RASA1, NF1, or both.Results: Overall, approximately 2% of NSCLCs had RASA1-truncating mutations, and this alteration was statistically, but not completely, mutually exclusive with known activating EGFR (P = 0.02) and KRAS (P = 0.02) mutations. Unexpectedly, RASA1-truncating mutations had a strong tendency to co-occur with NF1-truncating mutations (P < 0.001). Furthermore, all patients (16/16) with concurrent RASA1/NF1-truncating mutations lacked other known lung cancer drivers. Knockdown of RASA1 in HBECs activated signaling downstream of RAS and promoted cell growth. Conversely, restoration of RASA1 expression in RASA1-mutated cells reduced MAPK and PI3K signaling. Although growth of cell lines with inactivation of only one of these two RasGAPs showed moderate and variable sensitivity to inhibitors of MEK or PI3K, cells with concurrent RASA1/NF1 mutations were profoundly more sensitive (IC50: 0.040 μmol/L trametinib). Finally, simultaneous genetic silencing of RASA1 and NF1 sensitized both HBECs and NSCLC cells to MEK inhibition.Conclusions: Cancer genomic and functional data nominate concurrent RASA1/NF1 loss-of-function mutations as a strong mitogenic driver in NSCLC, which may sensitize to trametinib. Clin Cancer Res; 24(6); 1436-47. ©2017 AACRSee related commentary by Kitajima and Barbie, p. 1243.
Collapse
Affiliation(s)
- Takuo Hayashi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Patrice Desmeules
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Roger S Smith
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Alexander Drilon
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Romel Somwar
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Marc Ladanyi
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, New York.
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
44
|
Inactivation of RASA1 promotes melanoma tumorigenesis via R-Ras activation. Oncotarget 2018; 7:23885-96. [PMID: 26993606 PMCID: PMC5029671 DOI: 10.18632/oncotarget.8127] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2016] [Accepted: 02/28/2016] [Indexed: 11/25/2022] Open
Abstract
Inactivation of Ras GTPase activating proteins (RasGAPs) can activate Ras, increasing the risk for tumor development. Utilizing a melanoma whole genome sequencing (WGS) data from 13 patients, we identified two novel, clustered somatic missense mutations (Y472H and L481F) in RASA1 (RAS p21 protein activator 1, also called p120RasGAP). We have shown that wild type RASA1, but not identified mutants, suppresses soft agar colony formation and tumor growth of BRAF mutated melanoma cell lines via its RasGAP activity toward R-Ras (related RAS viral (r-ras) oncogene homolog) isoform. Moreover, R-Ras increased and RASA1 suppressed Ral-A activation among Ras downstream effectors. In addition to mutations, loss of RASA1 expression was frequently observed in metastatic melanoma samples on melanoma tissue microarray (TMA) and a low level of RASA1 mRNA expression was associated with decreased overall survival in melanoma patients with BRAF mutations. Thus, these data support that RASA1 is inactivated by mutation or by suppressed expression in melanoma and that RASA1 plays a tumor suppressive role by inhibiting R-Ras, a previously less appreciated member of the Ras small GTPases.
Collapse
|
45
|
Nguyen HT, Hinman MN, Guo X, Sharma A, Arakawa H, Luo G, Lou H. Neurofibromatosis type 1 alternative splicing is a key regulator of Ras/ERK signaling and learning behaviors in mice. Hum Mol Genet 2018; 26:3797-3807. [PMID: 28934393 DOI: 10.1093/hmg/ddx264] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 06/28/2017] [Indexed: 01/10/2023] Open
Abstract
Appropriate activation of the Ras/extracellular signal-regulated kinase (ERK) protein signaling cascade within the brain is crucial for optimal learning and memory. One key regulator of this cascade is the Nf1 Ras GTPase activating protein (RasGAP), which attenuates Ras/ERK signaling by converting active Ras is bound to guanosine triphosphate, activating Ras into inactive Ras is bound to guanosine diphosphate, inactivating Ras. A previous study using embryonic stem cells and embryonic stem cell-derived neurons indicated that Nf1 RasGAP activity is modulated by the highly regulated alternative splicing of Nf1 exon 23a. In this study, we generated Nf123aIN/23aIN mice, in which the splicing signals surrounding Nf1 exon 23a were manipulated to increase exon inclusion. Nf123aIN/23aIN mice are viable and exon 23a inclusion approaches 100% in all tissues, including the brain, where the exon is normally almost completely skipped. Ras activation and phosphorylation of ERK1/2 downstream of Ras are both greatly increased in Nf123aIN/23aIN mouse brain lysates, confirming that exon 23a inclusion inhibits Nf1 RasGAP activity in vivo as it does in cultured cells. Consistent with the finding of altered Ras/ERK signaling in the brain, Nf123aIN/23aIN mice showed specific deficits in learning and memory compared with Nf1+/+ mice. Nf123aIN/23aIN mice performed poorly on the T-maze and Morris water maze tests, which measure short- and long-term spatial memory, respectively. In addition, Nf123aIN/23aIN mice showed abnormally elevated context-dependent fear and a diminished ability to extinguish a cued fear response, indicating defective associative fear learning. Therefore, the regulated alternative splicing of Nf1 is an important mechanism for fine-tuning Ras/ERK signaling as well as learning and memory in mice.
Collapse
Affiliation(s)
| | | | - Xuan Guo
- Department of Genetics and Genome Sciences
| | | | | | - Guangbin Luo
- Department of Genetics and Genome Sciences.,Case Comprehensive Cancer Center
| | - Hua Lou
- Department of Genetics and Genome Sciences.,Case Comprehensive Cancer Center.,Center for RNA Molecular Biology, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
| |
Collapse
|
46
|
Wylie T, Garg R, Ridley AJ, Conte MR. Analysis of the interaction of Plexin-B1 and Plexin-B2 with Rnd family proteins. PLoS One 2017; 12:e0185899. [PMID: 29040270 PMCID: PMC5645086 DOI: 10.1371/journal.pone.0185899] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 09/21/2017] [Indexed: 02/03/2023] Open
Abstract
The Rnd family of proteins, Rnd1, Rnd2 and Rnd3, are atypical Rho family GTPases, which bind to but do not hydrolyse GTP. They interact with plexins, which are receptors for semaphorins, and are hypothesised to regulate plexin signalling. We recently showed that each Rnd protein has a distinct profile of interaction with three plexins, Plexin-B1, Plexin-B2 and Plexin-B3, in mammalian cells, although it is unclear which region(s) of these plexins contribute to this specificity. Here we characterise the binary interactions of the Rnd proteins with the Rho-binding domain (RBD) of Plexin-B1 and Plexin-B2 using biophysical approaches. Isothermal titration calorimetry (ITC) experiments for each of the Rnd proteins with Plexin-B1-RBD and Plexin-B2-RBD showed similar association constants for all six interactions, although Rnd1 displayed a small preference for Plexin-B1-RBD and Rnd3 for Plexin-B2-RBD. Furthermore, mutagenic analysis of Rnd3 suggested similarities in its interaction with both Plexin-B1-RBD and Plexin-B2-RBD. These results suggest that Rnd proteins do not have a clear-cut specificity for different Plexin-B-RBDs, possibly implying the contribution of additional regions of Plexin-B proteins in conferring functional substrate selection.
Collapse
Affiliation(s)
- Thomas Wylie
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Ritu Garg
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Anne J. Ridley
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| | - Maria R. Conte
- Randall Division of Cell and Molecular Biophysics, King’s College London, Guy’s Campus, London, United Kingdom
| |
Collapse
|
47
|
Lapinski PE, Doosti A, Salato V, North P, Burrows PE, King PD. Somatic second hit mutation of RASA1 in vascular endothelial cells in capillary malformation-arteriovenous malformation. Eur J Med Genet 2017; 61:11-16. [PMID: 29024832 DOI: 10.1016/j.ejmg.2017.10.004] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/23/2017] [Accepted: 10/07/2017] [Indexed: 01/17/2023]
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is an autosomal dominant vascular disorder that is associated with inherited inactivating mutations of the RASA1 gene in the majority of cases. Characteristically, patients exhibit one or more focal cutaneous CM that may occur alone or together with AVM, arteriovenous fistulas or lymphatic vessel abnormalities. The focal nature and varying presentation of lesions has led to the hypothesis that somatic "second hit" inactivating mutations of RASA1 are necessary for disease development. In this study, we examined CM from four different CM-AVM patients for the presence of somatically acquired RASA1 mutations. All four patients were shown to possess inactivating heterozygous germline RASA1 mutations. In one of the patients, a somatic inactivating RASA1 mutation (c.1534C > T, p.Arg512*) was additionally identified in CM lesion tissue. The somatic RASA1 mutation was detected within endothelial cells specifically and was in trans with the germline RASA1 mutation. Together with the germline RASA1 mutation (c.2125C > T, p.Arg709*) in the same patient, the endothelial cell somatic RASA1 mutation likely contributed to lesion development. These studies provide the first clear evidence of the second hit model of CM-AVM pathogenesis.
Collapse
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Abbas Doosti
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA
| | - Valerie Salato
- Department of Pathology, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Paula North
- Department of Pathology, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Patricia E Burrows
- Department of Radiology, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI 53226, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, MI 48103, USA.
| |
Collapse
|
48
|
Tau exacerbates excitotoxic brain damage in an animal model of stroke. Nat Commun 2017; 8:473. [PMID: 28883427 PMCID: PMC5589746 DOI: 10.1038/s41467-017-00618-0] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/13/2017] [Indexed: 02/07/2023] Open
Abstract
Neuronal excitotoxicity induced by aberrant excitation of glutamatergic receptors contributes to brain damage in stroke. Here we show that tau-deficient (tau−/−) mice are profoundly protected from excitotoxic brain damage and neurological deficits following experimental stroke, using a middle cerebral artery occlusion with reperfusion model. Mechanistically, we show that this protection is due to site-specific inhibition of glutamate-induced and Ras/ERK-mediated toxicity by accumulation of Ras-inhibiting SynGAP1, which resides in a post-synaptic complex with tau. Accordingly, reducing SynGAP1 levels in tau−/− mice abolished the protection from pharmacologically induced excitotoxicity and middle cerebral artery occlusion-induced brain damage. Conversely, over-expression of SynGAP1 prevented excitotoxic ERK activation in wild-type neurons. Our findings suggest that tau mediates excitotoxic Ras/ERK signaling by controlling post-synaptic compartmentalization of SynGAP1. Excitotoxicity contributes to neuronal injury following stroke. Here the authors show that tau promotes excitotoxicity by a post-synaptic mechanism, involving site-specific control of ERK activation, in a mouse model of stroke.
Collapse
|
49
|
Lapinski PE, Lubeck BA, Chen D, Doosti A, Zawieja SD, Davis MJ, King PD. RASA1 regulates the function of lymphatic vessel valves in mice. J Clin Invest 2017; 127:2569-2585. [PMID: 28530642 DOI: 10.1172/jci89607] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 03/23/2017] [Indexed: 12/21/2022] Open
Abstract
Capillary malformation-arteriovenous malformation (CM-AVM) is a blood and lymphatic vessel (LV) disorder that is caused by inherited inactivating mutations of the RASA1 gene, which encodes p120 RasGAP (RASA1), a negative regulator of the Ras small GTP-binding protein. How RASA1 mutations lead to the LV leakage defects that occur in CM-AVM is not understood. Here, we report that disruption of the Rasa1 gene in adult mice resulted in loss of LV endothelial cells (LECs) specifically from the leaflets of intraluminal valves in collecting LVs. As a result, valves were unable to prevent fluid backflow and the vessels were ineffective pumps. Furthermore, disruption of Rasa1 in midgestation resulted in LEC apoptosis in developing LV valves and consequently failed LV valvulogenesis. Similar phenotypes were observed in induced RASA1-deficient adult mice and embryos expressing a catalytically inactive RASA1R780Q mutation. Thus, RASA1 catalytic activity is essential for the function and development of LV valves. These data provide a partial explanation for LV leakage defects and potentially other LV abnormalities observed in CM-AVM.
Collapse
Affiliation(s)
- Philip E Lapinski
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Beth A Lubeck
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Di Chen
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Abbas Doosti
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Scott D Zawieja
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, USA
| | - Philip D King
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
50
|
Ugale A, Säwén P, Dudenhöffer-Pfeifer M, Wahlestedt M, Norddahl GL, Bryder D. MLL-ENL-mediated leukemia initiation at the interface of lymphoid commitment. Oncogene 2017; 36:3207-3212. [PMID: 28068328 DOI: 10.1038/onc.2016.470] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 11/08/2016] [Accepted: 11/12/2016] [Indexed: 01/22/2023]
Abstract
Translocations involving the mixed lineage leukemia-1 are recurrent events in acute leukemia and associate with lymphoid (ALL), myeloid (AML) or mixed lineage (MLL) subtypes. Despite an association with ALL in humans, murine MLL fusion models are persistently restricted to AML. We here explored this issue using an inducible mixed lineage leukemia-eleven nineteen leukemia (MLL-ENL) mouse model. Although multiple progenitor cell types with myeloid potential are potent AML leukemia-initiating cells, also the earliest lymphoid progenitors were capable of initiating AML. This ability to evoke a latent myeloid potential in the earliest lymphoid progenitors was lost upon further lymphoid commitment. At the same time, more downstream/committed lymphoid precursors also failed to initiate lymphoid leukemia. Co-expression of MLL-ENL with a constitutively active RAS allele, the most common co-mutation in MLL fusion leukemias, could influence on both disease latency and lineage assignment of developing leukemia in what appears to be a mutation-order-dependent manner. Finally, CEBPB-mediated transdifferentation of committed and otherwise leukemia-incompetent B-cell progenitors imbued these cells with leukemic competence for AML. Therefore, apart from providing detailed insight into the differential responsiveness of candidate target cells to a first-hit MLL fusion event, our data warrants caution to therapeutic approaches based on the concept of transdifferentiation.
Collapse
Affiliation(s)
- A Ugale
- Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - P Säwén
- Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - M Dudenhöffer-Pfeifer
- Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - M Wahlestedt
- Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - G L Norddahl
- Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| | - D Bryder
- Molecular Hematology, Institution for Laboratory Medicine, Lund University, Lund, Sweden
| |
Collapse
|